JPH01227815A - Exhaust gas purifying device - Google Patents

Exhaust gas purifying device

Info

Publication number
JPH01227815A
JPH01227815A JP63053159A JP5315988A JPH01227815A JP H01227815 A JPH01227815 A JP H01227815A JP 63053159 A JP63053159 A JP 63053159A JP 5315988 A JP5315988 A JP 5315988A JP H01227815 A JPH01227815 A JP H01227815A
Authority
JP
Japan
Prior art keywords
engine
catalyst
exhaust gas
secondary air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63053159A
Other languages
Japanese (ja)
Inventor
Muneyoshi Nanba
宗義 難波
Yasufumi Tsunetomi
常富 容史
Michiyasu Yoshida
吉田 道保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP63053159A priority Critical patent/JPH01227815A/en
Publication of JPH01227815A publication Critical patent/JPH01227815A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To prevent the occurrence of harmful components during the warming up of an engine by suppling the secondary air during a time from the low temperature start-up of the engine to its warmed up operation where exhaust gas can be purified using catalytic converter rhodium, and metering fuel in the state of the engine warmed up beyond a low temperature starting up range. CONSTITUTION:The secondary air supply section 3, where an air cleaner 3A, the secondary air supply valve 4 and a reed valve 3B are arranged in order, is connected to the upstream side of catalytic converter rhodium 2 in an exhaust pipe 1a. The valve 2 is formed as a vacuum actuating valve, and its backpressure part 4b is connected to a negative pressure generating part 5 which is formed of an electromagnetically driven directional control valve 5A and a backpressure pipe 5B connected to an intake pipe 1b. The valve 5A is controlled so that it may be changed through a control part 6 to the side of a vacuum pipe 5B to open valve 4 during a time from the low temperature start-up of an engine to its warmed up operation and when the temperature of the catalyst is below a fixed value. In addition, fuel is meteringly controlled on the rich-lean state of a fuel-air ratio in the case where the engine has been warmed up beyond a low temperature starting up range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車用エンジンの排気ガス浄化装置に関し
、特に、メタノールを燃料とするエンジンでの排気ガス
浄化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an exhaust gas purification device for an automobile engine, and particularly to an exhaust gas purification device for an engine using methanol as fuel.

(従来の技術) 周知のように、自動車用エンジンの燃料として安価なメ
タノールを用いることが提案されている。
(Prior Art) As is well known, it has been proposed to use inexpensive methanol as a fuel for automobile engines.

(発明が解決しようとする課題) ところで、上述したメタノールを用いる場合にあっては
、例えば、低温始動後の暖気運転時において、第5図示
のように、有害成分であるホルムアルデヒドが大量に発
生するとされている。
(Problem to be Solved by the Invention) By the way, when using the above-mentioned methanol, for example, during warm-up operation after starting at a low temperature, a large amount of formaldehyde, which is a harmful component, may be generated as shown in Figure 5. has been done.

このホルムアルデヒドは、〔表1〕で示すように、白金
(Pt)−ロジュウム(Rh)系の三元触媒(TυC)
によって浄化するのが効率が良いとされ、かつ、混合気
が理論空燃比よりもリーンな条件下、換言すれば、酸素
が過剰に含まれている状態において早く浄化されるが、
しかしながら、低温始動時等においては、混合気は理論
空燃比に対して、リッチな条件下となっているため、上
述した条件と異なり、ホルムアルデヒドの発生が顕著と
なるという問題があった。しかも、上述したように、ホ
ルムアルデヒドを効率良く除去するための条件である過
剰酸素供給状態では、触媒内での温度が上昇し、これに
よって、排気ガス温度も上昇することになるので、排気
ガス中でNOxが増加するという新たな問題が生じる虞
れもあった。
As shown in Table 1, this formaldehyde is produced using a platinum (Pt)-rhodium (Rh) three-way catalyst (TυC).
It is said that it is more efficient to purify the air-fuel mixture by using air-fuel ratio, and the air-fuel mixture is purified more quickly when the air-fuel mixture is leaner than the stoichiometric air-fuel ratio, in other words, when it contains excess oxygen.
However, during low-temperature startup, etc., the air-fuel mixture is under conditions that are rich with respect to the stoichiometric air-fuel ratio, so unlike the above-mentioned conditions, there is a problem in that formaldehyde generation becomes noticeable. Moreover, as mentioned above, in the state of excessive oxygen supply, which is a condition for efficiently removing formaldehyde, the temperature inside the catalyst increases, which also causes the exhaust gas temperature to rise. There was also the risk that a new problem would arise, such as an increase in NOx.

このような現象は、第6図示のように、暖機時間と空気
過剰率とに対する空気供給時間によるホルムアルデヒド
、および、NOxの浄化率を表す関係からも明らかにさ
れている(例えば、自工会論文集Nα36,1987)
This phenomenon is also clarified from the relationship between warm-up time and excess air ratio, as well as formaldehyde and NOx purification rates depending on air supply time, as shown in Figure 6. Nα36, 1987)
.

〔表 1 ) (SEA872052)Aldehyd
e Efficiency−FTP Driving 
CycleThree−Way Operating 
Mode12Pt:Rh(40)          
    95.4(%)12Pt : Rh (40)
R95,49Pt:Rh(10)          
     92.55Pt:Rh(40)      
         91.9CuO89,2 Pd(10)                 88
.23Pt : 2Pd (20)         
     86.9Pd+BM(5)        
        84.8Pd(20)     −8
3,7 Pd (40)                 8
3.7Ag(150)               
 76.510Ag:Rh(150)        
      66.8Pd+BM (35)     
               52・8(目 的) そこで本発明の目的は、混合気の空燃比に応じて発生す
る有害物質、特に、安価な燃料を用いた場合の低温始動
時を含む暖機運転時において触媒が活性化状態に移行す
るまでの間に発生する有害成分を略完全に除去して経済
的な燃料の使用を可能にできる新規な排気ガス浄化装置
を得ることにある。
[Table 1] (SEA872052) Aldehyd
e Efficiency-FTP Driving
CycleThree-Way Operating
Mode12Pt:Rh(40)
95.4 (%) 12Pt: Rh (40)
R95,49Pt:Rh(10)
92.55Pt:Rh(40)
91.9CuO89,2 Pd(10) 88
.. 23Pt: 2Pd (20)
86.9Pd+BM(5)
84.8Pd(20) -8
3,7 Pd (40) 8
3.7Ag (150)
76.510Ag:Rh(150)
66.8Pd+BM (35)
52.8 (Purpose) Therefore, the purpose of the present invention is to prevent harmful substances generated depending on the air-fuel ratio of the air-fuel mixture, especially when the catalyst is activated during warm-up including low-temperature starting when using inexpensive fuel. It is an object of the present invention to provide a new exhaust gas purifying device that can substantially completely remove harmful components generated before the transition to a state of combustion, thereby making it possible to use economical fuel.

(課題を解決するための手段) この目的を達成するため、本発明は、排気ガスの流動方
向における排気ガス浄化用触媒の上流側に、上記触媒内
で燃焼時と同じ化学反応を起こさせるための2次空気を
供給するようにし、この2次空気の供給時期を、エンジ
ンの低温始動時において、排気ガスの空燃比を基に三元
触媒に対する空燃比のフィードバック制御が行われる暖
機運転に至るまでの間、換言すれば、触媒が活性化する
までの間とすることを提案するものである。
(Means for Solving the Problems) In order to achieve this object, the present invention provides a method for causing the same chemical reaction as during combustion within the catalyst on the upstream side of the exhaust gas purifying catalyst in the flow direction of exhaust gas. The supply timing of this secondary air is set during warm-up operation in which feedback control of the air-fuel ratio to the three-way catalyst is performed based on the air-fuel ratio of exhaust gas when the engine is started at a low temperature. In other words, it is proposed that the catalyst be activated.

(作 用) 本発明によれば、低温始動時において有害成分であるホ
ルムアルデヒドを大量に発生するメタノールを用いたエ
ンジンにおいて、低温始動時から、触媒が活性化して1
通常の三元触媒を用いた排気ガス浄化が行なえる暖機運
転に至るまでの間には、触媒に対する酸素を含む2次空
気の供給を可能にしてホルムアルデヒドの浄化を促進し
、暖機時、換言すれば、触媒が活性化した時点では、通
常の排気ガスの空燃比検出による排気ガス浄化を行ない
、NOxの発生を低下させる。
(Function) According to the present invention, in an engine using methanol that generates a large amount of formaldehyde, which is a harmful component, when started at low temperature, the catalyst is activated and
During warm-up, when exhaust gas purification can be performed using a normal three-way catalyst, secondary air containing oxygen can be supplied to the catalyst to promote formaldehyde purification. In other words, when the catalyst is activated, the exhaust gas is purified by normal detection of the air-fuel ratio of the exhaust gas, and the generation of NOx is reduced.

(実 施 例) 以下、第1図乃至第3図において、本発明実施例の詳細
を説明する。
(Embodiment) Hereinafter, details of an embodiment of the present invention will be explained with reference to FIGS. 1 to 3.

第1図は、本発明実施例による排気ガス浄化装置全体構
成を示すブロック図である。
FIG. 1 is a block diagram showing the overall configuration of an exhaust gas purification apparatus according to an embodiment of the present invention.

図において、エンジン1の排気管la中には、矢印Aで
示す排気ガスの流動方向におけるマフラ(図示されず)
に至る上流側に、例えば、白金(Pt)−ロジュウム(
Rh)系の三元触媒2が位置し、そして、排気ガスの流
動方向における三元触媒2の上流側には、2次空気の取
り入れ口1alが形成しである。
In the figure, in the exhaust pipe la of the engine 1, there is a muffler (not shown) in the flow direction of exhaust gas indicated by arrow A.
For example, platinum (Pt)-rhodium (
A Rh) system three-way catalyst 2 is located, and a secondary air intake port 1al is formed upstream of the three-way catalyst 2 in the flow direction of exhaust gas.

この取り入れ口1alには、2次空気の供給部3が接続
してあり、この2次空気供給部3は、吸気系の始端側に
位置するエアクリーナ3Aと、このエアクリーナ3Aか
らの外気を排気の脈動を利用して排気管la内に導入す
るリード弁3Bとで構成されている。そして、上述した
リード弁3Bと排気管1aとを連絡する供給パイプ3C
の途中には、2次空気供給弁4が配置されている。
A secondary air supply section 3 is connected to this intake port 1al, and this secondary air supply section 3 is connected to an air cleaner 3A located at the starting end side of the intake system and the outside air from this air cleaner 3A to the exhaust system. It is comprised of a reed valve 3B that introduces the air into the exhaust pipe la using pulsation. A supply pipe 3C that connects the above-mentioned reed valve 3B and the exhaust pipe 1a
A secondary air supply valve 4 is arranged in the middle.

すなわち、この2次空気供給弁4は、2次空気の供給を
制御するために供給パイプ3Cを開閉するものであって
、本実施例の場合、供給パイプ3Cに連結された2次空
気通過部4aと背圧部4bとの間にダイアフラム4Aを
用いた負圧作動弁で構成され、2次空気通過部4aに対
向するダイアフラム4Aの面には供給パイプ3Cを開閉
する弁本体4Cがそして、背圧部4bに対向するダイア
フラム4Aの面には圧縮バネ4dがそれぞれ設けである
That is, this secondary air supply valve 4 opens and closes the supply pipe 3C in order to control the supply of secondary air, and in the case of this embodiment, the secondary air passage portion connected to the supply pipe 3C. 4a and a back pressure part 4b, the diaphragm 4A is configured with a negative pressure operated valve, and on the surface of the diaphragm 4A facing the secondary air passage part 4a, there is a valve body 4C for opening and closing the supply pipe 3C. Compression springs 4d are provided on the surface of the diaphragm 4A facing the back pressure portion 4b.

上述した2次空気供給弁4における背圧部4bには、供
給パイプ3cを開放する向きに弁本体4Cを移動付勢す
る負圧発生部5が接続されている。
A negative pressure generating section 5 is connected to the back pressure section 4b of the secondary air supply valve 4 described above, which biases the valve body 4C in a direction to open the supply pipe 3c.

すなわち、この負圧発生部5は、例えば、電磁駆動式の
切り換え弁5Aと、2次空気供給弁4の背圧部4bとエ
ンジン1の吸気管1bとの間に連結された負圧管5Bと
を備えている。
That is, the negative pressure generating section 5 includes, for example, an electromagnetically driven switching valve 5A, a negative pressure pipe 5B connected between the back pressure section 4b of the secondary air supply valve 4, and the intake pipe 1b of the engine 1. It is equipped with

一方、上述した負圧発生部5における切り換え弁5Aは
、第2図に示す制御部6に電気的接続されて切り換え方
向および1作動時期を制御され、これに追随して2次空
気供給弁4が開閉を制御されるようになっている。
On the other hand, the switching valve 5A in the negative pressure generating section 5 described above is electrically connected to the control section 6 shown in FIG. 2 to control the switching direction and one operation timing. The opening and closing are controlled.

すなわち制御部6は、第2図示のように、I10インタ
ーフェイス6Aに接続された演算処理部を成すマイクロ
コンピュータ6Bを備えており、上述したI10インタ
ーフェイス6Aには、第1図および第3図に示すように
、排気管la内での残留酸素濃度を検知して、理論空燃
比に対する排気ガス空燃比のリッチ、リーン状態を検出
するためのEGOセンサ6aからの信号、エンジン側で
の始動、暖機状態を検出するためのエンジン側での回転
数および、アクセル関度等を検出するセンサ6C16d
からのエンジン出力データを表す信号、ならびに、エン
ジン温度(冷却水温度)を検出するセンサ(図示されず
)からの信号がそれぞれ入力されると共に、三元触媒2
内の温度センサ6bからの信号が入力される。上述した
各信号のうち、三元触媒2からの温度信号以外の信号は
、混合気が理論空燃比よりもリッチな条件下にあるかあ
るいは、リーンな条件下にあるかを割り出すためのデー
タとなるものである。
That is, as shown in FIG. 2, the control section 6 includes a microcomputer 6B serving as an arithmetic processing section connected to the I10 interface 6A. , a signal from the EGO sensor 6a is sent to detect the residual oxygen concentration in the exhaust pipe la and detect whether the exhaust gas air-fuel ratio is rich or lean relative to the stoichiometric air-fuel ratio, and the engine starts and warms up. A sensor 6C16d that detects the engine speed and accelerator function, etc. to detect the state
A signal representing engine output data from the three-way catalyst 2 and a signal from a sensor (not shown) that detects the engine temperature (cooling water temperature) are respectively input.
A signal from the internal temperature sensor 6b is input. Among the above-mentioned signals, the signals other than the temperature signal from the three-way catalyst 2 are data for determining whether the air-fuel mixture is under conditions richer or leaner than the stoichiometric air-fuel ratio. It is what it is.

そして、マイクロコンピュータ6Bでは、ROM6Cで
の制御プログラムおよび、演算のための基礎データに基
づいて位置切り換え弁5Aの駆動制御および、駆動時期
の設定を行ない、2次空気供給弁4の開閉制御を行なう
ようになっている。
The microcomputer 6B controls the drive of the position switching valve 5A, sets the drive timing, and controls the opening and closing of the secondary air supply valve 4 based on the control program in the ROM 6C and basic data for calculation. It looks like this.

すなわち、ROM6Cには、エンジン側での低温始動時
、あるいは三元触媒が活性化していることを判別するた
めの基礎データ、ならびに、混合気の理論空燃比に対す
るリッチ、リーン条件を判別するための基礎データ、お
よび、三元触媒での触媒による浄化能率が低下する要因
、例えば、触媒が熱劣化を起こす温度や耐久性の低下を
来す酸素(02)の存在量に関するデータがそれぞれ納
められており、これらのデータを基に、マイクロコンピ
ュータ6Bにおいて、上述した各部からの入力情報を演
算処理することで2次空気供給弁4の開閉状態が設定さ
れる。
In other words, ROM6C contains basic data for determining when the engine starts at a low temperature or when the three-way catalyst is activated, as well as basic data for determining rich and lean conditions for the stoichiometric air-fuel ratio of the air-fuel mixture. It contains basic data and data on factors that reduce the purification efficiency of a three-way catalyst, such as the temperature at which the catalyst thermally deteriorates and the amount of oxygen (02) that causes a decrease in durability. Based on these data, the open/close state of the secondary air supply valve 4 is set by arithmetic processing of the input information from each section mentioned above in the microcomputer 6B.

本実施例の場合、上述した各部からの信号において、低
温始動時等、混合気が、理論空燃比よりもリッチな条件
下になった場合には、吸気管1bからの負圧付勢を介し
2次空気供給弁4が開放される向きに切り換え弁5Aを
作動させる指令がマイクロコンピュータ6Bから出され
、かつ、この状態において、触媒2内の温度が触媒の熱
劣化を起こす虞れのある温度にまで上昇した時点で、2
次空気供給弁4を閉鎖する向きに作動させる指令がマイ
クロコンピュータ6Bから切り換え弁5Aに対して出さ
れるようになっている。このときの切り換え弁5Aは、
2次空気供給弁4における背圧部4aを大気開放するこ
とができる状態とされ、これによって、2次空気供給弁
4は、弁本体4cが圧縮バネ4dの付勢を受けることに
より供給パイプ3Cを閉鎖する。
In the case of this embodiment, when the air-fuel mixture becomes richer than the stoichiometric air-fuel ratio, such as during a low-temperature start, the signals from each part mentioned above are activated via negative pressure energization from the intake pipe 1b. A command to operate the switching valve 5A in the direction in which the secondary air supply valve 4 is opened is issued from the microcomputer 6B, and in this state, the temperature inside the catalyst 2 is at a temperature that may cause thermal deterioration of the catalyst. 2.
A command to close the air supply valve 4 is issued from the microcomputer 6B to the switching valve 5A. At this time, the switching valve 5A is
The back pressure portion 4a of the secondary air supply valve 4 is brought into a state where it can be released to the atmosphere, and thereby the secondary air supply valve 4 is able to open the supply pipe 3C by the valve body 4c being biased by the compression spring 4d. will be closed.

本実施例は以上のような構造であるから、その作用は第
4図に示すフローチャートの通りである。
Since this embodiment has the above-described structure, its operation is as shown in the flow chart shown in FIG.

すなわち、エンジン運転状態にあると、I10インター
フェイス6Aに対して各部からの信号が入力され、エン
ジン側での回転数、アクセル開度および、EGOセンサ
6aからの情報によって、エンジンの冷却水の温度に基
づいてエンジンの低温始動時であるかどうかを判別しく
5TI)、エンジンが低温始動時にある場合、換言すれ
ば、混合気が理論空燃比よりもリッチ条件下にある場合
には、三元触媒2の温度を検出して、触媒2が活性化し
ていると同等の温度であるかを判別しく5T2)、かつ
、その温度が所定温度以下であるかどうかを判別したう
えで(Sr1)、所定温度以下であれば、切り換え弁5
Aが、2次空気供給弁4を開放するように切り換えられ
る(Sr1)。
That is, when the engine is in operation, signals from various parts are input to the I10 interface 6A, and the temperature of the engine cooling water is adjusted based on the engine speed, accelerator opening, and information from the EGO sensor 6a. 5TI), if the engine is starting at a low temperature, in other words, if the air-fuel mixture is richer than the stoichiometric air-fuel ratio, the three-way catalyst 2 5T2) and determine whether the temperature is below a predetermined temperature (Sr1). If it is below, the switching valve 5
A is switched to open the secondary air supply valve 4 (Sr1).

一方、上述したように、2次空気供給弁4が開放される
と、リード弁3Bを介して排気管1aにおける三元触媒
2の上流側に酸素を含む2次空気が供給されることにな
るが、この酸素の供給によって生じる化学反応により、
三元触媒2内での温度が上昇して行き、触媒の熱劣化を
招く温度1例えば850℃に上昇した場合には、マイク
ロコンピュータ6Bから切り換え弁5Aに対し、2次空
気供給弁4を閉鎖させる向きの作動指令が出され、これ
により排気管1aへの2次空気の供給が停止される(S
r1)。
On the other hand, as described above, when the secondary air supply valve 4 is opened, secondary air containing oxygen is supplied to the upstream side of the three-way catalyst 2 in the exhaust pipe 1a via the reed valve 3B. However, due to the chemical reaction caused by this oxygen supply,
When the temperature inside the three-way catalyst 2 rises and reaches a temperature 1, for example 850°C, which causes thermal deterioration of the catalyst, the microcomputer 6B instructs the switching valve 5A to close the secondary air supply valve 4. An operation command is issued in the direction of
r1).

なお、上述したステップにおいて、三元触媒2の温度が
、その触媒2の活性化が行われている値である場合には
、触媒2でのホルムアルデヒドの浄化が可能となる酸素
を含んでいる場合と同等な状態であるので、マイクロコ
ンピュータ6Bでは、2次空気供給弁を閉鎖する指令が
切り換え弁5Aに出される(Sr1)。
In addition, in the above-mentioned step, if the temperature of the three-way catalyst 2 is a value at which the catalyst 2 is activated, if the catalyst 2 contains oxygen that can purify formaldehyde. Therefore, the microcomputer 6B issues a command to the switching valve 5A to close the secondary air supply valve (Sr1).

そして、上述したI10インターフェイス6Aに対して
各部からの信号が入力され、エンジン側での温度、所謂
、冷却水の温度が低温始動時を外れて暖機運転状態と判
断される値に達すると、上述したように2次空気供給弁
4が閉鎖されることにより2次空気の供給制御が終了し
、過剰な酸素の供給が停止されて触媒温度の上昇により
起こるNOxの増加を防ぎ、一方、三元触媒2における
浄化効率を良好にするため、EGOセンサ6bからの信
号に基づいて理論空燃比に対する混合気の空燃比をリッ
チ、リーンに該当するかどうかを判別し、理論空燃比と
するため、第3図示の燃料制御部7において燃料噴射ノ
ズル7A(第1図参照)からの燃料のメータリング制御
を行ない、NOxの増加を抑えると共に、他の有害成分
である、HClならびに、COの発生も抑制する。この
ような2次空気の供給制御は、第4図中、符号ST6で
示すように、エンジンの動作が停止される間で、継続し
て行われる。
Then, signals from various parts are input to the above-mentioned I10 interface 6A, and when the temperature on the engine side, the so-called cooling water temperature, reaches a value that is determined to be a warm-up operation state outside of the low temperature starting time, As described above, by closing the secondary air supply valve 4, the secondary air supply control is terminated, and excessive oxygen supply is stopped to prevent an increase in NOx caused by an increase in catalyst temperature. In order to improve the purification efficiency in the main catalyst 2, it is determined whether the air-fuel ratio of the air-fuel mixture with respect to the stoichiometric air-fuel ratio corresponds to rich or lean based on the signal from the EGO sensor 6b, and the stoichiometric air-fuel ratio is set. The fuel control unit 7 shown in FIG. 3 performs metering control of fuel from the fuel injection nozzle 7A (see FIG. 1) to suppress the increase in NOx and also to prevent the generation of other harmful components such as HCl and CO. suppress. Such secondary air supply control is continuously performed while the engine operation is stopped, as indicated by the symbol ST6 in FIG. 4.

本実施例によれば、低温始動時において、触媒が活性化
する温度になく、所謂、三元触媒による排気ガス浄化効
率が悪い状態にあっても、2次空気の供給によって、三
元触媒の活性化を比較的短時間で行なうことができるの
で、排気ガス中の有害成分の浄化をエンジンの始動時か
ら短時間のうちに略、完全に行なうことが可能となる。
According to this embodiment, even when the catalyst is not activated at a low temperature and the exhaust gas purification efficiency of the three-way catalyst is poor during low-temperature startup, the three-way catalyst is activated by supplying secondary air. Since activation can be carried out in a relatively short time, harmful components in exhaust gas can be almost completely purified within a short time from the time the engine is started.

(発明の効果) 以上、本発明によれば、安価な燃料であるメタノールを
用いるエンジンの低温始動時において大量に発生するホ
ルムアルデヒドを、エンジンの低温時における始動開始
から短時間のうちに完全に浄化することができるので、
有害成分を出す虞れのある経済的な燃料の使用を可能に
できるエンジンが得られる。
(Effects of the Invention) As described above, according to the present invention, formaldehyde, which is generated in large quantities when an engine using methanol, which is an inexpensive fuel, is started at a low temperature can be completely purified within a short time from the start of the engine at a low temperature. Because you can
An engine is obtained that allows economical use of fuel that may emit harmful components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例による排気ガス浄化装置を示す全
体構成図、第2図は第1図に示した排気ガス装置におけ
る制御部を示すブロック図、第3図は第1図に示した全
体構成における制御系を示すブロック図、第4図は第2
図に示した制御部の作用を説明するためのフローチャー
ト、第5図は燃料としてメタノールを用いた場合のエン
ジン始動後におけるホルムアルデヒドの排出量を示す線
図、第6図は第5図に用いたエンジンでの始動後の経過
時間とホルムアルデヒド、およびNOxの浄化率との関
係を示す線図である。 1・・・エンジン、2・・・三元触媒、3・・・2次空
気供給部、3C・・・供給パイプ、4・・・2次空気供
給弁、5・・・2次空気供給弁駆動用負圧発生部、6.
。 ・制御部、6a・・・EGOセンサ、6b・・・触媒温
度センサ、6A・・・I10インターフェイス、6B・
・・演算処理部、7・・・燃料制御部。 壺ftEl? /6 /外2■ %5図 v?6図
FIG. 1 is an overall configuration diagram showing an exhaust gas purification device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a control section in the exhaust gas device shown in FIG. 1, and FIG. A block diagram showing the control system in the overall configuration, Figure 4 is the second
Figure 5 is a flowchart to explain the action of the control unit shown in Figure 5. Figure 5 is a diagram showing formaldehyde emissions after the engine starts when methanol is used as fuel. Figure 6 is a diagram used in Figure 5. FIG. 2 is a diagram showing the relationship between the elapsed time after starting the engine and the purification rate of formaldehyde and NOx. DESCRIPTION OF SYMBOLS 1... Engine, 2... Three-way catalyst, 3... Secondary air supply part, 3C... Supply pipe, 4... Secondary air supply valve, 5... Secondary air supply valve Driving negative pressure generating section, 6.
.・Control unit, 6a... EGO sensor, 6b... Catalyst temperature sensor, 6A... I10 interface, 6B.
... Arithmetic processing section, 7... Fuel control section. Pot ftEl? /6 /Outside 2■ %5 figure v? Figure 6

Claims (1)

【特許請求の範囲】 排気ガス浄化用の三元触媒に対し、その触媒の排気ガス
導入側で2次空気を供給することにより、上記触媒内で
燃焼と同じ化学反応を行なわせるエンジンの排気ガス浄
化装置において、 上記2次空気の供給路中に設けられ、その供給路を開閉
する2次空気供給手段と、 上記触媒内の温度を検出する手段と、 上記排気ガスの理論空燃比に対するリッチ、リーン状態
を検出する手段と、 上記エンジンの始動/暖機状態および、上記触媒からの
温度情報そして、エンジンに供給される混合気の理論空
燃比に対するリッチ、リーンの各条件を決定するための
情報をそれぞれ入力され、この入力情報に基づいて上記
2次空気供給バルブを開閉制御、ならびに上記触媒での
排気ガス浄化を有効に行なうための混合気に対する燃料
のメータリング制御を行なう制御部とを備え、 上記制御部において、エンジンの始動/暖機の判別およ
び、触媒温度が所定値であることを判別し、低温始動時
を含む暖機運転に至るまでの間でかつ、触媒温度が所定
値以下である場合には上記2次空気供給手段に対して2
次空気を供給するための指令を出し、エンジンの温度が
低温始動域を越えた暖機状態のときには、理論空燃比に
対する排気ガス空燃比のリッチ、リーン状態に基づいて
、燃料の供給制御を行なうことを特徴とする排気ガス浄
化装置。
[Claims] Engine exhaust gas that causes a chemical reaction similar to combustion to occur within the catalyst by supplying secondary air to a three-way catalyst for exhaust gas purification on the exhaust gas introduction side of the catalyst. In the purification device, a secondary air supply means is provided in the secondary air supply path and opens and closes the supply path; a means for detecting the temperature inside the catalyst; means for detecting a lean state; information on the starting/warming-up state of the engine; temperature information from the catalyst; and information for determining rich and lean conditions for the stoichiometric air-fuel ratio of the air-fuel mixture supplied to the engine. and a control unit that controls opening and closing of the secondary air supply valve and controls fuel metering for the air-fuel mixture to effectively purify exhaust gas with the catalyst based on the input information. , The above control section determines whether the engine is started/warmed up, determines that the catalyst temperature is at a predetermined value, and determines whether the catalyst temperature is below the predetermined value or not until warm-up operation including during low-temperature starting. 2 for the secondary air supply means.
When the engine is warmed up and the temperature exceeds the low-temperature starting range, the fuel supply is controlled based on the rich or lean state of the exhaust gas air-fuel ratio relative to the stoichiometric air-fuel ratio. An exhaust gas purification device characterized by:
JP63053159A 1988-03-07 1988-03-07 Exhaust gas purifying device Pending JPH01227815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053159A JPH01227815A (en) 1988-03-07 1988-03-07 Exhaust gas purifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053159A JPH01227815A (en) 1988-03-07 1988-03-07 Exhaust gas purifying device

Publications (1)

Publication Number Publication Date
JPH01227815A true JPH01227815A (en) 1989-09-12

Family

ID=12935068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053159A Pending JPH01227815A (en) 1988-03-07 1988-03-07 Exhaust gas purifying device

Country Status (1)

Country Link
JP (1) JPH01227815A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136842A (en) * 1990-08-01 1992-08-11 Siemens Aktiengesellschaft Method for heating an exhaust gas catalytic converter
DE4231575A1 (en) * 1991-09-20 1993-04-01 Hitachi Ltd IC engine control with cold start projection for exhaust catalyser - uses secondary catalyser between main catalyser and engine to burn excess fuel during warm=up period.
US5456063A (en) * 1992-07-10 1995-10-10 Toyota Jidosha Kabushiki Kaisha Secondary air supply apparatus for engine
US5577383A (en) * 1991-09-20 1996-11-26 Hitachi, Ltd. Apparatus for controlling internal combustion engine
US6187709B1 (en) 1995-10-30 2001-02-13 Ford Global Technologies, Inc. Palladium catalyst pre-oxidation to reduce light-off temperature

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129833A (en) * 1976-04-23 1977-10-31 Nissan Motor Co Ltd Air fuel ratio controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129833A (en) * 1976-04-23 1977-10-31 Nissan Motor Co Ltd Air fuel ratio controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136842A (en) * 1990-08-01 1992-08-11 Siemens Aktiengesellschaft Method for heating an exhaust gas catalytic converter
DE4231575A1 (en) * 1991-09-20 1993-04-01 Hitachi Ltd IC engine control with cold start projection for exhaust catalyser - uses secondary catalyser between main catalyser and engine to burn excess fuel during warm=up period.
US5577383A (en) * 1991-09-20 1996-11-26 Hitachi, Ltd. Apparatus for controlling internal combustion engine
DE4231575C2 (en) * 1991-09-20 2003-04-24 Hitachi Ltd Method and device for controlling an internal combustion engine
US5456063A (en) * 1992-07-10 1995-10-10 Toyota Jidosha Kabushiki Kaisha Secondary air supply apparatus for engine
US6187709B1 (en) 1995-10-30 2001-02-13 Ford Global Technologies, Inc. Palladium catalyst pre-oxidation to reduce light-off temperature

Similar Documents

Publication Publication Date Title
JP3602615B2 (en) Abnormality detection device for secondary air supply system of exhaust gas of internal combustion engine
JPH1047048A (en) Emission control device for internal combustion engine
JP3602612B2 (en) Idle speed control device for internal combustion engine
JPH09119310A (en) Emission control device for internal combustion engine
JPH0693841A (en) Control device for exhaust secondary air supply device in internal combustion engine
JPH01227815A (en) Exhaust gas purifying device
KR100201968B1 (en) Engine catalyst activation determining device and engine controller related thereto
JPS63111256A (en) Self-diagnosable control device for internal combustion engine
JP3794179B2 (en) Exhaust gas purification device for internal combustion engine
JP2001234781A (en) Hydrocarbon exhaust quantity reduction device for internal combustion engine
JP2003065027A (en) Control device for exhaust air temperature sensor for internal combustion engine
JPH11343913A (en) Air-fuel ratio controller for internal combustion engine
JP3700221B2 (en) Exhaust gas purification device for internal combustion engine
JP4061676B2 (en) Self-diagnosis device for secondary air supply device of internal combustion engine
JPH06212959A (en) Exhaust emission control device of internal combustion engine
JP2583226Y2 (en) Engine secondary air supply device
JPH0693840A (en) Exhaust emission control device for internal combustion engine
JP2982457B2 (en) Secondary air supply control device for internal combustion engine
JP2686525B2 (en) Idle air-fuel ratio controller
JP3467795B2 (en) Engine exhaust purification device
JPH04136413A (en) Exhaust gas purifying device for internal combustion engine
JP2000235015A (en) Heater control device of air/fuel ratio sensor
JPH0874568A (en) Secondary air feeding method of internal combustion engine and device thereof
JPH11311118A (en) Exhaust emission control device of turbocharged engine and control method thereof
JPH01227814A (en) Exhaust gas purifying device