JPS638829Y2 - - Google Patents

Info

Publication number
JPS638829Y2
JPS638829Y2 JP12422280U JP12422280U JPS638829Y2 JP S638829 Y2 JPS638829 Y2 JP S638829Y2 JP 12422280 U JP12422280 U JP 12422280U JP 12422280 U JP12422280 U JP 12422280U JP S638829 Y2 JPS638829 Y2 JP S638829Y2
Authority
JP
Japan
Prior art keywords
secondary air
intake
air supply
exhaust
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12422280U
Other languages
Japanese (ja)
Other versions
JPS5747739U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12422280U priority Critical patent/JPS638829Y2/ja
Publication of JPS5747739U publication Critical patent/JPS5747739U/ja
Application granted granted Critical
Publication of JPS638829Y2 publication Critical patent/JPS638829Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、内燃機関の2次空気供給装置に係
り、特に、三元触媒により排気ガス浄化対策が施
された自動車用エンジンに用いるに好適な、排気
系で検知される排気ガス中の酸素濃度に応じて、
触媒入側の酸素濃度が理論空燃比近傍相当となる
よう2次空気を供給する内燃機関の2次空気供給
装置の改良に関する。
[Detailed description of the invention] The present invention relates to a secondary air supply device for an internal combustion engine, and is particularly suitable for use in automobile engines equipped with exhaust gas purification measures using a three-way catalyst. Depending on the oxygen concentration in the exhaust gas,
The present invention relates to an improvement in a secondary air supply device for an internal combustion engine that supplies secondary air so that the oxygen concentration on the catalyst inlet side is close to the stoichiometric air-fuel ratio.

自動車用エンジン等の内燃機関から排出される
有害成分には、炭化水素(HC)、一酸化炭素
(CO)、窒素酸化物(NOx)がある。これらの排
出量を軽減する対策としては種々あるが、このう
ち、三元触媒を用いるものがある。これは、触媒
入側の排気ガス中の酸素濃度が、理論空燃比の混
合気を燃焼させた場合の酸素濃度(以下理論空燃
比近傍相当と称する)である場合に、触媒が、
HC及びCOを酸化する作用とNOxを還元する作
用を合わせ持つことを利用して、排気ガス中の有
害成分を単一の触媒で浄化するものである。この
ような三元触媒を用いた排気ガス浄化装置は種々
あるが、そのうち、排気系で検知される排気ガス
中の酸素濃度に応じて、触媒入側の酸素濃度が理
論空燃比近傍相当となるよう2次空気を供給する
2次空気供給装置を備えたものがある。これは、
例えば第1図に示す如く、エアクリーナ10、絞
り弁12aが配設された気化器12、吸気マニホ
ルド14、図示されないエンジン燃焼室を有する
エンジン本体16、排気マニホルド18及び該排
気マニホルド18の下流側に配設された三元触媒
コンバータ20を有してなる自動車用エンジンに
おいて、排気マニホルド18に配設され触媒入側
の排気ガス中の酸素濃度を検出する酸素濃度セン
サ22と、吸気マニホルド14に接続された吸気
側2次空気供給管路24と、該吸気側2次空気供
給管路24を開閉制御する、弁体26a及び弁座
26bを有してなる吸気側2次空気制御弁26
と、前記酸素濃度センサ22の出力に応じて、三
元触媒コンバータ20入側の排気ガス中の酸素濃
度が理論空燃比近傍相当となるよう前記吸気側2
次空気制御弁26を開閉制御する電子制御回路2
8とを備えている。図において、30はエアフイ
ルタである。
Harmful components emitted from internal combustion engines such as automobile engines include hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). There are various measures to reduce these emissions, among which one uses a three-way catalyst. This means that when the oxygen concentration in the exhaust gas on the catalyst entry side is the oxygen concentration when a mixture at the stoichiometric air-fuel ratio is combusted (hereinafter referred to as equivalent to the stoichiometric air-fuel ratio), the catalyst
It uses a single catalyst to purify harmful components in exhaust gas by combining the effects of oxidizing HC and CO and reducing NOx. There are various types of exhaust gas purification devices that use such three-way catalysts, but among them, the oxygen concentration at the entrance side of the catalyst is equivalent to near the stoichiometric air-fuel ratio, depending on the oxygen concentration in the exhaust gas detected in the exhaust system. Some devices are equipped with a secondary air supply device that supplies secondary air. this is,
For example, as shown in FIG. 1, an air cleaner 10, a carburetor 12 in which a throttle valve 12a is disposed, an intake manifold 14, an engine body 16 having an engine combustion chamber (not shown), an exhaust manifold 18, and a downstream side of the exhaust manifold 18. In an automobile engine having a three-way catalytic converter 20 arranged therein, an oxygen concentration sensor 22 which is arranged in the exhaust manifold 18 and detects the oxygen concentration in the exhaust gas on the catalyst inlet side is connected to the intake manifold 14. an intake-side secondary air supply pipe 24 that has been opened and closed, and an intake-side secondary air control valve 26 that has a valve body 26a and a valve seat 26b that controls the opening and closing of the intake-side secondary air supply pipe 24.
According to the output of the oxygen concentration sensor 22, the intake side 2 is adjusted so that the oxygen concentration in the exhaust gas on the inlet side of the three-way catalytic converter 20 is close to the stoichiometric air-fuel ratio.
Electronic control circuit 2 that controls opening and closing of the next air control valve 26
8. In the figure, 30 is an air filter.

このような2次空気供給装置によれば、酸素濃
度センサ22により検知される排気ガス中の酸素
濃度に応じて三元触媒コンバータ20入側の酸素
濃度が理論空燃比近傍相当となるよう吸気側2次
空気制御弁26が開閉制御されるため、三元触媒
コンバータ20において、十分な浄化性能を発揮
できるという特徴を有するが、従来は、吸気マニ
ホルド14に接続された吸気側2次空気供給管路
24を介して、吸気側のみに2次空気を供給する
ようにしていたため、絞り弁12aが閉じられる
アイドリング時及び減速時に問題点を有した。即
ち、アイドリング時においては、エンジン回転を
円滑に保持するためには、エンジン本体16のエ
ンジン燃焼室に供給される混合気の空燃比は、理
論空燃比近傍より若干濃厚側であるほうが望まし
いが、前記従来例においては、アイドリング時に
おいても酸素濃度センサ22の出力に応じて吸気
側2次空気制御弁26が開閉制御されてしまうた
め、理論空燃比近傍に維持され、望ましい空燃比
より希薄側となつて、アイドル回転が不安定とな
ることがある。又、減速時においては、エンジン
自体が高回転しているにも拘らず絞り弁12aが
閉じられるため、吸気マニホルド14内壁等に付
着していた燃料成分が急激に蒸発しエンジン本体
16のエンジン燃焼室内の混合気が過濃となつ
て、排気マニホルド18に燃焼ガスが大量に排出
されるため、吸気側2次空気供給管路24のみか
ら供給される2次空気量では十分な2次空気を供
給できず、理論空燃比近傍相当より酸素濃度が小
さい排気ガスが導入された三元触媒コンバータ2
0が過熱してしまう。前者の問題点を解消するべ
く、吸気マニホルド14の代わりに排気マニホル
ド18に2次空気を供給することも考えられる
が、排気マニホルド18のみに2次空気を供給す
る方法では、減速時の2次空気の供給が不足する
だけでなく、吸気系の空燃比を常に理論空燃比よ
り過濃側に保持する必要があるため、燃費性能が
低下してしまうという問題点を有した。
According to such a secondary air supply device, the intake side is adjusted so that the oxygen concentration on the inlet side of the three-way catalytic converter 20 corresponds to the vicinity of the stoichiometric air-fuel ratio according to the oxygen concentration in the exhaust gas detected by the oxygen concentration sensor 22. Since the secondary air control valve 26 is controlled to open and close, the three-way catalytic converter 20 has the characteristic of being able to exhibit sufficient purification performance. Since secondary air was supplied only to the intake side through the passage 24, there was a problem during idling and deceleration when the throttle valve 12a is closed. That is, in order to maintain smooth engine rotation during idling, it is desirable that the air-fuel ratio of the air-fuel mixture supplied to the engine combustion chamber of the engine body 16 be slightly richer than near the stoichiometric air-fuel ratio; In the conventional example, since the intake side secondary air control valve 26 is controlled to open and close according to the output of the oxygen concentration sensor 22 even during idling, the air-fuel ratio is maintained near the stoichiometric air-fuel ratio, and the air-fuel ratio is leaner than the desired air-fuel ratio. As a result, idle rotation may become unstable. Furthermore, during deceleration, the throttle valve 12a is closed even though the engine itself is rotating at high speed, so fuel components adhering to the inner wall of the intake manifold 14, etc., rapidly evaporate, causing engine combustion in the engine body 16. Since the air-fuel mixture in the room becomes too rich and a large amount of combustion gas is discharged to the exhaust manifold 18, it is difficult to supply enough secondary air with the amount of secondary air supplied only from the intake side secondary air supply pipe 24. The three-way catalytic converter 2 was unable to be supplied with exhaust gas that had an oxygen concentration lower than that equivalent to the stoichiometric air-fuel ratio.
0 overheats. In order to solve the former problem, it is conceivable to supply secondary air to the exhaust manifold 18 instead of the intake manifold 14, but with the method of supplying secondary air only to the exhaust manifold 18, the secondary air during deceleration Not only is there a shortage of air supply, but the air-fuel ratio in the intake system must always be maintained on the richer side than the stoichiometric air-fuel ratio, resulting in a reduction in fuel efficiency.

本考案は、前記従来の欠点を解消するべくなさ
れたもので、燃費性能を低下することなく、アイ
ドリング時のアイドル不安定、減速時の触媒過熱
を共に防止できる内燃機関の2次空気供給装置を
提供することを目的とする。
The present invention was made to eliminate the above-mentioned conventional drawbacks, and provides a secondary air supply device for an internal combustion engine that can prevent both idling instability during idling and catalyst overheating during deceleration without deteriorating fuel efficiency. The purpose is to provide.

本考案は、排気系で検知される排気ガス中の酸
素濃度に応じて、触媒入側の酸素濃度が理論空燃
比近傍相当となるよう2次空気を供給する内燃機
関の2次空気供給装置において、吸気系に2次空
気を供給する吸気系2次空気供給手段と、排気系
に2次空気を供給する排気系2次空気供給手段と
を備え、アイドリング時には前記排気系2次空気
供給手段により排気系のみに2次空気を供給し、
減速時には前記吸気系2次空気供給手段及び排気
系2次空気供給手段により吸気系と排気系の両者
に2次空気を供給するようにして、前記目的を達
成したものである。
The present invention is applied to a secondary air supply device for an internal combustion engine that supplies secondary air so that the oxygen concentration at the entrance side of the catalyst corresponds to the vicinity of the stoichiometric air-fuel ratio according to the oxygen concentration in the exhaust gas detected in the exhaust system. , an intake system secondary air supply means for supplying secondary air to the intake system, and an exhaust system secondary air supply means for supplying secondary air to the exhaust system, and when idling, the exhaust system secondary air supply means Supplying secondary air only to the exhaust system,
The above object is achieved by supplying secondary air to both the intake system and the exhaust system by the intake system secondary air supply means and the exhaust system secondary air supply means during deceleration.

以下図面を参照して、本考案の実施例を詳細に
説明する。本実施例は、第2図に示す如く、従来
と同様の、酸素濃度センサ22、吸気側2次空気
供給管路24、吸気側2次空気制御弁26が配設
された内燃機関の2次空気供給装置において、更
に、排気マニホルド18に接続された、途中にリ
ード弁42が配設された排気側2次空気供給管路
40と、該排気側2次空気供給管路40を開閉制
御する、弁体44a、弁座44b、前記弁体44
aにロツド44cを介して接続されたダイヤフラ
ム44d、該ダイヤフラム44dを常時右方に付
勢する圧縮ばね44e、ダイヤフラム室44fか
らなる排気側2次空気制御弁44と、エンジン温
度に応じて、前記排気側2次空気制御弁44のダ
イヤフラム室44fに吸気マニホルド14の負圧
ポート14aから供給される吸気負圧を開閉制御
し、エンジン暖機終了前に排気側2次空気制御弁
44が開かれるのを防止する温度感知弁46と、
絞り弁12aの全閉状態からアイドリング時或い
は減速時にあることを検出する絞り弁開度スイツ
チ48と、吸気マニホルド14の吸気負圧が高い
時に減速時を検出する負圧スイツチ50と、前記
酸素濃度センサ22、絞り弁開度スイツチ48及
び負圧スイツチ50等の出力に応じて、エンジン
がアイドリング時或いは減速時以外の通常運転状
態にある時には、前記温度感知弁46を閉じるこ
とによつて排気側2次空気制御弁44を閉成し
て、前記酸素濃度センサ22の出力に応じて、吸
気側2次空気制御弁26のみを開閉制御すること
によつて三元触媒コンバータ20入側の排気ガス
中の酸素濃度が理論空燃比近傍相当となるよう吸
気系のみに2次空気を供給し、アイドリング時に
は前記吸気側2次空気制御弁26を閉じると共に
前記温度感知弁46を開放することによつて排気
側2次空気制御弁44を開放して、排気側2次空
気供給管路40及びリード弁42を介して排気マ
ニホルド18のみに2次空気を供給し、一方減速
時には、前記酸素濃度センサ22の出力に応じて
前記吸気側2次空気制御弁26を開閉制御すると
共にエンジン暖機終了後であれば温度感知弁46
を開放することによつて排気側2次空気制御弁4
4も開放して、前記吸気側2次空気供給管路24
及び排気側2次空気供給管路40を介して、吸気
マニホルド14及び排気マニホルド18の両者に
2次空気を供給する電子制御回路52とを備えた
ものである。図において、54は、エアフイルタ
である。
Embodiments of the present invention will be described in detail below with reference to the drawings. As shown in FIG. 2, in this embodiment, the secondary air supply of an internal combustion engine is provided with an oxygen concentration sensor 22, an intake side secondary air supply pipe 24, and an intake side secondary air control valve 26, as in the conventional case. The air supply device further controls the opening and closing of an exhaust side secondary air supply pipe 40 connected to the exhaust manifold 18 and having a reed valve 42 disposed therebetween, and the exhaust side secondary air supply pipe 40. , valve body 44a, valve seat 44b, said valve body 44
a, a compression spring 44e that always urges the diaphragm 44d to the right, and a diaphragm chamber 44f; The intake negative pressure supplied from the negative pressure port 14a of the intake manifold 14 to the diaphragm chamber 44f of the exhaust side secondary air control valve 44 is opened/closed, and the exhaust side secondary air control valve 44 is opened before the end of engine warm-up. a temperature sensing valve 46 that prevents
A throttle valve opening switch 48 detects whether the throttle valve 12a is in idling or deceleration state from a fully closed state, a negative pressure switch 50 which detects deceleration state when the intake manifold 14 has a high intake negative pressure, and the oxygen concentration Depending on the outputs of the sensor 22, the throttle valve opening switch 48, the negative pressure switch 50, etc., when the engine is in a normal operating state other than idling or decelerating, the temperature sensing valve 46 is closed to control the temperature on the exhaust side. By closing the secondary air control valve 44 and controlling the opening and closing of only the intake side secondary air control valve 26 according to the output of the oxygen concentration sensor 22, the exhaust gas on the inlet side of the three-way catalytic converter 20 is By supplying secondary air only to the intake system so that the oxygen concentration in the engine is close to the stoichiometric air-fuel ratio, and at the time of idling, the intake side secondary air control valve 26 is closed and the temperature sensing valve 46 is opened. The exhaust side secondary air control valve 44 is opened to supply secondary air only to the exhaust manifold 18 via the exhaust side secondary air supply pipe 40 and the reed valve 42. On the other hand, during deceleration, the oxygen concentration sensor 22 The opening and closing of the intake side secondary air control valve 26 is controlled according to the output of the temperature sensing valve 46 after the engine has been warmed up.
By opening the exhaust side secondary air control valve 4
4 is also opened, and the intake side secondary air supply pipe 24 is opened.
and an electronic control circuit 52 that supplies secondary air to both the intake manifold 14 and the exhaust manifold 18 via the exhaust side secondary air supply pipe 40. In the figure, 54 is an air filter.

以下作用を説明する。まず、絞り弁12aの全
閉状態を検知する絞り弁開度スイツチ48がオフ
である通常運転状態においては、電子制御回路5
2は、酸素濃度センサ22の出力に応じて、従来
と同様に吸気側2次空気制御弁26のみを開閉制
御する。この時排気側2次空気制御弁44は、温
度感知弁46が閉じられたままであるため、圧縮
ばね44eの作用により弁体44aが弁座44b
を閉じたままの状態に保持される。従つて2次空
気はすべて吸気マニホルド14に供給され、三元
触媒コンバータ20入側の排気ガス中の酸素酸度
が理論空燃比近傍相当となるよう、従来と同様に
帰還制御される。この時において、エンジン本体
16のエンジン燃焼室に実際に供給される混合気
の空燃比が理論空燃比近傍に保持されるため、エ
ンジン燃焼室では効率の良い燃焼が行なわれ、燃
費性能が低下されることはない。
The action will be explained below. First, in a normal operating state in which the throttle valve opening switch 48, which detects the fully closed state of the throttle valve 12a, is off, the electronic control circuit 5
2 controls the opening and closing of only the intake side secondary air control valve 26 in accordance with the output of the oxygen concentration sensor 22, as in the conventional case. At this time, in the exhaust side secondary air control valve 44, since the temperature sensing valve 46 remains closed, the valve body 44a is moved to the valve seat 44b by the action of the compression spring 44e.
is kept closed. Therefore, all of the secondary air is supplied to the intake manifold 14, and feedback control is performed in the same manner as in the conventional art so that the oxygen acidity in the exhaust gas on the inlet side of the three-way catalytic converter 20 is close to the stoichiometric air-fuel ratio. At this time, the air-fuel ratio of the air-fuel mixture actually supplied to the engine combustion chamber of the engine body 16 is maintained near the stoichiometric air-fuel ratio, so that efficient combustion occurs in the engine combustion chamber and fuel efficiency is not degraded. It never happens.

一方絞り弁開度スイツチ48がオンとなつて絞
り弁12aが閉じられたことが検知されると、負
圧スイツチ50の出力状態に応じて、アイドリン
グ時であるのか或いは減速時であるのかが判別さ
れる。即ち、エンジン回転数が低いため吸気負圧
も500mmHg程度と低く負圧スイツチ50の出力が
オフである時にはアイドリング時であると判定
し、一方、エンジン回転数が高いため吸気負圧が
600mmHg以上と高く負圧スイツチ50の出力がオ
ンである時には減速時であると判別する。負圧ス
イツチ50がオフであるアイドリング時には、吸
気側2次空気制御弁26は閉じられ、エンジン暖
機終了後であれば温度感知弁46が開となつて、
排気側2次空気制御弁44のダイヤフラム室44
fに吸気マニホルド14内の吸気負圧が伝達され
る。従つて、圧縮ばね44eに抗してダイヤフラ
ム44dが図の左方に吸引され、弁体44aが弁
座44bから離れ、リード弁42、排気側2次空
気供給管路40を介して排気マニホルド18のみ
に2次空気が供給される。この時において、吸気
マニホルド14には2次空気が供給されないた
め、エンジン本体16のエンジン燃焼室には理論
空燃比より濃厚側の混合気が供給され、アイドル
回転が安定に持続される。
On the other hand, when it is detected that the throttle valve opening switch 48 is turned on and the throttle valve 12a is closed, it is determined whether the throttle valve is idling or decelerating depending on the output state of the negative pressure switch 50. be done. That is, since the engine speed is low, the intake negative pressure is also low, at about 500 mmHg, and when the output of the negative pressure switch 50 is off, it is determined that the engine is idling.On the other hand, because the engine speed is high, the intake negative pressure is low.
When the output of the negative pressure switch 50 is on at a high level of 600 mmHg or more, it is determined that deceleration is occurring. During idling when the negative pressure switch 50 is off, the intake side secondary air control valve 26 is closed, and after the engine has warmed up, the temperature sensing valve 46 is opened.
Diaphragm chamber 44 of exhaust side secondary air control valve 44
Intake negative pressure within the intake manifold 14 is transmitted to f. Therefore, the diaphragm 44d is sucked to the left in the figure against the compression spring 44e, and the valve body 44a is separated from the valve seat 44b, and the exhaust manifold 18 is moved through the reed valve 42 and the exhaust side secondary air supply pipe 40. Secondary air is supplied only to the At this time, since secondary air is not supplied to the intake manifold 14, an air-fuel mixture richer than the stoichiometric air-fuel ratio is supplied to the engine combustion chamber of the engine body 16, and idling is maintained stably.

一方、絞り弁開度スイツチ48及び負圧スイツ
チ50の出力が共にオンとなる減速時には、電子
制御回路52により酸素濃度センサ22の出力に
応じて吸気側2次空気制御弁26が開閉制御され
ると共に、温度検知弁46と共に開かれる排気側
2次空気制御弁44によりリード弁42及び排気
側2次空気供給管路40を介して排気マニホルド
18にも2次空気が供給される。従つて、この時
においては、吸気マニホルド14及び排気マニホ
ルド18の両者に大量の2次空気が導入されるこ
ととなり、反応に必要な2次空気が十分供給され
ることと大量の2次空気による冷却作用によつ
て、触媒の過熱が防止されると共に排気ガスが浄
化される。更にアフタフアイヤも防止される。
On the other hand, during deceleration when the outputs of the throttle valve opening switch 48 and the negative pressure switch 50 are both turned on, the electronic control circuit 52 controls the opening and closing of the intake side secondary air control valve 26 according to the output of the oxygen concentration sensor 22. At the same time, secondary air is also supplied to the exhaust manifold 18 via the reed valve 42 and the exhaust side secondary air supply pipe 40 by the exhaust side secondary air control valve 44 which is opened together with the temperature detection valve 46 . Therefore, at this time, a large amount of secondary air is introduced into both the intake manifold 14 and the exhaust manifold 18, and it is ensured that the secondary air necessary for the reaction is sufficiently supplied and that the large amount of secondary air The cooling action prevents overheating of the catalyst and purifies the exhaust gas. Furthermore, after-burn is also prevented.

本実施例における吸気管負圧と、吸気マニホル
ド14及び排気マニホルド18に供給される2次
空気総量の関係を第3図に示す。図から明らかな
如く、アイドリング時に比べて、減速時には、吸
気マニホルド及び排気マニホルドに大量の2次空
気が供給されるものである。
FIG. 3 shows the relationship between the intake pipe negative pressure and the total amount of secondary air supplied to the intake manifold 14 and the exhaust manifold 18 in this embodiment. As is clear from the figure, a larger amount of secondary air is supplied to the intake manifold and exhaust manifold during deceleration than during idling.

なお前記実施例においては、絞り弁開度スイツ
チ48及び負圧スイツチ50を用いてアイドリン
グ時及び減速時を検知するようにしていたがアイ
ドリング時及いは減速時を検知する手段はこれに
限定されず、例えば、変速機にシフト位置検出ス
イツチを設け、変速機のシフト位置からアイドリ
ング時等を検知することも勿論可能である。
In the above embodiment, the throttle valve opening switch 48 and the negative pressure switch 50 were used to detect idling and deceleration, but the means for detecting idling and deceleration is limited to this. For example, it is of course possible to provide a shift position detection switch in the transmission and detect idling based on the shift position of the transmission.

前記実施例においては、通常運転時には、酸素
濃度センサ22の出力に応じて吸気側2次空気制
御弁26を開閉制御することにより、吸気マニホ
ルド14に供給される吸気系空燃比を制御するよ
うにしていたが、本考案の適用範囲はこれに限定
されず、通常運転時に、酸素濃度センサの出力に
応じて排気側2次空気制御弁を開閉制御すること
により触媒入側の排気ガス中の酸素濃度が理論空
燃比近傍相当となるようにするものにも同様に適
用できることは明らかである。
In the embodiment described above, during normal operation, the intake system air-fuel ratio supplied to the intake manifold 14 is controlled by controlling the opening and closing of the intake side secondary air control valve 26 according to the output of the oxygen concentration sensor 22. However, the scope of application of the present invention is not limited to this, and during normal operation, the exhaust side secondary air control valve is controlled to open and close according to the output of the oxygen concentration sensor, thereby controlling the oxygen in the exhaust gas on the catalyst inlet side. It is obvious that the present invention can be similarly applied to a method in which the concentration is made to be close to the stoichiometric air-fuel ratio.

以上説明したとおり、本考案によれば、燃費性
能を損うことなく、アイドリング不安定、減速時
の触媒過熱を共に防止できるという優れた効果を
有する。
As explained above, the present invention has the excellent effect of preventing both unstable idling and catalyst overheating during deceleration without impairing fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の内燃機関の2次空気供給装置
の一例を示す一部断面図を含むブロツク線図、第
2図は、本考案に係る内燃機関の2次空気供給装
置の実施例を示す一部断面図を含むブロツク線
図、第3図は、前記実施例における吸気管負圧と
2次空気総量の関係を示す線図である。 12……気化器、14……吸気マニホルド、1
6……エンジン本体、18……排気マニホルド、
20……三元触媒コンバータ、22……酸素濃度
センサ、24……吸気側2次空気供給管路、26
……吸気側2次空気制御弁、40……排気側2次
空気供給管路、42……リード弁、44……排気
側2次空気制御弁、46……温度感知弁、48…
…絞り弁開度スイツチ、50……負圧スイツチ、
52……電子制御回路。
Fig. 1 is a block diagram including a partial sectional view showing an example of a conventional secondary air supply device for an internal combustion engine, and Fig. 2 shows an embodiment of the secondary air supply device for an internal combustion engine according to the present invention. FIG. 3 is a diagram showing the relationship between the intake pipe negative pressure and the total amount of secondary air in the embodiment. 12... Carburetor, 14... Intake manifold, 1
6...Engine body, 18...Exhaust manifold,
20... Three-way catalytic converter, 22... Oxygen concentration sensor, 24... Intake side secondary air supply pipe, 26
...Intake side secondary air control valve, 40...Exhaust side secondary air supply pipe, 42...Reed valve, 44...Exhaust side secondary air control valve, 46...Temperature sensing valve, 48...
... Throttle valve opening switch, 50... Negative pressure switch,
52...Electronic control circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 排気系で検知される排気ガス中の酸素濃度に応
じて、触媒入側の酸素濃度が理論空燃比近傍相当
となるよう2次空気を供給する内燃機関の2次空
気供給装置において、吸気系に2次空気を供給す
る吸気系2次空気供給手段と、排気系に2次空気
を供給する排気系2次空気供給手段とを備え、ア
イドリング時には前記排気系2次空気供給手段に
より排気系のみに2次空気を供給し、減速時には
前記吸気系2次空気供給手段及び排気系2次空気
供給手段により吸気系と排気系の両者に2次空気
を供給するようにしたことを特徴とする内燃機関
の2次空気供給装置。
The secondary air supply system of an internal combustion engine supplies secondary air to the intake system so that the oxygen concentration at the entrance side of the catalyst is equivalent to near the stoichiometric air-fuel ratio according to the oxygen concentration in the exhaust gas detected in the exhaust system. An intake system secondary air supply means for supplying secondary air, and an exhaust system secondary air supply means for supplying secondary air to the exhaust system, and when idling, the exhaust system secondary air supply means supplies only the exhaust system. An internal combustion engine characterized in that secondary air is supplied to both the intake system and the exhaust system by the intake system secondary air supply means and the exhaust system secondary air supply means during deceleration. secondary air supply device.
JP12422280U 1980-09-01 1980-09-01 Expired JPS638829Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12422280U JPS638829Y2 (en) 1980-09-01 1980-09-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12422280U JPS638829Y2 (en) 1980-09-01 1980-09-01

Publications (2)

Publication Number Publication Date
JPS5747739U JPS5747739U (en) 1982-03-17
JPS638829Y2 true JPS638829Y2 (en) 1988-03-16

Family

ID=29484767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12422280U Expired JPS638829Y2 (en) 1980-09-01 1980-09-01

Country Status (1)

Country Link
JP (1) JPS638829Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595822A (en) * 1982-07-01 1984-01-12 Honda Motor Co Ltd Secondary air flow control device for engine

Also Published As

Publication number Publication date
JPS5747739U (en) 1982-03-17

Similar Documents

Publication Publication Date Title
JPS5951667B2 (en) cylinder number control engine
JPH0123649B2 (en)
JPS638829Y2 (en)
JPH0674765B2 (en) Air-fuel ratio control method for internal combustion engine
JPS6128033Y2 (en)
JPH028133B2 (en)
JPS5999050A (en) Control device for internal-combustion engine
JPS6139065Y2 (en)
JPS6034739Y2 (en) Secondary air control device for automotive internal combustion engines
JPS624532B2 (en)
JPH0636266Y2 (en) Exhaust gas purification device for internal combustion engine
JPH04353255A (en) Evaporative emission system
JPS6121557Y2 (en)
JP2982457B2 (en) Secondary air supply control device for internal combustion engine
JPS61247842A (en) Secondary air control system
JPS624678Y2 (en)
JPS6120270Y2 (en)
JPS6024898Y2 (en) Engine secondary air control device
JP3552561B2 (en) Internal combustion engine with exhaust gas purification device
JPS6120275Y2 (en)
JPS6244107Y2 (en)
JPS6318765Y2 (en)
JPH0322532Y2 (en)
JPS6316824Y2 (en)
JPS6214366Y2 (en)