JPH0742854B2 - Exhaust gas purification device for internal combustion engine for automobile - Google Patents

Exhaust gas purification device for internal combustion engine for automobile

Info

Publication number
JPH0742854B2
JPH0742854B2 JP60239492A JP23949285A JPH0742854B2 JP H0742854 B2 JPH0742854 B2 JP H0742854B2 JP 60239492 A JP60239492 A JP 60239492A JP 23949285 A JP23949285 A JP 23949285A JP H0742854 B2 JPH0742854 B2 JP H0742854B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
catalytic converter
exhaust gas
bypass passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60239492A
Other languages
Japanese (ja)
Other versions
JPS6299611A (en
Inventor
正明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60239492A priority Critical patent/JPH0742854B2/en
Publication of JPS6299611A publication Critical patent/JPS6299611A/en
Publication of JPH0742854B2 publication Critical patent/JPH0742854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、排気系に二つの触媒コンバータを設置した
内燃機関の排気ガス浄化装置に関する。
Description: TECHNICAL FIELD The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine in which two catalytic converters are installed in an exhaust system.

〔従来の技術〕[Conventional technology]

触媒コンバータ(特に3元触媒)を備えた内燃機関で
は、排気管における触媒コンバータの上流に空燃比セン
サを設け、空燃比センサからの信号に応じて空気量又は
燃料量を制御し、これによって空燃比を触媒装置が最高
の効率となる理論空燃比付近の狭い領域に制御してい
る。この場合、空燃比センサとして、排気ガスと大気の
と酸素分圧の差に応じて作動する酸素濃淡電池であるO2
センサを採用したものがある。このO2センサではジルコ
ニア素子と白金電極を使用したものが普通である。
In an internal combustion engine equipped with a catalytic converter (particularly a three-way catalyst), an air-fuel ratio sensor is provided in the exhaust pipe upstream of the catalytic converter, and the air amount or the fuel amount is controlled according to the signal from the air-fuel ratio sensor. The fuel ratio is controlled in a narrow region near the stoichiometric air-fuel ratio where the catalytic device has the highest efficiency. In this case, the air-fuel ratio sensor is an oxygen concentration battery that operates according to the difference in oxygen partial pressure between the exhaust gas and the atmosphere, O 2
Some have adopted sensors. This O 2 sensor usually uses a zirconia element and a platinum electrode.

このような触媒装置は十分な作動が行われるためには30
0〜350℃の温度が必要応である。そこで、エンジンにな
るべく近いところに設置することにより、触媒装置の活
性化のためにエンジンの温度を役立たせることができ、
始動直後の排気ガス浄化性能の向上を図ることができ
る。ところが、触媒装置のエンジンの近くに設置すると
エンジン暖機後に高温の排気ガスが触媒コンバータやO2
センサを直撃することになり、その耐久性にとって好ま
しくない。
Such a catalytic device must be at least 30 for proper operation.
A temperature of 0-350 ° C is necessary. Therefore, by installing it as close to the engine as possible, the temperature of the engine can be used to activate the catalyst device,
It is possible to improve the exhaust gas purification performance immediately after the start. However, if the catalytic converter is installed near the engine, high temperature exhaust gas will not be emitted from the catalytic converter or O 2 after the engine is warmed up.
It will hit the sensor directly, which is not preferable for its durability.

そこで、排気管に二つの触媒コンバータを直列に設置
し、上流側の触媒コンバータを迂回するようにバイパス
通路を設け、温度に応じてバイパス通路を開閉するよう
にしたものが提案されている。
Therefore, it is proposed that two catalytic converters are installed in series in the exhaust pipe, a bypass passage is provided so as to bypass the upstream catalytic converter, and the bypass passage is opened and closed according to the temperature.

例えば、特開昭57−210116号公報参照。高温時にはバイ
パスが開放され、高温の排気ガスは上流側の触媒コンバ
ータを迂回し、高温の排気ガスが上流側の触媒コンバー
タに流入することは防止され、その熱害の問題を排除す
ることができる。バイパス通路に流入された排気ガス
は、温度の幾分降下したところで、下流側の触媒コンバ
ータに流入され、下流側の触媒コンバータは熱的に荷重
な負担を受けることがなく、所期の触媒作用を達成す
る。一方、低温時はバイパスは閉鎖されるため排気ガス
は上流側の触媒コンバータに先ず導入され、その後下流
側の触媒コンバータに流入される。上流の触媒コンバー
タはエンジン本体の排気ポートの付近に位置しており、
上流側の触媒コンバータに導入される排気ガスの温度は
相対的に高いため、上流の触媒コンバータでの触媒作用
の効率を高めることができる。
See, for example, JP-A-57-210116. The bypass is opened at high temperature, the hot exhaust gas bypasses the upstream catalytic converter, the hot exhaust gas is prevented from flowing into the upstream catalytic converter, and the problem of heat damage can be eliminated. . The exhaust gas that has flowed into the bypass passage flows into the catalytic converter on the downstream side when the temperature has dropped somewhat, and the catalytic converter on the downstream side is not subject to a thermal load and the desired catalytic action is achieved. To achieve. On the other hand, when the temperature is low, the bypass is closed, so that the exhaust gas is first introduced into the upstream catalytic converter and then flows into the downstream catalytic converter. The upstream catalytic converter is located near the exhaust port of the engine body,
Since the temperature of the exhaust gas introduced into the upstream catalytic converter is relatively high, the efficiency of catalytic action in the upstream catalytic converter can be increased.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来技術ではバイパスを設けることにより高温時に排気
ガスが上流側の触媒コンバータを直撃することは回避さ
れる。しかしながら、O2センサは応答性を高める観点か
ら、触媒コンバータの上流に設けられ、かつバイパス通
路が分岐する位置より上流側の排気管内に位置してい
る。そのため、高温時にO2センサの熱害の問題がある。
この問題を回避するためにO2センサを切替弁と触媒コン
バータとの間に設けるようにすることが考えられる。し
かしながら、この場合、O2センサはバイパス通路の下流
側にきてしまうことになり、バイパスが開けらた高温運
転では排気ガスがO2センサに当たらず空燃比を検出でき
ないため、フィードバック制御を行うことができない問
題点がある。
By providing a bypass in the prior art, it is avoided that exhaust gas directly hits the upstream catalytic converter at high temperature. However, from the viewpoint of improving responsiveness, the O 2 sensor is provided upstream of the catalytic converter and is located in the exhaust pipe upstream of the position where the bypass passage branches. Therefore, there is a problem of heat damage to the O 2 sensor at high temperatures.
In order to avoid this problem, it may be possible to provide an O 2 sensor between the switching valve and the catalytic converter. However, in this case, the O 2 sensor comes to the downstream side of the bypass passage, and the exhaust gas does not hit the O 2 sensor and the air-fuel ratio cannot be detected during high temperature operation with the bypass open, so feedback control is performed. There is a problem that cannot be done.

この発明は上述の欠点に鑑み、O2センサを触媒コンバー
タの上流に配置した構成において、上流側の触媒コンバ
ータ及びO2センサを保護しつつ、空燃比のフィードバッ
ク制御を可能とすることを目的とする。
In view of the above-mentioned drawbacks, the present invention aims to enable feedback control of an air-fuel ratio in a configuration in which an O 2 sensor is arranged upstream of a catalytic converter while protecting the upstream catalytic converter and the O 2 sensor. To do.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明の内燃機関の自動車用内燃機関の排気ガス浄化
装置は、空燃比が排気管に配置される空燃比センサから
の信号によって制御され、空燃比センサの下流の排気管
に直列に二つの触媒コンバータを設置し、一端が空燃比
センサの上流側部位での排気管に接続され、他端が上流
側の触媒コンバータと下流側の触媒コンバータとの間の
部位で排気管に接続される第1バイパス通路と、第1バ
イパス通路を閉鎖すると共に排気管を開放する第1位置
と、第1バイパス通路を開放すると共に排気管を閉鎖す
る第2位置との間を切り替えられる切替弁と、該切替弁
をして低温時は第1位置、高温時は第2位置を取らしめ
る感温制御手段と、一端が切替弁の上流の部位で排気管
に接続され、他端が切替弁と空燃比センサとの間の部位
で排気管に接続される第2バイパス通路とを具備したこ
とを特徴とする。
In the exhaust gas purifying apparatus for an automobile internal combustion engine of an internal combustion engine of the present invention, the air-fuel ratio is controlled by a signal from an air-fuel ratio sensor arranged in the exhaust pipe, and two catalysts are arranged in series in the exhaust pipe downstream of the air-fuel ratio sensor. A converter is installed, one end of which is connected to an exhaust pipe at an upstream portion of the air-fuel ratio sensor, and the other end of which is connected to an exhaust pipe at a portion between an upstream catalytic converter and a downstream catalytic converter. A switching valve for switching between a bypass passage, a first position for closing the first bypass passage and opening the exhaust pipe, and a second position for opening the first bypass passage and closing the exhaust pipe, and the switching valve Temperature sensing control means for opening the valve to the first position when the temperature is low and the second position when the temperature is high, one end connected to the exhaust pipe at an upstream portion of the switching valve, and the other end connected to the switching valve and the air-fuel ratio sensor. Connected to the exhaust pipe at the part between Characterized by comprising a second bypass passage that.

〔作 用〕[Work]

切替弁は低温時は第1位置をとり、排気ガスは空燃比セ
ンサ、次いで上流側の触媒コンバータを経て下流側の触
媒コンバータに導かれる。そのため、排気ガスは機関本
体の近くに位置する上流側の触媒コンバータに導入さ
れ、機関本体の近くに位置しているため、排気ガスの温
度降下が少なくなり、触媒コンバータでの温度は相対的
に高まるので良好な触媒作用を得ることができる。
The switching valve is in the first position when the temperature is low, and the exhaust gas is guided to the downstream catalytic converter via the air-fuel ratio sensor and then the upstream catalytic converter. Therefore, the exhaust gas is introduced into the upstream catalytic converter located near the engine body, and since it is located near the engine body, the temperature drop of the exhaust gas is reduced and the temperature in the catalytic converter is relatively low. Since it increases, a good catalytic action can be obtained.

切替弁は高温時は第2位置をとり、そのため、殆どの排
気ガスは上流側触媒コンバータを迂回して第1バイパス
通路を介して下流側の触媒コンバータに導かれる。大量
の高温の排気ガスが上流側の触媒コンバータを直撃する
ことは回避され、その熱害の防止を図ることができる。
そして、少量の排気ガスは第2バイパス通路を介して空
燃比センサ、次いで上流側の触媒コンバータを経て下流
側の触媒コンバータに導かれる。この際、第2バイパス
通路を流れる排気ガスが空燃比センサに接触するため、
空燃比の検出が行われ、空燃比のフィードバック制御を
行うことができる。
The switching valve takes the second position when the temperature is high, and therefore most of the exhaust gas bypasses the upstream catalytic converter and is guided to the downstream catalytic converter via the first bypass passage. It is possible to prevent a large amount of high-temperature exhaust gas from directly hitting the upstream catalytic converter, and to prevent the heat damage.
Then, a small amount of exhaust gas is guided to the downstream side catalytic converter via the air-fuel ratio sensor, the upstream side catalytic converter through the second bypass passage. At this time, since the exhaust gas flowing through the second bypass passage contacts the air-fuel ratio sensor,
The air-fuel ratio is detected and feedback control of the air-fuel ratio can be performed.

〔実施例〕〔Example〕

第1図において、10はシリンダブロック、12はピスト
ン、14はコネクティングロッド、16はシリンダヘッド、
18は燃焼室、20は吸気弁、22は吸気ポート、24は排気
弁、26は排気ポートである。吸気ポート22に吸気マニホ
ルド28が連結される。この実施例では内燃機関は気化器
30を備えた気化器式内燃機関である。しかしながら、燃
料噴射式内燃機関にも応用することができる。気化器30
において、30aはスロットル弁、30bはベンチュリ、30c
はメインノズル、30dは燃料通路、30eはフロート室であ
る。気化器30は更に空気ブリードの制御によって空燃比
を制御するための手段を備えている。即ち、メインノズ
ル30cに開口するブリード通路32が設けられ、ブリード
通路32上にブリード量の制御のための開閉弁であるブリ
ード制御弁34が配置され、ブリード通路32の端部に空気
フィルタ36が設置される。気化器30はベース空燃比とし
てはリッチ側の値に設定され、ブリード制御弁34の開閉
によってブリード空気量が大小変化され、空燃比が制御
される。
In FIG. 1, 10 is a cylinder block, 12 is a piston, 14 is a connecting rod, 16 is a cylinder head,
18 is a combustion chamber, 20 is an intake valve, 22 is an intake port, 24 is an exhaust valve, and 26 is an exhaust port. An intake manifold 28 is connected to the intake port 22. In this embodiment, the internal combustion engine is a carburetor.
It is a carburetor internal combustion engine equipped with 30. However, it can also be applied to a fuel injection type internal combustion engine. Vaporizer 30
, 30a is a throttle valve, 30b is a venturi, 30c
Is a main nozzle, 30d is a fuel passage, and 30e is a float chamber. The carburetor 30 further comprises means for controlling the air-fuel ratio by controlling the air bleed. That is, a bleed passage 32 that opens to the main nozzle 30c is provided, a bleed control valve 34 that is an opening / closing valve for controlling the amount of bleed is arranged on the bleed passage 32, and an air filter 36 is provided at the end of the bleed passage 32. Is installed. The carburetor 30 is set to a value on the rich side as the base air-fuel ratio, and the bleed air amount is changed by opening / closing the bleed control valve 34 to control the air-fuel ratio.

気化器30上端はエアクリーナ40に連結され、下端は吸気
マニホルド28に連結される。
The upper end of the carburetor 30 is connected to the air cleaner 40, and the lower end thereof is connected to the intake manifold 28.

排気ポート26は排気マニホルド42に連結される。排気マ
ニホルド42は排気管44に連結される。排気管44上に二つ
の触媒コンバータ46,48が直列に配置される。上流側の
触媒コンバータ46を迂回するようにバイパス管50が排気
管44に接続される。バイパス管50内に上流側触媒コンバ
ータを迂回する第1バイパス通路50aが形成される。バ
イパス管50の上流端と排気管44との接続個所にスイング
型の切替弁52が設置される。切替弁52の一端はレバー54
を介してロッド56の一端に連結される。ロッド56の他端
はダイヤフラム機構58のダイヤフラム58aに連結され
る。ダイヤフラム58の片面に負圧室58bが形成され、同
負圧室58b内にばね58cが配置され、ばね58cはダイヤフ
ラム58aを図の左方に付勢し、その結果切替弁52は想像
線のように第1バイパス通路50aを開放する位置に向け
付勢される。負圧室58bに負圧が導入されるとダイヤフ
ラム58aはばね58cに抗して右行し、この動きはロッド5
6、レバー54を介して切替弁52に伝達され、切替弁52は
実線のように第1バイパス通路50aを閉鎖することにな
る。三方電磁弁59はダイヤフラム機構58の負圧室58bを
負圧源である吸気マニホルド28の負圧ポート28aに接続
する白抜き位置と、負圧室58bを大気圧源である大気フ
ィルタ60に接続する黒塗り位置との間で切替える。
Exhaust port 26 is connected to exhaust manifold 42. The exhaust manifold 42 is connected to the exhaust pipe 44. Two catalytic converters 46 and 48 are arranged in series on the exhaust pipe 44. A bypass pipe 50 is connected to the exhaust pipe 44 so as to bypass the catalytic converter 46 on the upstream side. A first bypass passage 50a that bypasses the upstream side catalytic converter is formed in the bypass pipe 50. A swing type switching valve 52 is installed at a connection point between the upstream end of the bypass pipe 50 and the exhaust pipe 44. One end of the switching valve 52 is a lever 54
Is connected to one end of the rod 56 via. The other end of the rod 56 is connected to the diaphragm 58a of the diaphragm mechanism 58. A negative pressure chamber 58b is formed on one surface of the diaphragm 58, and a spring 58c is arranged in the negative pressure chamber 58b.The spring 58c biases the diaphragm 58a to the left in the figure, and as a result, the switching valve 52 is in an imaginary line. Thus, the first bypass passage 50a is urged toward the open position. When negative pressure is introduced into the negative pressure chamber 58b, the diaphragm 58a moves to the right against the spring 58c, and this movement causes the rod 5 to move.
6. The changeover valve 52 is transmitted via the lever 54, and the changeover valve 52 closes the first bypass passage 50a as indicated by the solid line. The three-way solenoid valve 59 connects the negative pressure chamber 58b of the diaphragm mechanism 58 to the negative pressure port 28a of the intake manifold 28, which is the negative pressure source, and the negative pressure chamber 58b to the atmospheric filter 60, which is the atmospheric pressure source. Switch to the black paint position.

空燃比センサとしてのO2センサ61は切替弁52の下流で上
流側触媒コンバータ46の上流における主通路44aに設置
される。O2センサ61は空燃比に応じて大小2種の電圧信
号を発生する酸素濃淡電池として構成される。他のタイ
プの空燃比のセンサであってもこの発明は応用すること
ができる。
An O 2 sensor 61 as an air-fuel ratio sensor is installed in the main passage 44a downstream of the switching valve 52 and upstream of the upstream catalytic converter 46. The O 2 sensor 61 is configured as an oxygen concentration battery that generates two types of voltage signals, large and small, depending on the air-fuel ratio. The present invention can be applied to other types of air-fuel ratio sensors.

温度センサ62は排気マニホルド42に設置され、排気ガス
の温度Tに応じた信号が得られる。温度センサ62の設置
個所としては必ずしも図示の個所に限定されず、例えば
上流側触媒コンバータ46に設置することもできる。ま
た、温度を直接検知する代わりに回転数及び負荷より触
媒過熱が発生する条件を検知することもできる。
The temperature sensor 62 is installed in the exhaust manifold 42 and obtains a signal according to the temperature T of the exhaust gas. The location where the temperature sensor 62 is installed is not necessarily limited to the location shown in the figure, and may be installed in the upstream catalytic converter 46, for example. Further, instead of directly detecting the temperature, it is also possible to detect the condition under which the catalyst overheats based on the rotation speed and the load.

制御回路64はO2センサ61及び温度センサ62からの信号に
応じて空気ブリード制御弁34及びダイヤフラム機構58の
駆動のための電磁弁59の制御を行なうためのものであ
る。制御回路64は理論回路として図示されているが、マ
イクロコンピュータのソフトウエアとして構成すること
も含まれる。制御回路64は第1の比較器64aと第2の比
較器64bとを備える。第1の比較器64aは温度センサ62に
接続され、排気ガス温度Tが所定値T0より小さいとき
“0"、温度Tが所定値T0より大きいとき“1"の信号を発
生する。尚、行きと帰りで適当なヒステリシスを付ける
ことができる。一方、第2の比較器64bは空燃比センサ6
1に接続され、空燃比が理論空燃比(λ=1)よりリッ
チ側のとき“1"の信号を発生し、空燃比が理論空燃比よ
りリーン側のとき“0"の信号を発生する。第1比較器64
aの出力は三方電磁弁59のソレノイド59aの駆動用トラン
ジスタ64cに接続される。第2比較器64bは空気ブリード
制御弁34のソレノイド34aの駆動トランジスタ64dに接続
される。
The control circuit 64 controls the solenoid valve 59 for driving the air bleed control valve 34 and the diaphragm mechanism 58 in response to signals from the O 2 sensor 61 and the temperature sensor 62. Although the control circuit 64 is shown as a theoretical circuit, it may be configured as software of a microcomputer. The control circuit 64 includes a first comparator 64a and a second comparator 64b. The first comparator 64a is connected to the temperature sensor 62, when the exhaust gas temperature T is smaller than a predetermined value T 0 "0", the temperature T is to generate a signal "1" when greater than a predetermined value T 0. It should be noted that a proper hysteresis can be added on the way back and forth. On the other hand, the second comparator 64b is the air-fuel ratio sensor 6
It is connected to 1 and generates a signal of "1" when the air-fuel ratio is richer than the stoichiometric air-fuel ratio (λ = 1) and generates a signal of "0" when the air-fuel ratio is leaner than the theoretical air-fuel ratio. First comparator 64
The output of a is connected to the driving transistor 64c of the solenoid 59a of the three-way solenoid valve 59. The second comparator 64b is connected to the drive transistor 64d of the solenoid 34a of the air bleed control valve 34.

この発明によれば、切替弁52が想像線のように第1バイ
パス通路50aを開放する位置をとるとき、主通路44aに少
量の排気ガスを流通させるため、仕切板70が排気管44内
に配置され、排気管の内壁と仕切板70との間に第2バイ
パス通路72が形成される。第2バイパス通路72の流路径
は触媒コンバータ46の熱害は生じないように十分小さ
く、しかしO2センサ61の周囲の雰囲気を第1バイパス通
路50aを流通する排気ガスのそれと一致させるに十分な
流量が得られるように設定される。
According to the present invention, when the switching valve 52 takes the position where the first bypass passage 50a is opened as shown by the imaginary line, a small amount of exhaust gas is circulated in the main passage 44a, so that the partition plate 70 is placed in the exhaust pipe 44. A second bypass passage 72 is formed between the inner wall of the exhaust pipe and the partition plate 70. The flow path diameter of the second bypass passage 72 is small enough not to cause heat damage to the catalytic converter 46, but is sufficient to make the atmosphere around the O 2 sensor 61 coincide with that of the exhaust gas flowing through the first bypass passage 50a. It is set to obtain the flow rate.

以下この発明の作動を説明すると、排気ガスの温度Tが
所定値T0より低いときは、第1比較器64aは“0"の信号
を出力し、トランジスタ64cがOFFとなり、三方電磁弁59
のソレノイド59aは消磁され、同電磁弁59は白抜きの位
置をとり、ダイヤフラム機構58の負圧室58bに負圧ポー
ト28aからの負圧が導入される。そのため、ダイヤフラ
ム58aは右行し、切替弁52は実線のように第1バイパス
通路50を閉鎖する。そのため、排ガスは主通路44aを介
して、上流側触媒コンバータ46、及び下流側触媒コンバ
ータ48に導入される。排気ガスの空燃比はO2センサ61に
よって検知され、リッチのときは“1"の信号をリーンの
ときは“0"の信号を発生する。第2比較器64bからリッ
チ(“1")の信号がでているときはトランジスタ64dは
駆動され、空気ブリード制御弁34は開放され、空気フィ
ルタ36よりの空気がブリード通路32を介して気化器30に
導入されるため、気化器で設定される空燃比が大きくな
り理論空燃比に向かって制御される。一方、O2センサ61
によって検知される空燃比がリーンのときは第2比較器
64bは“0"の信号をトランジスタ64dに印加する。そのた
め、空気ブリード制御弁34は閉鎖され、空気ブリードは
停止されるため気化器30で設定される空燃比は小さくな
り理論空燃比に向かって制御される。このO2センサ61か
らの空燃比信号OXによる空気ブリードのこのようなフィ
ードバック制御によって空燃比は理論空燃比に制御さ
れ、触媒コンバータはその能力を最大限に発揮すること
ができる。
The operation of the present invention will be described below. When the temperature T of the exhaust gas is lower than the predetermined value T 0 , the first comparator 64a outputs a signal “0”, the transistor 64c is turned off, and the three-way solenoid valve 59
The solenoid 59a is demagnetized, the solenoid valve 59 is in the white position, and the negative pressure from the negative pressure port 28a is introduced into the negative pressure chamber 58b of the diaphragm mechanism 58. Therefore, the diaphragm 58a moves to the right, and the switching valve 52 closes the first bypass passage 50 as shown by the solid line. Therefore, the exhaust gas is introduced into the upstream side catalytic converter 46 and the downstream side catalytic converter 48 via the main passage 44a. The air-fuel ratio of the exhaust gas is detected by the O 2 sensor 61, and a signal of "1" is generated when rich and a signal of "0" is generated when lean. When the rich (“1”) signal is output from the second comparator 64b, the transistor 64d is driven, the air bleed control valve 34 is opened, and the air from the air filter 36 is carbureted through the bleed passage 32. Since it is introduced into 30, the air-fuel ratio set by the carburetor becomes large and is controlled toward the stoichiometric air-fuel ratio. On the other hand, the O 2 sensor 61
The second comparator when the air-fuel ratio detected by is lean
64b applies a "0" signal to the transistor 64d. Therefore, the air bleed control valve 34 is closed and the air bleed is stopped, so that the air-fuel ratio set in the carburetor 30 becomes small and the air-fuel ratio is controlled toward the stoichiometric air-fuel ratio. By such feedback control of the air bleed by the air-fuel ratio signal O X from the O 2 sensor 61, the air-fuel ratio is controlled to the stoichiometric air-fuel ratio, and the catalytic converter can maximize its capacity.

排気ガスの温度Tが所定値T0より高くなると、第1比較
器64aは“1"の信号をトランジスタ64cに印加する。これ
により、トランジスタ64cはONとなり、三方電磁弁59は
黒塗りのポート位置を取り、ダイヤフラム機構58の負圧
室58bに空気フィルタ60からの大気圧が導入され、ばね5
8cの力によってダイヤフラム58aは左行し、切替弁52は
想像線で示すように第1バイパス通路50aを開放するよ
うに位置する。斯くして、殆んどの量の排気ガスは上流
側の触媒コンバータ46を迂回し、下流側に来るまでに十
分温度が低下し、下流側の触媒コンバータ48を通過す
る。そのため大量の高温の排気ガスのO2センサ61及び触
媒コンバータ46への流入が防止され、その熱害が防止さ
れる。しかしながら、第1バイパス通路50aを開放する
ため切替弁52が想像線のように位置していても、少しの
量の排気ガスは第2バイパス通路72を通過してO2センサ
61及び上流側の触媒コンバータ46に導入される。O2セン
サ61は第2バイパス通路72を流れる排気ガスの空燃比を
検出し、λ=1.0に対する大小に応じて空気プリード制
御弁34を開閉し、空燃比が理論空燃比に維持されるよう
にフィードバック制御をこの高温時にも実行することに
なる。
When the temperature T of the exhaust gas becomes higher than the predetermined value T 0 , the first comparator 64a applies the signal "1" to the transistor 64c. As a result, the transistor 64c is turned on, the three-way solenoid valve 59 takes the black port position, the atmospheric pressure from the air filter 60 is introduced into the negative pressure chamber 58b of the diaphragm mechanism 58, and the spring 5
The diaphragm 58a moves leftward by the force of 8c, and the switching valve 52 is positioned so as to open the first bypass passage 50a as shown by an imaginary line. Thus, most of the exhaust gas bypasses the catalytic converter 46 on the upstream side, the temperature is sufficiently lowered by the time it reaches the downstream side, and passes through the catalytic converter 48 on the downstream side. Therefore, a large amount of high-temperature exhaust gas is prevented from flowing into the O 2 sensor 61 and the catalytic converter 46, and its heat damage is prevented. However, even if the switching valve 52 is positioned as shown by the imaginary line in order to open the first bypass passage 50a, a small amount of exhaust gas passes through the second bypass passage 72 and the O 2 sensor.
61 and upstream catalytic converter 46. The O 2 sensor 61 detects the air-fuel ratio of the exhaust gas flowing through the second bypass passage 72, and opens / closes the air bleed control valve 34 according to the magnitude with respect to λ = 1.0 so that the air-fuel ratio is maintained at the stoichiometric air-fuel ratio. The feedback control is executed even at this high temperature.

第2図の第2のバイパス通路72の周囲に相当する排気管
44の壁面にフィン90を形成したものである。フィンによ
ってバイパス通路72を流れる排気ガスの冷却を図ること
ができる。そのため、O2センサをより上流側に設置する
のが可能になり、応答性をより向上することができる。
Exhaust pipe corresponding to the periphery of the second bypass passage 72 in FIG.
The fins 90 are formed on the wall surface of 44. The fins can cool the exhaust gas flowing through the bypass passage 72. Therefore, the O 2 sensor can be installed on the upstream side, and the responsiveness can be further improved.

第3図、第4図の実施例では主通路44aと第2バイパス
通路72との間に隙間92を形成し、冷却を効率的に行なう
ようにしたものである。
In the embodiment of FIGS. 3 and 4, a gap 92 is formed between the main passage 44a and the second bypass passage 72 so that cooling can be performed efficiently.

第5図、第6図の実施例では、切替弁52の自由端に切欠
き94乃至は小孔を形成し、切替弁52が想像線のように第
1バイパス通路50aを開放したときに、排気管44の内壁
との間に少量の排気ガスを主通路に通過させるための第
2バイパス通路72を形成しているものである。好ましく
は、第2バイパス通路72に隣接する排気管44の外壁面に
フィン96を形成することができる。第7図は切替弁52に
形成される小孔94の別形状を示す。
In the embodiment of FIGS. 5 and 6, when the cutout 94 or the small hole is formed at the free end of the switching valve 52 and the switching valve 52 opens the first bypass passage 50a as shown by the imaginary line, A second bypass passage 72 is formed between the inner wall of the exhaust pipe 44 and a small amount of exhaust gas to pass through the main passage. Preferably, the fins 96 may be formed on the outer wall surface of the exhaust pipe 44 adjacent to the second bypass passage 72. FIG. 7 shows another shape of the small hole 94 formed in the switching valve 52.

第8図の実施例は第2バイパス通路をO2センサ61に接近
するようにずらせることで、空燃比変化をより迅速に検
知できるようにしたものである。
In the embodiment shown in FIG. 8, the second bypass passage is displaced so as to approach the O 2 sensor 61 so that the change in the air-fuel ratio can be detected more quickly.

実施例は気化器式の内燃機関において空気ブリード量を
制御することにより空燃比を制御するシステムにこの発
明を具現化した場合について説明している他のタイプの
システム、例えば燃料噴射量を制御することにより空燃
比を制御するシステムにもこの発明は応用することがで
きる。
The embodiment is a system of controlling the air-fuel ratio by controlling the amount of air bleed in a carburetor type internal combustion engine. Therefore, the present invention can be applied to a system that controls the air-fuel ratio.

この発明の構成は高温時にもフィードバック制御を実行
させた場合に最大の効果を発揮することができるが、高
温時にフィードバッグ制御を停止し、リッチ制御をすも
のにも応用することができる。
The configuration of the present invention can exert the maximum effect when the feedback control is executed even at a high temperature, but it can also be applied to one that performs the rich control by stopping the feed bag control at a high temperature.

〔発明の効果〕〔The invention's effect〕

第1バイパス通路への切替弁をバイパスする第2バイパ
ス通路を設け、その下流に空燃比センサ次いで上流側及
び下流側の触媒コンバータを設けることで、切替弁の開
・閉に係わらず空燃比制御を触媒コンバータの上流の空
燃比センサにより早い応答性をもって行いつつ、高温時
は第2バイパス通路を通過する少量の排気ガスのみが空
燃比センサに接触するため空燃比センサの熱害を緩和す
ることができる。
By providing a second bypass passage that bypasses the switching valve to the first bypass passage and providing an air-fuel ratio sensor and then upstream and downstream catalytic converters downstream thereof, air-fuel ratio control is performed regardless of whether the switching valve is open or closed. The air-fuel ratio sensor upstream of the catalytic converter with high responsiveness, and at the time of high temperature, only a small amount of exhaust gas passing through the second bypass passage comes into contact with the air-fuel ratio sensor to mitigate heat damage to the air-fuel ratio sensor. You can

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例の全体構成図。 第2図は第2実施例を示す部分図(第1図のII−II線に
沿う図)。 第3図は別の実施例における第1図の一部に相当する
図。 第4図は第3図のIV−IV線に沿う断面図。 第5図は別の実施例における第3図と同様な図。 第6図は第5図のVI−VI線に沿う断面図。 第7図は別実施例に於ける切替弁の単品図。 第8図は更に別の実施例における第1図の一部分に相当
する図。 30……気化器、34……空気ブリード制御弁、 44……排気管、44a…主通路、 46,48……触媒コンバータ、 50……バイパス管、50a……第1バイパス通路、 52……切替弁、58……ダイヤフラム機構、 61……O2センサ、62……温度センサ、 64……制御回路、72……第2バイパス通路。
FIG. 1 is an overall configuration diagram of an embodiment of the present invention. FIG. 2 is a partial view showing a second embodiment (a view along the line II-II in FIG. 1). FIG. 3 is a view corresponding to a part of FIG. 1 in another embodiment. FIG. 4 is a sectional view taken along the line IV-IV in FIG. FIG. 5 is a view similar to FIG. 3 in another embodiment. FIG. 6 is a sectional view taken along the line VI-VI of FIG. FIG. 7 is a single-part view of a switching valve in another embodiment. FIG. 8 is a view corresponding to a part of FIG. 1 in yet another embodiment. 30 …… vaporizer, 34 …… air bleed control valve, 44 …… exhaust pipe, 44a… main passage, 46,48 …… catalytic converter, 50 …… bypass pipe, 50a …… first bypass passage, 52 …… Switching valve, 58 …… diaphragm mechanism, 61 …… O 2 sensor, 62 …… temperature sensor, 64 …… control circuit, 72 …… second bypass passage.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】空燃比が排気管に配置される空燃比センサ
からの信号によって制御され、空燃比センサの下流の排
気管に直列に二つの触媒コンバータを設置し、一端が空
燃比センサの上流側の部位で排気管に接続され、他端が
上流側の触媒コンバータと下流側の触媒コンバータとの
間の部位で排気管に接続される第1バイパス通路と、第
1バイパス通路を閉鎖すると共に排気管を開放する第1
位置と、第1バイパス通路を開放すると共に排気管を閉
鎖する第2位置との間を切り替えられる切替弁と、該切
替弁をして低温時は第1位置、高温時は第2位置を取ら
しめる感温制御手段と、一端が切替弁の上流の部位で排
気管に接続され、他端が切替弁と空燃比センサとの間の
部位で排気管に接続される第2バイパス通路とを具備し
たことを特徴とする自動車用内燃機関の排気ガス浄化装
置。
1. An air-fuel ratio is controlled by a signal from an air-fuel ratio sensor arranged in an exhaust pipe, and two catalytic converters are installed in series in an exhaust pipe downstream of the air-fuel ratio sensor, one end of which is upstream of the air-fuel ratio sensor. A first bypass passage connected to the exhaust pipe at a side portion and the other end connected to the exhaust pipe at a portion between the upstream catalytic converter and the downstream catalytic converter, and the first bypass passage is closed. First to open the exhaust pipe
A switching valve that switches between a position and a second position that opens the first bypass passage and closes the exhaust pipe; and a switching valve that holds the first position when the temperature is low and the second position when the temperature is high. And a second bypass passage having one end connected to the exhaust pipe at a portion upstream of the switching valve and the other end connected to the exhaust pipe at a portion between the switching valve and the air-fuel ratio sensor. An exhaust gas purifying device for an internal combustion engine for an automobile, which is characterized in that
JP60239492A 1985-10-28 1985-10-28 Exhaust gas purification device for internal combustion engine for automobile Expired - Fee Related JPH0742854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60239492A JPH0742854B2 (en) 1985-10-28 1985-10-28 Exhaust gas purification device for internal combustion engine for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60239492A JPH0742854B2 (en) 1985-10-28 1985-10-28 Exhaust gas purification device for internal combustion engine for automobile

Publications (2)

Publication Number Publication Date
JPS6299611A JPS6299611A (en) 1987-05-09
JPH0742854B2 true JPH0742854B2 (en) 1995-05-15

Family

ID=17045578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60239492A Expired - Fee Related JPH0742854B2 (en) 1985-10-28 1985-10-28 Exhaust gas purification device for internal combustion engine for automobile

Country Status (1)

Country Link
JP (1) JPH0742854B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886238A (en) * 1994-09-16 1996-04-02 Honda Motor Co Ltd Air-fuel ratio controller of internal combustion engine
US6568179B2 (en) * 2001-03-01 2003-05-27 Engelhard Corporation Apparatus and method for vehicle emissions control
JP6848442B2 (en) * 2017-01-06 2021-03-24 いすゞ自動車株式会社 Internal combustion engine exhaust system

Also Published As

Publication number Publication date
JPS6299611A (en) 1987-05-09

Similar Documents

Publication Publication Date Title
US4099377A (en) Internal combustion engine equipped with catalytic converter
JPS58574B2 (en) Fuel supply cylinder number control device
JPH0742854B2 (en) Exhaust gas purification device for internal combustion engine for automobile
JP2576487B2 (en) Fuel supply control device for internal combustion engine
US4393840A (en) Fuel control system for automobile engine
JPH0123649B2 (en)
US5946907A (en) Engine catalyst activation determining device and engine controller related thereto
JP2003065027A (en) Control device for exhaust air temperature sensor for internal combustion engine
JP3695100B2 (en) Exhaust gas purification device for internal combustion engine
JPH01227815A (en) Exhaust gas purifying device
JP2910034B2 (en) Air-fuel ratio control device for internal combustion engine
JPH03233127A (en) Two-cycle engine and its exhaust gas purifier
JP3570125B2 (en) In-cylinder injection internal combustion engine
JPS6241943A (en) Exhaust gas purifying device in internal combustion engine
JPH01227814A (en) Exhaust gas purifying device
JPH02283813A (en) Catalytic converter unit
JPH07103036A (en) Air fuel ratio controller of engine
JPH04370312A (en) Exhaust gas device for internal combustion engine
JP3038614B2 (en) Engine exhaust purification device
JPH11343913A (en) Air-fuel ratio controller for internal combustion engine
JPH04330320A (en) Air suction system
JPS6229956Y2 (en)
JP3026647B2 (en) Exhaust purification system for two-cycle engine
JPS638829Y2 (en)
JP2599941B2 (en) Engine fuel control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees