JPS6036825A - Control method for combustion flame and device thereof - Google Patents

Control method for combustion flame and device thereof

Info

Publication number
JPS6036825A
JPS6036825A JP58146124A JP14612483A JPS6036825A JP S6036825 A JPS6036825 A JP S6036825A JP 58146124 A JP58146124 A JP 58146124A JP 14612483 A JP14612483 A JP 14612483A JP S6036825 A JPS6036825 A JP S6036825A
Authority
JP
Japan
Prior art keywords
flame
temperature distribution
control
combustion
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58146124A
Other languages
Japanese (ja)
Inventor
Kenichi Soma
憲一 相馬
Norio Arashi
紀夫 嵐
Shigeru Azuhata
茂 小豆畑
Kiyoshi Narato
清 楢戸
Toru Inada
徹 稲田
Yoshinobu Kobayashi
啓信 小林
Keizo Otsuka
大塚 馨象
Takao Hishinuma
孝夫 菱沼
Tadahisa Masai
政井 忠久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP58146124A priority Critical patent/JPS6036825A/en
Publication of JPS6036825A publication Critical patent/JPS6036825A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • G01J5/0018Flames, plasma or welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • G01J5/051Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path using a gas purge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Control Of Combustion (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To enable highly precise control of a combustion flame without disturbance of a combustion flame, by measuring temperature distribution in a flame in non-contact manner. CONSTITUTION:In a plurality of positions in a combustion flame, spectral analysis is effected by a light detector 10, and vibration spectrum of the obtained OH is calculated to find temperature distribution in flame. A storing circuit 12 stores temperature distribution in flame measured under an optimum combustion condition. A comparing circuit 13 compares temperature distribution in flame at a present point of time, which is outputted from a computing circuit 11, with temperature distribution in flame under the stored optimum combustion condition, and a difference therebetween is outputted to a control circuit 14. The control circuit 14 inputs an output from the comparing circuit 13 to decide a proper control command to a control drive part and output a command as a control signal. The outputted control signal is fed to a control place to perform control of flame into an optimum combustion condition.

Description

【発明の詳細な説明】 中の温度分布を非接触状態で計測することにより燃焼火
炎を高精度で制御できるようにした燃焼火炎の制御方法
および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for controlling a combustion flame, in which the combustion flame can be controlled with high precision by measuring the temperature distribution inside the flame in a non-contact manner.

〔発明の背景〕[Background of the invention]

例えば火力発電所等のボイラーのメインバーナでは最適
燃焼状態として、低NOX、低未燃分の燃焼状態を得る
ために燃焼火炎を制御することが必要とされる。寸だ、
NOX以外にも、−1・・3化炭素、酸素または亜硫酸
ガス晴が)llll定され、す然焼火炎の制御に供され
る。
For example, in the main burner of a boiler in a thermal power plant or the like, it is necessary to control the combustion flame in order to obtain a combustion state with low NOx and low unburned content as an optimum combustion state. It's a size.
In addition to NOx, -1...carbon triride, oxygen, or sulfur dioxide gas is also determined and used to control the burnout flame.

ところで従来、燃焼火炎を制御する場合は、一般に排ガ
ス中のガス分析等を行ない、その分析値を用いて制御系
への信号を出力する方法がとられている。
Conventionally, when controlling a combustion flame, a method has generally been adopted in which gas analysis in exhaust gas is performed and the analyzed value is used to output a signal to a control system.

例えば、排ガス中のNoXo度を把握するには、実際に
煙道から排ガスを各種のNOx計に導いて濃度を測定し
ている。また、直接煙道から測定訓器への導入が不可能
な場合にはサンプリング用シリンジを用いて、煙道から
排ガスを採集して、NOX計により餞度を測定している
。いずれの方法にせよ、ガスの採集を行ない、その分析
値に基づいて制御信号を出力して制御する方法を行なっ
ている。
For example, in order to understand the NoXO concentration in exhaust gas, the exhaust gas is actually guided from the flue to various NOx meters and the concentration is measured. If it is not possible to directly introduce the flue gas into the measurement device, a sampling syringe is used to collect the exhaust gas from the flue, and the concentration is measured using a NOx meter. In either method, gas is collected and control is performed by outputting a control signal based on the analyzed value.

このような、排ガスの採集による排ガス分析およびその
値を用いて行なわれる燃焼火炎の制御方法では、急激な
燃焼状態の変化には対応できないという欠点がある。
Such a combustion flame control method, which is performed by collecting exhaust gas and analyzing the exhaust gas and using the analyzed values, has the disadvantage that it cannot cope with sudden changes in the combustion state.

そこで、火炎自体の観察に基づく高精度の制御を行なう
ことが考えられる。例えばバーナ出口付近の火炎中のガ
ス濃度分布、温度分布等を検出しこれに基づいて最適燃
焼状態時の火炎を保つような制御が精度が高い制度と考
えられる。
Therefore, it is conceivable to perform highly accurate control based on observation of the flame itself. For example, control that detects the gas concentration distribution, temperature distribution, etc. in the flame near the burner outlet and maintains the flame in the optimal combustion state based on this is considered to be a highly accurate system.

しかし、従来ではこのような場合でもバーナ出口付近の
火炎中でのガス濃度分布の測定は通常、サンプリングプ
ローブを火炎中に挿入してガスをサンプリングして測定
される。また温度分布は、熱電対を挿入して測定される
。従って、いずれの方法も、火炎を乱してしまい、正確
な分布の測定は困雌と考えられる。
However, conventionally, even in such cases, the gas concentration distribution in the flame near the burner outlet is usually measured by inserting a sampling probe into the flame and sampling the gas. The temperature distribution is also measured by inserting a thermocouple. Therefore, either method disturbs the flame, making it difficult to accurately measure the distribution.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、燃焼火炎を乱すことなくその火炎の温
度分布を測定することができ、燃焼火炎の制御の高精度
化が図れる燃焼火炎の制御方法および装置Wを提供する
ことにある。
An object of the present invention is to provide a combustion flame control method and apparatus W that can measure the temperature distribution of a combustion flame without disturbing the combustion flame, and can improve the accuracy of combustion flame control.

〔発明の概要〕[Summary of the invention]

本発明に係る燃焼火炎の制御方法では、火炎中の温度分
布を光学的手法によって非接触で測定し、測定される温
度分布を用いて燃’AJ8火炎を制御器するようにして
いる。
In the combustion flame control method according to the present invention, the temperature distribution in the flame is measured non-contact by an optical method, and the measured temperature distribution is used to control the combustion flame.

本発明に係る燃焼火炎の制御方法は、好適には燃焼火炎
中に多く存在する水酸基ラジカル(以下・OHと称する
)の発生をX分光分析し、その結果得られるスペクトル
の波艮と発光強度から火炎の温度を計算し、温度分布を
め、その分布を最適燃焼状態時の火炎の温度分布と比較
する事によって制御信号を出力することにより、燃焼火
炎を制御するものである。
The combustion flame control method according to the present invention preferably involves X-spectroscopic analysis of the generation of hydroxyl radicals (hereinafter referred to as OH), which are present in large quantities in the combustion flame, and from the resulting spectral waves and emission intensity. The combustion flame is controlled by calculating the temperature of the flame, measuring the temperature distribution, and comparing the distribution with the temperature distribution of the flame in the optimum combustion state and outputting a control signal.

即ち、火炎温度を非接触で測定し、その測定点を移動さ
せて火炎中の温度分布をめ、その分布によって火炎を制
御するものである。
That is, the flame temperature is measured without contact, the measurement point is moved to determine the temperature distribution in the flame, and the flame is controlled based on the distribution.

また、本発明に係る燃焼火炎の制御装置で(・ユ、火炎
中の・OHの発光スペクトルを分光分析した結果を入力
し、温度分布を計算する計算回路、最適燃焼状態時の火
炎中の温度分布を記憶している記憶回路、該計算回路か
らの出力および、該記憶回路からの出力とを比較する比
較回路、該比較回路からの出力によって制御信号を出力
する制御回路とを具備したものとしている。
In addition, in the combustion flame control device according to the present invention, a calculation circuit that inputs the results of spectroscopic analysis of the emission spectrum of OH in the flame and calculates the temperature distribution, A storage circuit that stores distributions, a comparison circuit that compares an output from the calculation circuit with an output from the storage circuit, and a control circuit that outputs a control signal based on the output from the comparison circuit. There is.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

燃焼火炉1に取り付けだバーナ2から火炎が噴出され、
その火炎の光は二つのビューポート3A。
Flame is ejected from the burner 2 attached to the combustion furnace 1,
The flame light is from two viewports 3A.

3Bから採光されるようにしている。採光された光は、
夫々分光カメラ4によって電気信号に変換され、その出
力が信号制@1+器5に導かれ、その出力を受けて信号
制御器から制御信号が出力されるようにしている。
It is designed to receive sunlight from 3B. The illuminated light is
Each of them is converted into an electric signal by a spectroscopic camera 4, and its output is led to a signal controller @1+ device 5, which outputs a control signal from a signal controller in response to the output.

各分光カメラ4には第2図に示すように、ビューボート
3A、3Bからの光を集光する集光レンズ6および結像
レンズ7が設けである。集光点は集光用レンズ6の焦点
距離位置であり、焦点周辺の光が最も強く観式される。
As shown in FIG. 2, each spectroscopic camera 4 is provided with a condenser lens 6 and an imaging lens 7 for condensing light from the view boats 3A and 3B. The condensing point is the focal length position of the condensing lens 6, and the light around the focal point is most intensely observed.

この集光レンズ6i−j。These condensing lenses 6i-j.

サイトレール8に沿い、レンズ駆動装置9を介して前後
動可能とされており、集光レンズ6の焦点、即ち採光点
を前後させることができる。そして、この採光点の前後
動操作によって、火炎内外部の断層を観察することがで
きる。
It is movable back and forth along the sight rail 8 via a lens drive device 9, and the focal point of the condenser lens 6, that is, the lighting point, can be moved back and forth. By moving the lighting point back and forth, it is possible to observe the fault lines inside and outside the flame.

凸レンズの特性上、焦点から出た光は凸レンズ通過後は
平行光線となる。また、i’lLに凸レンズに平行光線
として入射した光は、焦点に結ぶ特性がある。この特性
を利用し、集光レンズ6を通過した平行光線を結像レン
ズ7で光を焦点で結ばせ、その焦点位置に光検知器10
を配置7/、“している。これによって、集光レンズ6
の焦点Ill鵬1(1位置の採光された光が、光検知器
10の検知部に強い光となって結像することになる。
Due to the characteristics of a convex lens, the light emitted from the focal point becomes parallel light after passing through the convex lens. Furthermore, the light that has entered the convex lens at i'lL as a parallel ray has a characteristic of being focused. Utilizing this characteristic, the parallel rays that have passed through the condenser lens 6 are focused by the imaging lens 7, and a photodetector 10 is placed at the focus position.
The condenser lens 6 is arranged 7/, ``.
The light collected at the focal point 1 (1 position) becomes a strong light and forms an image on the detection part of the photodetector 10.

したがって、結像レンズ7と光検知器10は固定したま
ま、集光レンズ6をサイトレール8に沿って、レンズ駆
動装置9によって前後させるという簡単な操作を行なう
だけで、集光位置すなわち、観察位置を変えることが可
能であり、火炎のUT層が内外部に亘って観察できる。
Therefore, the focusing position, that is, the observation The position can be changed and the UT layer of flame can be observed both inside and outside.

本実施例では、火炎中の・OHの発光スペクトルを分光
分析することにより、火炎中の温度を非接触で測定する
ようにしている。即ち、・OHの発光スペクトルが観察
される波長域に、検知能の高い、光検知器lO1例えば
光電子増倍管を用いている。fxお、光検知器10とし
ては、光電子増倍管の他、フォト・ダイオードやスペク
トル・マルチチャンネル・アナライザー(S、M、A、
 )等を用いても良い。光検知器10は光信号を電気信
号に変換し、その′[h気信号を信号処理系へ送るよう
にしている。
In this embodiment, the temperature in the flame is measured without contact by spectroscopically analyzing the emission spectrum of .OH in the flame. That is, a photodetector lO1, such as a photomultiplier tube, which has a high detection capability is used in the wavelength range in which the emission spectrum of .OH is observed. In addition to a photomultiplier tube, the photodetector 10 includes a photodiode and a spectrum multichannel analyzer (S, M, A,
) etc. may be used. The photodetector 10 converts the optical signal into an electrical signal and sends the electrical signal to the signal processing system.

次に信号処理系を第3図に示すダイヤグラムによって説
明する。この処理系は火炎中の・OHの発光スペクトル
を分光分析した結果を入力し、温度分布を計算する演算
回路11.最適燃焼状態時の火炎中の温度分布を記1届
する記憶回路12、演算回路11からの出力と記憶回路
12からの出力とを比較判定する比較回路13および比
較回路13からの出力によって制御1111信刊を出力
するiti制御回路14を有している。
Next, the signal processing system will be explained using the diagram shown in FIG. This processing system inputs the results of spectroscopic analysis of the emission spectrum of .OH in the flame and calculates the temperature distribution using an arithmetic circuit 11. A memory circuit 12 records the temperature distribution in the flame in the optimum combustion state, a comparator circuit 13 compares and determines the output from the arithmetic circuit 11 and the output from the memory circuit 12, and control 1111 is performed by the output from the comparator circuit 13. It has an iti control circuit 14 that outputs newsletters.

演算回路11は、光検知器へ任意の波長の光信号を電気
信号へ変換するだめの命令を出力する命令回路、光検知
器からの出力を入力して・温度の計算を行なう計算回路
、火炎中の任、なの位置の光を集光するためにレンズ駆
動装置9を駆動させるためのレンズ駆動コントロール回
路とからl:i’;成されている。
The arithmetic circuit 11 includes a command circuit that outputs a command to the photodetector to convert an optical signal of an arbitrary wavelength into an electrical signal, a calculation circuit that inputs the output from the photodetector and calculates the temperature, and a flame detector. A lens drive control circuit for driving a lens drive device 9 in order to condense light at a position in the middle is formed.

計算回路で行なう計算は、火炎中に広く存仕が確認され
ている・OHの発光を分光分析して得られるスペクトル
線の発光強度と波長とから行なわれるものである。第4
図に測定された燃焼火炎中のある任意の一点での・OH
の分光分析結果の一例を示した。これは、・OHの振動
回転スペクトルと称される分析結果であり、縦軸が発光
強度、横軸が波長である。分光分析の結果得られたスペ
クトル線のピークの横軸位置(波長)と縦軸位置(発光
強度)との値から温度を計算することになる。
The calculations performed by the calculation circuit are based on the emission intensity and wavelength of spectral lines obtained by spectroscopic analysis of the emission of .OH, which is widely confirmed to exist in flames. Fourth
・OH at any point in the combustion flame measured in the figure
An example of the spectroscopic analysis results is shown. This is an analysis result called a vibrational rotation spectrum of .OH, where the vertical axis is the emission intensity and the horizontal axis is the wavelength. The temperature is calculated from the values of the horizontal axis position (wavelength) and the vertical axis position (emission intensity) of the peak of the spectral line obtained as a result of the spectroscopic analysis.

計算の基本となる式は、次式で与えられる。The basic formula for calculation is given by the following formula.

1n(IW/W’−P−gI=−E/kT十定数なお、
IIJ、波数Wでの発光強度、Wはスペクトル線の成長
の逆数、Pは波数Wの光を発するエネルギーレベルEへ
の遷移確率、gは多重度、kはボルツマン定数、Tは絶
対温度である。即ち、分光分析を行なって得られたスペ
クトル線の強度をめ、左辺の焔を計算し、Eに対してプ
ロットすil−ば、1M線の1すjきはl/kTであり
、kは定数であるからTがめられることになる。
1n(IW/W'-P-gI=-E/kT ten constant,
IIJ is the emission intensity at wavenumber W, W is the reciprocal of the growth of the spectral line, P is the transition probability to energy level E that emits light at wavenumber W, g is the multiplicity, k is Boltzmann's constant, and T is the absolute temperature. . That is, if we calculate the intensity of the spectral line obtained by performing spectroscopic analysis, calculate the flame on the left side, and plot it against E, then 1 of the 1M line is l/kT, and k is Since it is a constant, T is observed.

以上の結果、燃焼火炎中での任意のある一点を集光して
、光検知器10によって分光分析を行ない、イ4)られ
た・ORの孔i山回11:云スペクトルについて前述の
基本式によって計算することにより、集光された任意の
一点での温度がめられることになる。従って、この操作
を火炎中の複数の位置について行なえば、火炎中での温
度分イ1うがめられることになる。
As a result of the above, the light is focused at an arbitrary point in the combustion flame and spectroscopically analyzed by the photodetector 10. By calculating, the temperature at any one point where the light is focused can be determined. Therefore, if this operation is performed at a plurality of locations in the flame, the temperature in the flame can be determined.

次に、記憶回路12は、最適燃焼状態時に測定計算され
た火炎中での温度分布を記1.φしているものである。
Next, the memory circuit 12 records the temperature distribution in the flame measured and calculated during the optimum combustion state. It is something that is φ.

ここで言う最適燃焼状態は、火炎の性質によって異なり
随時判1所されるものであるが、例えば火力発電所等の
ボイラーのメインバーナの場合は低NOx、低未燃分の
燃焼状態である。
The optimal combustion state referred to here varies depending on the nature of the flame and is determined at any time, but for example, in the case of a main burner of a boiler such as a thermal power plant, it is a combustion state with low NOx and low unburned content.

また、比較回路13は前記の如く、演算回路11から出
力される現時点での火炎中の温度分布と、任意に記1.
はされている最適燃焼状態時の火炎中の温度分布との差
異を比+l夕し、この差異を制fii11回路14へ出
力する。
Further, as described above, the comparison circuit 13 receives the current temperature distribution in the flame output from the arithmetic circuit 11 and optionally the temperature distribution in the flame as described in 1.
The difference between the temperature distribution and the temperature distribution in the flame during the optimal combustion state is compared, and this difference is output to the control circuit 14.

さらに制御回路14ば、1ヒ収回路13からの出力を入
力して制御部11W部へ適切な制側j命令を判定し、命
令を制御信号として出力する。
Further, the control circuit 14 inputs the output from the 1-hi recovery circuit 13, determines an appropriate control side j command to the control section 11W, and outputs the command as a control signal.

しかして、出力される制釧信閃°は任意のflill俳
場所、例えばシャフト調整器へと導かれ、最適燃焼状態
への制御が行なわれることになる。以下その一例を第5
図〜第7図によって説明する。
Thus, the output combustion signal is guided to an arbitrary combustion point, for example, a shaft regulator, and control is performed to achieve an optimum combustion state. Below is an example of
This will be explained with reference to FIGS.

第5図において15はバーナであり、燃料噴出用のバー
ナチップ16の出口付近に出口に向って拡径する円型形
の燃焼分散用コーン17を有する燃料噴出ノズル18が
設けである。この燃料噴出税ノズル18の外周同心円上
に点火プラグ19付きの燃焼炉内予熱および燃焼点火用
のガス焚き用ノズル20と、このノズルの外周同心円上
に燃焼用空気を送る空気ノズル21とを有する構成とさ
れている。なお、円型形の燃料分散用コーン17には、
最適コーン位置を設定できるように、円型部頂点からバ
ーナ外部へ棒状の調整用シャフト22Aおよび調整器2
2Bが設けである。
In FIG. 5, reference numeral 15 denotes a burner, and a fuel injection nozzle 18 having a circular combustion dispersion cone 17 whose diameter increases toward the outlet is provided near the outlet of a burner tip 16 for ejecting fuel. A gas firing nozzle 20 with a spark plug 19 for preheating the combustion furnace and combustion ignition is provided on a concentric circle around the outer circumference of this fuel injection tax nozzle 18, and an air nozzle 21 for sending combustion air is provided on a concentric circle around the outer circumference of this nozzle. It is said to be composed of Note that the circular fuel dispersion cone 17 includes:
In order to set the optimum cone position, a rod-shaped adjustment shaft 22A and an adjuster 2 are installed from the apex of the circular part to the outside of the burner.
2B is provided.

第6図は、燃料として微粉炭を用いた場合の微粉炭の分
散の様子を示している。中央配管内を搬送された微粉炭
は、微粉炭分散用コーン17により絞られた微粉炭噴出
ノズル18から噴出し、放射線状に分散する。この時、
中央配管の同心円外周に配置された配管23から燃焼用
空気が供給される。これにより、放射線状に分散した微
粉炭に充分に空気が供給され、高空気片、燃焼域が形成
される。また、コーン前面部刺通ば、局囲よりも負圧に
なっているため、微粉炭の一部が巻きこ丑れる。しかし
、そこには外周から供′;1台される空気の拡散が少な
いため、低空気比焼域が形成される。
FIG. 6 shows the state of dispersion of pulverized coal when pulverized coal is used as a fuel. The pulverized coal conveyed through the central pipe is ejected from a pulverized coal injection nozzle 18 squeezed by a pulverized coal dispersion cone 17 and dispersed radially. At this time,
Combustion air is supplied from a pipe 23 arranged on the concentric outer circumference of the central pipe. As a result, sufficient air is supplied to the radially dispersed pulverized coal, and a high air particle and combustion zone are formed. Furthermore, if the front part of the cone is pierced, the pressure is more negative than the surrounding area, so a part of the pulverized coal is rolled up. However, since there is little diffusion of air supplied from the outer periphery, a low air specific firing area is formed.

即ち、第7図に燃料濃度分布と空気比分布を示している
。高空気比燃焼域ではN Oxが生成し、低空気比燃焼
域ではN I−13、I−I CN、炭化水素等の還元
性物質の生成が行なわ几る。N H3やIIcNばNO
Xを還元しN2とするのでNOxと、これら還元性物質
が混合することになり、低NOXか:ミ焼が可能となる
。また、高空気比燃焼火炎が低空気比燃焼火炎を包み込
んでいるので、低空気比燃焼火炎で生成した未燃分tよ
、高梁気化ン・乃尭火炎で燃焼され、未燃分の低下が図
れる。
That is, FIG. 7 shows the fuel concentration distribution and air ratio distribution. In the high air ratio combustion region, NOx is produced, and in the low air ratio combustion region, reducing substances such as NI-13, I-I CN, and hydrocarbons are produced and reduced. NH3 or IIcN NO
Since X is reduced to N2, NOx and these reducing substances are mixed, making low NOx baking possible. In addition, since the high air ratio combustion flame surrounds the low air ratio combustion flame, the unburned fraction t generated by the low air ratio combustion flame is combusted by the Takahashi vaporization/Notaka flame, and the unburned fraction decreases. I can figure it out.

本実施例で示したバーナ]−5では、第7図に示した燃
料濃度分布を形成させることが最適燃焼状態を形成させ
ることになる。その調・版のためにコーンを前後させる
制箆を行なうものである。つ土り、第7図に示しノを燃
料濃度分布と空気比分布および温度分布を保つことが、
ソ適燃焼状態を保つことになる。従って、それらの分布
のうち、いずれか1つの分布のみを観察しておけば良い
ことになる。つまり、燃料濃度分布や、空気比分布は実
際に火炎中にザンブリングブローブ等を挿入して測定し
なければならなく、火炎を乱してしまう上て時間即応性
的制御は不可能であったものを、本実施例による非接触
の温度計測法を用いた場合は、第7図のような火炎温度
分布を観察しておくことにより、理想的な制御を行なう
ことができる。
In burner ]-5 shown in this embodiment, forming the fuel concentration distribution shown in FIG. 7 forms the optimum combustion state. It is used to adjust the cone by moving it back and forth depending on the tone and version. In other words, maintaining the fuel concentration distribution, air ratio distribution, and temperature distribution shown in Figure 7 is
This will maintain proper combustion conditions. Therefore, it is sufficient to observe only one of these distributions. In other words, fuel concentration distribution and air ratio distribution had to be measured by actually inserting a zumbling probe into the flame, which disturbed the flame and made time-responsive control impossible. When using the non-contact temperature measurement method according to this embodiment, ideal control can be performed by observing the flame temperature distribution as shown in FIG.

また、バーナ先端の火炎中の温度分布を非接触で、短時
間で測定し、温度分布をめ、それによって火炎を制御す
ることによって急激な変化等についても、即応的な高精
度の制御が可能となる。
In addition, by non-contactly measuring the temperature distribution in the flame at the tip of the burner in a short time, determining the temperature distribution, and controlling the flame accordingly, it is possible to quickly respond to and highly accurate control of sudden changes, etc. becomes.

次に、具体的数値による一実1倹例について第8図〜第
11図により説明する。
Next, a practical example using specific numerical values will be explained with reference to FIGS. 8 to 11.

第8図および第9図は本実験で用いたバーナの概略図を
m / m単位によ、る寸法と共に示している。
Figures 8 and 9 show schematic diagrams of the burner used in this experiment, along with dimensions in m/m.

配管Cがら空気とプロパンをバーナに導入し、混合室B
でそれらを充分に混合させ、予混合燃料とする。予混合
燃料は多孔板Aから均一に噴出され予混合火炎を形成す
る。
Air and propane are introduced into the burner through pipe C, and mixed chamber B
Mix them thoroughly to form a premixed fuel. The premixed fuel is uniformly ejected from the perforated plate A to form a premixed flame.

その様子を第10図に示している。図中Fが予混合火炎
である。この火炎の中心部N1の光のみを採光し、火炎
中の火炎温度分布を測定した結果を第11図に示す。な
訃、第10図におけるバーナ先端からの距離lは、第1
0図のバーナ先端からの距離と一致する。しかして、火
炎温度分布を測定した時の排ガス分析結果よび排ガス分
イブY値から算出した空気比を下記の表に示す。
The situation is shown in FIG. F in the figure is a premixed flame. FIG. 11 shows the results of measuring the flame temperature distribution in the flame by collecting only the light from the center N1 of the flame. The distance l from the burner tip in Fig. 10 is the first
This corresponds to the distance from the burner tip in Figure 0. Therefore, the air ratio calculated from the exhaust gas analysis results when the flame temperature distribution was measured and the exhaust gas Eve Y value is shown in the table below.

排ガス分析値と空気比(λ) 上記表(第11図中■の排ガス分析結果)から不完全燃
焼の指標である一酸化炭素(Co)濃度が1%程度であ
り、酸素(0□)濃度も低く完全燃″に1−しているこ
とが分かる。また、火炎温度も最大1750Cを示し、
プロパンの断熱火炎温度の計算値2000Cに近く燃焼
効率が良いことが分る。
Exhaust gas analysis value and air ratio (λ) From the table above (exhaust gas analysis results in ■ in Figure 11), the carbon monoxide (Co) concentration, which is an indicator of incomplete combustion, is approximately 1%, and the oxygen (0□) concentration is approximately 1%. It can be seen that the flame temperature is low and close to complete combustion.Furthermore, the flame temperature also shows a maximum of 1750C,
It can be seen that the combustion efficiency is close to the calculated value of propane's adiabatic flame temperature of 2000C.

この■に示すような火炎温度分布が、排ガス分析値から
も、火炎温度からも、本実験で用いているバーナては好
ましい分布である。な訃、この火炎の空気比も0.97
と最も燃焼性の良い1.00に非常に近い値を示してい
ることからも分かる。従って、第11図中■を、本実験
で用いているバーナの最適火炎温度分布としてメモリー
する。
The flame temperature distribution shown in (2) is a preferable distribution for the burner used in this experiment, both from the exhaust gas analysis value and from the flame temperature. Unfortunately, the air ratio of this flame is also 0.97.
This can be seen from the fact that the value is very close to 1.00, which indicates the best flammability. Therefore, the symbol (■) in FIG. 11 is memorized as the optimum flame temperature distribution of the burner used in this experiment.

次に燃焼状態の悪い場合の例として、過当にバーナに導
く空気量を変化させ、前述と同様に火炎中の火炎温度分
布を測定したところ、第11図中■で示す分布となり、
■とは大きくかけ離れていた。これにより、燃焼状態が
悪くなっているととが分かる。な訃、この火炎について
、4hガス分析した結果、−酸化炭素は5%発生して卦
す、かつ酸素も残っているという非常に燃焼性が悪いこ
とがこの結果からも分かる。従って、■で示す火炎温度
分布を■の火炎温度分布に近づけるように火炎を制御す
れば良く、この実験では、バーナへ導入する空気量を変
化させることで制@1できる。即ち、空気量を変化させ
るパルプの開閉を多少変化させ、火炎温度分布を測定し
て■に近づけるようにパルプの開閉部へ出力することに
より制御する。
Next, as an example of a case where the combustion condition is poor, the amount of air introduced to the burner is changed excessively, and the flame temperature distribution in the flame is measured in the same manner as described above.
It was a far cry from ■. This indicates that the combustion condition is deteriorating. However, as a result of a 4-hour gas analysis of this flame, it can be seen from the results that 5% -carbon oxide was generated, and some oxygen remained, indicating extremely poor combustibility. Therefore, it is sufficient to control the flame so that the flame temperature distribution shown by ■ approaches the flame temperature distribution shown by ■, and in this experiment, control @1 can be achieved by changing the amount of air introduced into the burner. That is, control is performed by slightly changing the opening/closing of the pulp to change the amount of air, measuring the flame temperature distribution, and outputting the flame temperature distribution to the pulp opening/closing portion so as to approach the temperature distribution.

なお、もう一つの例として、火炎温度分布が第11図の
■で示す結果となった場合がある。この結果も■から大
きくかけ離れており・最適燃焼状態からかけ離れた燃焼
効率の低(ハ燃焼であることが分かる。従って、■の場
合と同様に、バーナへ導入される空気量を調整するパル
プの開度を操作し、火炎温度分布を■となるよう制Ql
を行なう。
In addition, as another example, there is a case where the flame temperature distribution results as shown by ■ in FIG. 11. This result is also far from ■, and shows that the combustion efficiency is low (c combustion), which is far from the optimal combustion state.Therefore, as in the case of ■, the amount of air introduced into the burner is controlled by the pulp. Manipulate the opening degree and control the flame temperature distribution to become Ql.
Do the following.

なお、■のような火炎温度分布を示している火炎の排ガ
スの分析結果は前記の表に示すと卦りである。排ガス中
には、酸素が4 %程度も残存しておシ、酸素が過剰に
バーナ中へ勇;人されていることが分かる。従って、結
果的には空気を絞る方向へパルプを調整することになる
Incidentally, the analysis results of the exhaust gas of the flame exhibiting the flame temperature distribution as shown in (■) are shown in the table above. Approximately 4% oxygen remains in the exhaust gas, indicating that an excessive amount of oxygen is being absorbed into the burner. Therefore, as a result, the pulp is adjusted in the direction of squeezing the air.

以上の実施例から、火炎の温度分布は火炎の発光の分析
から非接触で計測することができ、最適燃焼時の分布を
記憶させておき、他の燃焼効率の低い場合の火炎温度分
布と記憶内容とを比較することによって、火炎を制御で
きることが確認できた。
From the above examples, the flame temperature distribution can be measured non-contact by analyzing the flame emission, and the distribution during optimal combustion can be stored, and the flame temperature distribution when other combustion efficiency is low is stored. By comparing the contents, it was confirmed that the flame could be controlled.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、バーナ出口付近の火炎
温度分布を非接触で測定することができ、その測定した
温度分布によって火炎自体を精度良く制御できる。した
がって最適燃焼状態を長時間保持できると共に高効率燃
焼を実現できる等の優れた効果が奏される。
As described above, according to the present invention, the flame temperature distribution near the burner outlet can be measured without contact, and the flame itself can be controlled with high accuracy based on the measured temperature distribution. Therefore, excellent effects such as being able to maintain an optimal combustion state for a long time and realizing highly efficient combustion are achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示すもので、第1図は火炎計測
部を示す断面図、第2図は分光カメラを示す断面図、第
3図は信号処理系を示すダイヤグラム、第4図は燃焼火
炎中の・OHの振動回転スペクトルを示すグラフ、第5
図はノく−ナの4’+J成を示す断面図、第6図は微粉
炭の分散状況を示す模式図、第7図はバーナ出口刺通の
燃料濃度分布、空気比分布、温度分布を示す特性図、第
8図は実験用バーナを示す断面図、第9図1l−1:第
8図の平面図、第10図は同燃焼状態を示す模式図、第
11図は同実験結果を示す71¥性図である。 1・・・燃焼火炉、2・・・バーナ、3A、3B・・・
ピユーボート、4・・・分光カメラ、5・・・13号制
御器、6・・・集光用レンズ、7・・・結像レンズ、8
・・・ザイドレール、9・・・レンズ駆動装置、IO・
・・光検知器、11・・・演算回路、12・・・記憶回
路、13・・・比較回路、14・・・jl;制御回路。 代理人 弁理士 鵜沼辰之 第 / 図 第2 図 r −−−−−−−−’−−−−−−11 1 ψ jl) 3 1E21 第 4 図 藷、・月り矢共中の、OHの振セθ回干ム又ペアトルy
5E2h 第6 図 第 713 (−高ジ 第θ 図 第9図 第10図 め 112 浸度 C’C’)
The figures show one embodiment of the present invention, in which Fig. 1 is a cross-sectional view showing the flame measuring section, Fig. 2 is a cross-sectional view showing the spectroscopic camera, Fig. 3 is a diagram showing the signal processing system, and Fig. 4 is a cross-sectional view showing the flame measuring section. is a graph showing the vibrational rotation spectrum of ・OH in a combustion flame, the fifth
The figure is a cross-sectional view showing the 4'+J configuration of the nookuna, Figure 6 is a schematic diagram showing the dispersion status of pulverized coal, and Figure 7 is a diagram showing the fuel concentration distribution, air ratio distribution, and temperature distribution at the burner outlet piercing. Fig. 8 is a cross-sectional view showing the experimental burner, Fig. 9 is a plan view of Fig. 8, Fig. 10 is a schematic diagram showing the same combustion state, and Fig. 11 is the experimental result. It is a 71 yen sex diagram shown. 1... Combustion furnace, 2... Burner, 3A, 3B...
Pyu boat, 4... Spectroscopic camera, 5... No. 13 controller, 6... Condensing lens, 7... Imaging lens, 8
...Zydrail, 9...Lens drive device, IO・
...Photodetector, 11...Arithmetic circuit, 12...Storage circuit, 13...Comparison circuit, 14...jl; Control circuit. Agent Patent attorney Tatsuyuki Unuma / Figure 2 Figure r −−−−−−−−'−−−−−−−11 1 ψ jl) 3 1E21 4th figure Shake se θ times dry Mu mata pair y
5E2h Figure 6 Figure 713 (-High angle θ Figure 9 Figure 10 112 Immersion degree C'C')

Claims (1)

【特許請求の範囲】 1、燃焼火炎の制御方法において、火炎中の温度分布を
光学的に非接触で測定し、測定される該温度分布に基づ
いて燃焼火炎を制御することを特徴とする燃焼火炎の制
御方法。 2゜火炎を光学的測定する手段は、火炎中の・OHの発
光スペクトルを分光分析する手段であることを特徴とす
る特許請求の範囲第1項記載の燃焼火炎の制御方法。 3、燃焼火炎中の断ハくを見出する光学的測定器と、こ
の測定器からの発光スペクトルを分光分析した結果を入
力し、温度分布を計算する演算回路と、最適燃焼状態時
の火炎中の温度分布を記憶する記憶回路と、該演算回路
からの出力および該記憶回路からの出力を比較する比較
回路と、該比較回路からの出力によって制御信号を出力
する制御回路とを具備してなることを特徴とする燃焼火
炎の制御装置。
[Claims] 1. A combustion flame control method, characterized in that the temperature distribution in the flame is optically measured in a non-contact manner, and the combustion flame is controlled based on the measured temperature distribution. How to control flames. 2. The combustion flame control method according to claim 1, wherein the means for optically measuring the 2° flame is means for spectroscopically analyzing the emission spectrum of .OH in the flame. 3. An optical measuring device that finds the break in the combustion flame, an arithmetic circuit that inputs the results of spectroscopic analysis of the emission spectrum from this measuring device and calculates the temperature distribution, and a flame detector that detects the flame in the optimal combustion state. A storage circuit that stores the temperature distribution inside, a comparison circuit that compares an output from the arithmetic circuit and an output from the storage circuit, and a control circuit that outputs a control signal based on the output from the comparison circuit. A combustion flame control device characterized by:
JP58146124A 1983-08-10 1983-08-10 Control method for combustion flame and device thereof Pending JPS6036825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146124A JPS6036825A (en) 1983-08-10 1983-08-10 Control method for combustion flame and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146124A JPS6036825A (en) 1983-08-10 1983-08-10 Control method for combustion flame and device thereof

Publications (1)

Publication Number Publication Date
JPS6036825A true JPS6036825A (en) 1985-02-26

Family

ID=15400686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146124A Pending JPS6036825A (en) 1983-08-10 1983-08-10 Control method for combustion flame and device thereof

Country Status (1)

Country Link
JP (1) JPS6036825A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159515A (en) * 1984-01-27 1985-08-21 Hitachi Ltd Furnace system
JPS6284222A (en) * 1985-10-09 1987-04-17 Hitachi Ltd Combustion state supervising method
WO1998007013A1 (en) * 1996-08-09 1998-02-19 Abb Research Ltd. Temperature measurement process
EP1026488A1 (en) * 1999-02-08 2000-08-09 General Electric Company Solid state optical spectrometer for combustion flame temperature measurment
EP1154248A2 (en) * 2000-05-01 2001-11-14 General Electric Company Optical spectrometer and method for combustion flame temperature determination
US6354733B2 (en) 1999-01-15 2002-03-12 Ametex, Inc. System and method for determining combustion temperature using infrared emissions
US6370486B1 (en) 1999-01-15 2002-04-09 En'urga Inc. System and method for determining combustion temperature using infrared emissions
US6393375B1 (en) 1999-01-15 2002-05-21 En'urga Inc. System and method for determining combustion temperature using infrared emissions
US6422745B1 (en) 1999-01-15 2002-07-23 Ametek, Inc. System and method for determining combustion temperature using infrared emissions
JP2002536632A (en) * 1999-02-02 2002-10-29 エイビービー リサーチ リミテッド Silicon carbide photodiode based flame scanner
US6646265B2 (en) 1999-02-08 2003-11-11 General Electric Company Optical spectrometer and method for combustion flame temperature determination
US8070482B2 (en) 2007-06-14 2011-12-06 Universidad de Concepción Combustion control system of detection and analysis of gas or fuel oil flames using optical devices
JP2016109421A (en) * 2014-12-03 2016-06-20 Jfeスチール株式会社 Combustion management system of heat treatment facility
JP6948678B1 (en) * 2020-11-16 2021-10-13 東京瓦斯株式会社 Air ratio adjustment method, air ratio adjustment system and program
JP6948679B1 (en) * 2020-11-16 2021-10-13 東京瓦斯株式会社 Air ratio estimation system, air ratio estimation method and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214235A (en) * 1975-07-18 1977-02-03 Osaka Gas Co Ltd Burner flame length control system
JPS53107890A (en) * 1977-03-03 1978-09-20 Mitsubishi Heavy Ind Ltd Air ratio detecting method in combustion furnace
JPS5529750A (en) * 1978-08-22 1980-03-03 Osaka Gas Co Ltd Method and apparatus for continuous measurement of maximum burning rate of gas
JPS5577632A (en) * 1978-12-05 1980-06-11 Mitsubishi Electric Corp Device of monitoring combustion condition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214235A (en) * 1975-07-18 1977-02-03 Osaka Gas Co Ltd Burner flame length control system
JPS53107890A (en) * 1977-03-03 1978-09-20 Mitsubishi Heavy Ind Ltd Air ratio detecting method in combustion furnace
JPS5529750A (en) * 1978-08-22 1980-03-03 Osaka Gas Co Ltd Method and apparatus for continuous measurement of maximum burning rate of gas
JPS5577632A (en) * 1978-12-05 1980-06-11 Mitsubishi Electric Corp Device of monitoring combustion condition

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159515A (en) * 1984-01-27 1985-08-21 Hitachi Ltd Furnace system
JPH0239688B2 (en) * 1984-01-27 1990-09-06 Hitachi Seisakusho Kk
JPS6284222A (en) * 1985-10-09 1987-04-17 Hitachi Ltd Combustion state supervising method
JPH0535325B2 (en) * 1985-10-09 1993-05-26 Hitachi Ltd
GB2330906B (en) * 1996-08-09 2000-07-26 Abb Research Ltd Temperature measurement
GB2330906A (en) * 1996-08-09 1999-05-05 Abb Research Ltd Temperature measurement process
US6318891B1 (en) 1996-08-09 2001-11-20 Abb Research Ltd. Method of temperature measurement by correlation of chemiluminescent spectrum emitted by a flame with stored theoretical emission spectra for OH and/or CH radicals
WO1998007013A1 (en) * 1996-08-09 1998-02-19 Abb Research Ltd. Temperature measurement process
US6354733B2 (en) 1999-01-15 2002-03-12 Ametex, Inc. System and method for determining combustion temperature using infrared emissions
US6422745B1 (en) 1999-01-15 2002-07-23 Ametek, Inc. System and method for determining combustion temperature using infrared emissions
US6393375B1 (en) 1999-01-15 2002-05-21 En'urga Inc. System and method for determining combustion temperature using infrared emissions
US6370486B1 (en) 1999-01-15 2002-04-09 En'urga Inc. System and method for determining combustion temperature using infrared emissions
JP2002536632A (en) * 1999-02-02 2002-10-29 エイビービー リサーチ リミテッド Silicon carbide photodiode based flame scanner
US6350988B1 (en) 1999-02-08 2002-02-26 General Electric Company Optical spectrometer and method for combustion flame temperature determination
US6818897B2 (en) 1999-02-08 2004-11-16 General Electric Company Photodiode device and method for fabrication
US6646265B2 (en) 1999-02-08 2003-11-11 General Electric Company Optical spectrometer and method for combustion flame temperature determination
US6239434B1 (en) 1999-02-08 2001-05-29 General Electric Company Solid state optical spectrometer for combustion flame temperature measurement
EP1026488A1 (en) * 1999-02-08 2000-08-09 General Electric Company Solid state optical spectrometer for combustion flame temperature measurment
EP1154248A2 (en) * 2000-05-01 2001-11-14 General Electric Company Optical spectrometer and method for combustion flame temperature determination
EP1154248A3 (en) * 2000-05-01 2004-01-28 General Electric Company Optical spectrometer and method for combustion flame temperature determination
JP2002039864A (en) * 2000-05-01 2002-02-06 General Electric Co <Ge> Method of measuring temperature of combustion flame, and spectrometer
US8070482B2 (en) 2007-06-14 2011-12-06 Universidad de Concepción Combustion control system of detection and analysis of gas or fuel oil flames using optical devices
JP2016109421A (en) * 2014-12-03 2016-06-20 Jfeスチール株式会社 Combustion management system of heat treatment facility
JP6948678B1 (en) * 2020-11-16 2021-10-13 東京瓦斯株式会社 Air ratio adjustment method, air ratio adjustment system and program
JP6948679B1 (en) * 2020-11-16 2021-10-13 東京瓦斯株式会社 Air ratio estimation system, air ratio estimation method and program
JP2022079168A (en) * 2020-11-16 2022-05-26 東京瓦斯株式会社 Air ratio adjustment method, air ratio adjustment system and program
JP2022079171A (en) * 2020-11-16 2022-05-26 東京瓦斯株式会社 Air ratio estimation system, air ratio estimation method and program

Similar Documents

Publication Publication Date Title
KR910006273B1 (en) Furnace system
US6142665A (en) Temperature sensor arrangement in combination with a gas turbine combustion chamber
González-Cencerrado et al. Coal flame characterization by means of digital image processing in a semi-industrial scale PF swirl burner
JPS6036825A (en) Control method for combustion flame and device thereof
CN107576505B (en) Mid-infrared laser measuring system and method for engine combustion process monitoring
Docquier et al. Combustion control and sensors: a review
Sun et al. Flame stability monitoring and characterization through digital imaging and spectral analysis
EP2752656B1 (en) Fluid composition analysis mechanism, calorific value measurement device, power plant, and liquid composition analysis method
GB1581384A (en) Automatic burner monitor and control for furnaces
TW200301811A (en) Application of symbol sequence analysis and temporal irreversibility to monitoring and controlling boiler flames
González-Cencerrado et al. Characterization of PF flames under different swirl conditions based on visualization systems
Doll et al. Temperature measurements at the outlet of a lean burn single-sector combustor by laser optical methods
Gallo et al. A study of in-cylinder soot oxidation by laser extinction measurements during an EGR-sweep in an optical diesel engine
Schiemann et al. Optical coal particle temperature measurement under oxy‐fuel conditions: measurement methodology and initial results
Mi et al. Near-threshold soot formation in premixed flames at elevated pressure
CN110823833B (en) Mixed sampling type online monitoring device and method for CO concentration in flue gas
nnik Clausen Local measurement of gas temperature with an infrared fibre-optic probe
Hayashida et al. Experimental analysis of soot formation in sooting diffusion flame by using laser-induced emissions
Delhay et al. Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence
CN115639124B (en) Device and method for realizing soot concentration measurement and in-situ calibration by single-wavelength laser
Lee et al. Quantitative measurements of soot particles in a laminar diffusion flame using a LII/LIS technique
Wu et al. A Comprehensive Review of Optical Systems for Soot Volume Fraction Measurements in Co-Flow Laminar Flames: Laser-Induced Incandescence (LII) and Laser Extinction Method (LEM)
JPS6340824A (en) Diagnosis of combustion state
Cruz et al. Soot volume fraction measurements by auto-compensating laser-induced incandescence in diffusion flames generated by ethylene pool fire
Migliorini et al. Investigation on the influence of soot size on prompt LII signals in flames