JP3524407B2 - Burner combustion diagnostic device - Google Patents

Burner combustion diagnostic device

Info

Publication number
JP3524407B2
JP3524407B2 JP35166198A JP35166198A JP3524407B2 JP 3524407 B2 JP3524407 B2 JP 3524407B2 JP 35166198 A JP35166198 A JP 35166198A JP 35166198 A JP35166198 A JP 35166198A JP 3524407 B2 JP3524407 B2 JP 3524407B2
Authority
JP
Japan
Prior art keywords
flame
combustion
emission
view
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35166198A
Other languages
Japanese (ja)
Other versions
JP2000179843A (en
Inventor
信夫 森本
和宏 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP35166198A priority Critical patent/JP3524407B2/en
Publication of JP2000179843A publication Critical patent/JP2000179843A/en
Application granted granted Critical
Publication of JP3524407B2 publication Critical patent/JP3524407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発電用火力プラン
ト等の燃焼炉内バーナ火炎の燃焼状態を監視する装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for monitoring the combustion state of burner flames in a combustion furnace of a power plant or the like.

【0002】[0002]

【従来の技術】近年の火力発電用ボイラでは、環境対策
等の面から、ボイラ等の燃焼装置においては窒素酸化
物、すす並びに一酸化炭素を極力発生させないことが望
まれている。このような燃焼状態を形成するためには燃
焼炉内で燃料と空気が適度に混合するバーナ火炎を形成
し、これにより燃焼炉内に極端な高温度領域及び極端な
低温度領域を形成させないことが必要である。このよう
な燃焼状態の監視を行う装置の一つにバーナの燃焼火炎
からの発光を所定の数点の波長について分光分析(発光
スペクトル分析)した結果から燃焼状態を診断する、特
開平04−270820号公報に記載の燃焼診断装置が
ある。
2. Description of the Related Art In recent years, in the boiler for thermal power generation, from the viewpoint of environmental measures and the like, it is desired that the combustion apparatus such as the boiler does not generate nitrogen oxides, soot and carbon monoxide as much as possible. In order to form such a combustion state, a burner flame in which the fuel and the air are appropriately mixed in the combustion furnace is formed, and thereby, an extremely high temperature region and an extremely low temperature region are not formed in the combustion furnace. is necessary. In one of such devices for monitoring the combustion state, the combustion state is diagnosed based on the result of spectral analysis (emission spectrum analysis) of light emitted from the combustion flame of the burner at predetermined wavelengths. There is a combustion diagnosis device described in the publication.

【0003】従来の燃焼診断装置の構成例を図9に示
す。図9に示した燃焼診断装置では、バーナ1に取り付
けられ、火炎2の軸方向の異なる3領域から発せられる
火炎発光を受ける3本の光ファイバからなる視野を3つ
(視野a、視野b、視野c)有した光プローブ3、光プ
ローブ3で受けた火炎発光を伝送する3芯光ファイバケ
ーブル4、3芯光ファイバケーブル4により伝送された
各視野の火炎発光をそれぞれ所定の波長について分光分
析する分光分析部101、分光分析部101の分析結果
をもとに火災の燃焼状態を評価する指標を計算し診断を
行う計算機5、から主に構成される。
FIG. 9 shows a configuration example of a conventional combustion diagnosis device. In the combustion diagnosing device shown in FIG. 9, there are three fields of view (field of view a, field of view b, field of view a, field of view b, attached to the burner 1 and composed of three optical fibers that receive flame emission emitted from three regions of the flame 2 in different axial directions. Optical probe 3 having field of view c), 3-core optical fiber cable 4 for transmitting flame emission received by the optical probe 3, flame emission of each field transmitted by the 3-core optical fiber cable 4 is spectroscopically analyzed for each predetermined wavelength. It mainly includes a spectroscopic analysis unit 101, and a computer 5 that calculates an index for evaluating a combustion state of a fire based on an analysis result of the spectroscopic analysis unit 101 and performs diagnosis.

【0004】光プローブ3は受光端の曲げ角が異なる3
本の光ファイバからなっており、この光ファイバの曲げ
角によりバーナ火炎の異なる3領域を監視する機能(3
視野)を持つ。視野aが火炎2の根元領域、視野bが火
炎中央領域、視野cが火炎先端領域をそれぞれ監視す
る。
The optical probe 3 has a different bending angle at the light receiving end.
It consists of two optical fibers, and the function to monitor three areas of different burner flames by the bending angle of this optical fiber (3
Have a field of view). The visual field a monitors the root region of the flame 2, the visual field b monitors the flame central region, and the visual field c monitors the flame tip region.

【0005】燃焼診断装置は、分光分析の結果から、火
炎の発光のうち火炎中の炭素質粒子(スート等)による
固体発光の灰色近似性をもとに火炎温度を計算し、ま
た、水蒸気、炭酸ガス等の燃焼生成ガスによる赤外線ガ
ス吸収・放射スペクトル強度の状況を分析することによ
りバーナ火炎の状態をとらえ、燃焼状態を評価・診断す
るものである。図10に微粉炭燃焼火炎の分光放射特性
例を示す。
The combustion diagnosis device calculates the flame temperature from the result of the spectroscopic analysis based on the gray approximation of solid-state light emission due to carbonaceous particles (such as soot) in the flame among the light emission of the flame, By analyzing the state of infrared gas absorption / radiation spectrum intensity due to combustion products such as carbon dioxide, the state of the burner flame is grasped, and the state of combustion is evaluated / diagnosed. FIG. 10 shows an example of spectral radiation characteristics of a pulverized coal combustion flame.

【0006】図10において、0.6μmより長波長側
には火炎中の炭素質粒子(スート等)の固体粒子の発光
による連続スペクトルが見られ、この連続スペクトル上
に1.4μm近傍に水蒸気の赤外線ガス吸収による発光
スペクトル強度の減少が見られる。炭素質粒子は黒体に
近い発光特性を有しており一般に放射率が波長に対して
一定とした灰色体として扱うことができる。灰色体の波
長と単色放射エネルギー(単色発光スペクトル強度)の
関係はPlanckの式により温度の関数として与えら
れるため、分光分析結果から所定の2波長の単色発光ス
ペクトル強度の比率から火炎温度を計算可能である(2
色温度計の原理による)。
In FIG. 10, a continuous spectrum due to the emission of solid particles of carbonaceous particles (soot, etc.) in the flame can be seen on the longer wavelength side than 0.6 μm. A decrease in emission spectrum intensity due to infrared gas absorption is observed. Carbonaceous particles have emission characteristics similar to a black body and can be generally treated as a gray body having a constant emissivity with respect to wavelength. Since the relationship between the wavelength of the gray body and the monochromatic radiant energy (monochromatic emission spectrum intensity) is given as a function of temperature by Planck's formula, the flame temperature can be calculated from the ratio of the monochromatic emission spectrum intensities of the predetermined two wavelengths from the spectroscopic analysis result. Is (2
According to the principle of color thermometer).

【0007】1.4μm近傍における発光スペクトル強
度の減少は光プローブ3と火炎2の間に存在する燃焼排
ガス中の比較的低温な水蒸気によって特定の波長帯
(1.4,1.9,2.7μm等)に限って火炎からの
光が吸収された結果生じたものである。また、この同波
長帯に水蒸気のガス放射も存在しており、この1.4μ
m近傍における発光スペクトル強度の減少は、火炎中の
高温燃焼生成水蒸気によるガス放射及び火炎近傍の燃焼
排ガス中の低温水蒸気によるガス吸収が重なり合ったも
のである(これ以外にも、より長波長側に二酸化炭素に
よる同様のガス吸収・放射帯が存在する)。
The decrease of the emission spectrum intensity in the vicinity of 1.4 μm is due to the relatively low temperature water vapor in the combustion exhaust gas existing between the optical probe 3 and the flame 2 in a specific wavelength band (1.4, 1.9, 2. (7 μm, etc.) and is a result of absorption of light from the flame. Also, there is gas emission of water vapor in this same wavelength band.
The decrease in the emission spectrum intensity near m is due to the overlap of gas emission due to the high temperature combustion generated steam in the flame and gas absorption due to the low temperature steam in the combustion exhaust gas near the flame (other than this, on the longer wavelength side). There is a similar gas absorption and emission band due to carbon dioxide).

【0008】水蒸気等のガス吸収・放射スペクトル強度
は、ガス吸収・放射波長の近傍でかつその影響を受けな
い数点の波長から背景となるスートの固体放射のガス吸
収・波長帯における値を近似し、この値とガス吸収・放
射帯における単色発光スペクトル強度の比率から、Be
erの吸収則により吸収係数をもとめ、水蒸気等のガス
吸収・放射スペクトル強度の状況を定量化して火炎の状
態の評価指標としている。
The gas absorption / radiation spectrum intensity of water vapor and the like approximates the value in the gas absorption / wavelength band of the solid emission of the background soot from several wavelengths in the vicinity of the gas absorption / radiation wavelength and not affected by it. Then, from this value and the ratio of the monochromatic emission spectrum intensity in the gas absorption / radiation band, Be
The absorption coefficient is determined according to er's absorption law, and the state of absorption and emission spectrum intensity of gas such as water vapor is quantified and used as an evaluation index of the state of flame.

【0009】図9の燃焼診断装置の計算機5において
は、処理1において図9の分光分析部101の分光分析
結果から火炎の燃焼状態の評価値として上記の火炎温度
と水蒸気等のガス吸収・放射スペクトル強度の状況(吸
収係数)を光プローブ3の各視野ごとに計算し、処理2
において評価値の時間的な変動を加算平均あるいは移動
平均等により平滑化し評価値の平均値レベルを求め、処
理3において基準燃焼状態における評価値(基準値)と
の偏差を分析し、処理4において評価値の現在値と基準
値に有意差が認められるか否かにより対象バーナ火炎の
異常・正常を判定し、異常と判定される場合は評価値と
燃焼条件の因果関係のデータベースをもとに異常の要因
を推定する燃焼診断を行う。
In the computer 5 of the combustion diagnosing device of FIG. 9, in processing 1, the above-mentioned flame temperature and gas absorption / radiation of water vapor etc. are used as the evaluation value of the flame combustion state from the spectroscopic analysis result of the spectroscopic analysis section 101 of FIG. The state (absorption coefficient) of the spectrum intensity is calculated for each field of view of the optical probe 3, and the process 2
In step 4, the temporal variation of the evaluation value is smoothed by addition average or moving average to obtain the average value level of the evaluation value. In process 3, the deviation from the evaluation value (reference value) in the standard combustion state is analyzed, and in process 4, Whether the target burner flame is abnormal or normal is judged by whether or not there is a significant difference between the current evaluation value and the reference value, and if judged as abnormal, it is based on the database of causal relationships between the evaluation value and combustion conditions. Combustion diagnosis is performed to estimate the cause of abnormality.

【0010】[0010]

【発明が解決しようとする課題】複数本のバーナからな
るマルチバーナ炉であり、個々のバーナ火炎も大規模で
ある火力発電用ボイラにおいては、実験・研究規模の単
一かつ小規模火炎と比較し火炎発光状態の時間的な変動
が大きく、このため、火炎発光の分光分析結果をもとに
計算される火炎温度等の評価値も時間的に変動が大き
い。特に微粉炭燃焼火炎では、ミルにより粉砕された微
粉炭をバーナへ送る送炭管の中での微粉炭の偏流状態に
よって火炎の状態が変動するため、油やガス火炎と比較
して火炎発光及びその分光分析により計算される火炎温
度等の評価値の変動が大である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In a boiler for thermal power generation, which is a multi-burner furnace consisting of a plurality of burners, and each burner flame is also large-scale, it is compared with single and small-scale flames of experimental and research scale. However, the temporal variation of the flame emission state is large, and therefore, the evaluation values such as the flame temperature calculated based on the results of the spectral analysis of the flame emission also vary greatly with time. Especially in the pulverized coal combustion flame, the flame state changes depending on the uneven flow state of the pulverized coal in the coal feeding pipe that feeds the pulverized coal pulverized by the mill to the burner. The fluctuation of the evaluation value such as the flame temperature calculated by the spectroscopic analysis is large.

【0011】また、光プローブによって受光される光量
(光プローブによって観測される火炎輝度)の変動の要
因としては、特に微粉炭焚き火炎で顕著であるが、燃焼
により生成されたすすを含む排ガスが光プローブの視野
内を流れることにより火炎からの光が遮られることによ
って生じる予測困難な受光量変動がある。
Further, as a factor of the fluctuation of the amount of light received by the optical probe (flame brightness observed by the optical probe), particularly in pulverized coal burning flame, exhaust gas containing soot produced by combustion is There is an unpredictable fluctuation in the amount of received light that occurs because the light from the flame is blocked by flowing in the field of view of the optical probe.

【0012】従来、この変動のため瞬時瞬時の評価値を
用いることが困難であり、平均化により時間的な変動を
平滑化し、平滑化後の評価値をもとにバーナ火炎の燃焼
状態の診断を行っていた。しかしながら、この平滑化に
おいても周期の短い変動(比較的高周波数の変動)の抑
制は容易であっても周期の長い(低高周波数)変動の抑
制は容易ではなく、また一般にこの周期の長い変動のほ
うが変動の振幅が大きい。
Conventionally, it is difficult to use instantaneous evaluation values due to this fluctuation, and temporal fluctuation is smoothed by averaging, and the burner flame combustion state is diagnosed based on the smoothed evaluation value. Was going on. However, even with this smoothing, it is easy to suppress fluctuations with short cycles (relatively high frequency fluctuations), but it is not easy to suppress fluctuations with long cycles (low high frequencies), and in general, fluctuations with long cycles Has a larger fluctuation amplitude.

【0013】バーナ火炎の燃焼状態において、燃焼空気
と微粉炭等の燃料が適切に混合するように火炎の保炎が
良好に保たれていることが重要である。保炎が悪く燃焼
空気が燃料と適切に混合していない場合、火炎は拡散ぎ
みになりCO、煤塵等の環境汚染物質生成の要因とな
る。バーナ火炎の燃焼状態を監視・診断する上で保炎状
態の良否の判定は重要である。
In the burning state of the burner flame, it is important that the flame holding of the flame is kept good so that the combustion air and the fuel such as pulverized coal are appropriately mixed. If the flame holding is poor and the combustion air is not properly mixed with the fuel, the flame becomes diffuse and becomes a factor for the production of environmental pollutants such as CO and dust. In monitoring and diagnosing the combustion state of the burner flame, it is important to judge the quality of the flame holding state.

【0014】保炎が悪くなり、燃焼空気と燃料が適切に
混合しなくなると、火炎の輝度や火炎温度等のレベルも
それに応じて変化するが、視野内の火炎発光状況の空間
的、時間変動も大きくなるため火炎温度等の変化分が変
動レベルに埋もれ、大きく状態がかわらないか、あるい
は比較的長時間の監視を行わないと状態変化を検知でき
ない問題があった。
When the flame holding is deteriorated and the combustion air and the fuel are not properly mixed, the brightness of the flame, the level of the flame temperature, and the like change accordingly, but the spatial and temporal variation of the flame emission state in the visual field. However, the change in flame temperature is buried in the fluctuation level, and the state does not change significantly, or there is a problem that the state change cannot be detected without monitoring for a relatively long time.

【0015】火炎の保炎性評価に関する公知例として
は、特開平4−186014号公報「火炎分光診断装
置」がある。特開平4−186014号公報「火炎分光
診断装置」は、ガスタービン燃焼器のガス焚き火炎にお
いて保炎器付近のOHラジカル発光分布をOH発光波長
帯のみを選択的に透過する光学フィルタを通したのち画
像計測し、代表的な数点を選びOHラジカル発光の輝度
の時間変動を計測し、2点間での相互相関計算を行い、
火炎の変動特性を判定し保炎性を評価するものである。
As a publicly known example of the flame holding property evaluation of a flame, there is Japanese Patent Laid-Open No. 4-186014, "Flame spectroscopic diagnostic device". JP-A-4-186014 discloses a "flame spectroscopic diagnostic device" which passes an OH radical emission distribution near a flame holder in a gas-fired flame of a gas turbine combustor through an optical filter that selectively transmits only the OH emission wavelength band. After that, measure the image, select a few representative points, measure the time variation of the luminance of the OH radical emission, calculate the cross-correlation between the two points,
The flame holding property is evaluated by determining the fluctuation characteristics of the flame.

【0016】この公知例では、対象がガスタービン燃焼
器のガス焚き火炎であることから、火力発電用ボイラに
おいて主力になっている微粉炭焚きの火炎と比較して燃
焼によるすすの生成がきわめて少ないため、火炎の発光
をとらえる光プローブ受光端の汚れ等による受光量の変
化や、光プローブの観測視野内を黒煙やすすを含んだ燃
焼排ガスが流れることによるランダムな受光量変化の影
響がきわめて少ない。
In this known example, since the object is a gas-fired flame of a gas turbine combustor, soot generation due to combustion is extremely small as compared with the pulverized coal-fired flame which is the main force in a boiler for thermal power generation. Therefore, the influence of changes in the amount of received light due to contamination of the optical probe's light receiving end that catches flame emission, and random changes in the amount of received light due to the flow of combustion exhaust gas containing black smoke and soot in the observation field of the optical probe are extremely significant. Few.

【0017】このため、分析した輝度(この公知例では
OHラジカル発光波長帯の輝度)は、すすや排ガスによ
る外乱の影響を受けず、火炎からの情報をそのままの形
でとらえることができる。外乱の影響を受けにくいた
め、計測した数点の観測点の輝度の時間変動の相互相関
係数の計算結果にも信頼性が高い。
Therefore, the analyzed luminance (in this known example, the luminance in the OH radical emission wavelength band) is not affected by the disturbance caused by soot or exhaust gas, and the information from the flame can be captured as it is. Since it is unlikely to be affected by disturbances, the calculation result of the cross-correlation coefficient of the temporal variation of the luminance at several measured points is also highly reliable.

【0018】一方、本発明が対象とする火力発電用ボイ
ラのバーナ火炎、特に微粉炭火炎においては、観測され
る輝度にすすや排ガス等による外乱の影響が強く、単に
観測される輝度及びその時間変動を用いて、特開平4−
186014号公報記載のように火炎の状態を評価する
ことは困難である。
On the other hand, in the burner flame of the boiler for thermal power generation, which is the object of the present invention, particularly the pulverized coal flame is strongly influenced by the disturbance due to soot, exhaust gas, etc. By using the fluctuation,
It is difficult to evaluate the state of flame as described in Japanese Patent No. 186,014.

【0019】[0019]

【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。
To solve the above problems, the present invention mainly adopts the following configurations.

【0020】バーナ火炎の複数の領域から発せられる火
炎発光を受光する複数の視野を持つ光プローブと、前記
光プローブによって受光した複数の視野からの火炎の発
光を、視野毎に、火炎中の炭素質粒子の発光を分析する
波長と燃焼生成ガス固有の光吸収・放射スペクトル帯の
波長を含む所定の数点の波長の単色光に分光して電気信
号に変換する分光分析部と、前記分光分析部により分析
した所定の数点の波長の単色光強度から視野毎の火炎温
度と燃焼生成ガスの吸収・放射スペクトル強度を計算す
る計算手段と、を備えたバーナ火炎の燃焼状態を診断す
る診断装置であって、前記火炎温度と燃焼生成ガスの光
吸収・放射スペクトル強度の時間的な変動を視野毎に周
波数分析する周波数分析手段を有し、各視野毎の変動の
周波数分布と前記周波数分布の視野間での差異を基準燃
焼状態時の値と比較してバーナ火炎の燃焼状態を評価す
る評価手段を有するバーナ火炎の燃焼診断装置。
An optical probe having a plurality of fields of view for receiving flame emission emitted from a plurality of regions of a burner flame, and the emission of flames from the plurality of fields received by the optical probe for each field of view. Spectroscopic analysis section for spectroscopically converting the emission of fine particles into monochromatic light of a predetermined number of wavelengths including the wavelengths of the light absorption / emission spectrum band peculiar to combustion products gas and converting it into an electric signal A diagnostic device for diagnosing the combustion state of a burner flame, which comprises a calculation means for calculating the flame temperature and the absorption / radiation spectrum intensity of the combustion product gas for each field of view from the monochromatic light intensity of a predetermined number of wavelengths analyzed by the section. A frequency analysis means for frequency-analyzing the temporal variation of the flame temperature and the light absorption / radiation spectrum intensity of the combustion product gas for each visual field, and the frequency distribution of the variation for each visual field and the Combustion diagnosis apparatus burner flame having an evaluation unit for the difference between the field of view of the wavenumber-distribution as compared to the value when the reference combustion condition to evaluate the combustion state of the burner flame.

【0021】また、前記燃焼診断装置において、前記火
炎温度と燃焼生成ガスの光吸収・放射スペクトル強度の
各視野毎の時間的な変動の周波数分布と前記変動周波数
分布の視野間の差異を火炎点火時の値より定めたしきい
値レベルと比較することにより、火炎の点消火判定を行
う火炎検出機能を有するバーナ火炎の燃焼診断装置。
In the combustion diagnosis device, the frequency distribution of temporal variation of the flame temperature and the optical absorption / radiation spectrum intensity of the combustion product gas for each visual field and the difference between the visual fields of the varying frequency distribution are flame-ignited. A burner flame combustion diagnosis device having a flame detection function for making a flame extinguishing determination by comparing with a threshold level determined from a time value.

【0022】[0022]

【発明の実施の形態】本発明の実施形態に係るバーナ燃
焼診断装置を図1〜図8をもちいて以下説明する。図1
は火炎の燃焼状態を評価する指標を計算し診断を行う計
算機における処理の流れを示す図である。即ち、図1は
図9に示した計算機5内の処理の流れを改良したもので
ある。
BEST MODE FOR CARRYING OUT THE INVENTION A burner combustion diagnosis apparatus according to an embodiment of the present invention will be described below with reference to FIGS. Figure 1
FIG. 4 is a diagram showing a flow of processing in a computer that calculates an index for evaluating a combustion state of a flame and makes a diagnosis. That is, FIG. 1 is an improvement of the processing flow in the computer 5 shown in FIG.

【0023】図1の処理1において、バーナ火炎発光の
分光分析結果から各視野(図9の視野a,視野b,視野
c:視野aが火炎根元領域、視野bが火炎中央領域、視
野cが火炎先端領域に対応)の火炎温度、ガス吸収・放
射スペクトル強度の状況(吸収計数)を従来技術と同様
にして計算する。本実施形態ではガス吸収・放射スペク
トル強度として図10の分光放射特性に示した1.4μ
m帯の水蒸気による吸収・放射スペクトル強度を用いて
おり、以下これを水蒸気吸光度と定義して記述する。
In the process 1 of FIG. 1, from the results of the spectroscopic analysis of the burner flame emission, the respective visual fields (visual field a, visual field b, visual field c in FIG. 9: visual field a is the flame root region, visual field b is the flame central region, visual field c is The flame temperature (corresponding to the flame tip region) and the situation of the gas absorption / radiation spectrum intensity (absorption coefficient) are calculated in the same manner as in the prior art. In the present embodiment, the gas absorption / radiation spectrum intensity of 1.4 μ shown in the spectral radiation characteristic of FIG.
The m-band absorption / emission spectrum intensity due to water vapor is used, and hereinafter, this is defined and described as water vapor absorbance.

【0024】処理2−1においては、従来技術と同様に
各視野の評価値の平滑化を行い平均値レベルを求める。
処理2−2においては、処理1において計算した各視野
の評価値(火炎温度、水蒸気吸光度)の変動状況をFF
T(高速フーリエ変換)アルゴリズムにより解析し、評
価値変動の周波数スペクトルを分析する。
In process 2-1, the evaluation value of each visual field is smoothed in the same manner as in the prior art to obtain the average value level.
In the process 2-2, the variation status of the evaluation value (flame temperature, water vapor absorbance) of each visual field calculated in the process 1 is FF.
The analysis is performed by the T (Fast Fourier Transform) algorithm, and the frequency spectrum of the evaluation value variation is analyzed.

【0025】処理3においては、基準燃焼状態における
評価値(基準値)と現在の評価値(処理2−1における
評価値の平均レベル)との偏差、及び基準値の変動の周
波数スペクトルと処理2−2において分析した現在値の
変動の周波数スペクトルとの差異を分析する。
In process 3, the deviation between the evaluation value (reference value) in the reference combustion state and the current evaluation value (average level of the evaluation value in process 2-1), and the frequency spectrum of the fluctuation of the reference value and process 2 The difference between the fluctuation of the present value analyzed in -2 and the frequency spectrum is analyzed.

【0026】処理4においては、現在の評価値の平均値
と基準値に有意差が認められるか否か、並びに現在の評
価値の変動の周波数スペクトルと基準値の変動の周波数
スペクトルに有意差が認められるか否か、により対象バ
ーナ火炎の異常・正常を判定し、異常と判定される場合
は評価値及びその変動周波数スペクトルと燃焼条件の因
果関係のデータベースをもとに異常の要因を推定する。
In the process 4, whether or not a significant difference is recognized between the average value of the current evaluation values and the reference value, and the significant difference is found between the frequency spectrum of the fluctuation of the current evaluation value and the frequency spectrum of the fluctuation of the reference value. Whether the target burner flame is abnormal or normal is judged depending on whether it is recognized or not.If it is judged to be abnormal, the cause of the abnormality is estimated based on the evaluation value and the database of causal relationships between the fluctuation frequency spectrum and combustion conditions. .

【0027】そして、図1の処理2−2において分析し
た評価値(火炎温度、水蒸気吸光度)の変動周波数スペ
クトルの例を図2〜図5に示す。図2は保炎良好時の火
炎温度の変動周波数スペクトルであり、図3は燃焼空気
の旋回を弱め保炎が不良になったときの火炎温度の変動
周波数スペクトルである。
2 to 5 show examples of fluctuation frequency spectra of the evaluation values (flame temperature, water vapor absorbance) analyzed in the process 2-2 of FIG. FIG. 2 is a fluctuation frequency spectrum of the flame temperature when the flame holding is good, and FIG. 3 is a fluctuation frequency spectrum of the flame temperature when the flame holding becomes poor by weakening the swirling of the combustion air.

【0028】同様に、図4は保炎良好時の水蒸気吸光度
の変動周波数スペクトル、図5は保炎不良時の変動周波
数スペクトルである。図2と図3の比較、及び図4と図
5を比較してわかるように、火炎温度、水蒸気吸光度と
も燃焼空気の旋回力が弱まり保炎が不良になることによ
り、視野b(火炎中央領域)、視野c(火炎先端領域)
の変動の周波数スペクトルの0.01Hz〜0.1Hz
の成分が増加し、視野a(火炎根元領域)では変化無
い。直流に近いより低い周波数での変動成分は保炎状態
の変化による差異は顕著にあらわれていない。
Similarly, FIG. 4 is a fluctuation frequency spectrum of water vapor absorbance when flame holding is good, and FIG. 5 is a fluctuation frequency spectrum when flame holding is poor. As can be seen by comparing FIG. 2 with FIG. 3 and comparing FIG. 4 with FIG. 5, the swirling force of the combustion air is weakened and the flame holding becomes poor in both the flame temperature and the water vapor absorbance, so that the visual field b (flame central region ), Field of view c (flame tip region)
0.01Hz-0.1Hz of the frequency spectrum of the fluctuation of
Component increases, and there is no change in the visual field a (flame root region). The fluctuation component at a lower frequency close to DC is not significantly different due to the change in flame holding state.

【0029】これは、前述したように直流に近い低い周
波数成分(図1の処理2−1で求める評価値の平均値レ
ベルに相当)では微粉炭の給炭状況(送炭管内の偏流)
等の火炎全体規模の変動の影響を強く受けるため差異が
現れにくいが、より高い周波数領域の変動は観測視野内
の局所的な燃料と空気の混合状態の影響が強くあらわ
れ、保炎状態の悪化にともない増加するためである。
As described above, this is because in the low frequency component close to direct current (corresponding to the average value level of the evaluation value obtained in process 2-1 of FIG. 1), the coal feeding condition of pulverized coal (uneven flow in the coal feeding pipe).
Differences are less likely to appear because they are strongly affected by changes in the overall flame size, but changes in higher frequency regions are strongly affected by the local mixture of fuel and air in the observation field of view, and the flame holding state deteriorates. This is because it will increase with the increase.

【0030】また、燃焼空気は火炎の軸方向に対し外周
方向から供給されることから、火炎軸方向の分布で見る
と、火炎根元(視野a)よりも、火炎中央(視野b)及
び先端(視野c)領域において燃料と混合するため、保
炎状態の影響は、火炎中央及び先端領域(視野b及び視
野c)において顕著であり、火炎根元領域である視野a
では小さい。
Further, since the combustion air is supplied from the outer peripheral direction with respect to the axial direction of the flame, the distribution in the flame axial direction shows that the flame center (field of view b) and tip (field of view a) rather than the flame root (field of view a). Since the fuel is mixed in the field of view c), the influence of the flame holding state is remarkable in the flame center and the tip region (fields b and c) and the field of view a which is the flame root region.
Then it's small.

【0031】図1の処理2−2において、図2〜図5に
示すような各視野の評価値(火炎温度、水蒸気吸光度)
の変動の周波数スペクトルを分析し、その結果と処理2
−1の結果である各視野の評価値の平均値レベルを処理
3において、基準値と比較する。この処理3において、
平均値レベルでは値の変動が大きく基準値との有意差が
認められない場合でも、評価値の変動の周波数スペクト
ルのうちより高い周波数成分(本実施形態においては、
0.01〜0.1Hz帯域)のレベルが視野b、視野c
(火炎中央、先端領域)において基準値の変動の周波数
スペクトルと差異があり、視野a(火炎根元領域)では
差異がない場合、保炎状態の変化と推定でき、基準値と
の差異の方向性(+−)により基準状態の火炎に対して
保炎強あるいは保炎低を診断することができる。
In process 2-2 of FIG. 1, evaluation values (flame temperature, water vapor absorbance) of each visual field as shown in FIGS.
Analysis of the frequency spectrum of fluctuations in the results and processing 2
The average value level of the evaluation values of each visual field, which is the result of -1, is compared with the reference value in the process 3. In this process 3,
Even if the average value level has a large value variation and no significant difference from the reference value is recognized, the higher frequency component of the frequency spectrum of the variation of the evaluation value (in the present embodiment,
(Between 0.01 and 0.1 Hz band) level b, field c
If there is a difference with the frequency spectrum of the fluctuation of the reference value in the (flame center, tip region) and there is no difference in the field of view a (flame root region), it can be estimated that the flame holding state has changed, and the direction of the difference from the reference value. With (+-), it is possible to diagnose strong flame holding or low flame holding for the flame in the standard state.

【0032】また、通常安定している火炎根元領域であ
る視野aの変動の周波数スペクトルが基準値の変動の周
波数スペクトルと大きく異なる場合、着火の不安定、ブ
ラックスカート形成と診断することができる。
When the frequency spectrum of the fluctuation of the field of view a, which is a normally stable flame root region, is significantly different from the frequency spectrum of the fluctuation of the reference value, it is possible to diagnose unstable ignition and formation of a black skirt.

【0033】ブラックスカート形成時の火炎温度の変動
周波数スペクトル例を図6に示す。火炎の根元領域に燃
料(微粉炭)の燃えていない領域が形成されるため、図
2と比較してわかるように視野aの火炎温度の変動周波
数成分が小さくなる。ただし、ブラックスカート形成時
においてもブラックスカート領域の空間的変動により光
プローブ視野に火炎が捉えられるため、直流に近い低周
波数領域の変動成分は比較的レベルが高い。
FIG. 6 shows an example of the fluctuation frequency spectrum of the flame temperature when the black skirt is formed. Since the region where the fuel (pulverized coal) is not burned is formed in the root region of the flame, the variation frequency component of the flame temperature in the field of view a becomes small as can be seen by comparing with FIG. However, even when the black skirt is formed, the flame is captured in the optical probe field of view due to the spatial variation in the black skirt region, so the variation component in the low frequency region close to direct current has a relatively high level.

【0034】本発明の他の効果として、評価値(火炎温
度、水蒸気吸光度)の変動の周波数スペクトル分析より
火炎検出が可能になる。図7及び図8に自火炎が消火
し、対向火炎が点火している時の火炎温度、水蒸気吸光
度の変動周波数スペクトルを示す。自火炎が消火してい
ても対向火炎や炉壁からの輻射を受光することにより、
火炎温度は自火炎点火時と大差ない値を示し、また、水
蒸気吸光度も対向火炎中の燃焼生成高温水蒸気によるガ
ス放射及び燃焼炉内排ガス中水蒸気によるガス吸収の影
響により自火炎点火時と大差ない値を示す。
As another effect of the present invention, flame detection becomes possible by frequency spectrum analysis of fluctuations in evaluation values (flame temperature, water vapor absorbance). 7 and 8 show fluctuation frequency spectra of flame temperature and water vapor absorbance when the self-fire is extinguished and the opposing flame is ignited. Even if the self-fire is extinguished, by receiving the opposing flame and radiation from the furnace wall,
The flame temperature shows a value that is not much different from that when the self-ignition is ignited, and the water vapor absorbance is also not so different from that when the self-flame is ignited due to the effects of gas emission by the high temperature steam produced by combustion in the opposing flame and gas absorption by the steam in the exhaust gas in the combustion furnace. Indicates a value.

【0035】しかしながら、図7、図8に示すように自
火炎消火時は、図2〜図5に示した自火炎点火中の評価
値の変動周波数スペクトルと比較し、全視野とも点火中
には顕著であった比較的高い周波数(本実施形態におい
ては約0.01〜0.1Hzの帯域)の変動成分が失わ
れ、また、視野間(視野a,b,c)の分布が失われ
る。
However, as shown in FIGS. 7 and 8, when the self-flame is extinguished, the variation frequency spectrum of the evaluation value during self-flame ignition shown in FIGS. The conspicuous relatively high frequency (about 0.01 to 0.1 Hz band in this embodiment) fluctuation component is lost, and the distribution between the visual fields (visual fields a, b, c) is lost.

【0036】これは、自火炎点火中は図9の光プローブ
3の近傍にバーナ火炎が存在するため、光プローブ3を
構成する光ファイバの受光角(光ファイバの開口数は
0.2程度)による観測視野面積の広がりが小さく、自
火炎の部分的な領域からの放射を選択的に受光すること
ができるが、光プローブ近傍にある自火炎が失われた場
合、より離れた対向バーナ火炎や炉内浮遊粒子の放射を
視野面積の広がった状態で光プローブが受光するため、
比較的高い周波数での変動は打ち消され、対向火炎のゆ
らぎなど直流レベルに近い低周波数の変動成分のみが検
出されるためである。
This is because the burner flame exists in the vicinity of the optical probe 3 in FIG. 9 during self-ignition of the flame, so that the light receiving angle of the optical fiber forming the optical probe 3 (the numerical aperture of the optical fiber is about 0.2). The area of the observation field of view is small and the radiation from the partial area of the self-flame can be selectively received.However, when the self-flame near the optical probe is lost, the opposite burner flame or Since the optical probe receives the radiation of the airborne particles in the furnace with a wide field of view,
This is because fluctuations at relatively high frequencies are canceled out, and only fluctuation components at low frequencies close to the DC level such as fluctuations of the opposing flame are detected.

【0037】したがって、評価値(火炎温度、水蒸気吸
光度)の変動周波数スペクトルのうち比較的高い周波数
成分(例えば0.01〜0.1Hz)が火炎点火中のレ
ベルから定めたしきい値より低く、かつ視野間での分布
が失われた場合、失火と判定でき、火炎検出機能を燃焼
診断装置に併せ持つことができる。
Therefore, a relatively high frequency component (for example, 0.01 to 0.1 Hz) in the fluctuation frequency spectrum of the evaluation value (flame temperature, water vapor absorbance) is lower than the threshold value determined from the level during flame ignition, In addition, if the distribution between the visual fields is lost, it can be determined that a misfire has occurred, and the combustion diagnosis device can also have a flame detection function.

【0038】以上説明したように、本発明の実施形態は
次のような構成と機能並びに作用を奏するものを含むも
のである。
As described above, the embodiments of the present invention include those having the following configurations, functions and operations.

【0039】火炎発光の分光分析によって得られる火炎
温度、燃焼生成ガスによる吸収・発光スペクトル強度の
変動の周波数特性を分析し、特定の周波数帯域のレベル
及びその視野分布(火炎軸方向分布)から火炎の状態、
特に保炎状態の変化を検知することにより、バーナ火炎
の燃焼診断を行おうとするものである。
The frequency characteristics of fluctuations in flame temperature and absorption / emission spectrum intensity due to combustion product gas obtained by spectroscopic analysis of flame emission are analyzed, and the flame is determined from the level of a specific frequency band and its visual field distribution (flame axis direction distribution). State of
In particular, the burner flame combustion diagnosis is performed by detecting a change in the flame holding state.

【0040】この際、燃焼空気と燃料が適切に混合しな
くなり、火炎の保炎状態が不良になると火炎が拡散ぎみ
になることから、火炎発光状況の空間的、時間的変動が
増加する。また、燃焼空気は火炎の軸方向に対し外周方
向から供給されるため、火炎軸方向の分布で見ると火炎
根元よりも、火炎中央及び先端領域において燃料と混合
するため、保炎状態の良否による火炎発光状況の変動
は、火炎中央及び先端領域において顕著である。
At this time, if the combustion air and the fuel are not properly mixed and the flame holding state of the flame becomes poor, the flame becomes diffusing, so that the spatial and temporal fluctuations of the flame emission state increase. Also, since combustion air is supplied from the outer peripheral direction with respect to the axial direction of the flame, the distribution in the flame axial direction mixes with the fuel at the flame center and the tip region rather than at the flame root, so it depends on the flame holding condition. The fluctuation of the flame emission state is remarkable in the flame center and the tip region.

【0041】火炎発光状況の変動を表す指標としては単
に火炎の輝度の変動を用いても原理的には良いが、実際
の装置構成においては例えば図9の光プローブ3のよう
に光ファイバの曲げ角により観測視野を設定している場
合、光ファイバの曲げ角により光の伝送損失が異なるた
め、この光プローブを経由して受光した火炎の輝度は実
際とは異なり、したがって輝度変動レベルの視野分布も
実際とは異なる。
Although it is theoretically possible to simply use the fluctuation of the brightness of the flame as an index showing the fluctuation of the flame emission state, in the actual apparatus configuration, for example, the bending of the optical fiber like the optical probe 3 of FIG. When the observation field of view is set by the angle, the brightness of the flame received via this optical probe is different from the actual because the transmission loss of light differs depending on the bending angle of the optical fiber, and therefore the field distribution of the brightness fluctuation level is Is also different from the actual situation.

【0042】また、最近の火力発電用ボイラにおいて主
となっている微粉炭焚き火炎では、すすの付着による光
プローブ端面の汚れや、すすを含む排ガスが視野内を流
れることによって予測困難な輝度の変動が生じる。この
ことから装置構成及び実際の運用を考えた場合、火炎発
光状況の変動を表す指標として単に輝度を用いるのは不
適切である。
Further, in the pulverized coal burning flame which is mainly used in the recent thermal power generation boilers, dirt on the end face of the optical probe due to adhesion of soot and exhaust gas containing soot flowing in the field of view have a brightness which is difficult to predict. Fluctuation occurs. From this point of view, when considering the device configuration and the actual operation, it is inappropriate to simply use the brightness as an index indicating the variation of the flame emission state.

【0043】このため、火炎発光の分光分析結果から前
記従来の構成で記述したように複数波長の単色光スペク
トル強度(単色輝度)比率をもとに計算し、受光した火
炎の輝度レベルそのものにはよらない指標である火炎温
度及び燃焼生成ガスによるガス吸収・発光スペクトル
(吸収係数)の変動を用いるのが適当である。
Therefore, as described in the above-mentioned conventional configuration, calculation is performed based on the monochromatic light spectrum intensity (monochromatic luminance) ratio of a plurality of wavelengths from the result of the spectroscopic analysis of flame emission, and the luminance level itself of the received flame is calculated. It is appropriate to use the fluctuations of the gas absorption / emission spectrum (absorption coefficient) due to the flame temperature and the combustion product gas, which are independent indexes.

【0044】観測される変動の周波数は、火炎全体規模
の変動や局所的な燃料と空気の反応等に起因する変動の
影響を受け、低周波数から比較的高い周波数まで連続し
て存在する(周波数レンジは装置のサンプリング周波数
など応答特性にも依存する)。このうち直流レベルに近
い比較的低い周波数での変動レベルは、微粉炭の給炭状
況(送炭管内での偏流によるバーナ出口での微粉炭分布
状況の変化)や炉内圧の変動等による火炎全体規模の変
動や光プローブの視野内をすすを含んだ排ガスが流れる
ことによる視野遮蔽の影響が強く、通常の状態での変動
レベルと区別が困難である。
The frequency of the observed fluctuation is influenced by the fluctuation of the entire flame size and the fluctuation caused by the local reaction between fuel and air, and continuously exists from the low frequency to the relatively high frequency (frequency Range also depends on the response characteristics such as the sampling frequency of the device). Among these, the fluctuation level at a relatively low frequency close to the DC level is the pulverized coal feeding situation (change in pulverized coal distribution at the burner outlet due to uneven flow in the coal transfer pipe) and fluctuations in furnace pressure, etc. It is difficult to distinguish the fluctuation level under normal conditions from the fluctuation level in the normal state because the influence of the field of view shielding is large due to the fluctuation of the scale and the flow of exhaust gas containing soot in the field of view of the optical probe.

【0045】しかし、比較的高い周波数での変動レベル
は観測視野内の局所的な燃料と空気の混合状態の影響が
強くあらわれ(火炎全体規模での変動は直流に近い低周
波数側で顕著であり、比較的高い周波数領域では生じに
くい。このため、相対的に比較的高い周波数領域におい
て燃料と空気の局所的な混合状態の変化による変動が顕
著になる)、保炎状態の悪化にともない増加する。ま
た、この変動レベルの火炎軸方向視野分布は、前述のよ
うに保炎状態の変化に伴って火炎根元領域では差異が小
さく、火炎中央、先端領域において差異が大となる分布
を持つ。
However, the fluctuation level at a relatively high frequency is strongly influenced by the local mixing state of fuel and air in the observation field (the fluctuation on the whole flame scale is remarkable on the low frequency side near DC). , Which is less likely to occur in a relatively high frequency region, so that the fluctuation due to a change in the local mixing state of fuel and air becomes significant in a relatively high frequency region), and increases as the flame holding state deteriorates. . In addition, as described above, the distribution of the field of view in the flame axis direction at the fluctuation level has a distribution in which the difference is small in the flame root region and is large in the flame center and the tip region as the flame holding state changes.

【0046】したがって、火炎発光の分光分析結果から
得られる火炎温度、燃焼生成ガスによるガス吸収・放射
スペクトル強度の変動の周波数特性の比較的高い周波数
帯域のレベル及びその視野分布(火炎軸方向分布)を分
析することにより、火炎の保炎状態の良否を診断できる
装置を提供することができる。
Therefore, the flame temperature obtained from the results of the spectroscopic analysis of the flame emission, the level of the relatively high frequency band of the frequency characteristic of the fluctuation of the gas absorption / radiation spectrum intensity due to the combustion product gas, and its field of view distribution (flame axis direction distribution) It is possible to provide a device capable of diagnosing the quality of the flame holding state of the flame by analyzing.

【0047】[0047]

【発明の効果】本発明によれば、火炎発光の分光分析結
果から得られる火炎温度、燃焼生成ガスによるガス吸収
・放射スペクトル強度の変動周波数をスペクトル分析
し、その周波数分布特性、特に比較的高い周波数帯域の
レベルとその火炎軸方向分布である観測視野分布を用い
てバーナ火炎の状態を評価することにより、火炎の保炎
状態の良否等の燃焼状態を診断できる装置を提供でき
る。
According to the present invention, the fluctuation frequency of the flame temperature and the gas absorption / radiation spectrum intensity by the combustion product gas obtained from the result of the spectroscopic analysis of the flame emission is spectrally analyzed, and its frequency distribution characteristic, in particular, relatively high. By evaluating the state of the burner flame using the level of the frequency band and the observation field distribution that is the flame axis direction distribution, it is possible to provide a device that can diagnose the combustion state such as the quality of the flame holding state.

【0048】また、同様の手法により火炎の点消火判定
を行う火炎検出機能もあわせて提供することができる。
Further, a flame detection function for making a flame extinguishing determination by the same method can also be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る、火炎の燃焼状態を評
価する指標を計算し診断を行う計算機における処理の流
れを示す図である。
FIG. 1 is a diagram showing a flow of processing in a computer which calculates an index for evaluating a combustion state of a flame and makes a diagnosis according to an embodiment of the present invention.

【図2】保炎良好時の火炎温度の変動の周波数スペクト
ルを示した図である。
FIG. 2 is a diagram showing a frequency spectrum of changes in flame temperature when flame holding is good.

【図3】保炎不良時の火炎温度の変動の周波数スペクト
ルを示した図である。
FIG. 3 is a diagram showing a frequency spectrum of changes in flame temperature when flame holding is poor.

【図4】火炎良好時の水蒸気吸光度の変動の周波数スペ
クトルを示した図である。
FIG. 4 is a diagram showing a frequency spectrum of fluctuations in water vapor absorbance when a flame is good.

【図5】火炎不良時の水蒸気吸光度の変動の周波数スペ
クトルを示した図である。
FIG. 5 is a diagram showing a frequency spectrum of fluctuations in water vapor absorbance when a flame is defective.

【図6】ブラックスカート形成時の火炎温度の変動のス
ペクトルを示した図である。
FIG. 6 is a diagram showing a spectrum of changes in flame temperature when a black skirt is formed.

【図7】バーナ火炎消火時(対向火炎点火)の火炎温度
の変動の周波数スペクトルを示した図である。
FIG. 7 is a diagram showing a frequency spectrum of variations in flame temperature during burner flame extinction (opposed flame ignition).

【図8】バーナ火炎消火時(対向火炎点火)の水蒸気吸
光度の変動の周波数スペクトルを示した図である。
FIG. 8 is a diagram showing a frequency spectrum of fluctuations in water vapor absorbance during burner flame extinction (opposed flame ignition).

【図9】従来技術のおける燃焼診断装置の構成を示した
図である。
FIG. 9 is a diagram showing a configuration of a combustion diagnosis device according to a conventional technique.

【図10】微粉炭バーナ火炎の分光放射特性の一例を示
した図である。
FIG. 10 is a diagram showing an example of a spectral radiation characteristic of a pulverized coal burner flame.

【符号の説明】[Explanation of symbols]

1 バーナ 2 火炎 3 光プローブ 4 中継光ファイバ 5 計算機 101 分光分析部 1 burner 2 flames 3 Optical probe 4 Relay optical fiber 5 calculator 101 spectroscopic analysis unit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F23N 5/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) F23N 5/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 バーナ火炎の複数の領域から発せられる
火炎発光を受光する複数の視野を持つ光プローブと、 前記光プローブによって受光した複数の視野からの火炎
の発光を、視野毎に、火炎中の炭素質粒子の発光を分析
する波長と燃焼生成ガス固有の光吸収・放射スペクトル
帯の波長を含む所定の数点の波長の単色光に分光して電
気信号に変換する分光分析部と、 前記分光分析部により分析した所定の数点の波長の単色
光強度から視野毎の火炎温度と燃焼生成ガスの吸収・放
射スペクトル強度を計算する計算手段と、 を備えたバーナ火炎の燃焼状態を診断する診断装置であ
って、 前記火炎温度と燃焼生成ガスの光吸収・放射スペクトル
強度の時間的な変動を視野毎に周波数分析する周波数分
析手段を有し、 各視野毎の変動の周波数分布と前記周波数分布の視野間
での差異を基準燃焼状態時の値と比較してバーナ火炎の
燃焼状態を評価する評価手段を有することを特徴とする
バーナ火炎の燃焼診断装置。
1. An optical probe having a plurality of fields of view for receiving flame emission emitted from a plurality of regions of a burner flame, and the emission of flame from the plurality of fields of view received by the optical probe in a flame for each field of view. A spectroscopic analysis unit that disperses into monochromatic light of a predetermined number of wavelengths including a wavelength for analyzing the emission of carbonaceous particles and a wavelength of a light absorption / emission spectral band peculiar to the combustion product gas, and an electric signal, The combustion state of the burner flame is equipped with a calculation means for calculating the flame temperature and the absorption / emission spectrum intensity of the combustion product gas for each field of view from the monochromatic light intensity of a predetermined number of wavelengths analyzed by the spectroscopic analysis section. A diagnostic device, comprising frequency analysis means for frequency-analyzing temporal fluctuations of the flame temperature and optical absorption / radiation spectrum intensity of combustion product gas for each visual field, and a frequency distribution of the fluctuation for each visual field. Serial combustion diagnosis apparatus of the burner flame, characterized in that it comprises an evaluation means for differences in comparison with the value at the reference time combustion state to evaluate the combustion state of the burner flame across the field of view of the frequency distribution.
【請求項2】 請求項1に記載の燃焼診断装置におい
て、 前記火炎温度と燃焼生成ガスの光吸収・放射スペクトル
強度の各視野毎の時間的な変動の周波数分布と前記変動
周波数分布の視野間の差異を火炎点火時の値より定めた
しきい値レベルと比較することにより、火炎の点消火判
定を行う火炎検出機能を有することを特徴とするバーナ
火炎の燃焼診断装置。
2. The combustion diagnostic apparatus according to claim 1, wherein the flame temperature and the frequency distribution of temporal fluctuation of the optical absorption / radiation spectrum intensity of the combustion product gas for each field of view and the field of view of the fluctuation frequency distribution. A burner flame combustion diagnostic device having a flame detection function for making a flame extinguishing determination by comparing the difference between the above-mentioned difference with a threshold level determined by a value at the time of flame ignition.
【請求項3】 請求項1に記載の燃焼診断装置におい
て、 前記評価手段は、前記火炎温度と燃焼生成ガスの光吸収
・放射スペクトル強度の各視野毎の時間的な変動の周波
数特性の比較的高い周波数帯域のレベル及び火炎軸方向
の視野分布を分析することにより火炎の保炎状態の良否
を診断することを特徴とするバーナ火炎の燃焼診断装
置。
3. The combustion diagnosing device according to claim 1, wherein the evaluating means relatively compares the frequency characteristics of temporal variations of the flame temperature and the light absorption / emission spectrum intensity of the combustion product gas with respect to each visual field. A burner flame combustion diagnosis device, characterized by diagnosing the quality of a flame holding state by analyzing a level in a high frequency band and a visual field distribution in a flame axis direction.
JP35166198A 1998-12-10 1998-12-10 Burner combustion diagnostic device Expired - Fee Related JP3524407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35166198A JP3524407B2 (en) 1998-12-10 1998-12-10 Burner combustion diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35166198A JP3524407B2 (en) 1998-12-10 1998-12-10 Burner combustion diagnostic device

Publications (2)

Publication Number Publication Date
JP2000179843A JP2000179843A (en) 2000-06-27
JP3524407B2 true JP3524407B2 (en) 2004-05-10

Family

ID=18418773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35166198A Expired - Fee Related JP3524407B2 (en) 1998-12-10 1998-12-10 Burner combustion diagnostic device

Country Status (1)

Country Link
JP (1) JP3524407B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3538670B2 (en) * 2000-09-04 2004-06-14 川崎重工業株式会社 Gas turbine operating state diagnosis method and diagnosis apparatus
WO2008059598A1 (en) 2006-11-17 2008-05-22 Imagineering, Inc. Reaction analyzing device, recording medium and measuring system
JP5311305B2 (en) * 2006-11-17 2013-10-09 イマジニアリング株式会社 Reaction analysis device, recording medium, measurement system and control system
CN103557886B (en) * 2013-10-29 2016-01-13 东南大学 A kind of method that high-temperature gas two dimension instantaneous temperature field based on ultraphotic spectrum, distribution of concentration are measured simultaneously
JP6172249B2 (en) * 2014-12-03 2017-08-02 Jfeスチール株式会社 Combustion management system for heat treatment equipment

Also Published As

Publication number Publication date
JP2000179843A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
EP0590103B1 (en) Apparatus for combustion, pollution and chemical process control
US6389330B1 (en) Combustion diagnostics method and system
US8926317B2 (en) System and method for controlling fired heater operations
EP0967440A2 (en) Optical monitoring and control system for oil combustion
US4233596A (en) Flare monitoring apparatus
JPS60159515A (en) Furnace system
US5465219A (en) Combustion analyzer based on chaos theory analysis of flame radiation
JP3524407B2 (en) Burner combustion diagnostic device
CN1162648C (en) Flame monitoring, diagnosing and measuring method and installation
RU2715302C1 (en) Automatic system for diagnosing combustion of pulverized coal fuel in a combustion chamber
JPS6036825A (en) Control method for combustion flame and device thereof
US20090214993A1 (en) System using over fire zone sensors and data analysis
JP3059229B2 (en) Combustion diagnostic device
JP3423124B2 (en) Combustion monitoring sensor and air ratio control method for combustion device using the same
JP3524412B2 (en) Burner combustion diagnostic device
CN203309926U (en) Boiler temperature detection system
JPS61138022A (en) Diagnosis method for combustion condition
RU2282789C2 (en) Method of random testing of burner flame
JP3083623B2 (en) Burner tip nozzle blockage detection device and detection method
JP3083633B2 (en) Combustion diagnostic device
RU2152564C1 (en) Method of combustion control
JP3258778B2 (en) Flame detection and combustion diagnostic device
JPH0743217A (en) Device for three-dimensional mapping of flame temperature
JPH04143515A (en) Detection of abnormality in burner
JP3390265B2 (en) Combustion diagnostic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees