JP2003065067A - Device for monitoring deterioration of heat insulation material for duct - Google Patents

Device for monitoring deterioration of heat insulation material for duct

Info

Publication number
JP2003065067A
JP2003065067A JP2001254675A JP2001254675A JP2003065067A JP 2003065067 A JP2003065067 A JP 2003065067A JP 2001254675 A JP2001254675 A JP 2001254675A JP 2001254675 A JP2001254675 A JP 2001254675A JP 2003065067 A JP2003065067 A JP 2003065067A
Authority
JP
Japan
Prior art keywords
duct
temperature
temperature distribution
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001254675A
Other languages
Japanese (ja)
Other versions
JP4727087B2 (en
Inventor
Yoshiyuki Doi
与志幸 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001254675A priority Critical patent/JP4727087B2/en
Publication of JP2003065067A publication Critical patent/JP2003065067A/en
Application granted granted Critical
Publication of JP4727087B2 publication Critical patent/JP4727087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device capable of monitoring the deterioration of a heat insulation material for a duct without stopping the operations of peripheral instruments connected to the duct. SOLUTION: This monitoring device is provided with an infrared camera 20 which can detects the infrared ray radiated from the outer surface of the duct 6 in which a high temperature fluid flows, a temperature sensor 22 for measuring the temperature of a representative point on the above duct outer surface, a treatment part 25 for calculating the temperature distribution on the duct outer surface based on the infrared camera 20 and the output of the temperature sensor 22, an evaluation part 29 for evaluating the deterioration degree of the heat insulation material arranged on the inner peripheral face of the duct 6 by comparing the temperature distribution on the duct outer surface calculated by the treatment part with a previously set reference one, and a display part 27 for displaying the evaluation result from the evaluation part 29.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンの排
気ダクト等のような高温の流体が流通するダクトにおい
て保温材の劣化を監視する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for monitoring deterioration of a heat insulating material in a duct in which a high temperature fluid flows, such as an exhaust duct of a gas turbine.

【0002】[0002]

【従来の技術】いわゆる、タービンコンバインドプラン
トは、ガスタービンと、該ガスタービンの排ガスの熱
(550℃〜650℃程度)を利用して蒸気を発生する
排熱回収ボイラと、該蒸気によって駆動される蒸気ター
ビンとを備えている。
2. Description of the Related Art A so-called turbine combined plant is driven by a gas turbine, an exhaust heat recovery boiler that generates steam by utilizing heat (about 550 ° C. to 650 ° C.) of exhaust gas of the gas turbine, and the steam. Equipped with a steam turbine.

【0003】上記ガスタービンの排ガスは、排気ダクト
を介して排熱回収ボイラに導入されるが、その際、排気
ダクトの内周面に配設された保温材によって保温され
る。上記保温材が劣化してその保温性が低下すると、排
ガスの熱の放散量が増加してその熱エネルギーが減少す
るため、蒸気タービンの駆動効率が低下する。したがっ
て、保温材の劣化度を定量的に把握して、適当な時期に
該保温材をリフレッシュする必要がある。
Exhaust gas from the gas turbine is introduced into the exhaust heat recovery boiler through the exhaust duct, and at that time, it is kept warm by the heat insulating material arranged on the inner peripheral surface of the exhaust duct. When the heat insulating material deteriorates and its heat insulating property decreases, the amount of heat dissipated in the exhaust gas increases and the thermal energy decreases, so the driving efficiency of the steam turbine decreases. Therefore, it is necessary to quantitatively grasp the degree of deterioration of the heat insulating material and refresh the heat insulating material at an appropriate time.

【0004】一方、上記保温材が劣化あるいは飛散した
場合、排気ダクトの温度が異常上昇する。そして、この
温度上昇によって排気ダクトの熱的劣化が進行すると、
該排気ダクトが破損して排ガスが外部にリークすること
になり、その場合、プラントの運転継続に支障をきた
す。このような不都合を回避するには、排気ダクトが破
損に至る前に保温機能の不良を察知して、その補修を実
施する必要がある。そこで、従来においては、上記プラ
ントの運転を停止した後、作業員が上記排気ダクト内に
入って異常箇所の有無を点検するようにしている。
On the other hand, when the heat insulating material deteriorates or scatters, the temperature of the exhaust duct rises abnormally. Then, when the thermal deterioration of the exhaust duct progresses due to this temperature rise,
The exhaust duct is damaged and the exhaust gas leaks to the outside, in which case the operation of the plant is disturbed. In order to avoid such an inconvenience, it is necessary to detect a defect in the heat retaining function before the exhaust duct is damaged and repair it. Therefore, conventionally, after stopping the operation of the plant, a worker enters the exhaust duct to inspect whether there is an abnormal portion.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記作業員に
よる点検には、以下のような問題がある。 (1) 点検のためにプラントの運転を停止する必要が
ある。 (2) 保温材は、ガス流による飛散を防止するため
に、その内表面が耐熱鋼板からなる押え板によって覆れ
ているので、該保温材の劣化や飛散を直接視認するため
には、この押え板を除去する必要がある。しかし、上記
押え板は、多数のピン部材で支持されていることから、
その脱着に多大の手間を要する。このため、上記押え板
を取り外さない状態で該押え板の表面の変化(破損、色
調変化等)に基づいて保温材の劣化や飛散を推定してい
るが、このような点検手法では、信頼性の高い点検結果
が得られない。 (3) 排気ダクトの形状が大きいので、その全域を点
検するには、多大の時間を要する。
However, the inspection by the worker has the following problems. (1) It is necessary to stop the plant operation for inspection. (2) Since the heat insulating material has its inner surface covered with a holding plate made of a heat-resistant steel plate in order to prevent the heat insulating material from scattering, in order to directly visually check the deterioration and the scattering of the heat insulating material, The holding plate needs to be removed. However, since the pressing plate is supported by many pin members,
It takes a lot of trouble to attach and detach it. For this reason, deterioration or scattering of the heat insulating material is estimated based on the change (damage, color tone change, etc.) of the surface of the pressing plate without removing the pressing plate. High inspection results cannot be obtained. (3) Since the shape of the exhaust duct is large, it takes a lot of time to inspect the entire area.

【0006】本発明の課題は、上記従来の問題点に鑑
み、ダクトに接続される周辺機器の運転を停止すること
なく、該ダクトの保温材の劣化を監視することができる
タービン排気ダクトの保温材劣化監視装置を提供するこ
とにある。
In view of the above-mentioned conventional problems, an object of the present invention is to keep a turbine exhaust duct warm by monitoring deterioration of a heat insulator of the duct without stopping operation of peripheral equipment connected to the duct. It is to provide a material deterioration monitoring device.

【0007】[0007]

【課題を解決するための手段】本発明に係る保温材劣化
監視装置は、高温流体が流れるダクトの外表面から放射
される赤外線を感知する赤外線カメラと、前記外表面の
代表点の温度を測定する温度センサと、前記赤外線カメ
ラおよび温度センサの出力に基づいて前記外表面の温度
分布を算出する処理部と、予め設定されている前記外表
面の基準温度分布と前記算出された温度分布とを比較し
て、前記ダクトの内周面に配設されている保温材の劣化
度を評価する評価部と、前記評価部の評価結果を表示す
る表示部と、を備えた構成を有する。また、本発明に係
る保温材劣化監視装置は、高温流体が流れるダクトの外
表面から放射される赤外線を感知する赤外線カメラと、
前記外表面の代表点の温度を測定する温度センサと、前
記外表面近傍の風速および/または気温を計測する環境
センサと、前記赤外線カメラ、温度センサおよび環境セ
ンサの各出力に基づいて、前記風速および/または気温
の影響を除去した前記外表面の温度分布を算出する処理
部と、予め設定されている前記外表面の基準温度分布と
前記算出された温度分布とを比較して、前記ダクトの内
周面に配設されている保温材の劣化度を評価する評価部
と、前記評価部の評価結果を表示する表示部と、を備え
た構成を有する。上記各発明において、前記外表面を撮
影する可視カメラを付加し、前記表示部において、前記
可視カメラの画像データと前記処理部で算出された温度
分布とを重ね合わせて表示することも可能である。本発
明は、特にガスタービンの排気ダクトにおける保温材の
劣化の監視に適用して有効である。
A heat insulating material deterioration monitoring apparatus according to the present invention measures an infrared camera for detecting infrared rays emitted from an outer surface of a duct through which a high temperature fluid flows, and a temperature at a representative point of the outer surface. A temperature sensor, a processing unit that calculates the temperature distribution of the outer surface based on the outputs of the infrared camera and the temperature sensor, a preset reference temperature distribution of the outer surface, and the calculated temperature distribution. In comparison, it has a configuration including an evaluation unit that evaluates the degree of deterioration of the heat insulating material disposed on the inner peripheral surface of the duct, and a display unit that displays the evaluation result of the evaluation unit. Further, the heat insulating material deterioration monitoring apparatus according to the present invention, an infrared camera for detecting infrared rays emitted from the outer surface of the duct through which the high temperature fluid flows,
A temperature sensor that measures a temperature at a representative point of the outer surface, an environment sensor that measures a wind speed and / or an air temperature near the outer surface, and the wind speed based on each output of the infrared camera, the temperature sensor, and the environment sensor. And / or a processing unit that calculates the temperature distribution of the outer surface from which the influence of the air temperature is removed, and a preset reference temperature distribution of the outer surface and the calculated temperature distribution are compared, and It has the composition provided with the evaluation part which evaluates the deterioration degree of the heat insulating material arranged on the inner skin, and the display part which displays the evaluation result of the above-mentioned evaluation part. In each of the above inventions, it is also possible to add a visible camera for photographing the outer surface, and display the image data of the visible camera and the temperature distribution calculated by the processing unit in the display unit in an overlapping manner. . The present invention is particularly effective when applied to monitoring deterioration of the heat insulating material in the exhaust duct of the gas turbine.

【0008】[0008]

【発明の実施の形態】図4は、複合サイクル発電プラン
トの構成の一例を概念的に示している。この発電プラン
トにおいて、ガスタービン1は、空気圧縮機2と、この
空気圧縮機2で圧縮された空気を用いて燃料を燃焼させ
る燃焼器3と、この燃焼器3に生じた高温高圧の燃焼ガ
スの膨張作用によって回転駆動されるタービン4とを備
え、このタービン4の回転動力を発電機5に伝達する。
BEST MODE FOR CARRYING OUT THE INVENTION FIG. 4 conceptually shows an example of the configuration of a combined cycle power plant. In this power generation plant, a gas turbine 1 includes an air compressor 2, a combustor 3 that burns fuel using air compressed by the air compressor 2, and a high-temperature high-pressure combustion gas generated in the combustor 3. The turbine 4 is driven to rotate by the expansion action of the turbine 4, and the rotational power of the turbine 4 is transmitted to the generator 5.

【0009】タービン4から排出される高温(550℃
〜650℃程度)の排ガスは、排気ダクト6を介して排
熱回収ボイラ7に導入される。排熱回収ボイラ7は、上
記排ガスの熱エネルギーによって水蒸気を発生し、その
水蒸気で蒸気タービン8を回転駆動する。なお、蒸気タ
ービン8で発生した回転動力は、発電機9に伝達され
る。また、蒸気タービン8から排出される蒸気は、復水
器10の熱交器で冷却凝縮され、復水として上記ボイラ
7の給水系に流入する。
The high temperature (550 ° C.) discharged from the turbine 4
Exhaust gas of about ˜650 ° C.) is introduced into the exhaust heat recovery boiler 7 via the exhaust duct 6. The exhaust heat recovery boiler 7 generates steam by the heat energy of the exhaust gas, and the steam drives the steam turbine 8 to rotate. The rotary power generated in the steam turbine 8 is transmitted to the generator 9. The steam discharged from the steam turbine 8 is cooled and condensed in the heat exchanger of the condenser 10 and flows into the water supply system of the boiler 7 as condensed water.

【0010】図2は、上記タービン4の排ガスを流通さ
せる排気ダクト6の外観を、また、図3は、この排気ダ
クト6の部分拡大断面を示している。排気ダクト6は、
厚さ6〜9mm程度の炭素鋼板で形成されており、図3
に示すように、その内周面に保温材11が配設されてい
る。保温材11は、ガス流による飛散を防止するため、
押え板12によってその内表面が覆れている。なお、押
え板12は、厚さ2ないし3mm程度の耐熱鋼板で形成
されている。また、この押え板12は、排気ダクト6の
内周面に突設した多数のピン13によって該排気ダクト
6に着脱自在に支持されている。
FIG. 2 shows the appearance of the exhaust duct 6 for circulating the exhaust gas of the turbine 4, and FIG. 3 shows a partially enlarged cross section of the exhaust duct 6. The exhaust duct 6 is
It is formed of a carbon steel plate having a thickness of about 6 to 9 mm.
As shown in, the heat insulating material 11 is arranged on the inner peripheral surface thereof. The heat insulating material 11 prevents scattering due to the gas flow,
The inner surface of the holding plate 12 is covered. The pressing plate 12 is made of a heat-resistant steel plate having a thickness of about 2 to 3 mm. The pressing plate 12 is detachably supported on the exhaust duct 6 by a large number of pins 13 protruding from the inner peripheral surface of the exhaust duct 6.

【0011】上記保温材11は、ガス流を排気ダクト6
の壁面から熱的に絶縁する役目をなすものであるから、
この保温材11の保温性能が低下した場合、あるいは、
上記押え板12の合わせ目や脱落箇所から保温材11が
飛散した場合、ガス流の熱放散のために排気ダクト6の
該当箇所の温度が上昇することになる。したがって、排
気ダクト6の外表面の温度分布を計測し、この温度分布
と保温材11の劣化がないときにおける基準温度分布と
を比較することによって、保温材11の劣化を知ること
ができる。
The heat insulating material 11 allows the gas flow to flow through the exhaust duct 6
Since it serves to thermally insulate from the wall surface of
When the heat insulating performance of the heat insulating material 11 deteriorates, or
If the heat insulating material 11 scatters from the joints or the dropout points of the holding plate 12, the temperature of the corresponding point of the exhaust duct 6 rises due to the heat dissipation of the gas flow. Therefore, it is possible to know the deterioration of the heat insulating material 11 by measuring the temperature distribution on the outer surface of the exhaust duct 6 and comparing the temperature distribution with the reference temperature distribution when the heat insulating material 11 is not deteriorated.

【0012】図1は、上記のような原理に従って保温材
の劣化を監視する本発明に係るガスタービン排気ダクト
の保温材劣化監視装置の実施形態を示している。この監
視装置において、赤外線カメラ20は、排気ダクト6の
外表面から放射される赤外線を感知し、また、可視カメ
ラ(例えばデジタルカメラ)21は、赤外線カメラ20
の赤外線感知エリアを撮像する。
FIG. 1 shows an embodiment of a heat insulating material deterioration monitoring device for a gas turbine exhaust duct according to the present invention, which monitors deterioration of the heat insulating material according to the above-described principle. In this monitoring device, the infrared camera 20 senses infrared rays emitted from the outer surface of the exhaust duct 6, and the visible camera (for example, a digital camera) 21 is an infrared camera 20.
Image the infrared sensing area of.

【0013】温度センサ22は、排気ダクト6の外表面
における上記赤外線感知エリアの代表点の温度を検出す
る。なお、この温度センサ22の出力は、赤外線カメラ
20および可視カメラの出力と共に処理部25にそれぞ
れ加えられる。
The temperature sensor 22 detects the temperature of the representative point of the infrared sensing area on the outer surface of the exhaust duct 6. The output of the temperature sensor 22 is added to the processing unit 25 together with the outputs of the infrared camera 20 and the visible camera.

【0014】図2に示したガスタービン用排気ダクト6
は形状が大きいので、監視すべきエリアが広い。そこ
で、この実施形態では、上記監視エリアを複数個に分割
し、その分割されたエリアA1,A2,・・・を上記赤
外線センサ20の単位感知エリアとして設定している。
なお、上記赤外線カメラ20および可視カメラ21は、
一体化されている。
Exhaust duct 6 for gas turbine shown in FIG.
Because of its large shape, the area to be monitored is large. Therefore, in this embodiment, the monitoring area is divided into a plurality of areas, and the divided areas A1, A2, ... Are set as the unit sensing areas of the infrared sensor 20.
The infrared camera 20 and the visible camera 21 are
It is integrated.

【0015】以下、この保温材劣化監視装置の作用につ
いて説明する。いま、図2に示した感知エリアA1に赤
外線カメラ20および可視カメラ21が向けられている
とすると、赤外線カメラ20から感知エリアA1の放熱
分布を示す熱画像信号が処理部25に出力され、また、
可視カメラ21から感知エリアA1の可視画像を示す信
号が処理部25に出力される。さらに、温度センサ22
から感知エリアA1のダクト6外表面の代表点における
温度が処理部25に出力される。
The operation of the heat insulating material deterioration monitoring device will be described below. Now, assuming that the infrared camera 20 and the visible camera 21 are directed to the sensing area A1 shown in FIG. 2, the infrared camera 20 outputs a thermal image signal indicating the heat radiation distribution of the sensing area A1 to the processing unit 25, and ,
A signal indicating a visible image of the sensing area A1 is output from the visible camera 21 to the processing unit 25. Furthermore, the temperature sensor 22
Outputs the temperature at the representative point on the outer surface of the duct 6 in the sensing area A1 to the processing unit 25.

【0016】処理部25は、赤外線カメラ20から出力
される熱画像信号を処理して感知エリアA1の放熱分布
を得るとともに、この放熱分布と温度センサ22から出
力される上記代表点の温度とに基づいて、感知エリアA
1の温度分布を得る。すなわち、処理部25は、上記代
表点における温度と放熱量の対応関係から代表点の温度
に対応する放熱量を認識し、この放熱量に基づいて上記
放熱分布を温度分布に置き換える演算を実行する。
The processing unit 25 processes the thermal image signal output from the infrared camera 20 to obtain the heat radiation distribution of the sensing area A1, and determines the heat radiation distribution and the temperature of the representative point output from the temperature sensor 22. Based on the sensing area A
A temperature distribution of 1 is obtained. That is, the processing unit 25 recognizes the heat radiation amount corresponding to the temperature of the representative point from the correspondence relationship between the temperature at the representative point and the heat radiation amount, and executes the calculation for replacing the heat radiation distribution with the temperature distribution based on the heat radiation amount. .

【0017】上記演算によって得られた感知エリアA1
の温度分布を示すデータは、前記カメラ21によって選
られる該感知エリアA1の可視画像データと共に記憶部
26に記憶される。一方、表示部27は、上記温度分布
データと可視画像データとを重ね合わせて表示する。こ
れにより、エリアA1におけるダクト外表面の温度分布
を確認することができる。
Sensing area A1 obtained by the above calculation
The data indicating the temperature distribution is stored in the storage unit 26 together with the visible image data of the sensing area A1 selected by the camera 21. On the other hand, the display unit 27 superimposes and displays the temperature distribution data and the visible image data. Thereby, the temperature distribution on the outer surface of the duct in the area A1 can be confirmed.

【0018】評価部29は、記憶部28に予め格納して
ある複数の単位感知エリアA1,A2,・・・ごとの基
準温度分布(保温材11が健全な状態のときの温度分
布)のうちのエリアA1の基準温度分布と、上記処理部
25で算出された温度分布とを比較し、温度上昇値が所
定の大きさ(例えば、80℃)以上の場合に、保温材1
1が劣化(保温機能低下、押え板12の合わせ目や脱落
箇所からの保温材の飛散等)していると評価し、その結
果を表示部27に表示させる。以後、残りの感知エリア
A2,・・・についても同様の温度分布を算出し、その
温度分布と基準温度分布とを比較して保温材11の劣化
について評価する。
Of the reference temperature distributions (temperature distributions when the heat insulating material 11 is in a healthy state) among the plurality of unit sensing areas A1, A2, ... The reference temperature distribution of the area A1 is compared with the temperature distribution calculated by the processing unit 25, and when the temperature rise value is equal to or larger than a predetermined value (for example, 80 ° C.), the heat insulating material 1
No. 1 is deteriorated (the heat insulating function is deteriorated, the heat insulating material is scattered from the joints of the pressing plate 12 and the falling portion), and the result is displayed on the display unit 27. Thereafter, similar temperature distributions are calculated for the remaining sensing areas A2, ... And the temperature distribution is compared with the reference temperature distribution to evaluate the deterioration of the heat insulating material 11.

【0019】ところで、図1に示すように、この実施形
態では、ダクト外表面近傍の風速および気温を検出する
風速センサ23および温度センサ24を設置するととも
に、記憶部28にダクト6の外表面温度に対する外表面
近傍の風速および気温の影響度を示すデータを予め格納
してある。したがって、上記風速センサ23で検出され
る風速の温度分布への影響度および上記温度センサ24
で検出される気温の温度分布への影響度を上記記憶部の
記憶内容から知ることが可能である。そして、この影響
度が知られれば、風速および気温の影響を除去した温度
分布を算出して、保温材11の劣化をより精度良く評価
することができる。すなわち、ダクト6の外表面近傍の
風速および気温が異なると、それだけダクト6の外表面
温度が変化することになるので、各感知エリアA1,A
2,・・・における温度分布を算出する際に、風速セン
サ23で測定された風速と基準風速(基準温度分布時に
おける風速)との差異および温度センサ24で測定され
た気温と基準温度(基準温度分布時における気温)との
差異を加味することにより、上記風速および気温の影響
を除去した温度分布を算出することが可能になる。
By the way, as shown in FIG. 1, in this embodiment, a wind speed sensor 23 and a temperature sensor 24 for detecting the wind speed and the air temperature near the outer surface of the duct are installed, and the outer surface temperature of the duct 6 is stored in the storage unit 28. Data indicating the degree of influence of the wind speed and the temperature near the outer surface with respect to is stored in advance. Therefore, the degree of influence of the wind speed detected by the wind speed sensor 23 on the temperature distribution and the temperature sensor 24.
It is possible to know the degree of influence on the temperature distribution of the air temperature detected by the above from the stored contents of the storage unit. Then, if the degree of influence is known, the temperature distribution in which the influence of the wind speed and the temperature is removed can be calculated, and the deterioration of the heat insulating material 11 can be evaluated more accurately. That is, if the wind speed and the air temperature in the vicinity of the outer surface of the duct 6 are different, the outer surface temperature of the duct 6 is changed accordingly.
When calculating the temperature distribution in 2, ..., The difference between the wind speed measured by the wind speed sensor 23 and the reference wind speed (wind speed at the time of the reference temperature distribution), and the temperature and reference temperature (reference temperature measured by the temperature sensor 24 By taking into consideration the difference between the temperature distribution and the temperature), it is possible to calculate the temperature distribution without the influence of the wind speed and the temperature.

【0020】そこで、処理部25は、赤外線カメラ20
および温度センサ22の出力に加えて、上記風速センサ
23および温度センサ24の出力も入力し、風速センサ
23の出力値が基準風速の値から所定の許容値以上異な
る場合、および温度センサ24の出力値が基準気温の値
から所定の許容値以上異なる場合に、記憶部28に予め
格納されている影響度データ(補正データ)の中から上
記風速センサ23および温度センサ24の出力値に対応
したデータをそれぞれ読出す。そして、赤外線カメラ2
0と温度センサ22の出力に基づいて演算される前記温
度分布各データを上記読出したデータで補正する演算
(例えば、加減算)を実行して、風速および気温の影響
を除去した最終的な温度分布を得る。
Therefore, the processing unit 25 uses the infrared camera 20.
In addition to the outputs of the temperature sensor 22 and the output of the wind speed sensor 23 and the temperature sensor 24, when the output value of the wind speed sensor 23 differs from the reference wind speed value by a predetermined allowable value or more, and the output of the temperature sensor 24 Data corresponding to the output values of the wind speed sensor 23 and the temperature sensor 24 from the influence degree data (correction data) stored in advance in the storage unit 28 when the value differs from the reference temperature value by a predetermined allowable value or more. Are read respectively. And infrared camera 2
0 and the temperature distribution 22 is calculated based on the output of the temperature sensor 22. The final temperature distribution is obtained by removing the influence of the wind speed and the air temperature by executing the calculation (for example, addition and subtraction) of correcting each data of the temperature distribution with the read data. To get

【0021】なお、評価部29は、処理部25で算出さ
れた上記最終的な温度分布と記憶部26に格納されてい
る前記基準温度分布とを比較して、前述したように保温
材11の劣化を評価する。このように、風速および気温
の影響を除去した温度分布を得るようにすれば、風およ
び気温という外乱要因に左右されることなく、保温材1
1の劣化をより精度良く監視することが可能になる。な
お、本発明は、タービンの排気ダクトだけでなく、高温
流体が通過する他のプラント用ダクトに設けられた保温
材の劣化監視にも適用可能である。
The evaluation unit 29 compares the final temperature distribution calculated by the processing unit 25 with the reference temperature distribution stored in the storage unit 26, and as described above, the heat insulating material 11 Evaluate deterioration. By thus obtaining the temperature distribution in which the influence of the wind speed and the air temperature is removed, the heat insulating material 1 is not affected by the disturbance factors such as the wind and the air temperature.
It becomes possible to monitor the deterioration of No. 1 with higher accuracy. The present invention can be applied not only to the exhaust duct of a turbine but also to monitoring deterioration of a heat insulating material provided in another plant duct through which a high temperature fluid passes.

【0022】[0022]

【発明の効果】請求項1の発明によれば、ダクトに接続
される周辺機器の運転を停止することなく、該ダクトの
保温材の劣化を監視することができる。請求項2の発明
によれば、風および気温の影響を受けることなく保温材
の劣化をより精度良く監視することができる。請求項3
の発明によれば、監視エリアとそのエリアにおける温度
分布とを重ね合わせて表示することができる。
According to the first aspect of the present invention, the deterioration of the heat insulating material in the duct can be monitored without stopping the operation of the peripheral equipment connected to the duct. According to the invention of claim 2, deterioration of the heat insulating material can be monitored more accurately without being affected by wind and temperature. Claim 3
According to the invention, the monitoring area and the temperature distribution in the area can be displayed in an overlapping manner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る排気ダクトの保温材劣化監視装置
の実施形態を示したブロック図。
FIG. 1 is a block diagram showing an embodiment of a heat insulating material deterioration monitoring device for an exhaust duct according to the present invention.

【図2】排気ダクトの側面図。FIG. 2 is a side view of an exhaust duct.

【図3】排気ダクトの部分拡大断面図。FIG. 3 is a partially enlarged sectional view of an exhaust duct.

【図4】複合サイクル発電プラントの構成を例示した該
略図。
FIG. 4 is a schematic diagram illustrating the configuration of a combined cycle power plant.

【符号の説明】[Explanation of symbols]

1 ガスタービン 6 排気ダクト 7 排熱回収ボイラ 8 蒸気タービン 20 赤外線カメラ 21 可視カメラ 22 温度センサ 23 風速センサ 24 温度センサ 25 処理部 26,28 記憶部 27 表示部 29 評価部 1 gas turbine 6 exhaust duct 7 Exhaust heat recovery boiler 8 steam turbine 20 infrared camera 21 visible camera 22 Temperature sensor 23 Wind speed sensor 24 Temperature sensor 25 Processing Department 26, 28 storage 27 Display 29 Evaluation Department

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高温流体が流れるダクトの外表面から放
射される赤外線を感知する赤外線カメラと、 前記外表面の代表点の温度を測定する温度センサと、 前記赤外線カメラおよび温度センサの出力に基づいて前
記外表面の温度分布を算出する処理部と、 予め設定されている前記外表面の基準温度分布と前記算
出された温度分布とを比較して、前記ダクトの内周面に
配設されている保温材の劣化度を評価する評価部と、 前記評価部の評価結果を表示する表示部と、を備えてな
ることを特徴とするダクトの保温材劣化監視装置。
1. An infrared camera for detecting infrared rays emitted from an outer surface of a duct through which a high-temperature fluid flows, a temperature sensor for measuring a temperature of a representative point of the outer surface, and an output of the infrared camera and the temperature sensor. And a processing unit for calculating the temperature distribution of the outer surface, comparing a preset reference temperature distribution of the outer surface with the calculated temperature distribution, and disposing the temperature distribution on the inner peripheral surface of the duct. A heat insulating material deterioration monitoring device for a duct, comprising: an evaluation unit that evaluates the degree of deterioration of the existing heat insulating material; and a display unit that displays the evaluation result of the evaluation unit.
【請求項2】 高温流体が流れるダクトの外表面から放
射される赤外線を感知する赤外線カメラと、 前記外表面の代表点の温度を測定する温度センサと、 前記外表面近傍の風速および/または気温を計測する環
境センサと、 前記赤外線カメラ、温度センサおよび環境センサの各出
力に基づいて、前記風速および/または気温の影響を除
去した前記外表面の温度分布を算出する処理部と、 予め設定されている前記外表面の基準温度分布と前記算
出された温度分布とを比較して、前記ダクトの内周面に
配設されている保温材の劣化度を評価する評価部と、 前記評価部の評価結果を表示する表示部と、を備えてな
ることを特徴とするダクトの保温材劣化監視装置。
2. An infrared camera for detecting infrared rays emitted from an outer surface of a duct through which a high-temperature fluid flows, a temperature sensor for measuring a temperature at a representative point of the outer surface, and a wind speed and / or an air temperature near the outer surface. And a processing unit that calculates a temperature distribution of the outer surface from which the influence of the wind speed and / or the air temperature is removed based on the outputs of the infrared camera, the temperature sensor, and the environment sensor. Comparing the reference temperature distribution of the outer surface and the calculated temperature distribution, an evaluation unit for evaluating the degree of deterioration of the heat insulating material arranged on the inner peripheral surface of the duct, and the evaluation unit A heat insulation material deterioration monitoring device for a duct, comprising: a display unit that displays an evaluation result.
【請求項3】 前記外表面を撮影する可視カメラを付加
し、前記表示部において、前記可視カメラの画像データ
と前記処理部で算出された温度分布とを重ね合わせて表
示するようにしたことを特徴とする請求項1または2に
記載のダクトの保温材劣化監視装置。
3. A visible camera for photographing the outer surface is added, and the image data of the visible camera and the temperature distribution calculated by the processing unit are superimposed and displayed on the display unit. The heat insulation material deterioration monitoring device for a duct according to claim 1 or 2.
【請求項4】 前記ダクトがガスタービンの排気ダクト
である請求項1〜3のいずれかに記載のダクトの保温材
劣化監視装置。
4. The heat insulating material deterioration monitoring device for a duct according to claim 1, wherein the duct is an exhaust duct of a gas turbine.
JP2001254675A 2001-08-24 2001-08-24 Duct heat insulation deterioration monitoring device Expired - Lifetime JP4727087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001254675A JP4727087B2 (en) 2001-08-24 2001-08-24 Duct heat insulation deterioration monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001254675A JP4727087B2 (en) 2001-08-24 2001-08-24 Duct heat insulation deterioration monitoring device

Publications (2)

Publication Number Publication Date
JP2003065067A true JP2003065067A (en) 2003-03-05
JP4727087B2 JP4727087B2 (en) 2011-07-20

Family

ID=19082802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001254675A Expired - Lifetime JP4727087B2 (en) 2001-08-24 2001-08-24 Duct heat insulation deterioration monitoring device

Country Status (1)

Country Link
JP (1) JP4727087B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002393A (en) * 2006-06-23 2008-01-10 Toshiba Corp Straightening grid for exhaust and exhaust duct with the straightening grid
JP2008532032A (en) * 2005-02-28 2008-08-14 スペルソーン ボロー カウンシル How to assess the thermal efficiency of a building
JP2010007663A (en) * 2008-06-25 2010-01-14 General Electric Co <Ge> Method, system and controller for establishing wheel space temperature alarm in turbomachine
JP2019184199A (en) * 2018-04-16 2019-10-24 株式会社Ihi Alarm system and combustor
JP2020048485A (en) * 2018-09-26 2020-04-02 株式会社トプコン Temperature measuring system and temperature measuring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703362A (en) * 1996-01-02 1997-12-30 General Electric Company Method for nondestructive/noncontact detection and quantification of alpha case on a surface of a workpiece made of titanium or a titanium-based alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371889A (en) * 1976-12-09 1978-06-26 Nippon Oil Co Ltd Detecting method of defective part in heat insulation urethan tank
JPS5616858A (en) * 1979-07-23 1981-02-18 Asahi Chem Ind Co Ltd Diagnostic method for adiabatic state of building provided already
JPS62179647A (en) * 1986-02-03 1987-08-06 Mitsubishi Heavy Ind Ltd Inner wall defect inspector for high temperature container
JPH01176922A (en) * 1988-01-06 1989-07-13 Toshiba Corp Exhaust gas temperature detecting device for gas turbine
JPH01245142A (en) * 1988-03-28 1989-09-29 Hitachi Ltd Preventive maintenance device
JPH09178566A (en) * 1995-12-26 1997-07-11 Tokai Carbon Co Ltd Method and apparatus for displaying thermal image
JP2948798B1 (en) * 1998-03-18 1999-09-13 川崎重工業株式会社 Temperature measurement device for coal pile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703362A (en) * 1996-01-02 1997-12-30 General Electric Company Method for nondestructive/noncontact detection and quantification of alpha case on a surface of a workpiece made of titanium or a titanium-based alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532032A (en) * 2005-02-28 2008-08-14 スペルソーン ボロー カウンシル How to assess the thermal efficiency of a building
JP2008002393A (en) * 2006-06-23 2008-01-10 Toshiba Corp Straightening grid for exhaust and exhaust duct with the straightening grid
JP4714093B2 (en) * 2006-06-23 2011-06-29 株式会社東芝 Exhaust rectifier grid and exhaust duct with rectifier grid
JP2010007663A (en) * 2008-06-25 2010-01-14 General Electric Co <Ge> Method, system and controller for establishing wheel space temperature alarm in turbomachine
JP2019184199A (en) * 2018-04-16 2019-10-24 株式会社Ihi Alarm system and combustor
JP2020048485A (en) * 2018-09-26 2020-04-02 株式会社トプコン Temperature measuring system and temperature measuring method

Also Published As

Publication number Publication date
JP4727087B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
US8410946B2 (en) Thermal measurement system and method for leak detection
EP2415975B1 (en) Thermal measurement system for fault detection within a power generation system
US9509923B2 (en) Continuous infrared thermography monitoring and life management system for heat recovery steam generators
US8627643B2 (en) System and method for measuring temperature within a turbine system
JP4467321B2 (en) Method and apparatus for monitoring performance of a gas turbine system
US7412320B2 (en) Detection of gas turbine airfoil failure
US6354071B2 (en) Measurement method for detecting and quantifying combustor dynamic pressures
US20180027190A1 (en) Infrared non-destructive evaluation of cooling holes using evaporative membrane
EP2354783A1 (en) Thermal inspection system and method incorporating external flow
JP2008097643A (en) Remote operation support method and system for power generating facility
JP2003065067A (en) Device for monitoring deterioration of heat insulation material for duct
JP2004324548A (en) Anomaly monitoring device of equipment, anomaly monitoring device of gas turbine, gas turbine facility and combined power generating facility
JP3857420B2 (en) Gas turbine monitoring device
US20130197855A1 (en) Method and apparatus to determine temperature of a gas turbine engine
JP5191297B2 (en) Remaining life measurement system
JP5164928B2 (en) Gas turbine abnormality diagnosis device
JPH10207534A (en) Method and device for piping abnormality detection of high-temperature gas piping
JP2005233609A (en) Anomaly diagnosing method and its device for absorption refrigerator
KR20180023251A (en) Failure Diagnosis Apparatus and Method for Waterwall tube of Boiler
JP2010133585A (en) Leakage portion detecting device
JP2004162948A (en) Steam generating amount measuring device
KR102165881B1 (en) Apparatus for detecting combustor instability and method thereof)
JPS5857008A (en) Diagnosis of anomaly of water feeding pump and driving turbine thereof
JP4406544B2 (en) Electronic cooler diagnostic system
JPH0326829A (en) Automatic inspection device for turbine inlet temperature controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R151 Written notification of patent or utility model registration

Ref document number: 4727087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term