JPH02157502A - Temperature monitoring device for boiler tube - Google Patents

Temperature monitoring device for boiler tube

Info

Publication number
JPH02157502A
JPH02157502A JP31131388A JP31131388A JPH02157502A JP H02157502 A JPH02157502 A JP H02157502A JP 31131388 A JP31131388 A JP 31131388A JP 31131388 A JP31131388 A JP 31131388A JP H02157502 A JPH02157502 A JP H02157502A
Authority
JP
Japan
Prior art keywords
boiler tube
temperature
temperature monitoring
tube temperature
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31131388A
Other languages
Japanese (ja)
Other versions
JP2657409B2 (en
Inventor
Toru Kimura
亨 木村
Akira Sugano
彰 菅野
Hisanori Miyagaki
宮垣 久典
Makoto Shimoda
誠 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31131388A priority Critical patent/JP2657409B2/en
Publication of JPH02157502A publication Critical patent/JPH02157502A/en
Application granted granted Critical
Publication of JP2657409B2 publication Critical patent/JP2657409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To monitor the temperature of boiler tube correctly by a method wherein a computer converts the values of respective picture elements of picture data into temperatures based on the picture data consisting of the picture elements provided with values corresponding to the magnitudes of radiation energizes radiated from respective positions of boiler tubes, which are picked up by a camera, while the converted values of the temperatures are indicated on an indicating device. CONSTITUTION:When the distribution of radiation energy on the surface of a secondary superheater 2 is transmitted by the bundle 12 of optical fibers to a spectroscope 4 as a picture, the picture is analyzed spectrally into the distributions of radiation energies having wave lengths lambda1, lambda2 by filters 5, 6 and are converted into analog picture data respectively by a photoelectric conversion device 7. These analog picture data are converted by a converter 8 into digital picture data and are stored into a memory 9. The digital pictures, having wave lengths lambda1, lambda2 and stored in the memory 9, are read and sent into a computer 10 to obtain a temperature distribution and compare them with set temperatures previously determined whereby the indication of the change of the amount of a plant is transmitted to an indicating device 11 through signal cables 13. The indicating device 11 indicates the command of changing the amount of based on the indication.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はボイラのボイラチューブの温度を監視する装置
に係り、特に広い範囲のボイラチューブの温度分布を監
視しボイラチューブリーク等の異常の早期発見と運転支
援をする予防保全に好適なボイラチューブ温度監視装置
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device for monitoring the temperature of a boiler tube of a boiler, and in particular monitors the temperature distribution of a boiler tube over a wide range and detects abnormalities such as boiler tube leaks at an early stage. This invention relates to a boiler tube temperature monitoring device suitable for preventive maintenance that provides detection and operation support.

〔従来の技術〕[Conventional technology]

従来の装置はボイラチューブの管寄部等の温度を熱電対
等で測定、または、チューブ内部の蒸気温度で代表して
いる程度であり、燃焼ガスに接触するチューブ表面の温
度或いは温度分布については測定されていなかった。し
かし最近の火力発電所は深夜の起動停止と大幅かつ急速
な負荷変動を伴う中間負荷運用が多くなり、大幅な温度
変化を伴うチューブ等は熱疲労によりチューブリーク等
のトラブルもあり、ボイラチューブの予防保全としての
温度管理が重要となってきている。
Conventional equipment only measures the temperature at the header of the boiler tube with a thermocouple or measures the steam temperature inside the tube, and does not measure the temperature or temperature distribution on the tube surface that comes into contact with the combustion gas. It had not been done. However, recent thermal power plants are often operated under intermediate loads with late-night startup and shutdown and large and rapid load fluctuations, and tubes, etc. that undergo large temperature changes are prone to problems such as tube leaks due to thermal fatigue. Temperature control as a form of preventive maintenance is becoming increasingly important.

なお、この種の装置として関連するものには例えば特願
昭58−221746.特願昭58−32774等に記
載されたものがある。
Incidentally, related devices of this type are disclosed in Japanese Patent Application No. 58-221746, for example. There is one described in Japanese Patent Application No. 58-32774.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術におけるボイラチューブ温度の測定は、ボ
イラチューブの各管寄部の温度を熱電対で測定したり、
チューブ内部の蒸気温度で代表させたりしている程度で
あり、燃焼ガスが接触するボイラチューブの温度の、広
い範囲に亙っての測定は行われていないので、ボイラチ
ューブの温度管理は、運転員の経験と勘によって行われ
ていた。
The boiler tube temperature in the above conventional technology is measured by measuring the temperature of each header part of the boiler tube with a thermocouple,
The temperature of boiler tubes that come in contact with combustion gas has not been measured over a wide range, so temperature control of boiler tubes is limited to This was done based on the experience and intuition of the staff.

しかし、最近の火力発電所では、深夜の起動停止と大福
かつ急速な負荷変動を伴う中間負荷運用が多くなり、大
幅な温度変化を伴うボイラチューブは洩れ等のトラブル
も発生し、ボイラチューブの予防保全のための、チュー
ブの温度分布を計測する等の温度管理が重要となってき
ている。
However, in recent years, thermal power plants have been operating under intermediate loads with late-night start-ups and rapid load fluctuations, and the boiler tubes, which are subject to large temperature changes, are prone to leakage and other problems. Temperature control, such as measuring the temperature distribution of tubes, has become important for maintenance purposes.

本発明の課題は、ボイラチューブの温度を適確に監視し
、予防保全及び寿命診断に役立てるにある。
An object of the present invention is to accurately monitor the temperature of a boiler tube and to use the method for preventive maintenance and life diagnosis.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、ボイラチューブが放射する光を取り込む
撮像手段と、該撮像手段が取り込んだ光を電気信号に変
換する変換手段と、該電気信号を画像データとして記憶
する記憶装置と、該記憶装置に接続され前記画像データ
に基いてボイラチューブ温度を演算する計算機と、該計
算機に接続され前記計算機の演算結果を表示する表示装
置と。
The above-mentioned problems require an imaging means for capturing light emitted by the boiler tube, a conversion means for converting the light captured by the imaging means into an electrical signal, a storage device for storing the electrical signal as image data, and the storage device. a computer that is connected to the computer and calculates the boiler tube temperature based on the image data; and a display device that is connected to the computer and displays the calculation results of the computer.

を含んでなるボイラチューブ温度監視装置により達成さ
れる。
This is accomplished by a boiler tube temperature monitoring device comprising:

撮像手段が、対物レンズ及び受像レンズを備えた光繊維
束である請求項1に記載のボイラチューブ温度監視装置
としてもよい。
The boiler tube temperature monitoring device according to claim 1, wherein the imaging means is an optical fiber bundle including an objective lens and an image receiving lens.

変換手段が、光をアナログ電気信号に変える光電変換装
置と、アナログ電気信号をディジタル電気信号に変える
アナログ/ディジタル変換装置と、を備えている請求項
1または2に記載のボイラチューブ温度監視装置として
もよい。
The boiler tube temperature monitoring device according to claim 1 or 2, wherein the conversion means includes a photoelectric conversion device that converts light into an analog electrical signal, and an analog/digital conversion device that converts the analog electrical signal into a digital electrical signal. Good too.

撮像手段が、冷却管に挿入されており、該冷却管が火炉
壁に装着されている請求項1乃至3に記載のボイラチュ
ーブ温度監視装置としてもよい。
The boiler tube temperature monitoring device according to any one of claims 1 to 3, wherein the imaging means is inserted into a cooling pipe, and the cooling pipe is attached to a furnace wall.

撮像手段と変換手段の間に、撮像された光を分岐させる
分光器と該分光器に接続された波長透過フィルタが設け
られ、該波長透過フィルタに前記変換手段が接続されて
いる請求項1乃至4に記載のボイラチューブ温度監視装
置としてもよい。
A spectroscope for branching the imaged light and a wavelength transmission filter connected to the spectrometer are provided between the imaging means and the conversion means, and the conversion means is connected to the wavelength transmission filter. It is good also as a boiler tube temperature monitoring device as described in 4.

計算機が、温度分布計算手段、設定温度と測定温度との
比較演算手段、該比較演算手段の演算結果に基いて警報
を出力する手段、温度分布彩色データ作成手段、プラン
ト量変更メツセージ出力手段、余寿命診断手段のうちの
いずれかひとつ以上の手段及びその手段によって得られ
たデータを表爪装置に出力する手段を備えている請求項
1乃至5に記載のボイラチューブ温度監視装置としても
よい。
The calculator includes a temperature distribution calculation means, a comparison calculation means for the set temperature and the measured temperature, a means for outputting an alarm based on the calculation result of the comparison calculation means, a temperature distribution coloring data creation means, a plant quantity change message output means, and a The boiler tube temperature monitoring device according to any one of claims 1 to 5, further comprising at least one of the life diagnosing means and means for outputting the data obtained by the means to the front claw device.

プラント量が、燃料量、空気量、給水量、排ガス再循環
量、バーナ角度、スートブロワのうちのいずれかひとつ
以上である請求項6に記載のボイラチューブ温度監視装
置としてもよい。
The boiler tube temperature monitoring device according to claim 6, wherein the plant amount is one or more of the following: fuel amount, air amount, water supply amount, exhaust gas recirculation amount, burner angle, and soot blower.

余寿命診断手段が、測定されたボイラチューブ温度とボ
イラ運転時間とに基いて、余寿命診断のための余寿命指
標を演算する請求項6に記載のボイラチューブ温度監視
装置としてもよい。
The boiler tube temperature monitoring device according to claim 6, wherein the remaining life diagnosis means calculates a remaining life index for remaining life diagnosis based on the measured boiler tube temperature and boiler operating time.

〔作用〕[Effect]

ボイラチューブは、その温度に応じた輻射エネルギを表
面から放射している。この輻射エネルギが光の形で撮像
手段に画像として取り込まれ、この画像の各画素の輻射
エネルギの大きさが、変換手段で電気信号に変換される
。変換された電気信号は、画像データとして記憶装置に
記憶される。
The boiler tube emits radiant energy from its surface according to its temperature. This radiant energy is captured in the form of light as an image by the imaging means, and the magnitude of the radiant energy of each pixel of this image is converted into an electrical signal by the converting means. The converted electrical signal is stored in the storage device as image data.

すなわち、記憶装置には、撮像されたボイラチューブの
各位置が放射している輻射エネルギの太きさに対応する
値を備えた画素からなる画像データが記憶される。
That is, the storage device stores image data consisting of pixels having values corresponding to the thickness of radiant energy emitted from each position of the imaged boiler tube.

この輻射エネルギの大きさを示す画像データに基いて、
計算機が画像データの各画素の値を温度に変換し、表示
装置に信号出力する。出力された信号は表示装置に表示
され、運転支援と余寿命診断に供される。
Based on image data showing the magnitude of this radiant energy,
A computer converts the value of each pixel of the image data into a temperature, and outputs the signal to a display device. The output signal is displayed on a display device and is used for driving support and remaining life diagnosis.

〔実施例〕〔Example〕

以下1本発明の一実施例である2次過熱器の温度監視装
置を第1図により説明する。火炉1の上部に2次過熱器
2が装着され、火炉壁1の該2次過熱器2とほぼ同じ高
さしこ冷却管3が装着されている。冷却管3には、撮像
手段である対物レンズ系および受像レンズ系を備えた光
繊維束12が、対物レンズを前記2次過熱器2に対向さ
せて挿入され、該光繊維束12の他端は火炉外に配置さ
れた分光器4の入力端に接続されている。該分光器4の
2個に分岐した出力端の一方には波長λ、透過フィルタ
5が接続され、他方の出力端には波長λ2透過フィルタ
6が接続されている。波長λ1透過フィルタ5および波
長λ2透過フィルタ6の出力側は、それぞれ光電変換装
N7に接続され、光電変換装置7の出力側は信号ケーブ
ル13を介して、アナログ/ディジタル変換装置8の入
力側にそれぞれ接続されている。光電変換装置とアナロ
グ/ディジタル変換装置とが変換手段をなしている。光
電変換装置7は、モノクロITVカメラのγ補正を解除
したものである。アナログ/ディジタル変換装置8の出
力側には、ディジタル画像記憶装置9.計算機109表
示装置11が、この順で直列に信号ケーブル13で接続
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A temperature monitoring device for a secondary superheater, which is an embodiment of the present invention, will be explained below with reference to FIG. A secondary superheater 2 is attached to the upper part of the furnace 1, and a cooling pipe 3 is attached to the furnace wall 1 at approximately the same height as the secondary superheater 2. An optical fiber bundle 12 equipped with an objective lens system and an image receiving lens system serving as imaging means is inserted into the cooling pipe 3 with the objective lens facing the secondary superheater 2, and the other end of the optical fiber bundle 12 is inserted into the cooling pipe 3. is connected to the input end of a spectrometer 4 located outside the furnace. A wavelength λ2 transmission filter 5 is connected to one of the two branched output ends of the spectrometer 4, and a wavelength λ2 transmission filter 6 is connected to the other output end. The output sides of the wavelength λ1 transmission filter 5 and the wavelength λ2 transmission filter 6 are each connected to a photoelectric conversion device N7, and the output side of the photoelectric conversion device 7 is connected to the input side of the analog/digital conversion device 8 via a signal cable 13. each connected. A photoelectric conversion device and an analog/digital conversion device constitute a conversion means. The photoelectric conversion device 7 is a monochrome ITV camera with γ correction removed. On the output side of the analog/digital conversion device 8 there is a digital image storage device 9. A computer 109 and a display device 11 are connected in series through a signal cable 13 in this order.

上記構成の温度監視装置において、2次過熱器2の表面
の輻射エネルギ分布が、前記光繊維束12により、画像
として分光器4へ伝送される。
In the temperature monitoring device configured as described above, the radiant energy distribution on the surface of the secondary superheater 2 is transmitted as an image to the spectrometer 4 by the optical fiber bundle 12.

分光器4に伝送された輻射エネルギ分布の画像は、分光
器4に接続された波長λ□透過フィルタ5および波長λ
2透過フィルタ6により、波長λ1と波長λ2の輻射エ
ネルギ分布に分光され、それぞれ光電変換装置7でアナ
ログ電気信号に変換されてアナログ画像データとなる。
The image of the radiant energy distribution transmitted to the spectrometer 4 is transmitted to the wavelength λ□ transmission filter 5 connected to the spectrometer 4 and the wavelength λ
The two-transmission filter 6 separates the radiant energy into wavelengths λ1 and λ2, which are each converted into analog electrical signals by the photoelectric conversion device 7 to become analog image data.

それぞれの波長のアナログ画像データは、アナログ/デ
ィジタル変換装fi8でディジタル電気信号に変換され
て、ディジタル画像データになり、ディジタル画像記憶
装置9に記憶される。ディジタル画像記憶装置9に記憶
されている波長λ1.λ2のディジタル画像は計算機1
0に読み込まれ、2色高温計法の原理により、温度分布
が求められる。求められた温度分布は、あらかじめ定め
られている設定温度と比較され、その差の大小に基いて
プラン1〜量変更の指示が、計算機10から信号の出力
手段である信号ケーブル13を介して、表示装置11に
伝送される。表示装置11は伝送された指示に基いてプ
ラント量変更指示の表示を行う。また、表示装置11は
、計算機10で演算された2次過熱器2の温度分布を任
意の設定温度範囲毎に表示することもできる。
The analog image data of each wavelength is converted into a digital electrical signal by the analog/digital converter fi8, becomes digital image data, and is stored in the digital image storage device 9. Wavelengths λ1 . The digital image of λ2 is calculated by computer 1.
0, and the temperature distribution is determined by the principle of the two-color pyrometer method. The obtained temperature distribution is compared with a predetermined set temperature, and based on the magnitude of the difference, an instruction to change the plan 1 to quantity is issued from the computer 10 via the signal cable 13, which is a signal output means. It is transmitted to the display device 11. The display device 11 displays a plant amount change instruction based on the transmitted instruction. Further, the display device 11 can also display the temperature distribution of the secondary superheater 2 calculated by the calculator 10 for each arbitrary set temperature range.

以下、計算機10が備えている処理手段の動作の詳細を
第2図を用いて説明する。
The details of the operation of the processing means included in the computer 10 will be explained below with reference to FIG.

(a)温度分布計算手段10a、各波長λ1.λ2の輻
射エネルギと温度との関係は、W i e nの式によ
り、(1)、(2)式で示される。
(a) Temperature distribution calculation means 10a, each wavelength λ1. The relationship between the radiant energy of λ2 and the temperature is expressed by equations (1) and (2) based on the W i e n equation.

但し、Rλ□(i−j);波長λ1の(i−j)座標の
輻射エネルギ Rλ2(i−j);波長λ2の(i−j)座標の輻射エ
ネルギ El;波長λ、の実効放射率 C2;波長λ2の実効放射率 T (i−j) ; (i−j)座標の絶対温度KC0
;第1放射定数(=3.7403X10’erg−a&
/5)C2;第2放射定数(”1.4387cn−K)
光電変換装置7は、輻射エネルギをリニアにアナログ電
気信号に変換するが、輻射エネルギの絶対量を測定して
いるのではなく、相対強度を測定しているため、温度は
、下記(3)式に示すように、波長λ2.λ、の輻射エ
ネルギの比を用いて算出される。
However, Rλ□(i-j); radiant energy at (i-j) coordinates of wavelength λ1 Rλ2 (i-j); radiant energy El at (i-j) coordinates of wavelength λ2; effective emissivity at wavelength λ. C2; Effective emissivity T (i-j) at wavelength λ2; Absolute temperature KC0 at (i-j) coordinates
;first radiation constant (=3.7403X10'erg-a&
/5) C2; second radiation constant ("1.4387cn-K)
The photoelectric conversion device 7 linearly converts radiant energy into an analog electrical signal, but it does not measure the absolute amount of radiant energy but the relative intensity, so the temperature can be calculated using the following equation (3). As shown in , the wavelength λ2. It is calculated using the ratio of radiant energy of λ.

尚、波長λ0.λ2の実効放射率とは、物の表面から放
射される輻射エネルギの中のいく分かは物と、光繊維束
12の対物レンズの間にあるガス等に吸収されるので、
放射されたエネルギの内の対物レンズに到達するエネル
ギの割合をいう。
In addition, the wavelength λ0. The effective emissivity of λ2 means that some of the radiant energy emitted from the surface of an object is absorbed by the gas etc. between the object and the objective lens of the optical fiber bundle 12.
This refers to the proportion of energy that reaches the objective lens out of the radiated energy.

前記(3)式を用いることにより、ボイラの起動停止、
負荷変化等で火炉1内の酸素濃度等が変化し、波長の実
効放射率が変化しても、波長λ1゜λ2の実効放射率の
差の変動は小さいと考えられるので、誤差は最少に抑え
られる。また、多少誤差は含まれるが、第3図に示すよ
うに、波長λ、透過フィルタ5のみを対物レンズ14に
接続し、該波長λ1透過フィルタ5に接続された光電変
換装置7により、波長λ、の輻射エネルギの相対強度を
計潤して、下記(4)式により輻射エネルギの絶対量に
補正したのち、前記(1)式により温度を求めてもよい
By using the above formula (3), starting and stopping the boiler,
Even if the oxygen concentration in the furnace 1 changes due to load changes, etc., and the effective emissivity of the wavelength changes, the difference in the effective emissivity of the wavelengths λ1 and λ2 is considered to have a small fluctuation, so the error can be kept to a minimum. It will be done. Furthermore, although some errors are included, as shown in FIG. After calculating the relative intensity of the radiant energy of , correcting it to the absolute amount of radiant energy using the following equation (4), the temperature may be determined using the above equation (1).

γ R′λ> (i−j) = a  (−Rλ1(j−j
))・・・(4)R′λ、(1・j);補正後輻射エネ
ルギ絶対量Rλ、(i−j);補正前輻射エネルギ相対
強度a、γ;補正係数 (b)温度分布彩色作成手段10b。任意の温度範囲毎
に色が設定され、ボイラチューブの温度分布を、表示装
置11で疑似カラー表示するためのデータが作成される
。例えばT工〜T2の温度範囲を青、T、〜T4の温度
範囲を白、に彩色表示する場合は、温度分布データの各
座標点の温度を上記彩色温度範囲と対応させ対応する色
に従って、表1に示すようにR,G、B各メモリにデー
タを設定する。この各座標点のR,G、B情報が表示装
置に転送され、彩色が行われる。
γ R'λ> (i-j) = a (-Rλ1(j-j
))...(4) R'λ, (1・j); Absolute amount of radiant energy after correction Rλ, (i-j); Relative intensity of radiant energy before correction a, γ; Correction coefficient (b) Temperature distribution coloring Creation means 10b. A color is set for each arbitrary temperature range, and data for displaying the temperature distribution of the boiler tube in pseudo color on the display device 11 is created. For example, when displaying the temperature range from T to T2 in blue, and the temperature range from T to T4 in white, the temperature at each coordinate point of the temperature distribution data is made to correspond to the above colored temperature range, and according to the corresponding color, Data is set in each of the R, G, and B memories as shown in Table 1. The R, G, and B information of each coordinate point is transferred to a display device and colored.

(C)設定温度との比較手段10c。(C) Comparison means 10c with the set temperature.

設定温度とボイラチューブ各点の温度を比較する。具体
的には下記(5)式に示すように設定温度T0と測定さ
れた温度Tの偏差が求められる。
Compare the set temperature and the temperature at each point on the boiler tube. Specifically, the deviation between the set temperature T0 and the measured temperature T is determined as shown in equation (5) below.

またボイラチューブの温度分布よりその最高温度。Also, determine the maximum temperature from the temperature distribution of the boiler tube.

最低温度、平均温度が求められる。The minimum temperature and average temperature are determined.

ΔTt(i−j)=Tot  Tt(i’j)    
 −(5)但し、ΔTt(i”j);時刻tの(i−j
)座標の温度偏差 Tot:時刻tの設定温度 Tt(i−j);時刻tの(1・j)座標の温度ボイラ
の起動停止、負荷変化時等には設定温度は例えば、起動
停止からの経過時間により変化するため該経過時間に対
する設定温度が、負荷変化率。
ΔTt(i-j)=TotTt(i'j)
−(5) However, ΔTt(i”j); (i−j
) Coordinate temperature deviation Tot: Set temperature Tt (i-j) at time t; Temperature at (1 j) coordinate at time t When the boiler starts or stops, or when the load changes, the set temperature is Since it changes depending on the elapsed time, the set temperature for the elapsed time is the load change rate.

過去の運転実績等から設定される。It is set based on past driving results, etc.

(5)式を用いて設定温度と測定温度とが比較された結
果に基き、設定温度以上の温度領域であるボイラチュー
ブの面積が下記(6)式を用いて計算される。
Based on the result of comparing the set temperature and the measured temperature using equation (5), the area of the boiler tube in the temperature region above the set temperature is calculated using equation (6) below.

5=Kn             ・・・(6)但し
、S:設定温度以上の温度領域面積(イ)Q;光繊維束
対物レンズ系からボイラチューブまでの距離(m) θ;光繊維束対物レしズ系視野角度 P;計測視野全画素数 (d)プラント量変更メツセージ出力手段10dおよび
警報出力手段10f。
5=Kn...(6) However, S: Area of temperature region above set temperature (a) Q: Distance from optical fiber bundle objective lens system to boiler tube (m) θ: Optical fiber bundle objective lens system Viewing angle P; Total number of pixels in the measurement field of view (d) Plant amount change message output means 10d and alarm output means 10f.

上記(C)で設定温度以上の領域があった場合は警報を
出力し、ボイラチューブの最高温度。
If there is an area above the set temperature in (C) above, an alarm will be output and the maximum temperature of the boiler tube will be set.

最低温度、平均温度、設定温度以上の領域面積と112
次過熱器温度高II 、 II燃料量を減らして下さい
II 、 11バ一ナ角度を下げて下さいII 、 1
1排ガス再循環量を減らして下さいu 、 tt 2次
空気量を減らして下さいII 、 11バーナゾーンの
スートブロワを起動して下さい17 、11給水流量を
増やして下さい″等のメツセージを表示装置に出力する
Minimum temperature, average temperature, area area above set temperature and 112
NextSuperheater temperature is high II, II Reduce the fuel amount II, 11 Lower the banner angle II, 1
1. Please reduce the amount of exhaust gas recirculation u, tt Please reduce the amount of secondary air. II. 11. Start the soot blower in the burner zone. 17. 11. Please increase the water supply flow rate.'' etc. are output on the display. do.

この表示により運転員はボイラの運転状態を考慮してプ
ラント量を変更する。警報の場合は、単なる画像表示の
みでなく、音声2点滅信号等も併用してよい。
Based on this display, the operator changes the plant quantity in consideration of the operating state of the boiler. In the case of a warning, not only a simple image display but also an audio 2-blink signal or the like may be used.

(、)ボイラチューブ余寿命診断手段10e。ボイラチ
ューブ各点の温度分布と運転時間の関数をボイラチュー
ブ余寿命指標とし、ボイラチューブを管理する。下記(
7)、(8)式により余寿命用[1,2が演算され、表
示装置11に出力される。
(,) Boiler tube remaining life diagnosis means 10e. The boiler tube is managed using a function of temperature distribution at each point of the boiler tube and operating time as an index of remaining boiler tube life. the below described(
7) and (8), the remaining life [1, 2] is calculated and output to the display device 11.

運転員はその指標を過去の運転実績と対応させ、運転に
反映する。
The operator correlates the index with past driving performance and reflects it in driving.

L、ρ’: f ’Tp(t)dt       ・・
(7)但し、L工ρ;p位置の余寿命指標1゜(受けた
温度量) L2P:P位置の余寿命指標2゜ (受けた温度変化量) to;運転開始時間 tl、;現在運転時間 Tp(t);時間tのP位置のチューブ温度ΔTp(t
);時間tのp位置のチューブ温度変化量 尚、余寿命指標1,2はあらかじめ設定しであるチュー
ブの各位置について算出される。
L, ρ': f'Tp(t)dt...
(7) However, L engineering ρ: Remaining life index at position P 1° (amount of temperature received) L2P: Remaining life index at position P 2° (amount of temperature change received) to: Operation start time tl,; Current operation Time Tp(t); Tube temperature ΔTp(t
); Amount of change in tube temperature at position p at time t Note that the remaining life indices 1 and 2 are calculated for each position of the tube, which is set in advance.

以上処理をくり返してボイラチューブの温度監視が行わ
れる。また表示装置11で温度分布彩色表示を行うのみ
でなく、設定温度に対する最高温度、R低温度、平均温
度等のトレンドグラフを表示すれば、効果的である。
The temperature of the boiler tube is monitored by repeating the above process. Furthermore, it is effective if the display device 11 not only displays the temperature distribution in color, but also displays trend graphs of the maximum temperature, R low temperature, average temperature, etc. with respect to the set temperature.

上記実施例によれば、ボイラチューブの表面温度分布を
監視できるので、ボイラチューブの温度管理が容易とな
り、ボイラの起動停止、負荷変化時のボイラチューブの
温度分布が分るため、運転の信頼性が向上した。また、
温度異常部等も早期に発見できるため、安全性が向上す
ると共に、運転員の負担も軽減される。さらに1本実施
例の装置で得られるデータを対比することにより、余寿
命診断が可能となった。
According to the above embodiment, since the surface temperature distribution of the boiler tube can be monitored, the temperature management of the boiler tube is facilitated, and the temperature distribution of the boiler tube at the time of starting/stopping the boiler and changing the load can be known, thereby improving the reliability of operation. improved. Also,
Temperature abnormalities can be detected early, improving safety and reducing the burden on operators. Furthermore, by comparing the data obtained with the device of this example, it became possible to diagnose the remaining life.

また、上記実施例においては、撮像手段は固定されてい
るが、対物レンズを備えた光繊維束の先端部を回動可能
に設置すれば、−個の撮像手段で、更に広い範囲の温度
監視を行うことも可能である。
In addition, in the above embodiment, the imaging means is fixed, but if the tip of the optical fiber bundle equipped with an objective lens is rotatably installed, temperature monitoring in a wider range can be performed using - number of imaging means. It is also possible to do this.

以上第1図の装置構成で実施例を説明したが、第4図に
示すように分光器4に対物レンズ14を備え光繊維束を
介することなく、ボイラチューブの輻射エネルギを計測
してもよい。また第5図に示すように、光繊維束2分光
器、波長フィルタ。
Although the embodiment has been described above using the device configuration shown in FIG. 1, as shown in FIG. 4, the spectrometer 4 may be equipped with an objective lens 14 to measure the radiant energy of the boiler tube without going through an optical fiber bundle. . Also, as shown in FIG. 5, there are two optical fiber bundle spectrometers and a wavelength filter.

光電変換装置、アナログ/ディジタル変換装置。Photoelectric conversion device, analog/digital conversion device.

およびディジタル画像記憶装置の代りに、市販されてい
る、カメラ部15とプロセッサ部16とを備えた温度分
布測定器(サーモピュア)を用いてもよい。
In place of the digital image storage device, a commercially available temperature distribution measuring device (Thermopure) equipped with a camera section 15 and a processor section 16 may be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ボイラチューブが発する輻射エネルギ
に基いて、該ボイラチューブの表面温度が演算されるの
で、撮像手段の視野範囲内のボイラチューブの表面温度
が同時に監視され、監視点の増加が容易であるとともに
、高温部、低温部の検出が容易になって、ボイラチュー
ブの事故防止の効果がある。
According to the present invention, the surface temperature of the boiler tube is calculated based on the radiant energy emitted by the boiler tube, so the surface temperature of the boiler tube within the field of view of the imaging means is simultaneously monitored, and the number of monitoring points is reduced. In addition to being easy to use, it also makes it easy to detect high-temperature and low-temperature areas, which has the effect of preventing boiler tube accidents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の装置構成の概要を示す斜視
図、第2図は第1図に示す実施例中の計算機の構成概要
を示すブロック図、第3図は撮像手段としてITVカメ
ラを用いた他の実施例を示す斜視図、第4図は第1図に
示す実施例の光繊維束を用いないで装置を構成した例を
示す斜視図で、第5図はさらに他の実施例を示す斜視図
である。 1・・・火炉、2・・・ボイラチューブ(2次過熱器)
、3・・・冷却管、4・・・分光器、5,6・・・波長
透過フィルタ、7・・・変換手段(光電変換装置)、8
・・・変換手段(アナログ/ディジタル変換装り、9・
・・記憶装置(ディジタル画像記憶装置)、10・・・
計算機、11・・・表示装置、12・・・撮像手段(光
繊維束)、13・・・信号ケーブル、14・・・撮像手
段(対物レンズ)。
FIG. 1 is a perspective view showing an overview of the device configuration of an embodiment of the present invention, FIG. 2 is a block diagram showing an overview of the configuration of a computer in the embodiment shown in FIG. 1, and FIG. 3 is an ITV as an imaging means. FIG. 4 is a perspective view showing another embodiment using a camera, FIG. 4 is a perspective view showing an example in which the device is constructed without using the optical fiber bundle of the embodiment shown in FIG. 1, and FIG. It is a perspective view showing an example. 1...Furnace, 2...Boiler tube (secondary superheater)
, 3... Cooling pipe, 4... Spectrometer, 5, 6... Wavelength transmission filter, 7... Conversion means (photoelectric conversion device), 8
...conversion means (analog/digital conversion equipment, 9.
...Storage device (digital image storage device), 10...
Computer, 11... Display device, 12... Imaging means (optical fiber bundle), 13... Signal cable, 14... Imaging means (objective lens).

Claims (1)

【特許請求の範囲】 1、ボイラチューブが放射する光を取り込む撮像手段と
、該撮像手段が取り込んだ光を電気信号に変換する変換
手段と、該電気信号を画像データとして記憶する記憶装
置と、該記憶装置に接続され前記画像データに基いてボ
イラチューブ温度を演算する計算機と、該計算機に接続
され前記計算機の演算結果を表示する表示装置と、を含
んでなるボイラチューブ温度監視装置。 2、撮像手段が、対物レンズ及び受像レンズを備えた光
繊維束であることを特徴とする請求項1に記載のボイラ
チューブ温度監視装置。 3、変換手段が、光をアナログ電気信号に変える光電変
換装置と、アナログ電気信号をディジタル電気信号に変
えるアナログ/ディジタル変換装置と、を備えているこ
とを特徴とする請求項1または2に記載のボイラチュー
ブ温度監視装置。 4、撮像手段が、冷却管に挿入されており、該冷却管が
火炉壁に装着されていることを特徴とする請求項1乃至
3に記載のボイラチューブ温度監視装置。 5、撮像手段と変換手段の間に、撮像された光を分岐さ
せる分光器と該分光器に接続された波長透過フィルタが
設けられ、該波長透過フィルタに前記変換手段が接続さ
れていることを特徴とする請求項1乃至4に記載のボイ
ラチューブ温度監視装置。 6、計算機が、温度分布計算手段、設定温度と測定温度
との比較演算手段、該比較演算手段の演算結果に基いて
警報を出力する手段、温度分布彩色データ作成手段、プ
ラント量変更メッセージ出力手段、余寿命診断手段のう
ちのいずれかひとつ以上の手段及びその手段によって得
られたデータを表示装置に出力する手段を備えているこ
とを特徴とする請求項1乃至5に記載のボイラチューブ
温度監視装置。 7、プラント量が、燃料量、空気量、給水量、排ガス再
循環量、バーナ角度、スートブロワのうちのいずれかひ
とつ以上であることを特徴とする請求項6に記載のボイ
ラチューブ温度監視装置。 8、余寿命診断手段が、測定されたボイラチューブ温度
とボイラ運転時間とに基いて、余寿命診断のための余寿
命指標を演算することを特徴とする請求項6に記載のボ
イラチューブ温度監視装置。
[Scope of Claims] 1. An imaging device that captures the light emitted by the boiler tube, a conversion device that converts the light captured by the imaging device into an electrical signal, and a storage device that stores the electrical signal as image data. A boiler tube temperature monitoring device comprising: a computer connected to the storage device to calculate a boiler tube temperature based on the image data; and a display device connected to the computer to display calculation results of the computer. 2. The boiler tube temperature monitoring device according to claim 1, wherein the imaging means is an optical fiber bundle equipped with an objective lens and an image receiving lens. 3. The conversion means comprises a photoelectric conversion device that converts light into an analog electrical signal, and an analog/digital conversion device that converts the analog electrical signal into a digital electrical signal. boiler tube temperature monitoring device. 4. The boiler tube temperature monitoring device according to any one of claims 1 to 3, wherein the imaging means is inserted into a cooling pipe, and the cooling pipe is attached to a furnace wall. 5. A spectroscope for branching the imaged light and a wavelength transmission filter connected to the spectrometer are provided between the imaging means and the conversion means, and the conversion means is connected to the wavelength transmission filter. A boiler tube temperature monitoring device according to any one of claims 1 to 4. 6. The computer includes a temperature distribution calculation means, a comparison calculation means for the set temperature and the measured temperature, a means for outputting an alarm based on the calculation result of the comparison calculation means, a temperature distribution coloring data creation means, and a plant quantity change message output means Boiler tube temperature monitoring according to any one of claims 1 to 5, further comprising at least one of the remaining life diagnosis means and means for outputting data obtained by the means to a display device. Device. 7. The boiler tube temperature monitoring device according to claim 6, wherein the plant amount is one or more of the following: fuel amount, air amount, water supply amount, exhaust gas recirculation amount, burner angle, and soot blower. 8. Boiler tube temperature monitoring according to claim 6, wherein the remaining life diagnosis means calculates a remaining life index for remaining life diagnosis based on the measured boiler tube temperature and boiler operating time. Device.
JP31131388A 1988-12-09 1988-12-09 Boiler tube temperature monitoring device Expired - Lifetime JP2657409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31131388A JP2657409B2 (en) 1988-12-09 1988-12-09 Boiler tube temperature monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31131388A JP2657409B2 (en) 1988-12-09 1988-12-09 Boiler tube temperature monitoring device

Publications (2)

Publication Number Publication Date
JPH02157502A true JPH02157502A (en) 1990-06-18
JP2657409B2 JP2657409B2 (en) 1997-09-24

Family

ID=18015631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31131388A Expired - Lifetime JP2657409B2 (en) 1988-12-09 1988-12-09 Boiler tube temperature monitoring device

Country Status (1)

Country Link
JP (1) JP2657409B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527636U (en) * 1991-09-20 1993-04-09 日本電気三栄株式会社 Infrared radiation temperature measurement device
EP0694770A1 (en) * 1994-06-29 1996-01-31 BFI ENTSORGUNGSTECHNOLOGIE GmbH A method for monitoring a fluid flow cross section
EP1367373A1 (en) * 2001-03-06 2003-12-03 Kabushiki Kaisha Photron Multi-screen spectroscopic imaging device
JP2005221170A (en) * 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Operating method of supercritical pressure boiler
JP2012036894A (en) * 2010-08-05 2012-02-23 General Electric Co <Ge> Thermal control system for failure detection and mitigation within power generation system
JP2012037227A (en) * 2010-08-05 2012-02-23 General Electric Co <Ge> System and method for measuring temperature in turbine system
JP2012037519A (en) * 2010-08-05 2012-02-23 General Electric Co <Ge> Heat measurement system for detecting malfunction in power generation system
CN102734783A (en) * 2012-06-12 2012-10-17 广东电网公司电力科学研究院 Method for calibrating monitoring data parameters of heat-absorbing surfaces at each level of supercritical boiler of power station
JP2013142393A (en) * 2012-01-10 2013-07-22 General Electric Co <Ge> Combined cycle power plant
JP2015132453A (en) * 2014-01-15 2015-07-23 三菱日立パワーシステムズ株式会社 Boiler water wall tube overheat damage diagnostic apparatus and boiler water wall tube overheat damage diagnostic method
CN104913291A (en) * 2015-06-02 2015-09-16 华北电力科学研究院有限责任公司 Method for detecting wall temperature of steam heating surface of boiler

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527636U (en) * 1991-09-20 1993-04-09 日本電気三栄株式会社 Infrared radiation temperature measurement device
EP0694770A1 (en) * 1994-06-29 1996-01-31 BFI ENTSORGUNGSTECHNOLOGIE GmbH A method for monitoring a fluid flow cross section
EP1367373A1 (en) * 2001-03-06 2003-12-03 Kabushiki Kaisha Photron Multi-screen spectroscopic imaging device
EP1367373A4 (en) * 2001-03-06 2006-11-02 Photron Kk Multi-screen spectroscopic imaging device
JP2005221170A (en) * 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Operating method of supercritical pressure boiler
JP2012037227A (en) * 2010-08-05 2012-02-23 General Electric Co <Ge> System and method for measuring temperature in turbine system
JP2012036894A (en) * 2010-08-05 2012-02-23 General Electric Co <Ge> Thermal control system for failure detection and mitigation within power generation system
JP2012037519A (en) * 2010-08-05 2012-02-23 General Electric Co <Ge> Heat measurement system for detecting malfunction in power generation system
JP2013142393A (en) * 2012-01-10 2013-07-22 General Electric Co <Ge> Combined cycle power plant
CN102734783A (en) * 2012-06-12 2012-10-17 广东电网公司电力科学研究院 Method for calibrating monitoring data parameters of heat-absorbing surfaces at each level of supercritical boiler of power station
CN102734783B (en) * 2012-06-12 2014-09-03 广东电网公司电力科学研究院 Method for calibrating monitoring data parameters of heat-absorbing surfaces at each level of supercritical boiler of power station
JP2015132453A (en) * 2014-01-15 2015-07-23 三菱日立パワーシステムズ株式会社 Boiler water wall tube overheat damage diagnostic apparatus and boiler water wall tube overheat damage diagnostic method
CN104913291A (en) * 2015-06-02 2015-09-16 华北电力科学研究院有限责任公司 Method for detecting wall temperature of steam heating surface of boiler

Also Published As

Publication number Publication date
JP2657409B2 (en) 1997-09-24

Similar Documents

Publication Publication Date Title
CN102706459B (en) Three-dimensional temperature field pick-up unit and method in a kind of burner hearth of single CCD imaging system
JPS5944519A (en) Diagnostics of combustion state
JPH02157502A (en) Temperature monitoring device for boiler tube
US8094301B2 (en) Video and thermal imaging system for monitoring interiors of high temperature reaction vessels
US5109277A (en) System for generating temperature images with corresponding absolute temperature values
JPH0650177B2 (en) Multi-burner combustion condition monitoring method
US20030123518A1 (en) Dual wavelength thermal imaging system for surface temperature monitoring and process control
TW201321728A (en) Non-contact temperature measuring method
CN107906555B (en) Optimized control method of combustion based on multiline absorption spectrum tomography technology
CN107655350A (en) A kind of novel industrial furnace monitoring diagnosis device and method
TWI465702B (en) Non-contact temperature measurung method
CN1069960C (en) Method and apparatus for detecting combustion temperature profile in boiler chamber at power station
JP4873788B2 (en) Detection method of furnace conditions
CN216486062U (en) Device for online intelligent detection and optimal control system of combustion efficiency of heating furnace
JPS60263012A (en) Flame monitoring method
JP2505676B2 (en) Combustor deterioration detection method and apparatus
JP6750672B2 (en) Gas observation method
JP2008101933A (en) Surface temperature measuring method for steel structure
JP2001318002A (en) Temperature distribution measuring instrument for race way in tuyere of blast furnace
JPH04143515A (en) Detection of abnormality in burner
JP2003065067A (en) Device for monitoring deterioration of heat insulation material for duct
JP3349212B2 (en) Temperature measuring method and apparatus using optical fiber
JPH0442746Y2 (en)
JPS6114528A (en) Measuring method of temperature using optical fiber
JPH02236425A (en) Method for processing burning flame image