JPH04370312A - Exhaust gas device for internal combustion engine - Google Patents

Exhaust gas device for internal combustion engine

Info

Publication number
JPH04370312A
JPH04370312A JP14749791A JP14749791A JPH04370312A JP H04370312 A JPH04370312 A JP H04370312A JP 14749791 A JP14749791 A JP 14749791A JP 14749791 A JP14749791 A JP 14749791A JP H04370312 A JPH04370312 A JP H04370312A
Authority
JP
Japan
Prior art keywords
exhaust
branch passage
passage
exhaust gas
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14749791A
Other languages
Japanese (ja)
Inventor
Junichi Yokoyama
淳一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14749791A priority Critical patent/JPH04370312A/en
Publication of JPH04370312A publication Critical patent/JPH04370312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To enable detection of the air-fuel ratio while introducing the secondary air, and realize prevention of thermal deterioration of a catalyst and improvement of conversion efficiency in a compatible manner. CONSTITUTION:Catalysts 8, 9 for exhaust gas purification are interposed at a front tube part 7 and at a merged part of a plurality of branch passage parts 4 respectively, and throttle valves 10 are interposed at respective branch passage parts 3. A secondary air introducing pipe 17 is provided in a branch passage part 4, and an oxygen sensor 19 is interposed at a branch passage part 5. In the partially loaded region of the engine cooling period, when the exhaust gas flow rate is throttled by means of the throttle valves 10, the radiating area of the passage parts where the total volume of the exhaust gas passes is decreased, the radiating quantity of the exhaust gas is decreased, the entrance temperature at the catalysts 8, 9 is kept at high temperature, and the conversion efficiency of the catalysts 8, 9 is greatly improved, enabling detection of the air-fuel ratio by means of the oxygen sensor 19 while introducing the secondary air. In the higly loaded region after warming up the engine, the exhaust gas flows through the branch passage parts 3, 4 and the branch passage parts 5, 6, and the heat radiating areas of the passage parts are increased and the heat radiating quantity of the exhaust gas is increased, preventing thermal deterioration of the catalysts 8, 9.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、内燃機関の排気装置に
関し、特に、排気ガス中に二次空気を供給する内燃機関
において、特に触媒の熱劣化防止と転化効率の向上とを
両立させると共に二次空気量制御性の向上する技術に関
する。
[Field of Industrial Application] The present invention relates to an exhaust system for an internal combustion engine, and in particular, for an internal combustion engine that supplies secondary air to exhaust gas, it is possible to prevent thermal deterioration of a catalyst and improve conversion efficiency at the same time. This invention relates to technology for improving secondary air volume controllability.

【0002】0002

【従来の技術】従来、内燃機関の排気装置における排気
通路構造として、排気通路に排気ガスを浄化する触媒を
設けると共に、この触媒上流側の排気通路に二次空気導
入部を設けるようにしたものが知られている(特開昭6
1−247842号公報等参照)。
[Prior Art] Conventionally, as an exhaust passage structure in an exhaust system for an internal combustion engine, a catalyst for purifying exhaust gas is provided in the exhaust passage, and a secondary air introduction part is provided in the exhaust passage upstream of the catalyst. is known (Japanese Unexamined Patent Publication No. 6
1-247842, etc.).

【0003】即ち、触媒は、触媒内での排気ガスの化学
反応を促進させるために、該触媒が活性化する高温に維
持する必要があり、触媒上流側の排気通路に二次空気を
供給して排気ガスの燃焼を促進せしめ、その燃焼熱によ
り触媒の温度を高温化するようにしている。又、排気通
路に、上流側より順に空燃比検出手段としての酸素セン
サ,三元触媒を配設したものが知られている(特開昭6
2−75043号公報等参照)。
That is, in order to promote the chemical reaction of exhaust gas within the catalyst, it is necessary to maintain the catalyst at a high temperature that activates the catalyst, and secondary air is supplied to the exhaust passage upstream of the catalyst. This accelerates the combustion of exhaust gas, and the heat of combustion raises the temperature of the catalyst. It is also known that an oxygen sensor as an air-fuel ratio detection means and a three-way catalyst are arranged in the exhaust passage in order from the upstream side (Japanese Patent Application Laid-open No. 6
(See Publication No. 2-75043, etc.).

【0004】0004

【発明が解決しようとする課題】しかしながら、このよ
うな従来の内燃機関の排気装置にあっては、二次空気を
導入しつつ空燃比の検出を行おうとした場合、次のよう
な問題点を有していた。即ち、前者の装置のように、触
媒上流側の排気通路に二次空気導入部を設けたものでは
、排気通路の触媒と二次空気供給部との間には、後者の
装置の酸素センサを配設できず(空燃比が検出不能とな
るため)、この酸素センサを二次空気供給部よりも上流
側に配設する必要がある。
[Problem to be Solved by the Invention] However, in such a conventional exhaust system for an internal combustion engine, when attempting to detect the air-fuel ratio while introducing secondary air, the following problems occur. had. That is, in the case of the former device in which the secondary air introduction section is provided in the exhaust passage upstream of the catalyst, the oxygen sensor of the latter device is installed between the catalyst in the exhaust passage and the secondary air supply section. This oxygen sensor cannot be installed (because the air-fuel ratio becomes undetectable), and it is necessary to install this oxygen sensor upstream of the secondary air supply section.

【0005】この結果、酸素センサの位置が排気ポート
に近接し、該酸素センサへの熱的影響が問題となり、酸
素センサの劣化を発生する虞がある。逆に、後者の装置
のように、触媒上流側の排気通路に酸素センサを設けた
ものでは、排気通路の酸素センサの上流側には二次空気
供給部を配設できず(空燃比が検出不能となるため)、
この二次空気供給部を酸素センサよりも下流側に配設す
る必要がある。
[0005] As a result, the position of the oxygen sensor is close to the exhaust port, and thermal influence on the oxygen sensor becomes a problem, which may cause deterioration of the oxygen sensor. On the other hand, in the case of the latter device, which has an oxygen sensor in the exhaust passage upstream of the catalyst, it is not possible to arrange the secondary air supply section upstream of the oxygen sensor in the exhaust passage (the air-fuel ratio cannot be detected). (because it becomes impossible),
It is necessary to arrange this secondary air supply section downstream of the oxygen sensor.

【0006】この結果、二次空気導入部が排気ポートか
ら離れた位置となり、二次空気導入部までの通路部長さ
が長く、通路部の放熱面積が広くなるため、機関暖機後
の高負荷領域での、触媒等の熱劣化防止には有利である
が、機関冷間時の低負荷領域では、排気ガス温度の低下
具合が大きく、触媒の入口温度が低温になり、触媒の転
化効率を充分に向上することができず、酸素センサの暖
機性も悪いという問題点もある。
As a result, the secondary air introduction section is located away from the exhaust port, the passage length up to the secondary air introduction section is long, and the heat dissipation area of the passage section is widened, so that high loads can be avoided after the engine warms up. However, in the low load range when the engine is cold, the exhaust gas temperature decreases significantly, the inlet temperature of the catalyst becomes low, and the conversion efficiency of the catalyst decreases. There is also the problem that the oxygen sensor cannot be sufficiently improved and the warm-up performance of the oxygen sensor is also poor.

【0007】そこで、本発明は以上のような従来の問題
点に鑑み、排気通路の構造の改良を図り、排気通路にお
ける空燃比検出手段,二次空気導入部,触媒の配設位置
を考慮することにより、二次空気を導入しつつ空燃比の
検出を可能にすると共に、触媒の熱劣化防止と転化効率
の向上とを両立させること等を目的とする。
Therefore, in view of the above-mentioned conventional problems, the present invention aims to improve the structure of the exhaust passage, and takes into account the arrangement positions of the air-fuel ratio detection means, the secondary air introduction part, and the catalyst in the exhaust passage. The purpose of this is to enable detection of the air-fuel ratio while introducing secondary air, and to simultaneously prevent thermal deterioration of the catalyst and improve conversion efficiency.

【0008】[0008]

【課題を解決するための手段】このため、第1の発明の
内燃機関の排気装置は、各気筒毎に夫々排気弁を備えた
2つの排気ポートを有してなる内燃機関において、各気
筒の排気ポートに夫々連通する複数の枝通路部を、単一
の通路部から2つに分岐した分岐通路部に複数ずつ分け
て集合した排気通路構造を有し、前記一方の分岐通路部
と単一の通路部とに排気浄化用の触媒を介装する一方、
前記他方の分岐通路部と連通する枝通路部若しくは他方
の分岐通路部を通る排気ガス流量を制御する流量制御手
段と、前記触媒を介装した一方の分岐通路部に集合する
枝通路部に二次空気を導入する二次空気導入手段と、前
記他方の分岐通路部に介装される空燃比検出手段と、を
設けた構成とする。
[Means for Solving the Problems] Therefore, the exhaust system for an internal combustion engine according to the first invention provides an exhaust system for each cylinder in an internal combustion engine having two exhaust ports each having an exhaust valve for each cylinder. It has an exhaust passage structure in which a plurality of branch passages each communicating with the exhaust port are divided and collected from a single passage part into two branch passage parts, and the one branch passage part and the single While installing a catalyst for exhaust purification in the passage section of the
a flow rate control means for controlling the flow rate of exhaust gas passing through a branch passage communicating with the other branch passage or the other branch passage; The configuration includes a secondary air introducing means for introducing secondary air, and an air-fuel ratio detecting means interposed in the other branch passage section.

【0009】第2の発明の内燃機関の排気装置は、各気
筒毎に夫々排気弁を備えた2つの排気ポートを有してな
る内燃機関において、各気筒の排気ポートに夫々連通す
る複数の枝通路部を、単一の通路部から2つに分岐した
分岐通路部に複数ずつ分けて集合した排気通路構造を有
し、排気通路の少なくとも前記単一の通路部に排気浄化
用の触媒を介装する一方、前記各気筒における一方の排
気ポートと連通する枝通路部若しくは分岐通路部を開閉
する開閉手段と、前記触媒の上流側であって前記開閉手
段の開時に排気ガスが流通する枝通路部に二次空気を導
入する二次空気導入手段と、他方の排気ポートに連通す
る分岐通路部に介装される空燃比検出手段と、を設けた
構成とする。
[0009] The exhaust system for an internal combustion engine according to the second aspect of the present invention is an internal combustion engine having two exhaust ports each having an exhaust valve for each cylinder. It has an exhaust passage structure in which the passage is divided into a plurality of branch passage parts branched from a single passage part and gathered together, and an exhaust purification catalyst is interposed in at least the single passage part of the exhaust passage. an opening/closing means for opening and closing a branch passage or a branch passage communicating with one exhaust port in each cylinder; and a branch passage that is upstream of the catalyst and through which exhaust gas flows when the opening/closing means is open. The configuration includes a secondary air introducing means for introducing secondary air into the exhaust port, and an air-fuel ratio detecting means interposed in the branch passage communicating with the other exhaust port.

【0010】0010

【作用】第1の発明において、例えば機関冷間時の部分
負荷領域では、流量制御手段によって通路を絞り、かつ
二次空気を導入させる。これにより、各気筒から排出さ
れる排気ガスは一方の排気ポートから一方の枝通路部を
通り、触媒を経て分岐通路部に至り、更に、単一の通路
部を通り、触媒を経て排出される。又、排気ガスは他方
の排気ポートから他方の枝通路部に至り、該枝通路部の
流量制御手段によって流量が絞られて分岐通路部に至り
、該分岐通路部における空燃比検出手段を経て、更に、
単一の通路部を通り、触媒を経て排出される。
[Operation] In the first invention, for example, in a partial load region when the engine is cold, the flow rate control means narrows the passage and introduces secondary air. As a result, exhaust gas discharged from each cylinder passes through one branch passage from one exhaust port, passes through the catalyst, reaches the branch passage, and then passes through a single passage and is exhausted via the catalyst. . Further, the exhaust gas reaches the other branch passage from the other exhaust port, the flow rate is throttled by the flow rate control means of the branch passage, and reaches the branch passage, and passes through the air-fuel ratio detection means in the branch passage. Furthermore,
It passes through a single passage and is discharged via a catalyst.

【0011】又、機関暖機後の高負荷領域には、流量制
御手段により通路に排気ガスの全流量が流通するように
し、かつ二次空気を導入させる。これにより、各気筒か
ら排出される排気ガスは両方の排気ポートから両方の枝
通路部を通り、一方の枝通路部から触媒を経て分岐通路
部に至り、他方の枝通路部から分岐通路部に至り、更に
、両分岐通路部から単一の通路部に至り、触媒を経て排
出される。
Further, in a high load region after warming up the engine, the flow rate control means allows the entire flow rate of exhaust gas to flow through the passage, and also introduces secondary air. As a result, exhaust gas discharged from each cylinder passes from both exhaust ports to both branch passages, from one branch passage to the branch passage through the catalyst, and from the other branch passage to the branch passage. Then, both branch passages lead to a single passage and are discharged via the catalyst.

【0012】以上のように、機関冷間時の部分負荷領域
では、流量制御手段によって一方の枝通路部を通過する
排気ガス流量を絞るようにしているため、気筒毎の排気
ガスの全量が通過する通路部の放熱面積は従来に比較し
て低減される。この結果、排気ガスの放熱量が低減され
、二次空気を導入しても、触媒入口温度は従来よりも高
温に保たれ、触媒の転化効率が大幅に向上する。
As described above, in the partial load region when the engine is cold, the flow rate control means restricts the flow rate of exhaust gas passing through one of the branch passages, so that the entire amount of exhaust gas for each cylinder does not pass through. The heat dissipation area of the passage section is reduced compared to the conventional case. As a result, the amount of heat dissipated from the exhaust gas is reduced, and even if secondary air is introduced, the catalyst inlet temperature is maintained at a higher temperature than before, significantly improving the conversion efficiency of the catalyst.

【0013】更に、一方の枝通路部にも少量の排気ガス
が流通して、空燃比検出手段に接触するため、二次空気
を導入しつつ空燃比検出手段による空燃比検出が可能と
なり、検出される空燃比に応じて二次空気導入量の精度
良好なフィードバック制御も可能となる。又、機関暖機
後の高負荷領域には、排気ガスが夫々完全に開放された
両方の枝通路部と、両方の分岐通路部を介して流れるた
め、気筒毎の排気ガスの全量が通過する通路部の放熱面
積は従来に比較して増大される。この結果、排気ガスの
放熱量が増大し、触媒の熱劣化を防止することができる
Furthermore, since a small amount of exhaust gas also flows through one branch passage and comes into contact with the air-fuel ratio detection means, the air-fuel ratio can be detected by the air-fuel ratio detection means while introducing secondary air. It is also possible to accurately feedback control the amount of secondary air introduced according to the air-fuel ratio. In addition, in the high load region after the engine warms up, exhaust gas flows through both branch passages that are completely opened, and both branch passages, so the entire amount of exhaust gas for each cylinder passes through. The heat dissipation area of the passage portion is increased compared to the conventional one. As a result, the amount of heat dissipated from the exhaust gas increases, making it possible to prevent thermal deterioration of the catalyst.

【0014】この場合にも、当然二次空気を導入しつつ
空燃比検出手段による空燃比検出が可能となり、冷間時
同様に空燃比検出手段によって検出される空燃比に応じ
て二次空気導入量の精度良好なフィードバック制御も可
能となる。第2の発明において、例えば機関冷間時の部
分負荷領域では、開閉手段を閉塞すると共に、二次空気
導入を停止させる。これにより、各気筒から排出される
排気ガスは一方の排気ポートのみから一方の枝通路部を
通り、空燃比検出手段に接触し、触媒を経て分岐通路部
に至り、更に、単一の通路部を通り、触媒を経て排出さ
れる。
In this case as well, the air-fuel ratio can be detected by the air-fuel ratio detection means while introducing secondary air, and the secondary air is introduced in accordance with the air-fuel ratio detected by the air-fuel ratio detection means as in the case of cold conditions. Feedback control with good quantity accuracy is also possible. In the second invention, for example, in a partial load region when the engine is cold, the opening/closing means is closed and secondary air introduction is stopped. As a result, exhaust gas discharged from each cylinder passes through only one exhaust port through one branch passage, contacts the air-fuel ratio detection means, passes through the catalyst, reaches the branch passage, and then passes through the single passage. It passes through the catalyst and is discharged.

【0015】又、機関冷間時及び暖機後の高負荷領域で
は、開閉手段が開放されると共に、二次空気が導入され
る。これにより、各気筒から排出される排気ガスは両方
の排気ポートから両方の枝通路部を通る。以上のように
、機関冷間時の部分負荷領域では、気筒毎の排気ガスの
全量が通過する通路部の放熱面積は従来に比較して低減
され、又、他方の排気ポートに連通する分岐通路部に空
燃比検出手段を介装しているため、空燃比検出手段の暖
機性が向上される。
Further, when the engine is cold or in a high load region after warming up, the opening/closing means is opened and secondary air is introduced. As a result, exhaust gas discharged from each cylinder passes through both exhaust ports and both branch passages. As described above, in the partial load region when the engine is cold, the heat radiation area of the passage through which the entire amount of exhaust gas for each cylinder passes is reduced compared to the conventional one, and the branch passage that communicates with the other exhaust port is reduced. Since the air-fuel ratio detection means is interposed in the air-fuel ratio detection means, the warm-up performance of the air-fuel ratio detection means is improved.

【0016】又、機関冷間時の高負荷領域では、二次空
気を導入しつつ空燃比検出手段による空燃比検出が可能
となり、該空燃比検出手段によって検出される空燃比に
応じて二次空気導入量の精度良好なフィードバック制御
も可能となる。更に、機関暖機後の高負荷領域には、気
筒毎の排気ガスの全量が通過する通路部の放熱面積は従
来に比較して増大される。この結果、排気ガスの放熱量
が増大し、空燃比検出手段及び触媒の熱劣化を防止する
ことができる。
Furthermore, in a high load region when the engine is cold, the air-fuel ratio can be detected by the air-fuel ratio detection means while introducing secondary air, and the secondary air-fuel ratio is detected by the air-fuel ratio detection means. Accurate feedback control of the amount of air introduced is also possible. Furthermore, in a high load region after warming up the engine, the heat dissipation area of the passage through which the entire amount of exhaust gas for each cylinder passes is increased compared to the prior art. As a result, the amount of heat dissipated from the exhaust gas increases, making it possible to prevent thermal deterioration of the air-fuel ratio detection means and the catalyst.

【0017】この場合にも、当然二次空気を導入しつつ
空燃比検出手段による空燃比検出が可能となり、冷間時
同様に空燃比検出手段によって検出される空燃比に応じ
て二次空気導入量の精度良好なフィードバック制御も可
能となる。
In this case as well, the air-fuel ratio can naturally be detected by the air-fuel ratio detection means while introducing secondary air, and the secondary air is introduced in accordance with the air-fuel ratio detected by the air-fuel ratio detection means as in the case of cold conditions. Feedback control with good quantity accuracy is also possible.

【0018】[0018]

【実施例】以下、添付された図面を参照して本発明を詳
述する。図1は請求項1に対応する実施例を示す。この
図において、内燃機関Eの各気筒#1〜#4毎に夫々排
気弁を備えた2つの排気ポート1,2が設けられており
、その排気通路構造は次のようである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment corresponding to claim 1. In this figure, two exhaust ports 1 and 2 each equipped with an exhaust valve are provided for each cylinder #1 to #4 of an internal combustion engine E, and the exhaust passage structure thereof is as follows.

【0019】即ち、前記各気筒#1〜#4の排気ポート
1,2には夫々枝通路部3,4が連通接続されている。 各気筒#1〜#4において夫々一方の排気ポート1に連
通接続される複数の枝通路部3は夫々合流して単一の分
岐通路部5に接続され、他方の排気ポート2に連通接続
される複数の枝通路部4は夫々合流して単一の分岐通路
部6に接続される。両方の分岐通路部5,6は更に合流
して単一の通路部(以下、フロントチューブ部と言う)
7に接続される。
That is, branch passage portions 3 and 4 are connected to the exhaust ports 1 and 2 of each of the cylinders #1 to #4, respectively. In each cylinder #1 to #4, a plurality of branch passages 3 which are connected to one exhaust port 1 respectively merge and are connected to a single branch passage 5, which is connected to the other exhaust port 2. The plurality of branch passage sections 4 are respectively merged and connected to a single branch passage section 6. Both branch passage sections 5 and 6 are further merged into a single passage section (hereinafter referred to as the front tube section).
Connected to 7.

【0020】ここで、上述の構造の排気通路のうちフロ
ントチューブ部7と、一方の排気ポート2に連通接続さ
れる複数の枝通路部4相互の合流部とには、夫々排気浄
化用の触媒8,9が介装される。そして、前記各気筒#
1〜#4における一方の排気ポート1と連通する枝通路
部3の排気ポート1の直下流には、夫々流量制御手段と
しての絞り弁10が介装される。これら絞り弁10は、
弁体10Aの外周部に円弧状の切欠部10aを設けた構
成であり、開放時には枝通路部3を完全に開通させ、閉
塞時には切欠部10aのみを介して少量の排気ガスが流
通するように枝通路部3を絞るものである。かかる絞り
弁10同士は共通の回転駆動軸11によって連係され、
該回転駆動軸11の一端部には、該軸11を回転駆動す
るアクチュエータ12が連結される。このアクチュエー
タ12は、コントロールユニット13から出力される制
御信号に基づいて駆動され、絞り弁10を開閉制御する
Here, in the exhaust passage having the above-described structure, a catalyst for exhaust purification is provided at the front tube part 7 and the joint part of the plurality of branch passage parts 4 connected to one exhaust port 2, respectively. 8 and 9 are interposed. And each cylinder #
Immediately downstream of the exhaust port 1 of the branch passage section 3 communicating with one of the exhaust ports 1 in #1 to #4, a throttle valve 10 as a flow rate control means is interposed, respectively. These throttle valves 10 are
It has a configuration in which an arc-shaped notch 10a is provided on the outer periphery of the valve body 10A, so that when it is opened, the branch passage 3 is completely opened, and when it is closed, a small amount of exhaust gas flows through only the notch 10a. This narrows the branch passage section 3. These throttle valves 10 are linked together by a common rotary drive shaft 11,
An actuator 12 that rotationally drives the shaft 11 is connected to one end of the rotational drive shaft 11 . This actuator 12 is driven based on a control signal output from a control unit 13, and controls opening and closing of the throttle valve 10.

【0021】この場合、コントロールユニット13には
、機関温度を代表する機関冷却水温度を検出する水温セ
ンサ14、吸気通路の吸気負圧センサ15,機関回転数
センサ16等の機関運転状態検出手段から出力される検
出信号が入力され、これら水温,吸気負圧,機関回転数
等の機関運転状態に基づいてアクチュエータ12を制御
する。
In this case, the control unit 13 includes engine operating state detection means such as a water temperature sensor 14 that detects the engine cooling water temperature representative of the engine temperature, an intake air negative pressure sensor 15 in the intake passage, and an engine rotation speed sensor 16. The output detection signal is input, and the actuator 12 is controlled based on engine operating conditions such as water temperature, intake negative pressure, and engine speed.

【0022】一方、前記触媒9を介装した一方の分岐通
路部6に集合する枝通路部、即ち、各気筒#1〜#4に
おける排気ポート1と連通する枝通路部4に二次空気を
導入する二次空気導入手段が設けられている。この二次
空気導入手段は、例えば、機関Eの吸気系に接続した二
次空気導入管17を一つの枝通路部4に連通させた構成
で、該二次空気導入管17には二次空気制御弁18が介
装される。この二次空気制御弁18を駆動するアクチュ
エータ21が設けられており、このアクチュエータ21
は、コントロールユニット13から出力される制御信号
に基づいて駆動され、二次空気制御弁18の開度を制御
する。この場合、コントロールユニット13は、前記水
温,吸気負圧,機関回転数等に基づいてアクチュエータ
21を制御する。
On the other hand, secondary air is supplied to the branch passages 4 that converge on one branch passage 6 in which the catalyst 9 is interposed, that is, the branch passages 4 that communicate with the exhaust ports 1 of each cylinder #1 to #4. Means for introducing secondary air is provided. This secondary air introduction means has a configuration in which, for example, a secondary air introduction pipe 17 connected to the intake system of the engine E is communicated with one branch passage section 4. A control valve 18 is interposed. An actuator 21 that drives this secondary air control valve 18 is provided, and this actuator 21
is driven based on a control signal output from the control unit 13, and controls the opening degree of the secondary air control valve 18. In this case, the control unit 13 controls the actuator 21 based on the water temperature, intake negative pressure, engine speed, etc.

【0023】前記分岐通路部5には空燃比検出手段とし
ての酸素センサ19が介装される。この酸素センサ19
からは排気ガス中の酸素濃度に対応した信号がコントロ
ールユニット13に対して出力され、該コントロールユ
ニット13はこの信号に基づいて機関の空燃比を制御す
るべく燃料供給量制御を実行する。かかる構成において
、例えば機関冷間時の部分負荷領域では、コントロール
ユニット13から出力される制御信号に基づいて、各ア
クチュエータ13,21が制御されて、絞り弁10が閉
塞されると共に、制御弁18によって二次空気の導入量
が制御される。これにより、各気筒#1〜#4から排出
される排気ガスは一方の排気ポート2から一方の枝通路
部4を通り、触媒9を経て分岐通路部6に至り、更に、
フロントチューブ部7を通り、触媒8を経て排出される
。又、排気ガスは他方の排気ポート1から他方の枝通路
部3に至り、該枝通路部3の絞り弁10の切欠部10a
によって流量が絞られて分岐通路部5に至り、該分岐通
路部5における酸素センサ19を経て、更に、フロント
チューブ部7を通り、触媒8を経て排出される。
[0023] An oxygen sensor 19 is interposed in the branch passage portion 5 as an air-fuel ratio detecting means. This oxygen sensor 19
A signal corresponding to the oxygen concentration in the exhaust gas is outputted to the control unit 13, and the control unit 13 executes fuel supply amount control to control the air-fuel ratio of the engine based on this signal. In this configuration, for example, in a partial load region when the engine is cold, each actuator 13, 21 is controlled based on a control signal output from the control unit 13, the throttle valve 10 is closed, and the control valve 18 is closed. The amount of secondary air introduced is controlled by As a result, the exhaust gas discharged from each cylinder #1 to #4 passes from one exhaust port 2 through one branch passage section 4, passes through the catalyst 9, reaches the branch passage section 6, and further,
It passes through the front tube section 7 and is discharged via the catalyst 8. Further, the exhaust gas reaches the other branch passage section 3 from the other exhaust port 1, and the notch 10a of the throttle valve 10 of the branch passage section 3.
The flow rate is narrowed and reaches the branch passage section 5, passes through the oxygen sensor 19 in the branch passage section 5, further passes through the front tube section 7, and is discharged via the catalyst 8.

【0024】このとき、二次空気導入管17から一方の
枝通路部4にそのときの機関運転状態に応じて制御され
た二次空気が導入され、二次空気が排気ガス中に供給さ
れる。又、機関暖機後の高負荷領域には、絞り弁10を
開放する。これにより、各気筒#1〜#4から排出され
る排気ガスは両方の排気ポート1,2から両方の枝通路
部3,4を通り、一方の枝通路部4から触媒9を経て分
岐通路部6に至り、他方の枝通路部3から分岐通路部5
に至り、更に、両分岐通路部5,6からフロントチュー
ブ部7に至り、触媒8を経て排出される。そして、二次
空気導入管17から一方の枝通路部4にそのときの機関
運転状態に応じて制御された二次空気が導入され、二次
空気が排気ガス中に供給される。
At this time, secondary air controlled according to the engine operating state at that time is introduced from the secondary air introduction pipe 17 into one of the branch passages 4, and the secondary air is supplied into the exhaust gas. . Further, the throttle valve 10 is opened in a high load region after the engine is warmed up. As a result, exhaust gas discharged from each cylinder #1 to #4 passes from both exhaust ports 1 and 2 through both branch passages 3 and 4, and from one branch passage 4 through the catalyst 9 to the branch passage. 6, and from the other branch passage section 3 to the branch passage section 5
The fuel then reaches the front tube part 7 from both branch passages 5 and 6, and is discharged via the catalyst 8. Then, secondary air controlled according to the engine operating state at that time is introduced from the secondary air introduction pipe 17 into one branch passage section 4, and the secondary air is supplied into the exhaust gas.

【0025】以上のように、機関冷間時の部分負荷領域
では、絞り弁10によって一方の枝通路部3を通過する
排気ガス流量を絞るようにしているため、気筒#1〜#
4毎の排気ガスの全量が通過する通路部の放熱面積は従
来に比較して約30%程度低減される。この結果、排気
ガスの放熱量が低減され、二次空気を導入しても、触媒
8,9入口温度は従来よりも高温に保たれ、触媒8,9
の転化効率が大幅に向上する。
As described above, in the partial load region when the engine is cold, the flow rate of exhaust gas passing through one branch passage section 3 is throttled by the throttle valve 10.
The heat dissipation area of the passage through which the entire amount of exhaust gas passes through is reduced by about 30% compared to the conventional case. As a result, the amount of heat dissipated from the exhaust gas is reduced, and even if secondary air is introduced, the inlet temperature of the catalysts 8, 9 is maintained higher than before, and the catalysts 8, 9 are kept at a higher temperature than before.
The conversion efficiency is significantly improved.

【0026】更に、一方の枝通路部3にも少量の排気ガ
スが流通し、分岐通路部5において、酸素センサ19に
接触するため、二次空気を導入しつつ酸素センサ19に
よる空燃比検出が可能となり、酸素センサ19によって
検出される空燃比に応じて二次空気導入量の精度良好な
フィードバック制御も可能となる。一方、機関暖機後の
高負荷領域には、排気ガスが完全に開放された両方の枝
通路部3,4と、両方の分岐通路部5,6を介して流れ
るため、気筒#1〜#4毎の排気ガスの全量が通過する
通路部の放熱面積は従来に比較して約40%程度増大さ
れる。この結果、排気ガスの放熱量が増大し、触媒8,
9の熱劣化を防止することができる。
Furthermore, a small amount of exhaust gas also flows through one branch passage section 3 and contacts the oxygen sensor 19 in the branch passage section 5, so that the air-fuel ratio can be detected by the oxygen sensor 19 while introducing secondary air. This also enables highly accurate feedback control of the amount of secondary air introduced in accordance with the air-fuel ratio detected by the oxygen sensor 19. On the other hand, in the high load region after the engine warms up, exhaust gas flows through both branch passages 3 and 4 that are completely open and both branch passages 5 and 6, so exhaust gas flows through cylinders #1 to ##. The heat dissipation area of the passage through which the entire amount of exhaust gas passes through is increased by about 40% compared to the conventional case. As a result, the amount of heat dissipated from the exhaust gas increases, and the catalyst 8,
The thermal deterioration of No. 9 can be prevented.

【0027】この場合にも、当然二次空気を導入しつつ
酸素センサ19による空燃比検出が可能となり、冷間時
同様に酸素センサ19によって検出される空燃比に応じ
て二次空気導入量の精度良好なフィードバック制御も可
能となる。図2及び図3には請求項1に対応する他の実
施例を示す。図2の実施例は、分岐通路部5に絞り弁1
0を設け、この絞り弁10の制御によって各気筒#1〜
#4における一方の排気ポート1と連通する枝通路部3
から流れてくる排気ガス流量を制御するようにし、分岐
通路部5の絞り弁10上流側に酸素センサを介装したも
のである。
In this case as well, it is naturally possible to detect the air-fuel ratio by the oxygen sensor 19 while introducing secondary air, and the amount of secondary air introduced can be adjusted according to the air-fuel ratio detected by the oxygen sensor 19, as in the case of cold conditions. Feedback control with good accuracy is also possible. 2 and 3 show another embodiment corresponding to claim 1. The embodiment of FIG. 2 has a throttle valve 1 in the branch passage section 5.
0 is provided, and each cylinder #1 to #1 is controlled by this throttle valve 10.
Branch passage portion 3 communicating with one exhaust port 1 in #4
An oxygen sensor is interposed on the upstream side of the throttle valve 10 in the branch passage section 5 to control the flow rate of exhaust gas flowing from the branch passage section 5.

【0028】図3の実施例は、図2の実施例と同様の位
置に絞り弁10を設けると共に、図1及び図2の実施例
で各気筒#1〜#4の排気ポート1,2に夫々独立して
連通接続していた枝通路部3,4を排気ポート1,2と
の連通部で一体化して相互に連通させるようにしたもの
である。かかる実施例によると、夫々絞り弁10を単一
設ければ良いだけであるから、構造的に簡略化でき、コ
スト的に有利である。特に、図3の実施例では、枝通路
部の構成の簡略化を図れる。
In the embodiment shown in FIG. 3, a throttle valve 10 is provided at the same position as in the embodiment shown in FIG. 2, and in addition, in the embodiment shown in FIGS. The branch passage portions 3 and 4, which were connected to each other independently, are integrated at the communication portions with the exhaust ports 1 and 2 so that they communicate with each other. According to this embodiment, since only a single throttle valve 10 needs to be provided in each case, the structure can be simplified and it is advantageous in terms of cost. In particular, in the embodiment shown in FIG. 3, the configuration of the branch passage section can be simplified.

【0029】尚、図1及び図2の実施例にあっては、二
次空気と排気ガスとが混合したガスが酸素センサ19側
には流れないため、空燃比の検出精度が高い。図4及び
図5には請求項2に対応する実施例を示す。即ち、図4
において、枝通路部3の排気ポート1の直下流には、夫
々開閉手段としての開閉弁20が介装される。これら開
閉弁20同士を連係する回転駆動軸11と、該軸11を
回転駆動するアクチュエータ12とが設けられる。この
アクチュエータ12は、コントロールユニット13から
出力される制御信号に基づいて駆動され、開閉弁20を
開閉制御する。
In the embodiments shown in FIGS. 1 and 2, the air-fuel ratio detection accuracy is high because the mixture of secondary air and exhaust gas does not flow to the oxygen sensor 19 side. 4 and 5 show an embodiment corresponding to claim 2. That is, FIG.
In the branch passage section 3, an on-off valve 20 as an on-off means is provided immediately downstream of the exhaust port 1, respectively. A rotary drive shaft 11 that links these on-off valves 20 with each other and an actuator 12 that rotationally drives the shaft 11 are provided. The actuator 12 is driven based on a control signal output from the control unit 13 to control opening and closing of the on-off valve 20 .

【0030】一方、前記触媒8の上流側であって前記開
閉弁20の開時に排気ガスが流通する通路部に、即ち、
各気筒#1〜#4における排気ポート1と連通する枝通
路部3に二次空気を導入する二次空気導入手段が設けら
れている。この二次空気導入手段は、二次空気導入管1
7と二次空気制御弁18とアクチュエータ21とからな
り、アクチュエータ21は、コントロールユニット13
から出力される制御信号に基づいて駆動され、二次空気
制御弁18の開度を制御する。
On the other hand, in the passage section which is upstream of the catalyst 8 and through which exhaust gas flows when the on-off valve 20 is opened, that is,
A secondary air introducing means is provided for introducing secondary air into the branch passage portion 3 communicating with the exhaust port 1 in each cylinder #1 to #4. This secondary air introduction means includes a secondary air introduction pipe 1
7, a secondary air control valve 18, and an actuator 21, and the actuator 21 is connected to the control unit 13.
The secondary air control valve 18 is driven based on a control signal output from the secondary air control valve 18 and controls the opening degree of the secondary air control valve 18.

【0031】前記枝通路部4同士の合流部であって、触
媒9の直上流側には酸素センサ19が介装される。かか
る構成において、例えば機関冷間時の部分負荷領域では
、コントロールユニット13から出力される制御信号に
基づいて、各アクチュエータ13,21が制御されて、
開閉弁20が閉塞されると共に、制御弁18によって二
次空気導入管が閉塞される。これにより、各気筒#1〜
#4から排出される排気ガスは一方の排気ポート2のみ
から一方の枝通路部4を通り、酸素センサ19に接触し
、触媒9を経て分岐通路部6に至り、更に、フロントチ
ューブ部7を通り、触媒8を経て排出される。
An oxygen sensor 19 is interposed at the junction of the branch passages 4 and immediately upstream of the catalyst 9. In such a configuration, for example, in a partial load region when the engine is cold, each actuator 13, 21 is controlled based on a control signal output from the control unit 13.
The on-off valve 20 is closed, and the control valve 18 closes the secondary air introduction pipe. As a result, each cylinder #1~
Exhaust gas discharged from #4 passes only through one exhaust port 2, through one branch passage 4, contacts the oxygen sensor 19, passes through the catalyst 9, reaches the branch passage 6, and further passes through the front tube section 7. It passes through the catalyst 8 and is discharged.

【0032】又、機関冷間時及び暖機後の高負荷領域で
は、コントロールユニット13から出力される制御信号
に基づいて、各アクチュエータ13,21が制御されて
、開閉弁20が開放されると共に、制御弁18によって
二次空気導入管が開放されかつその導入量が制御される
。これにより、各気筒#1〜#4から排出される排気ガ
スは両方の排気ポート2から両方の枝通路部4を通る。 そして、二次空気導入管17から一方の枝通路部4にそ
のときの機関運転状態に応じて制御された二次空気が導
入され、二次空気が排気ガス中に供給される。
Furthermore, when the engine is cold or in a high load region after warming up, each actuator 13, 21 is controlled based on a control signal output from the control unit 13, and the on-off valve 20 is opened. The control valve 18 opens the secondary air introduction pipe and controls the amount of air introduced. As a result, exhaust gas discharged from each cylinder #1 to #4 passes through both branch passages 4 from both exhaust ports 2. Then, secondary air controlled according to the engine operating state at that time is introduced from the secondary air introduction pipe 17 into one branch passage section 4, and the secondary air is supplied into the exhaust gas.

【0033】以上のように、機関冷間時の部分負荷領域
では、気筒#1〜#4毎の排気ガスの全量が通過する通
路部の放熱面積は従来に比較して約30%程度低減され
、又、枝通路部4の集合部に酸素センサ19を介装して
いるため、該酸素センサ19の暖機性が向上される。 又、機関冷間時の高負荷領域では、二次空気を導入しつ
つ酸素センサ19による空燃比検出が可能となり、酸素
センサ19によって検出される空燃比に応じて二次空気
導入量の精度良好なフィードバック制御も可能となる。
As described above, in the partial load region when the engine is cold, the heat dissipation area of the passage through which the entire amount of exhaust gas for each cylinder #1 to #4 passes is reduced by approximately 30% compared to the conventional system. Furthermore, since the oxygen sensor 19 is interposed in the gathering part of the branch passage section 4, the warm-up performance of the oxygen sensor 19 is improved. In addition, in a high load region when the engine is cold, the air-fuel ratio can be detected by the oxygen sensor 19 while introducing secondary air, and the amount of secondary air introduced can be accurately determined according to the air-fuel ratio detected by the oxygen sensor 19. Feedback control is also possible.

【0034】更に、機関暖機後の高負荷領域には、気筒
#1〜#4毎の排気ガスの全量が通過する通路部の放熱
面積は従来に比較して約40%程度増大される。この結
果、排気ガスの放熱量が増大し、酸素センサ19並びに
触媒8,9の熱劣化を防止することができる。この場合
にも、当然二次空気を導入しつつ酸素センサ19による
空燃比検出が可能となり、冷間時同様に酸素センサ19
によって検出される空燃比に応じて二次空気導入量の精
度良好なフィードバック制御も可能となる。
Furthermore, in a high load region after warming up the engine, the heat dissipation area of the passage through which the entire amount of exhaust gas from each cylinder #1 to #4 passes is increased by about 40% compared to the conventional one. As a result, the amount of heat dissipated from the exhaust gas increases, and thermal deterioration of the oxygen sensor 19 and the catalysts 8 and 9 can be prevented. In this case as well, the air-fuel ratio can be detected by the oxygen sensor 19 while naturally introducing secondary air.
It is also possible to accurately feedback control the amount of secondary air introduced in accordance with the air-fuel ratio detected by.

【0035】図5の実施例は、分岐通路部5に開閉弁2
0を設けると共に、枝通路部3,4を排気ポート1,2
との連通部で一体化して相互に連通させるようにしたも
のである。かかる実施例によると、夫々開閉弁20を単
一設ければ良いだけであるから、構造的に簡略化でき、
枝通路部の構成の簡略化も図れるためコスト的に有利で
ある。
The embodiment shown in FIG. 5 has an on-off valve 2 in the branch passage section 5.
0, and the branch passages 3 and 4 are connected to the exhaust ports 1 and 2.
It is designed to be integrated at the communicating part with the two so that they can communicate with each other. According to this embodiment, since it is only necessary to provide a single on-off valve 20, the structure can be simplified;
This is advantageous in terms of cost because the structure of the branch passage section can be simplified.

【0036】尚、以上のように、特定の実施例を参照し
て本発明を説明したが、本発明はこれに限定されるもの
ではなく、当該技術分野における熟練者等により、本発
明に添付された特許請求の範囲から逸脱することなく、
種々の変更及び修正が可能であるとの点に留意すべきで
ある。例えば、本発明の流量制御手段として、上記の実
施例においては絞り弁を適用したが、開閉弁によって開
閉される通路の開閉弁上・下流間を連通するバイパス通
路を設ける構成としても良い。
Although the present invention has been described above with reference to specific examples, the present invention is not limited thereto. Without departing from the scope of the appended claims,
It should be noted that various changes and modifications are possible. For example, although a throttle valve is used in the above embodiment as the flow rate control means of the present invention, a bypass passage may be provided that communicates between the upper and downstream of the on-off valve of the passage opened and closed by the on-off valve.

【0037】[0037]

【発明の効果】以上説明したように本発明は、各気筒の
排気ポートに夫々連通する複数の枝通路部を、単一の通
路部から2つに分岐した分岐通路部に複数ずつ分けて集
合した排気通路構造にし、排気通路における空燃比検出
手段,二次空気導入部,触媒の配設位置を考慮すること
により、二次空気を導入しつつ空燃比の検出が可能とな
ると共に、触媒の熱劣化防止と転化効率の向上とを両立
させることができ、又、空燃比検出手段の暖機性向上と
熱劣化防止をも図ることができる等の利点を有する有用
性大なるものである。
Effects of the Invention As described above, the present invention has a plurality of branch passages that communicate with the exhaust ports of each cylinder, which are divided into two branch passages that are separated from a single passage and assembled. By creating an exhaust passage structure with a high temperature and taking into account the placement positions of the air-fuel ratio detection means, secondary air introduction part, and catalyst in the exhaust passage, it becomes possible to detect the air-fuel ratio while introducing secondary air, and also to detect the air-fuel ratio of the catalyst. It is highly useful because it has the advantage of being able to both prevent thermal deterioration and improve conversion efficiency, and also to improve warm-up of the air-fuel ratio detection means and prevent thermal deterioration.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明に係る内燃機関の排気装置の一実施
例を示す平面断面図
[Fig. 1] A cross-sectional plan view showing an embodiment of an exhaust system for an internal combustion engine according to the present invention.

【図2】  他の実施例の平面断面図[Figure 2] Plane sectional view of another embodiment

【図3】  更に他の実施例の平面断面図[Figure 3] Plane sectional view of yet another embodiment

【図4】  
更に他の実施例の平面断面図
[Figure 4]
Plane sectional view of still another embodiment

【図5】  更に他の実施
例の平面断面図
[Figure 5] Plane sectional view of yet another embodiment

【符号の説明】[Explanation of symbols]

1  排気ポート 2  排気ポート 3  枝通路部 4  枝通路部 5  分岐通路部 6  分岐通路部 7  フロントチューブ部 8  触媒 9  触媒 10  絞り弁 17  二次空気導入管 19  酸素センサ 20  開閉弁 E  内燃機関 1 Exhaust port 2 Exhaust port 3 Branch passage section 4 Branch passage section 5 Branch passage section 6 Branch passage section 7 Front tube section 8. Catalyst 9 Catalyst 10 Throttle valve 17 Secondary air introduction pipe 19 Oxygen sensor 20 Open/close valve E Internal combustion engine

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】各気筒毎に夫々排気弁を備えた2つの排気
ポートを有してなる内燃機関において、各気筒の排気ポ
ートに夫々連通する複数の枝通路部を、単一の通路部か
ら2つに分岐した分岐通路部に複数ずつ分けて集合した
排気通路構造を有し、前記一方の分岐通路部と単一の通
路部とに排気浄化用の触媒を介装する一方、前記他方の
分岐通路部と連通する枝通路部若しくは他方の分岐通路
部を通る排気ガス流量を制御する流量制御手段と、前記
触媒を介装した一方の分岐通路部に集合する枝通路部に
二次空気を導入する二次空気導入手段と、前記他方の分
岐通路部に介装される空燃比検出手段と、を設けたこと
を特徴とする内燃機関の排気装置。
Claim 1: In an internal combustion engine having two exhaust ports each having an exhaust valve for each cylinder, a plurality of branch passages each communicating with the exhaust port of each cylinder are connected from a single passage. It has an exhaust passage structure in which a plurality of branch passages are divided into two and gathered together, and a catalyst for exhaust purification is interposed in one of the branch passage parts and the single passage part, while a catalyst for exhaust purification is interposed in the one branch passage part and the single passage part. a flow rate control means for controlling the flow rate of exhaust gas passing through one branch passage communicating with the branch passage or the other branch passage; and a flow rate control means for controlling the flow rate of exhaust gas passing through one of the branch passages communicating with the branch passage; What is claimed is: 1. An exhaust system for an internal combustion engine, comprising: a means for introducing secondary air; and an air-fuel ratio detecting means interposed in the other branch passage.
【請求項2】各気筒毎に夫々排気弁を備えた2つの排気
ポートを有してなる内燃機関において、各気筒の排気ポ
ートに夫々連通する複数の枝通路部を、単一の通路部か
ら2つに分岐した分岐通路部に複数ずつ分けて集合した
排気通路構造を有し、排気通路の少なくとも前記単一の
通路部に排気浄化用の触媒を介装する一方、前記各気筒
における一方の排気ポートと連通する枝通路部若しくは
分岐通路部を開閉する開閉手段と、前記触媒の上流側で
あって前記開閉手段の開時に排気ガスが流通する枝通路
部に二次空気を導入する二次空気導入手段と、他方の排
気ポートに連通する分岐通路部に介装される空燃比検出
手段と、を設けたことを特徴とする内燃機関の排気装置
Claim 2: In an internal combustion engine having two exhaust ports each equipped with an exhaust valve for each cylinder, a plurality of branch passages each communicating with the exhaust port of each cylinder are connected from a single passage. It has an exhaust passage structure in which a plurality of branch passages are divided into two and gathered together, and at least one of the single passage parts of the exhaust passage is interposed with an exhaust purifying catalyst, and one of the exhaust passages in each cylinder is An opening/closing means for opening and closing a branch passage or a branch passage communicating with the exhaust port, and a secondary passage that is upstream of the catalyst and introduces secondary air into the branch passage through which exhaust gas flows when the opening/closing means is opened. 1. An exhaust system for an internal combustion engine, comprising: an air introducing means; and an air-fuel ratio detecting means interposed in a branch passage communicating with the other exhaust port.
JP14749791A 1991-06-19 1991-06-19 Exhaust gas device for internal combustion engine Pending JPH04370312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14749791A JPH04370312A (en) 1991-06-19 1991-06-19 Exhaust gas device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14749791A JPH04370312A (en) 1991-06-19 1991-06-19 Exhaust gas device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04370312A true JPH04370312A (en) 1992-12-22

Family

ID=15431721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14749791A Pending JPH04370312A (en) 1991-06-19 1991-06-19 Exhaust gas device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04370312A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693555A1 (en) * 2005-02-16 2006-08-23 Kwang Yang Motor Co., Ltd. Exhaust gas purifying device
JP2011007139A (en) * 2009-06-26 2011-01-13 Toyota Motor Corp Engine cooling device
KR20170119202A (en) * 2016-04-18 2017-10-26 현대자동차주식회사 Engine system
KR20170123878A (en) * 2016-04-29 2017-11-09 현대자동차주식회사 Engine system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693555A1 (en) * 2005-02-16 2006-08-23 Kwang Yang Motor Co., Ltd. Exhaust gas purifying device
JP2011007139A (en) * 2009-06-26 2011-01-13 Toyota Motor Corp Engine cooling device
KR20170119202A (en) * 2016-04-18 2017-10-26 현대자동차주식회사 Engine system
KR20170123878A (en) * 2016-04-29 2017-11-09 현대자동차주식회사 Engine system

Similar Documents

Publication Publication Date Title
JP3482279B2 (en) Exhaust system for multi-cylinder internal combustion engine
US4437311A (en) Apparatus for controlling the flow of exhaust gas in an internal combustion engine with a turbocharger and a catalytic converter
JPH04370312A (en) Exhaust gas device for internal combustion engine
JP2002030930A (en) Internal combustion engine having combustion heater
JPH0988568A (en) Exhaust device for internal combustion engine
JPS6157928B2 (en)
JP2722830B2 (en) Exhaust system for internal combustion engine
EP0574181A1 (en) Internal combustion engine with secondary air circuit and exhaust gas recirculation circuit
JPH0196438A (en) O2 sensor fixing structure for internal combustion engine having turbo-charger
JP2535917B2 (en) Air-fuel ratio control method for internal combustion engine
JPH0988563A (en) Exhaust device for internal combustion engine
JPH04370314A (en) Exhaust system for internal combustion engine
JPS6299611A (en) Exhaust gas purifying device for automobile internal-combustion engine
JPH0430357Y2 (en)
JPH0143461Y2 (en)
JPH0552116A (en) Exhaust device for internal combustion engine
JP3984927B2 (en) Exhaust gas purification device
JPH06221229A (en) Exhaust gas reflux device for engine
KR20000020351A (en) Deactivation system of internal combustion engine for vehicle
JPH07233761A (en) Exhaust reflux device for engine
JPS6210451Y2 (en)
JPH0744753Y2 (en) Internal combustion engine intake system
JPH051580A (en) Exhauster of internal combustion engine
JPH09264167A (en) Intake pressure detector
JPH11141331A (en) Emission control device of engine with turbo charger