JP2756815B2 - Boiler combustion control search method and apparatus - Google Patents

Boiler combustion control search method and apparatus

Info

Publication number
JP2756815B2
JP2756815B2 JP1061356A JP6135689A JP2756815B2 JP 2756815 B2 JP2756815 B2 JP 2756815B2 JP 1061356 A JP1061356 A JP 1061356A JP 6135689 A JP6135689 A JP 6135689A JP 2756815 B2 JP2756815 B2 JP 2756815B2
Authority
JP
Japan
Prior art keywords
ash
boiler
evaluation index
operation amount
combustion state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1061356A
Other languages
Japanese (ja)
Other versions
JPH02242012A (en
Inventor
木村  亨
彰 菅野
久典 宮垣
下田  誠
好夫 渡辺
一弘 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP1061356A priority Critical patent/JP2756815B2/en
Publication of JPH02242012A publication Critical patent/JPH02242012A/en
Application granted granted Critical
Publication of JP2756815B2 publication Critical patent/JP2756815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ボイラの燃焼制御のための操作量を探索す
る方法およびその装置に係り、特に微粉炭焚きボイラの
灰中未燃分を減少させる操作量を探索するのに好適なボ
イラの燃焼制御探索方法及び装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for searching for an operation amount for boiler combustion control, and in particular, to reduce unburned ash in ash of a pulverized coal-fired boiler. The present invention relates to a boiler combustion control search method and apparatus suitable for searching for an operation amount to be operated.

〔従来の技術〕[Conventional technology]

従来、燃焼を調整する方法としては、試運転時に火炉
内でCOのバランスがとれるように燃焼を調整する程度で
ある。また運転時は火炉出口のガスO2を一定とするよう
に制御するのみである。
Conventionally, the only method for adjusting combustion is to adjust combustion so that CO can be balanced in the furnace during test operation. During operation, it is only controlled to keep the gas O 2 at the furnace outlet constant.

尚、特開昭62−123218号公報に記載のように灰中未燃
分をマクロ的に推定する方法はあるが、やはりNOx値・
灰中未燃分のための運転調節は運転員の経験と勘にたよ
っていた。
As described in Japanese Patent Application Laid-Open No. 62-123218, there is a method for estimating the unburned matter in ash macroscopically.
Driving control for unburned ash was based on operator experience and intuition.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術においては、NOxを環境規制値以下、灰
中未燃分を最小、とするようにボイラ内の燃焼を調整す
るには運転員の経験と勘にたよっていたが、最近の火力
発電用ボイラでは燃料供給源の安定化を目的として多種
類の海外炭を使用することが通例となってきており、そ
れにより運転員の燃焼調節も複雑となり上記のように運
転員の経験と勘によってNOxも規制値以下に、灰中未燃
分も最小とする燃焼を実現させるのが困難となってい
る。
In the above prior art, the combustion in the boiler was adjusted based on the experience of the operator to adjust the combustion in the boiler so that NOx was equal to or less than the environmental regulation value and the unburned portion in the ash was minimized. In boilers for boilers, it is customary to use various types of overseas coal for the purpose of stabilizing the fuel supply source, which makes the combustion control of the operator complicated, and as described above, depends on the experience and intuition of the operator. It is also difficult to realize combustion that minimizes the unburned content of ash, since NOx is also below the regulation value.

本発明の目的は、取扱ういかなる炭種においても、灰
中未燃分を所定値以下でかつNOx値を環境規制値以下と
するようなボイラの操作量を探索するにある。
An object of the present invention is to search for an operation amount of a boiler that makes unburned ash in ash equal to or less than a predetermined value and NOx value equal to or less than an environmental regulation value for any kind of coal to be handled.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、ボイラの操作量と、該操作量により生ず
るバーナ火炎の輝度分布により求める燃焼状態評価指標
と、該燃焼状態評価指標に対応して生ずる灰中未燃分と
の関係から、前記操作量を仮想的に変更した変化量に対
する前記燃焼状態評価指標の変化量を推定し、推定した
燃焼状態評価指標の変化量により灰中未燃分の変化量を
推定することにより、灰中未燃分が所定値以下となる操
作量を探索するボイラの燃焼制御探索方法により達成さ
れ、また、ボイラの操作量と、該操作量により生ずるバ
ーナ火炎の温度分布により求める燃焼状態評価指標と、
該燃焼状態評価指標に対応して生ずる灰中未燃分の関係
から、前記操作量を仮想的に変更した変化量に対する前
記燃焼状態評価指標の変化量を推定し、推定した燃焼状
態評価指標の変化量により灰中未燃分の変化量を推定す
ることにより、灰中未燃分が所定値以下となる操作量を
探索するボイラの燃焼制御探索方法により達成される。
The above object is based on the relationship between the operation amount of the boiler, the combustion state evaluation index obtained from the luminance distribution of the burner flame generated by the operation amount, and the unburned ash in the ash generated corresponding to the combustion state evaluation index. By estimating the amount of change in the combustion state evaluation index with respect to the amount of change in which the amount is virtually changed, and estimating the amount of change in unburned ash in the ash from the estimated amount of change in the combustion state evaluation index, It is achieved by a combustion control search method of a boiler that searches for an operation amount at which the minute amount is equal to or less than a predetermined value, and an operation amount of the boiler, a combustion state evaluation index obtained by a temperature distribution of a burner flame generated by the operation amount,
From the relationship of unburned ash in the ash generated corresponding to the combustion state evaluation index, the amount of change of the combustion state evaluation index with respect to the amount of change obtained by virtually changing the manipulated variable is estimated. By estimating the change amount of the unburned ash in the ash from the change amount, it is achieved by the combustion control search method of the boiler that searches for an operation amount at which the unburned ash in the ash becomes a predetermined value or less.

そして、前記操作量は前記ボイラに供給する空気量
と、燃料量と、該燃料の温度と、前記空気と前記燃料の
混合状態を調節するエアレジスタダンパ開度と、ベーン
角度と、前記ボイラのガス再循環量と、二段燃焼比率と
するのが適当である。
The operation amount is an air amount supplied to the boiler, a fuel amount, a temperature of the fuel, an air register damper opening for adjusting a mixing state of the air and the fuel, a vane angle, and a boiler angle. It is appropriate to set the gas recirculation amount and the two-stage combustion ratio.

また、前記バーナ火炎は前記ボイラに配置された複数
のバーナの内の少なくとも1個から発生するものである
ことを特徴としている。
Further, the burner flame is generated from at least one of a plurality of burners arranged in the boiler.

また、前記灰中未燃分が所定値以下となるボイラの操
作量を求めた後に該操作量とボイラの排ガス中のNOx値
の実績値から該操作量に対するNOx値が規制値以下であ
ることを確認するのが良い。しかし、前記NOx値が規制
値以下にならない場合、前記灰中未燃分の所定値を変更
する必要がある。
Further, after obtaining the operation amount of the boiler in which the unburned portion in the ash is equal to or less than a predetermined value, the NOx value for the operation amount is equal to or less than the regulation value based on the actual operation value of the operation amount and the NOx value in the exhaust gas of the boiler. Good to check. However, if the NOx value does not fall below the regulation value, it is necessary to change the predetermined value of the unburned ash in the ash.

さらに、上記の目的は、装置として、ボイラのバーナ
火炎の画像を検出する画像検出手段と、該バーナ火炎の
画像から該バーナ火炎の燃焼状態評価指標を演算する燃
焼状態評価指標演算手段と、前記バーナ火炎に用いられ
たボイラの操作量の仮想的変化量を入力する変化操作量
入力手段と、前記ボイラの操作量の仮想的変化量と前記
バーナ火炎の燃焼状態評価指標を基にボイラの操作量変
更後のバーナ火炎の燃焼状態評価指標を演算する変更後
燃焼状態評価指標演算手段と、燃焼状態評価指標からボ
イラの灰中未燃分を演算する灰中未燃分演算手段と、を
備えたボイラの燃焼制御探索装置を用いることにより達
成される。
Further, the above object is, as an apparatus, an image detecting means for detecting an image of a burner flame of a boiler, a combustion state evaluation index calculating means for calculating a combustion state evaluation index of the burner flame from the image of the burner flame, Change operation amount input means for inputting a virtual change amount of the operation amount of the boiler used for the burner flame, and operating the boiler based on the virtual change amount of the operation amount of the boiler and the combustion state evaluation index of the burner flame A post-change combustion state evaluation index calculating means for calculating a combustion state evaluation index of the burner flame after the amount change, and an unburned ash in burner calculating means for calculating the unburned ash content in the boiler from the combustion state evaluation index. This is achieved by using a boiler combustion control search device.

〔作用〕[Action]

微粉炭粒子の燃焼過程においては、燃焼の初期に揮発
分の分解燃焼が行なわれ、その後コークス状の残留炭素
質(チャー)の表面燃焼が進行する。チャーの表面燃焼
は、揮発分の分解燃焼に比べて遅いので、微粉炭が完全
に燃え切るのに要する時間の大部分は、チャーの表面燃
焼に要する時間とみてよい。
In the combustion process of the pulverized coal particles, decomposition combustion of volatile components is performed at the beginning of the combustion, and thereafter, surface combustion of coke-like residual carbonaceous material (char) proceeds. Since the surface combustion of char is slower than the decomposition combustion of volatiles, most of the time required for pulverized coal to completely burn out can be considered as the time required for surface combustion of the char.

この揮発分の分解燃焼は時間的にはごく短いが、微粉
炭粒子はこの間に、膨張現象(チャーが多孔質となり、
表面積が増加する)を生じ、この膨張は、その後のチャ
ーの燃焼速度を支配して、灰中未燃分の量に大きく影響
する。膨張が早くおこなわれ、膨張量が大きいほど、チ
ャーの表面燃焼に好影響を及ぼすので、灰中未燃分の低
減のためには、微粉炭粒子の燃焼初期における揮発分の
分解燃焼に伴う膨張現象を促進してやる必要がある。こ
のためには、チャーの表面燃焼によって生ずる溶融灰が
微粉炭粒子の表面をおおうまえに、揮発分が充分に微粉
炭粒子から噴出、燃焼するように、微粉炭粒子に着火し
てからの急激な温度上昇が必要であり、バーナ出口近く
で火炎温度が急激に上昇していると、微粉炭粒子の膨張
が促進されて、灰中未燃分が低減される。
The decomposition and combustion of this volatile matter is very short in time, but the pulverized coal particles expand during this time (the char becomes porous,
Surface area increases), and this expansion governs the subsequent burning rate of the char and greatly affects the amount of unburned ash in the ash. As the expansion is performed quickly and the expansion amount is large, the effect on the surface combustion of the char is more favorable. Therefore, in order to reduce the unburned content in the ash, the expansion due to the decomposition and combustion of the volatile matter in the early stage of the combustion of the pulverized coal particles We need to promote the phenomenon. For this purpose, the molten ash generated by the surface combustion of the char covers the surface of the pulverized coal particles, and the volatile matter sufficiently erupts from the pulverized coal particles. If the flame temperature rises sharply near the burner outlet, the expansion of the pulverized coal particles is promoted, and the unburned ash in the ash is reduced.

本発明は、微粉炭燃焼における灰中未燃分の発生量
が、上述のように微粉炭粒子着火後の温度上昇の度合、
つまりバーナ火炎の該火炎噴出方向の温度分布(輝度分
布でもよい)に強く依存している点に着目してなされた
ものであり、更には、バーナ火炎の前記温度分布は、火
炎に供給される燃焼用空気量、燃料量、該燃料の温度、
前記空気と前記燃料の混合状態を調節するエアレジスタ
ダンパ開度、ベーン角度、燃焼ガス再循環量および二段
燃焼比率等のボイラ操作量に依存していることに着目し
てなされたものである。
The present invention, the amount of unburned ash in pulverized coal combustion, the degree of temperature rise after pulverized coal particle ignition as described above,
In other words, it is made by paying attention to the fact that the burner flame strongly depends on the temperature distribution (luminance distribution may be used) in the flame ejection direction. Further, the temperature distribution of the burner flame is supplied to the flame. Combustion air amount, fuel amount, temperature of the fuel,
It is made by paying attention to the fact that it depends on a boiler operation amount such as an air register damper opening degree, a vane angle, a combustion gas recirculation amount and a two-stage combustion ratio for adjusting a mixing state of the air and the fuel. .

ボイラの燃焼制御探索方法において、ボイラの操作量
に依存するバーナ火炎の輝度分布を示す燃焼状態評価指
標を求める方法を第3図により説明する。
A method of obtaining a combustion state evaluation index indicating a brightness distribution of a burner flame depending on the operation amount of the boiler in the boiler combustion control search method will be described with reference to FIG.

第3図は画像検出手段により求めたバーナ火炎の画像
を、バーナ16先端からの距離xをx軸に、バーナ火炎画
像幅距離をy軸に、バーナ火炎の輝度Lを高さ方向即ち
z軸にとって三次元的に表わしている。ここで、バーナ
16先端からの距離xにおける輝度のy軸方向の輝度積分
値S(x)を求める。例えば、x=aでは輝度積分値を
S(a)で示し、x=b,x=cではそれぞれS(b),S
(c)で示している。この輝度積分値S(x)を用い
て、次の(1)式により輝度立ち上がり指標Ib(バーナ
火炎の輝度分布により求める燃焼状態評価指標)をもと
めて、バーナ火炎の輝度立ち上がりを評価する。
FIG. 3 shows the image of the burner flame obtained by the image detecting means, the distance x from the tip of the burner 16 on the x-axis, the width of the burner flame image on the y-axis, and the brightness L of the burner flame in the height direction, that is, the z-axis. Is represented in three dimensions. Where burner
16 A luminance integrated value S (x) in the y-axis direction of the luminance at a distance x from the tip is obtained. For example, when x = a, the luminance integrated value is indicated by S (a), and when x = b, x = c, S (b), S
This is shown in FIG. Using the integrated brightness value S (x), the brightness rise index I b (combustion state evaluation index obtained from the brightness distribution of the burner flame) is calculated by the following equation (1) to evaluate the brightness rise of the burner flame.

(1)式によればバーナ先端に近い輝度ほど重みづけさ
れ積分された値とするため、バーナ火炎の輝度立ち上が
りが急激なほど(バーナ先端に近い火炎の輝度が高いほ
ど)輝度立ち上がり指標Ibは大きくなる。
According to the formula (1), since the luminance closer to the burner tip is weighted and integrated, the brightness rise index of the burner flame is sharper (the higher the brightness of the flame near the burner tip is, the higher the brightness rise index Ib ). Becomes larger.

次にボイラの操作量(供給する空気量、燃料量、該燃
料の温度、前記空気と前記燃料の混合状態を調節するエ
アレジスタダンパ開度、ベーン角度、ボイラのガス再循
環量及び二段燃焼比率)を変更した場合の燃焼状態評価
指標の変化量を推定する方法を第2図により説明する。
第2図では、横軸にボイラの操作量uを、縦軸に燃焼状
態評価指標Iをとっており、ボイラの操作量と燃焼状態
評価指標の関係が滑らかな曲線で表わされている。前記
バーナ火炎の画像を求めた時点での操作量を、u0とし、
そのときの火炎の輝度立ち上がりを示す燃焼状態評価指
標をI0(前記Ib)とすると、操作量をΔuだけ変更した
場合、燃焼状態評価指標IはΔIだけ変化し、操作量変
更後の燃焼状態評価指標I1は次の(2)式により求めら
れる。
Next, the operation amount of the boiler (the amount of air to be supplied, the amount of fuel, the temperature of the fuel, the opening degree of the air register damper for adjusting the mixing state of the air and the fuel, the vane angle, the gas recirculation amount of the boiler, and the two-stage combustion) The method of estimating the amount of change in the combustion state evaluation index when the ratio is changed will be described with reference to FIG.
In FIG. 2, the horizontal axis represents the operation amount u of the boiler, and the vertical axis represents the combustion state evaluation index I, and the relationship between the operation amount of the boiler and the combustion state evaluation index is represented by a smooth curve. The operation amount at the time of obtaining the image of the burner flame is u 0 ,
Assuming that the combustion state evaluation index indicating the rising of the brightness of the flame at that time is I 0 ( Ib ), if the operation amount is changed by Δu, the combustion state evaluation index I changes by ΔI, and the combustion after the operation amount is changed. condition evaluation index I 1 is determined by the following equation (2).

I1=I0+ΔI (2) 以上で求めた操作量変更後の燃焼状態評価指標を用い
て、n段のバーナ配列であるボイラの火炉出口ての灰中
未燃分推定方法を示す。
I 1 = I 0 + ΔI (2) A method for estimating unburned ash in ash at the furnace outlet of a boiler having an n-stage burner arrangement using the combustion state evaluation index obtained after changing the manipulated variable obtained above.

各段バーナの燃焼状態は、火炎の後流域の燃焼状態や
石炭性状、石炭粒子の滞留時間等により異なり、発生す
る灰中未燃分はそれらの影響を受けるので、灰中未燃分
を推定するために各段バーナの燃焼状態評価指標に下記
のような重みづけを行なう。
The combustion state of each stage burner differs depending on the combustion state in the downstream area of the flame, the coal properties, the residence time of coal particles, etc., and the unburned ash in the ash generated is affected by these factors. For this purpose, the following weighting is applied to the combustion state evaluation index of each stage burner.

I1i′:重みづけ後各段バーナ燃焼状態評価指標 I1i :重みづけ前各段バーナ燃焼状態評価指標 K :石炭性状で決まる係数 fi :i段バーナの燃料量 f :全投入燃料量 重みづけを行なったI1i′を用いて(4),(5)式
により灰中未燃分を推定する。
I 1 i ′: Burning condition evaluation index for each stage burner after weighting I 1 i: Burning condition evaluation index for each stage burner before weighting K: Coefficient determined by coal properties fi: Fuel amount of i-stage burner f: Total input fuel amount Using the weighted I 1 i ′, the unburned ash in the ash is estimated by the equations (4) and (5).

(100−c)=g1・I11′+g2・I12′+……gn・I1n′ (4) gi(i=1〜n):火炉内酸素濃度等で決まる係数 c :石炭未燃焼率(%) A :石炭灰分(%) U :灰中未燃分(%) 以上、バーナ火炎の輝度立ち上がり指標Ibを燃焼状態
評価指標Iとして、灰中未燃分を推定する方法を示した
が、バーナ火炎の輝度立ち上がり指標Ibを、バーナ火炎
の温度立ち上がり指標Itに置換えて、上記と全く同様の
プロセスでボイラの灰中未燃分を推定することができ
る。その場合、第3図におけるZ軸に温度をとり、温度
立上がり指標Itは下記(6)式により求めればよい。
(100−c) = g 1 · I 11 ′ + g 2 · I 12 ′ +... G n · I 1n ′ (4) gi (i = 1 to n): Coefficient determined by the oxygen concentration in the furnace, etc. c: Coal unburned rate (%) A: Coal ash (%) U: Unburned content in ash (%) Above, the brightness rise of burner flame as an index I b the combustion state evaluation index I, although the method for estimating the ash unburned, a luminance rising index I b of the burner flame, replacing the temperature rise indicator I t of the burner flame, exactly as above A similar process can be used to estimate unburned boiler ash. In that case, taking the temperature to the Z axis in FIG. 3, the temperature rise indicator I t may be determined by the following equation (6).

以上のように、燃焼中の火炎の画像に基づいて燃焼状
態評価指標が求められ、この燃焼状態評価指標に基づい
て灰中未燃分が推定されたら、現在のボイラ操作量が仮
想的にΔuだけ変化させられ、このΔuの変化に伴う燃
焼状態評価指標Iの変化量(ΔI)が、第2図に記載さ
れているような操作量と燃焼状態評価指標の関係に基づ
いて算出される。次いで(2)式により、ボイラ操作量
変化後の燃焼状態評価指標I1、が算出され、この燃焼状
態評価指標I1に(3)式による重みづけが行なわれたの
ち、(4)式により、ボイラ操作量変化後の灰中未燃分
が推定される。この作業が繰返されて、灰中未燃分を目
標値以下にするために、必要なボイラ操作量が探索され
る。
As described above, the combustion state evaluation index is obtained based on the image of the burning flame, and if the unburned portion in the ash is estimated based on the combustion state evaluation index, the current boiler operation amount is virtually Δu The change amount (ΔI) of the combustion state evaluation index I accompanying the change of Δu is calculated based on the relationship between the manipulated variable and the combustion state evaluation index as shown in FIG. By then (2), the combustion state evaluation index I 1 after the boiler operation amount change, is calculated, after the weighting is performed according to (3) in the combustion state evaluation index I 1, the equation (4) The unburned ash in the ash after the change in the boiler operation amount is estimated. This operation is repeated to search for a necessary boiler operation amount in order to reduce the unburned portion in the ash to a target value or less.

請求項5に記載の方法においては、さらに、灰中未燃
分を目標値以下にするボイラ操作量が求まったら、この
求まったボイラ操作量に対応するNOx発生量が、従来の
ボイラ操作量と、NOx発生量の実績値に基づいて算出さ
れ、算出されたNOx値が規制値以下であるかどうが判定
される。
In the method according to claim 5, further, when a boiler operation amount that makes the unburned ash in the ash equal to or less than the target value is obtained, the NOx generation amount corresponding to the obtained boiler operation amount is different from the conventional boiler operation amount. , Is calculated based on the actual value of the NOx generation amount, and it is determined whether the calculated NOx value is equal to or less than the regulation value.

請求項6に記載の方法においては、灰中未燃分を目標
値以下とする操作量に基づいて算出されたNOx値が規制
値を超える場合は、灰中未燃分の目標値に拘らず、操作
量とNOx値の関係を示す実績値に基づいて、操作量がNOx
値が減少する方向に仮想的に変化され、NOx値が規制値
を下まわる値となる操作量の値が最終的な操作量として
出力される。
In the method according to claim 6, when the NOx value calculated based on the manipulated variable for setting the unburned ash content in the ash to be equal to or less than the target value, regardless of the target value of the unburned ash content in the ash, , Based on the actual value indicating the relationship between the manipulated variable and the NOx value,
The value of the operation amount that is virtually changed in the direction in which the value decreases and the NOx value becomes a value below the regulation value is output as the final operation amount.

請求項7に記載の燃焼制御探索装置によれば、まず、
バーナ火炎が画像検出手段によって、画像化される。こ
の火炎画像の輝度分布もしくは温度分布に基づいて、該
火炎の燃焼状態評価指標が評価指導演算手段により、求
められ、求められた燃焼状態評価指標に基づいて、灰中
未燃分が、灰中未燃分演算手段により求められる。更
に、前記バーナ火炎を画像化した時点でのボイラ操作量
に対し、この操作量を仮想的に変化させる仮想的変化量
が、変化操作量入力手段により入力され、この仮想的変
化量と前記燃焼状態評価指標とから、操作量変化後の燃
焼状態評価指標が、あらかじめ求められている操作量と
燃焼状態評価指標の関係に基づいて、変更後燃料状態評
価指標演算手段により演算して求められる。次いで、該
操作量変更後の燃焼状態評価指標に基づいて変更後灰中
未燃分が前記灰中未燃分演算手段により求められる。
According to the combustion control search device of claim 7, first,
The burner flame is imaged by the image detection means. Based on the luminance distribution or the temperature distribution of the flame image, a combustion state evaluation index of the flame is obtained by the evaluation instruction calculation means, and based on the obtained combustion state evaluation index, the unburned ash in the ash is converted into the ash. It is determined by the unburned portion calculating means. Further, a virtual change amount for virtually changing the operation amount with respect to the boiler operation amount at the time when the burner flame is imaged is input by the change operation amount input means, and the virtual change amount and the combustion From the state evaluation index, a combustion state evaluation index after a change in the operation amount is calculated and obtained by the post-change fuel state evaluation index calculation means based on a relationship between the operation amount and the combustion state evaluation index which are obtained in advance. Next, the changed unburned ash content is calculated by the ash unburned content calculating means based on the combustion state evaluation index after the manipulated variable change.

〔実施例〕〔Example〕

以下、図を用いて本発明の実施例を説明する。第1図
は、本発明の一実施例であるボイラの燃焼制御装置の主
要構成を示すブロック図であり、第4図は、燃焼制御探
索方法の実施例を示すフローチャートである。火炉1
(ボイラ)に設置されたバーナから噴出されるバーナ火
炎2の画像は冷却管3(対物部は、スス付着防止対策と
してパージ可能としてある)により冷却された光繊維束
4を通して光電変換装置5に伝送され、そこで電気信号
に変換される。その電気信号は信号ケーブル6を介し
て、アナログ/デジタル変換装置(以下AD変換装置とい
う)7に伝送されてデジタルデータに変換された後、画
像メモリ8に記憶される。上記光繊維束4と光電変換装
置5とAD変換装置7とが画像検出手段をなしている。画
像メモリ8に記憶された画像データは計算機9により処
理され、計算機9に接続されたCRT10には、計算機9に
入力されるデータや灰中未燃分を最小とし、NOx値を規
制値以下とする操作量、灰中未燃分実測値、NOx規制値
等を表示し、ボイラ制御装置11は計算機10から出力され
る操作量を受けて、灰中未燃分最小、NOxが規制値以下
となるように操作を実施する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a main configuration of a boiler combustion control device according to an embodiment of the present invention, and FIG. 4 is a flowchart showing an embodiment of a combustion control search method. Furnace 1
The image of the burner flame 2 ejected from the burner installed in the (boiler) is transmitted to the photoelectric conversion device 5 through the optical fiber bundle 4 cooled by the cooling pipe 3 (the objective part can be purged as a measure to prevent soot adhesion). Transmitted and converted there into electrical signals. The electric signal is transmitted to an analog / digital converter (hereinafter, referred to as an AD converter) 7 via a signal cable 6, converted into digital data, and stored in an image memory 8. The optical fiber bundle 4, the photoelectric conversion device 5, and the AD conversion device 7 constitute an image detecting means. The image data stored in the image memory 8 is processed by the computer 9, and the CRT 10 connected to the computer 9 minimizes the data input to the computer 9 and unburned ash in the ash, and keeps the NOx value below the regulation value. The manipulated variable to be performed, the measured value of unburned ash in ash, the NOx regulation value, and the like are displayed. Perform the operation as follows.

計算機9は、第6図に示すように次の回路を備えてい
る。即ち、前記画像メモリ8に接続され、各段のバーナ
火炎画像を入力されるバーナ火炎画像入力回路36と該バ
ーナ火炎画像入力回路36に接続され、バーナ火炎画像に
基づいて、燃焼状態評価指標を演算出力する燃焼状態評
価指標演算手段である燃焼状態評価指標演算回路40と、
該燃焼状態評価指標演算回路と変化操作量入力手段であ
る変化操作量入力回路37とに接続された変更後燃焼状態
評価指標演算手段である変更後燃焼状態評価指標演算回
路41と、該変更後燃焼状態評価指標演算回路41と石炭性
状入力回路38とに接続された灰中未燃分演算手段である
灰中未燃分演算回路42と、該灰中未燃分演算回路42と灰
中未燃分目標値入力回路39とに接続された灰中未燃分比
較回路43と、変化操作量入力回路37に接続された操作量
変更後NOx実績値入力回路48と、該操作量変更後NOx実績
値入力回路48とNOx規制値入力回路45とに接続されたNOx
規制値比較回路44と、前記灰中未燃分比較回路43とNOx
規制値比較回路44とに接続それた灰中未燃分・NOx値判
定回路49と、NOx規制値比較回路44に接続された警報出
力回路46と、前記灰中未燃分・NOx値判定回路49に接続
された最適操作量出力回路47とを備えている。
The computer 9 has the following circuit as shown in FIG. That is, the burner flame image input circuit 36 is connected to the image memory 8 and receives the burner flame image of each stage. The burner flame image input circuit 36 is connected to the burner flame image input circuit 36, and the combustion state evaluation index is calculated based on the burner flame image. A combustion state evaluation index calculation circuit 40 which is a combustion state evaluation index calculation means for calculating and outputting,
A post-change combustion state evaluation index operation circuit 41 as a post-change combustion state evaluation index operation means connected to the combustion state evaluation index operation circuit and a change operation amount input circuit 37 as a change operation amount input means; The unburned ash in the ash calculation circuit 42, which is a means for calculating unburned ash in the ash, connected to the combustion state evaluation index calculation circuit 41 and the coal property input circuit 38; the unburned ash in the ash calculation circuit 42; The unburned ash in-ash comparison circuit 43 connected to the fuel target value input circuit 39, the manipulated variable changed NOx actual value input circuit 48 connected to the changed manipulated variable input circuit 37, and the manipulated variable changed NOx NOx connected to the actual value input circuit 48 and the NOx regulation value input circuit 45
The regulated value comparison circuit 44, the unburned ash in the ash comparison circuit 43 and NOx
An unburned ash / NOx value determination circuit 49 connected to the regulation value comparison circuit 44, an alarm output circuit 46 connected to the NOx regulation value comparison circuit 44, and the ash unburned content / NOx value decision circuit 49 is provided with an optimum manipulated variable output circuit 47 connected to 49.

燃焼状態評価指標演算回路は、入力された火炎画像デ
ータに基づいて、バーナ火炎の輝度立ち上がり指標Ib
しくは、温度立ち上がり指標Itを求め、求めた指標Ib
又はItを燃焼状態評価指標として、変更後燃焼状態評価
指標演算回路41へ出力する。
Combustion state evaluation index computing circuit based on the inputted flame image data, the luminance rising index burner flame I b or, determine the temperature rising index I t, calculated indicator I b,
Or I t as a combustion state evaluation index, and outputs the changed after combustion state evaluation index calculating circuit 41.

変化操作量入力回路37は、バーナ火炎画像が検出され
た状態でのボイラの操作量(ボイラの操作量を以下、操
作量という)に対する仮想的な操作量の変化量を入力さ
れ、この変化量を変更後燃焼状態評価指標演算回路41、
最適操作量出力回路47、および操作量変更後NOx実績値
入力回路48へ出力する。
The change manipulated variable input circuit 37 receives a virtual manipulated variable change with respect to the boiler manipulated variable in the state where the burner flame image is detected (the boiler manipulated variable is hereinafter referred to as the manipulated variable). After changing the combustion state evaluation index calculation circuit 41,
Output to the optimal manipulated variable output circuit 47 and the manipulated variable changed NOx actual value input circuit 48.

変更後燃焼状態評価指標演算回路41は、燃焼状態評価
指標と操作量の変化量とを入力され、バーナ火炎画像検
出時の操作量から入力された変化量だけ変化した操作量
における変更後燃焼状態評価指標を演算し、灰中未燃分
演算回路42へ出力する。
The changed combustion state evaluation index calculation circuit 41 receives the combustion state evaluation index and the change amount of the operation amount, and changes the combustion state after the change in the operation amount changed by the change amount input from the operation amount at the time of burner flame image detection. The evaluation index is calculated and output to the unburned ash content calculation circuit.

石炭性状入力回路38は、燃料である微粉炭の炭種によ
り異なる性状を燃焼中の炭種に合わせて入力され、所要
のデータを灰中未燃分演算回路42へ出力する。
The coal property input circuit 38 receives different properties depending on the coal type of the pulverized coal as the fuel in accordance with the type of coal being burned, and outputs required data to the unburned ash content calculation circuit 42.

灰中未燃分演算回路42は、変更後燃焼状態評価指標
(もしくは燃焼状態評価指標)と燃焼中の炭種の性状
(例えば、係数Kおよび灰分%)とを入力され、燃焼状
態評価指標の重みづけを行なって灰中未燃分を演算し、
灰中未燃分比較回路43へ出力する。
The unburned ash calculation circuit 42 receives the post-change combustion state evaluation index (or the combustion state evaluation index) and the properties of the burning coal type (for example, the coefficient K and the ash%), and receives the combustion state evaluation index. Calculate unburned ash in ash by weighting,
Output to the unburned ash in-ash comparison circuit 43.

灰中未燃分比較回路43は、灰中未燃分目標値入力回路
39を介して入力される灰中未燃分目標値と灰中未燃分演
算回路から入力される灰中未燃分の値とを比較して、目
標値以下かどうかの信号を灰中未燃分・NOx値判定回路4
9へ出力する。
The ash unburned portion comparison circuit 43 is a ash unburned portion target value input circuit.
By comparing the target value of unburned ash in ash input through 39 with the value of unburned ash in ash input from the unburned ash in arithmetic circuit, a signal indicating whether or not the target value is equal to or less than the target value is obtained. Fuel / NOx value judgment circuit 4
Output to 9.

操作量変更後NOx実積値入力回路48は、バーナ火炎画
像検出時の操作量および操作量の変更量とを入力され、
変化後の操作量に対応する従来の実績に基づくNOx値をN
Ox規制値比較回路44へ出力する。
The manipulated variable changed NOx actual product value input circuit 48 receives the manipulated variable at the time of burner flame image detection and the manipulated variable change amount,
NOx value based on the past performance corresponding to the manipulated variable after change
Output to the Ox regulation value comparison circuit 44.

NOx規制値比較回路44は、変化後の操作量に対応する
従来の実績値であるNOx値とNOx規制値入力回路45を介し
て入力されるNOx規制値とを比較し、いずれが大きいか
の信号を灰中未燃分・NOx値判定回路49および警報出力
回路46へ出力する。
The NOx regulation value comparison circuit 44 compares the NOx value, which is the conventional actual value corresponding to the manipulated variable after the change, with the NOx regulation value input via the NOx regulation value input circuit 45, and determines which is larger. The signal is output to the unburned ash / NOx value determination circuit 49 and the alarm output circuit 46.

灰中未燃分・NOx値判定回路49は、灰中未燃分が目標
値より多いか低いかの信号と、NOx値が規制値より多い
か低いかの信号を入力され、灰中未燃分が目標値より小
さく、かつNOx値が規制値より小さいとき、最適操作量
出力回路47へ操作量出力信号を出力する。
The unburned ash in NO / NOx value determination circuit 49 receives a signal indicating whether the unburned ash in ash is higher or lower than the target value and a signal indicating whether the NOx value is higher or lower than the regulation value. When the minute is smaller than the target value and the NOx value is smaller than the regulation value, an operation amount output signal is output to the optimum operation amount output circuit 47.

警報出力回路46は、NOx値が規制値より大きいとの信
号が入力されたら、警報を出す。(音声、光等) 最適操作量出力回路47は、操作量出力信号を入力され
たら、変化操作量入力回路37から入力される操作量の変
化量を、CRT10およびボイラ制御装置11へ出力する。
The alarm output circuit 46 issues an alarm when a signal indicating that the NOx value is larger than the regulation value is input. (Voice, light, etc.) When the operation amount output signal is input, the optimum operation amount output circuit 47 outputs the change amount of the operation amount input from the change operation amount input circuit 37 to the CRT 10 and the boiler control device 11.

次に、灰中未燃分を目標値に到着させるためにボイラ
の操作量を探索する方法を第4図に示すフローチャート
のステップに従って説明する。
Next, a method of searching for the operation amount of the boiler to make the unburned ash in the ash reach the target value will be described with reference to the steps of the flowchart shown in FIG.

ステップ100:灰中未燃分目標値等の設定 (1)灰中未燃分目標値を例えば5%以下とする。これ
は、石炭が燃焼して残った灰は、コンクリートの混和材
として利用可能であるが、混和材として使用するには、
灰中未燃分をほぼ5%以下にする必要があるからであ
る。
Step 100: Setting the target value of unburned ash in ash, etc. (1) The target value of unburned ash in ash is set to, for example, 5% or less. This is because the ash left after burning coal is available as an admixture for concrete, but to use it as an admixture,
This is because it is necessary to reduce the unburned content in the ash to approximately 5% or less.

(2)取り扱う炭種(混炭比)、ボイラ負荷等により異
なるボイラ操作量に対する灰中未燃分の過去の実績値を
設定する。尚、炭種変更、負荷変化等により外乱が生じ
た場合は、再設定が必要である。また石炭性状により異
なる各種係数やボイラ操作量と排ガス中のNOx実績値の
関係を設定する。
(2) Set a past actual value of unburned ash in ash for different boiler operation amounts depending on the type of coal to be handled (coal blend ratio), boiler load, and the like. In addition, when disturbance occurs due to a change in coal type, a change in load, or the like, resetting is necessary. In addition, the relationship between various coefficients and the boiler operation amount that differ depending on the coal properties and the actual value of NOx in the exhaust gas is set.

(3)NOx規制値を設定する。(3) Set the NOx regulation value.

ステップ110:各段バーナ火炎燃焼状態評価 前記第1図で説明したボイラの燃焼制御探索装置によ
り求めたバーナ火炎の画像のデータは計算機9により第
3図に示す方法で処理し、燃焼状態を火炎の輝度立ち上
がりで以て評価する。この評価の際、前処理としてノイ
ズ除去等を行うと効果的である。画像データは、数回の
検出結果を平均したデータとすることが望ましい。
Step 110: Evaluation of Burner Flame Combustion State for Each Stage Burner flame image data obtained by the boiler combustion control search device described in FIG. 1 is processed by the computer 9 by the method shown in FIG. Is evaluated based on the rise in luminance. At the time of this evaluation, it is effective to perform noise removal or the like as preprocessing. It is desirable that the image data be data obtained by averaging several detection results.

第3図は火炎画像を3次元的に表した図であり、火炎
画像の輝度Lをz軸に、バーナ先端からの距離xをx軸
に、バーナ火炎画像幅距離をy軸に取っている。バーナ
先端からの距離xにおけるy軸方向のバーナ火炎の輝度
の積分値をS(x)とし、例えばx=a,x=b,x=cそれ
ぞれにおけるバーナ火炎の輝度の積分値は、S(a)
(図中20)S(b)(図中21)、S(c)図中22)で示
している。
FIG. 3 is a diagram showing the flame image three-dimensionally, in which the luminance L of the flame image is set on the z-axis, the distance x from the burner tip is set on the x-axis, and the burner flame image width distance is set on the y-axis. . The integrated value of the brightness of the burner flame in the y-axis direction at a distance x from the tip of the burner is S (x). For example, the integrated value of the brightness of the burner flame at x = a, x = b, x = c is S ( a)
(20 in the figure) S (b) (21 in the figure) and S (c) 22 in the figure.

そして、バーナ火炎の輝度立上がり指標Ibは次の
(1)式で求め、輝度立上がりを評価した。
The luminance rise index I b of the burner flame obtained by the following equation (1) was evaluated rising luminance.

x:バーナ端からの距離 a:できるだけバーナ先端に近い値とする。 x: Distance from burner end a: Value as close as possible to burner end.

(1)式によれば、バーナ端に近い輝度ほど重みづけら
れた積分値となるため、輝度の立上がりが急激なほど輝
度立上がり指標Ibは大きくなる。
According to the equation (1), since the luminance value becomes closer to the burner end, the integrated value becomes more weighted. Therefore, the luminance rise index Ib increases as the luminance rises sharply.

また、上記の輝度立上り指標の代りにバーナ火炎の温
度分布を用いて火炎温度立上りで以て燃焼状態を評価す
ることも可能である。第5図に火炎温度分布を求めるた
めの装置構成の一実施例を示す。各段バーナ火炎2は冷
却管3で冷却された光繊維束4を通して画像としてとら
えられ、分光器23で波長λ、波長λの輝度に分光さ
れ光電変換装置5でそれぞれ光電変換され、アナログ/
デジタル変換装置7でデジタル信号に変換される。デジ
タル信号に変換された各波長λ1の火炎画像応は画
像メモリ8に記憶される。各波長λ1の火炎画像は
計算機9により次に述べる処理を行いバーナ火炎の温度
分布が求められる。
It is also possible to use the temperature distribution of the burner flame instead of the above-mentioned luminance rise index to evaluate the combustion state by the flame temperature rise. FIG. 5 shows an embodiment of the device configuration for obtaining the flame temperature distribution. Each stage burner flame 2 is captured as an image through the optical fiber bundle 4 cooled by the cooling pipe 3, is divided into the wavelengths λ 1 and λ 2 by the spectroscope 23, is photoelectrically converted by the photoelectric conversion device 5, and is analogized. /
The digital signal is converted by the digital converter 7 into a digital signal. The flame images of the respective wavelengths λ 1 and λ 2 converted into digital signals are stored in the image memory 8. The flame images of the respective wavelengths λ 1 and λ 2 are subjected to the following processing by the computer 9 to determine the temperature distribution of the burner flame.

Wienの式により、波長λ1の各座標点の輝度と温
度の関係は(7),(8)式で示される。
According to Wien's equation, the relationship between the luminance and the temperature at each coordinate point of the wavelengths λ 1 and λ 2 is expressed by equations (7) and (8).

但し、 R1(i,j):(i,j)座標の波長λの輝度 R2(i,j):(i,j)座標の波長λの輝度 ε1:波長λの実効放射率 ε2:波長λの実効放射率 λ1:波長 λ2:波長 T(i,j):(i,j)座標の絶対温度(K) C1:第1放射定数(3,7403×105erg・cm2/s) C2:第2放射定数(1,4387cm・K゜) (7),(8)式の(i,j)座標の波長λ1の輝度
比をとり、(i,j)座標の温度Tで解くと(9)式とな
る。
Here, R 1 (i, j): the luminance of the wavelength λ 1 in the (i, j) coordinate R 2 (i, j): the luminance of the wavelength λ 2 in the (i, j) coordinate ε 1 : the effective wavelength λ 1 emissivity epsilon 2: effective emissivity lambda 1 of the wavelength lambda 2: wavelength lambda 2: wavelength T (i, j) :( i , j) absolute coordinates (K) C 1: first radiation constant (3,7403 × 10 5 erg · cm 2 / s) C 2 : Second radiation constant (1,4387 cm · K ゜) Luminance ratio of wavelengths λ 1 and λ 2 at (i, j) coordinates in equations (7) and (8) And solving at the temperature T at the (i, j) coordinate yields equation (9).

但し、 座標全点について(9)式に示す計算を計算機で行な
うことにより各座標点の温度を求めることができる。
However, The temperature of each coordinate point can be obtained by performing the calculation shown in the equation (9) on all the coordinate points by a computer.

以上で求めた温度分布により前記(1)式によるのと
同様な処理を行ない、火炎温度立上り指標Itを(6)式
で求めることが可能となる。
Performs the same processing as by at obtained above by temperature distribution (1) above, it is possible to obtain a flame temperature rising index I t in equation (6).

T(x):各バーナ端からの距離xの温度積分値 x :バーナ端からの距離 上記It、もしくは前述のIbを燃焼状態評価指標I0とす
る。
T (x): the distance the I t or preceding I b the combustion state evaluation index I 0, from the burner end: distance temperature integral value x of x from each burner end.

ステップ120:仮想的に操作量変更 計算機9で仮想的にボイラの操作量を変更する。操作
量としては、空気量、燃料量、燃料温度、3次及び2次
エアレジスタダンパ開度、2次ベーン角度、ガス再循環
量、2段燃焼比率等が考えられる。
Step 120: Virtually change the operation amount The computer 9 virtually changes the operation amount of the boiler. Examples of the manipulated variables include an air volume, a fuel volume, a fuel temperature, tertiary and secondary air register damper opening degrees, a secondary vane angle, a gas recirculation amount, and a two-stage combustion ratio.

ステップ130:操作量変更時の燃焼状態評価 上記ステップ120で操作量を変更した時の各段バーナ
火炎の燃焼状態を推定する。その推定方法を第2図に示
す。第2図よりステップ110の“各段のバーナ火炎燃焼
状態評価”で評価した時点での操作量をu0、その時点で
の燃焼状態評価指標をI0とする。ここで操作量uと燃焼
状態評価指標Iが第2図のような関係にあるとすると、
操作量uがu0からΔuだけ減少した場合、燃焼状態評価
指標IはI0からΔIだけ増加し、操作量を変更した時の
燃焼状態評価指標I1は前記(2)式により求めることが
できる。
Step 130: Evaluation of combustion state at the time of change of operation amount The combustion state of each stage burner flame when the operation amount is changed at step 120 is estimated. FIG. 2 shows the estimation method. Referring to FIG. 2, the operation amount at the time of the evaluation in step 110 “Evaluation of burner flame combustion state of each stage” is u 0 , and the combustion state evaluation index at that time is I 0 . Here, assuming that the manipulated variable u and the combustion state evaluation index I have a relationship as shown in FIG.
When the manipulated variable u is decreased by Δu from u 0 , the combustion state evaluation index I increases by ΔI from I 0, and the combustion state evaluation index I 1 when the operation amount is changed can be obtained by the above equation (2). it can.

以上のように変化量ΔuおよびΔIを演算に用いる理
由は、バーナ火炎の燃焼状態は、火炉の状況等の状態計
測不可能な要因によっても変化するため燃焼状態評価指
標Iの絶対値を精度良く推定するのは難かしいが、状態
計測不可能な要因によって燃焼状態が変化しても、操作
量変化に対する燃焼状態評価指標Iの変化は相対的に変
わらないことを種々試験により確認しており、実際にバ
ーナ火炎により評価した燃焼状態評価指標I0からの変化
量ΔIを仮定する手法により操作量変更後の燃焼状態評
価指標I1を精度良く推定することができるためである。
As described above, the change amounts Δu and ΔI are used in the calculation because the combustion state of the burner flame also changes depending on factors such as the state of the furnace, which cannot be measured, so that the absolute value of the combustion state evaluation index I can be accurately determined. Although it is difficult to estimate, even if the combustion state changes due to a state measurement impossible factor, it has been confirmed by various tests that the change of the combustion state evaluation index I relative to the operation amount change does not relatively change. This is because the actual combustion state evaluation index I 1 after the operation amount changing by assumed method the variation ΔI from combustion state evaluation index I 0 as assessed by the burner flame can be accurately estimated.

試運転時に各操作量を変化させつつ、各バーナの火炎
画像から燃焼状態評価指標を算出し、第2図に示される
関係を確認・把握しておくことにより、プラント運転中
の火炎画像から得られる燃焼状態評価指標を基準とし
て、その状態での操作量から、操作量をΔu変化させた
ときの燃焼状態評価指標の変化量ΔIを推定し、この変
化量ΔIを用いて操作量変化後の燃焼状態評価指標を求
め、さらに、この燃焼状態評価指標を用いて操作量変化
後の灰中未燃分の推定が可能となる。
By calculating the combustion state evaluation index from the flame image of each burner while changing each manipulated variable at the time of test operation, and confirming and grasping the relationship shown in FIG. 2, it is possible to obtain from the flame image during plant operation. Using the combustion state evaluation index as a reference, the change amount ΔI of the combustion state evaluation index when the operation amount is changed by Δu is estimated from the operation amount in that state, and the combustion after the operation amount is changed using this change amount ΔI. The state evaluation index is obtained, and further, the unburned ash in the ash after the operation amount change can be estimated using the combustion state evaluation index.

ステップ140:燃焼状態により灰中未燃分推定 以上で求めた各段バーナ火炎の操作量変更后の燃焼状
態評価指標I1を用いて火炉出口の灰中未燃分を推定す
る。以下にn段のバーナ配列であるボイラの灰中未燃分
推定方法を示す。
Step 140: Estimate the ash in unburned furnace exit with the combustion state evaluation index I 1 of the later operation amount changing in each stage burner flame obtained in the ash unburned estimated above by the combustion state. A method for estimating unburned ash in ash of a boiler having an n-stage burner arrangement will be described below.

バーナ近傍の燃焼状態が灰中未燃分に強く影響するこ
とは上述したが、灰中未燃分を定量的に推定するには、
火炎の後流域の燃焼状態も考慮する必要がある。また、
各段バーナでは燃料量、石炭性状、石炭粒子の滞留時間
等が異なり、各段バーナごとに火炉出口灰中未燃分に与
える影響率が異る。以上のことより、各段バーナの火炉
出口灰中未燃分に与える影響率を考慮するため前記
(3)式に示すように各段バーナの燃焼状態評価指標に
重みづけを行う。
As mentioned above, the combustion state near the burner strongly affects the unburned ash content, but to quantitatively estimate the unburned ash content,
It is also necessary to consider the combustion state in the downstream area of the flame. Also,
In each stage burner, the fuel amount, coal properties, residence time of coal particles, etc. are different, and the influence rate on the unburned matter in the ash at the furnace outlet differs for each stage burner. From the above, the combustion state evaluation index of each stage burner is weighted as shown in the above equation (3) in order to consider the influence rate of each stage burner on the unburned matter in the furnace exit ash.

重みづけを行ったI1i′を用いて前記(4),(5)
式を用いて灰中未燃分を推定する。
Using the weighted I 1 i ′, the above (4), (5)
Estimate the unburned ash content using the equation.

ステップ150:灰中未燃分目標値以下か 以上で推定した灰中未燃分が目標値より低いかどうか
を判定し、目標値より多かった場合は、更に仮想的に操
作量を変更してステップ120〜150の処理を、目標値に到
達するまでくり返す。
Step 150: Determine whether or not the unburned ash in the ash estimated below the target value of the unburned ash in the ash is lower than the target value.If the unburned ash in the ash is larger than the target value, the manipulated variable is further virtually changed. The processing of steps 120 to 150 is repeated until the target value is reached.

ステップ160:操作量決定 ステップ150で灰中未燃分が目標値に到達した場合、
その時に仮想された操作量が灰中未燃分を目標値に到達
させる操作量となる。尚、その操作量を実施した場合の
NOx等の排ガス成分の実績値を考慮し、脱硝により規制
値以下に抑えられない場合は運転員に警報を出し、灰中
未燃分目標値変更を行う必要がある。
Step 160: manipulated variable determination If the unburned ash in the ash reaches the target value in step 150,
The manipulated variable imagined at that time is the manipulated variable that causes the unburned ash in the ash to reach the target value. In addition, when the operation amount is executed,
Considering the actual values of exhaust gas components such as NOx, if it cannot be controlled below the regulation value by denitration, it is necessary to issue an alarm to the operator and change the target value of unburned ash in ash.

計算機9で以上ステップ110〜160の処理を行い、操作
量が決定され、それによってボイラ制御装置11で燃焼制
御を行う。また操作量変化時に推定したとおりに燃焼状
態(燃焼状態評価指標、灰中未燃分)が変化するかを監
視し、実績データとして第2図に示されるデータを修正
するとともに、必要であれば、更にステップ110〜160の
処理を繰り返えせば更に信頼性が向上する。また、CRT
に火炎の画像、輝度或いは温度レベル毎に彩色した画像
等を表示すれば運転員が燃焼状態を理解する上でより効
果的である。
The computer 9 performs the processing of steps 110 to 160 as described above, and the manipulated variable is determined, whereby the boiler control device 11 performs combustion control. Also, it monitors whether the combustion state (combustion state evaluation index, unburned ash content) changes as estimated at the time of the operation amount change, corrects the data shown in FIG. 2 as the actual data, and, if necessary, By repeating the processing of steps 110 to 160, the reliability is further improved. Also, CRT
If an image of the flame, an image colored for each luminance or temperature level, or the like is displayed, it is more effective for the operator to understand the combustion state.

尚、直接制御を行うのでなく、例えば、CRT上に操作
量を表示することによって運転員に操作ガイダンスを行
い、これによって操作員が必要な操作量の変更を行うこ
とも可能である。
In addition, instead of performing direct control, for example, an operation amount is displayed on a CRT to provide operation guidance to an operator, and thereby the operator can change a necessary operation amount.

上記実施例においては、各段バーナに画像検出手段を
設けているが、複数のバーナを備えたボイラにおいて
は、各バーナ火炎間の燃焼状態評価指標の関係を把握し
ておけば、必ずしも常に全てのバーナの画像を検出せず
とも、その中の少くとも1個の火炎を検出して、燃焼状
態を評価し、他の火炎については検出された画像との関
連から燃焼状態評価指標を演算し、灰中未燃分を算出し
てもよい。
In the above embodiment, the image detecting means is provided in each stage burner. However, in a boiler having a plurality of burners, if the relationship between the combustion state evaluation indices between the burner flames is grasped, it is not always all necessary. Even if no burner image is detected, at least one of the flames is detected, the combustion state is evaluated, and the combustion state evaluation index is calculated for the other flames in relation to the detected image. Alternatively, the unburned ash content may be calculated.

本実施例によれば、複数の炭種を燃焼させる場合であ
っても、運転員に負担をかけることなく、灰中未燃分を
減少させる燃焼が可能である。
According to the present embodiment, even when a plurality of types of coal are burned, it is possible to perform combustion that reduces unburned ash in the ash without imposing a burden on the operator.

〔発明の効果〕〔The invention's effect〕

請求項1〜3および7に記載の本発明によれば、燃焼
中のバーナ火炎の画像から燃焼状態を数量化し、この数
値がボイラの操作量および灰中未燃分の量に関連してい
ることを利用して、灰中未燃分の量を最少にするボイラ
の操作量を人手によることなく探索するので、操作員の
経験や勘に頼ることなく、灰中未燃分の量を低減するこ
とが可能となり、燃料を有効に使用する効果がある。
According to the present invention, the combustion state is quantified from the image of the burner flame during combustion, and this numerical value is related to the operation amount of the boiler and the amount of unburned ash in the ash. By using this, the amount of unburned ash in the ash can be searched without the need for manual operation of the boiler to minimize the amount of unburned ash in the ash, so the amount of unburned ash in the ash can be reduced without relying on the operator's experience and intuition It is possible to effectively use fuel.

請求項4に記載の本発明によれば、複数のバーナを備
えたボイラにおいて、全てのバーナに画像検出手段を設
けることなく灰中未燃分を低減することが可能となり、
低コストで燃料経済性を向上する効果がある。
According to the present invention as set forth in claim 4, in a boiler having a plurality of burners, it is possible to reduce unburned ash in ash without providing image detection means for all burners.
This has the effect of improving fuel economy at low cost.

請求項5および6に記載の本発明によれば、灰中未燃
分の減少に伴ってNOx値が規制値よりも上昇することを
防ぐことが可能になり、NOx値を規制値以下に制限しつ
つ灰中未燃分を低減する効果がある。
According to the fifth and sixth aspects of the present invention, it is possible to prevent the NOx value from rising above the regulation value as the unburned ash in the ash decreases, and to limit the NOx value to the regulation value or less. While reducing unburned ash in the ash.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のボイラ燃焼制御探索装置の実施例を示
すブロック図、第2図および第3図は、本発明の原理を
説明する概念図、第4図は本発明の方法の実施例を示す
フローチャート、第5図は本発明のボイラの燃焼制御探
索装置の他の実施例を示すブロック図であり、第6図
は、第3図に示された計算機の主要な回路の構成を示す
ブロック図である。 2……バーナ火炎、4……画像検出手段(光繊維束)、
5……画像検出手段(光電変換装置)、7……画像検出
手段(AD変換装置)、37……変化操作量入力手段(変化
操作量入力回路)、40……燃焼状態評価指標演算手段
(燃焼状態評価指標演算回路)、41……変更後燃焼状態
評価指標演算手段(変更後燃焼状態評価指標演算回
路)、42……灰中未燃分演算手段(灰中未燃分演算回
路)。
FIG. 1 is a block diagram showing an embodiment of a boiler combustion control search device according to the present invention, FIGS. 2 and 3 are conceptual diagrams illustrating the principle of the present invention, and FIG. 4 is an embodiment of a method according to the present invention. FIG. 5 is a block diagram showing another embodiment of the boiler combustion control search device according to the present invention, and FIG. 6 shows a configuration of a main circuit of the computer shown in FIG. It is a block diagram. 2 ... burner flame, 4 ... image detecting means (optical fiber bundle),
5 ... image detection means (photoelectric conversion device), 7 ... image detection means (AD conversion device), 37 ... change operation amount input means (change operation amount input circuit), 40 ... combustion state evaluation index calculation means ( Combustion state evaluation index calculation circuit) 41... Post-change combustion state evaluation index calculation means (post-change combustion state evaluation index calculation circuit), 42... Ash unburned portion calculation means (ash unburned portion calculation circuit).

フロントページの続き (72)発明者 宮垣 久典 茨城県日立市大みか町5丁目2番1号 株式会社日立製作所大みか工場内 (72)発明者 下田 誠 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 渡辺 好夫 宮城県仙台市柏木1丁目7番33号 (72)発明者 石山 一弘 宮城県仙台市宮町4丁目7番16号 (56)参考文献 特開 昭61−180829(JP,A) 特開 昭62−84222(JP,A) 特開 昭62−237221(JP,A)Continued on the front page (72) Inventor Hisanori Miyagaki 5-2-1 Omikacho, Hitachi City, Ibaraki Prefecture Inside the Omika Plant of Hitachi, Ltd. (72) Inventor Makoto Shimoda 4026 Kujimachi, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Hitachi, Ltd. Inside the laboratory (72) Inventor Yoshio Watanabe 1-73-3, Kashiwagi, Sendai-shi, Miyagi (72) Inventor Kazuhiro Ishiyama 4-7-16, Miyamachi, Sendai-shi, Miyagi (56) References JP-A-61-180829 (JP, A) JP-A-62-84222 (JP, A) JP-A-62-237221 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ボイラの操作量と、該操作量により生ずる
バーナ火炎のバーナ噴出方向の輝度分布もしくは温度分
布の数量化により求められる燃焼状態評価指標と、該燃
焼状態評価指標に対応して生ずる灰中未燃分の関係か
ら、前記操作量を仮想的に変更した変化量に対する前記
燃焼状態評価指標の変化量を推定し、推定した燃焼状態
評価指標の変化量により灰中未燃分の変化量を推定する
ことにより、灰中未燃分が所定値以下となる操作量を探
索するボイラの燃焼制御探索方法において、前記操作量
は前記ボイラに供給する空気量と、燃料量と、該燃料の
温度と、前記空気と前記燃料の混合状態を調節するエア
レジスタダンパ開度と、ベーン角度と、前記ボイラのガ
ス再循環量と、二段燃焼比率のうちのいずれか1個以上
であることと、前記灰中未燃分が所定値以下となるボイ
ラの操作量を求めた後に該操作量とボイラの排ガス中の
NOx値の実績値から該操作量に対するNOx値が規制値以下
であるかどうかを確認することを特徴とするボイラの燃
焼制御探索方法。
An operation amount of a boiler, a combustion state evaluation index obtained by quantifying a luminance distribution or a temperature distribution in a burner ejection direction of a burner flame generated by the operation amount, and a combustion state evaluation index. From the relationship of the unburned ash content, the change amount of the combustion state evaluation index with respect to the change amount obtained by virtually changing the operation amount is estimated, and the change amount of the unburned ash content in the ash is estimated based on the estimated change amount of the combustion state evaluation index. In the boiler combustion control search method for searching for an operation amount at which the unburned ash content is equal to or less than a predetermined value by estimating the amount, the operation amount includes an air amount supplied to the boiler, a fuel amount, and the fuel amount. Temperature, an air register damper opening for adjusting the mixing state of the air and the fuel, a vane angle, a gas recirculation amount of the boiler, and a two-stage combustion ratio. And the said Among unburned of the operation amount and the boiler in the exhaust gas after obtaining an operation amount of the boiler equal to or less than a predetermined value
A boiler combustion control search method characterized by confirming from a NOx value actual value whether a NOx value corresponding to the manipulated variable is equal to or less than a regulation value.
【請求項2】前記NOx値が規制値以下にならない場合、
前記灰中未燃分の所定値を変更することを特徴とする請
求項1記載のボイラの燃焼制御探索方法。
2. When the NOx value does not fall below a regulation value,
The method according to claim 1, wherein a predetermined value of the unburned portion in the ash is changed.
【請求項3】ボイラのバーナ火炎の画像を検出する画像
検出手段と、該バーナ火炎の画像から該バーナ火炎の燃
焼状態評価指標を演算する燃焼状態評価指標演算手段
と、前記バーナ火炎画像検出時のボイラの操作量に対す
る操作量の仮想的変化量を入力する変化操作量入力手段
と、前記ボイラの操作量の仮想的変化量と前記バーナ火
炎の燃焼状態評価指標を基にボイラの操作量変更後のバ
ーナ火炎の燃焼状態評価指標を演算する変更後燃焼状態
評価指標演算手段と、変更後燃焼状態評価指標演算手段
の出力を入力として操作量変更後のボイラの灰中未燃分
を演算する灰中未燃分演算手段と、灰中未燃分演算手段
の出力が灰中未燃分目標値より高いか低いかを判断して
出力する灰中未燃分比較手段と、ボイラ操作量とボイラ
排ガス中のNOx値の実績値の関係と前記変更後燃焼状態
評価指標のもととなるボイラの仮想操作量とから該仮想
操作量に対応するNOx値が規制値よりも大きいか小さい
かを判断するNOx規制値比較手段と、を備えてなるボイ
ラの燃焼制御探索装置。
3. An image detecting means for detecting an image of a burner flame of a boiler, a combustion state evaluation index calculating means for calculating a combustion state evaluation index of the burner flame from the image of the burner flame, and detecting the burner flame image. Change operation amount input means for inputting a virtual change amount of the operation amount with respect to the operation amount of the boiler, and changing the operation amount of the boiler based on the virtual change amount of the operation amount of the boiler and the combustion state evaluation index of the burner flame. The post-change combustion state evaluation index calculating means for calculating the combustion state evaluation index of the subsequent burner flame and the output of the post-change combustion state evaluation index calculation means as inputs, and calculate the unburned ash in the ash of the boiler after the manipulated variable change. Ash unburned portion calculating means, ash unburned portion comparing means for determining whether or not the output of the ash unburned portion calculating device is higher or lower than the ash unburned portion target value, and outputting the boiler operation amount Actual NOx value in boiler exhaust gas NOx regulation value comparison means for judging whether the NOx value corresponding to the virtual manipulation quantity is larger or smaller than the regulation value from the relationship between the values and the virtual manipulation quantity of the boiler which is the basis of the post-change combustion state evaluation index. , A boiler combustion control search device comprising:
JP1061356A 1989-03-14 1989-03-14 Boiler combustion control search method and apparatus Expired - Fee Related JP2756815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061356A JP2756815B2 (en) 1989-03-14 1989-03-14 Boiler combustion control search method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1061356A JP2756815B2 (en) 1989-03-14 1989-03-14 Boiler combustion control search method and apparatus

Publications (2)

Publication Number Publication Date
JPH02242012A JPH02242012A (en) 1990-09-26
JP2756815B2 true JP2756815B2 (en) 1998-05-25

Family

ID=13168793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061356A Expired - Fee Related JP2756815B2 (en) 1989-03-14 1989-03-14 Boiler combustion control search method and apparatus

Country Status (1)

Country Link
JP (1) JP2756815B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7053244B2 (en) * 2017-12-15 2022-04-12 三菱重工業株式会社 Combustion condition determination device, combustion condition determination method, and combustion system of the combustion furnace
JP2021028557A (en) * 2019-08-09 2021-02-25 一般財団法人電力中央研究所 Combustion facility and combustion method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180829A (en) * 1985-02-01 1986-08-13 Hitachi Ltd Burning control method
JPS6284222A (en) * 1985-10-09 1987-04-17 Hitachi Ltd Combustion state supervising method
JPH0650177B2 (en) * 1986-04-09 1994-06-29 株式会社日立製作所 Multi-burner combustion condition monitoring method

Also Published As

Publication number Publication date
JPH02242012A (en) 1990-09-26

Similar Documents

Publication Publication Date Title
US4622922A (en) Combustion control method
Lu et al. Concurrent measurement of temperature and soot concentration of pulverized coal flames
Ögren et al. Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors
JP5996762B1 (en) Waste combustion control method and combustion control apparatus to which the method is applied
KR20000022068A (en) Combustion control method and apparatus for waste incinerators
JPH04309714A (en) Device for estimating unburnt substance in ash of coal combustion furnace
Matthes et al. A new camera-based method for measuring the flame stability of non-oscillating and oscillating combustions
Katzer et al. Quantitative and qualitative relationship between swirl burner operatingconditions and pulverized coal flame length
JP2756815B2 (en) Boiler combustion control search method and apparatus
Moguel et al. Oscillating coal and biomass flames: A spectral and digital imaging approach for air and oxyfuel conditions
Kurihara et al. A combustion diagnosis method for pulverized coal boilers using flame-image recognition technology
US5392312A (en) Method and device for regulating the combustion air flow rate of a flue rate gas collection device of a metallurgical reactor, corresponding collection device and metallurgical reactor
JP2753839B2 (en) Method for monitoring and controlling combustion state
JP2860782B2 (en) Combustion determination / control method and determination / control device using color image
CN110689176B (en) Method, system and medium for optimizing output measurement of double-inlet and double-outlet coal mill
Zembi et al. Experimental and Numerical Investigation of the Flow Field Effect on Arc Stretching for a J-type Spark Plug
KR20030049738A (en) Circulation Gas Control System Of CDQ and Method Thereof
JPH01312319A (en) Boiler combustion state monitoring device
JP2009150626A (en) Combustion control system for combustion furnace and its combustion control method
JP2759473B2 (en) Method and apparatus for monitoring and controlling combustion state
JPS6284222A (en) Combustion state supervising method
KR970003634B1 (en) Control method of combustion with blast furnace combustion zone
JPH01179815A (en) Boiler combustion status monitoring device
González-Cencerrado et al. Coal flame characterization by means of digital image processing in a semi-industrial pilot plant
Ögren Camera and laser based diagnostics relevant for entrained flow gasifiers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees