JPH0741938A - Electron beam-heated vaporization source - Google Patents

Electron beam-heated vaporization source

Info

Publication number
JPH0741938A
JPH0741938A JP19107693A JP19107693A JPH0741938A JP H0741938 A JPH0741938 A JP H0741938A JP 19107693 A JP19107693 A JP 19107693A JP 19107693 A JP19107693 A JP 19107693A JP H0741938 A JPH0741938 A JP H0741938A
Authority
JP
Japan
Prior art keywords
vapor deposition
electron beam
evaporation source
container
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19107693A
Other languages
Japanese (ja)
Inventor
秀樹 ▲吉▼田
Hideki Yoshida
Takashi Fujita
隆志 藤田
Junichi Niiyama
淳一 新山
Toshiaki Kunieda
敏明 国枝
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19107693A priority Critical patent/JPH0741938A/en
Publication of JPH0741938A publication Critical patent/JPH0741938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide an electron beam-heated vaporization source capable of mass-producing a magnetic recording medium to be used in a magnetic recording and reproducing device with the error reduced when a digital signal is overwritten. CONSTITUTION:A vapor-deposition material 15 in a refractory vessel 12 is heated by an accelerated electron and vaporized in the vaporization source, and the molten metal is discharged outside the vessel after the vapor deposition is completed. Consequently, a magnetic recording medium capable of realizing a high-density record by overwriting is uniformly mass-produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子ビーム加熱蒸発源で
耐火物容器を用い高速化を図った上で、高品質な蒸着を
くり返し行える蒸発源の提供を目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an object to provide an evaporation source capable of repeatedly performing high-quality vapor deposition while using a refractory container as an electron beam heating evaporation source to increase the speed.

【0002】[0002]

【従来の技術】ポリエステルフィルム上にNi,Cr,
Cu,Co等を均一にかつ、広い面積に薄膜形成する技
術は電子産業を始め広く応用され、その生産性向上と、
薄膜品質を高めることは継続的に求められている。
2. Description of the Related Art Ni, Cr,
The technology of forming thin films of Cu, Co, etc. uniformly and in a large area has been widely applied starting from the electronic industry, and improving the productivity,
There is an ongoing need to improve thin film quality.

【0003】情報化社会の進展に伴い、記録すべき情報
量の増大は著しく、磁気記録についても可能な限り記録
密度を高める対応が要請され、短波長化、狭トラック化
に耐える高性能磁気記録媒体の開発が盛んになってきて
いる。多くの提案がなされているが、現在実用に供され
ているものは特開昭53−58206号公報に開示され
ているような強磁性金属自身の酸化物で柱状微粒子の表
面が被覆された構造をもち記録特性と耐久性をバランス
良く改善したもので、構成元素はCo,Ni,Oからな
り(特開昭56−15014号公報)、これらの磁気記
録層を形成するのは、酸素ガスを介在させながらCo,
Co−Niを電子ビーム蒸着する方法(特公昭57−1
9493号公報)が代表的で酸素の導入については幾つ
かの提案があるが基材近傍で、入射角規制を行う部分に
近い位置が良く用いられている(特開昭54−1919
9号公報、特開昭58−32234号公報)。図3は従
来の磁気記録媒体の製造に用いられている蒸着装置の要
部構成図である。図3で1は高分子フィルム、2はクー
リングキャン、3は巻だし軸、4は巻き取り軸、5は蒸
発源容器、6は蒸着材料、7は電子ビーム、8は電子発
生器、9は蒸気流、10は酸素ガス導入ノズル、11は
マスクである。蒸発源容器はMgO,Al23,ZrO
2等の耐火物製の容器で、基板の移動方向と直交方向の
伸びた横長一体型(特公昭57−3138号公報)、不
連続(幅方向の何か所に配設したもの)の状態で使用さ
れる。蒸着時に基板に欠陥が生じないように、容器の形
状、耐火物で用いる磁性材料の条件等(特公昭61−1
1224号公報、特公昭61−29126号公報、特開
平5−128516号公報)に改善が図られている。
With the progress of the information society, the amount of information to be recorded has remarkably increased, and it is required to increase the recording density of magnetic recording as much as possible, and high-performance magnetic recording that can endure shorter wavelengths and narrower tracks. Development of media is becoming popular. Although many proposals have been made, the one currently put to practical use is a structure in which the surface of columnar fine particles is coated with an oxide of a ferromagnetic metal itself as disclosed in JP-A-53-58206. It has a well-balanced improvement in recording characteristics and durability, and its constituent elements are Co, Ni, and O (JP-A-56-15014), and these magnetic recording layers are formed by oxygen gas. Co, while intervening
Method of electron beam evaporation of Co-Ni (Japanese Patent Publication No. 57-1)
No. 9493) is a typical example, and some proposals have been made for introducing oxygen. However, a position near the base material, which is close to the portion for controlling the incident angle, is often used (Japanese Patent Laid-Open No. 54-1919).
9 and JP-A-58-32234). FIG. 3 is a configuration diagram of a main part of a vapor deposition apparatus used for manufacturing a conventional magnetic recording medium. In FIG. 3, 1 is a polymer film, 2 is a cooling can, 3 is a winding shaft, 4 is a winding shaft, 5 is an evaporation source container, 6 is a vapor deposition material, 7 is an electron beam, 8 is an electron generator, and 9 is A vapor flow, 10 is an oxygen gas introduction nozzle, and 11 is a mask. The evaporation source container is MgO, Al 2 O 3 , ZrO
A refractory container such as 2 and the like, which is in a horizontally long integrated type (Japanese Patent Publication No. 57-3138) that extends in the direction orthogonal to the moving direction of the substrate, and is discontinuous (arranged at some position in the width direction) Used in. The shape of the container, the conditions of the magnetic material used in the refractory, etc. so that no defects will occur on the substrate during vapor deposition (Japanese Patent Publication No. 61-1).
1224, Japanese Patent Publication No. 61-29126, and Japanese Patent Laid-Open No. 5-128516).

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、近年急速に進むディジタル記録における
高密度記録で優れたエラー率の磁気記録媒体を得る上で
は不十分で、特に大量に必要な磁気記録媒体を高性能且
つ均一に再現良く生産する上で蒸発源から混入する微小
な異物が特性を阻害し、十分な均一性、再現性が満足さ
れないといった問題点を有していた。本発明は上記従来
の問題点を解決するもので、くり返し使用に耐えうるこ
とから、品質を高いレベルで維持できる電子ビーム加熱
蒸発源を提供することを目的とする。
However, the above-mentioned conventional structure is not sufficient for obtaining a magnetic recording medium having an excellent error rate in high-density recording in digital recording which has been rapidly progressed in recent years, and particularly a large amount of magnetic field is required. In producing a recording medium with high performance and uniformity and good reproducibility, minute foreign substances mixed in from the evaporation source impede the characteristics, and there is a problem that sufficient uniformity and reproducibility are not satisfied. The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide an electron beam heating evaporation source that can withstand repeated use and can maintain quality at a high level.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明の電子ビーム加熱蒸発源は、耐火物容器内の蒸
着材料を加速電子で加熱蒸発させる蒸発源であって、溶
湯を耐火物容器外に排出するようにしたものである。
In order to achieve this object, an electron beam heating evaporation source of the present invention is an evaporation source for heating and evaporating a vapor deposition material in a refractory container with accelerated electrons. It is designed to be discharged outside the container.

【0006】[0006]

【作用】この構成によって、耐火物容器がダメージを受
けにくくなり、耐火物容器の内壁から混入する酸化物が
電子ビームで衝撃を受け、瞬時に高速で飛散し、蒸着膜
にダメージを与えることがなくなり、水冷した銅製容器
での電子ビーム蒸着と同等の均一性、再現性を高速蒸着
で実現できることになる。
With this structure, the refractory container is less likely to be damaged, and the oxide mixed from the inner wall of the refractory container is impacted by the electron beam and is instantly scattered at high speed to damage the deposited film. Therefore, the uniformity and reproducibility equivalent to electron beam evaporation in a water-cooled copper container can be achieved by high-speed evaporation.

【0007】[0007]

【実施例】【Example】

(実施例1)以下本発明の一実施例について、図面を参
照しながら説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0008】図1は蒸発源の使用法の概念図である。図
1で12はマグネシア、アルミナ、カルシア、ジルコニ
ア等のいわゆる耐火物容器で、13は金属容器、14は
バッファーとして配設された酸化物粒子層で15は蒸着
材料で、16は水冷された銅製の固化容器で、容器の溝
形状と寸法関係は固化後、蒸着材として再度耐火物容器
にセットできるように設計されている。17は加熱用の
加速電子ビームで、電子の軌跡は自由に選択できる。
FIG. 1 is a conceptual diagram of how to use an evaporation source. In FIG. 1, 12 is a so-called refractory container such as magnesia, alumina, calcia, zirconia, 13 is a metal container, 14 is an oxide particle layer provided as a buffer, 15 is an evaporation material, and 16 is made of water-cooled copper. In the solidification container, the groove shape and dimensional relationship of the container are designed so that after solidification, it can be set again in the refractory container as a vapor deposition material. Reference numeral 17 is an accelerating electron beam for heating, and the trajectory of the electrons can be freely selected.

【0009】以下更に本実施例の効果について明確にす
るために具体的に上記した構成の電子ビーム加熱蒸発源
を図3で示した装置に組み込んで磁気記録媒体を試作
し、従来法で得られたものと特性比較を行った結果につ
いて詳しく述べる。
In order to further clarify the effect of the present embodiment, the electron beam heating evaporation source having the above-described structure is incorporated into the apparatus shown in FIG. The result of the characteristic comparison with the one will be described in detail.

【0010】厚み7.1μmで、長手方向、幅方向夫々
540,590[Kg/mm2]のヤング率で、平均粗さ3
0Åのポリエチレンテレフタレートフィルム(直径15
0ÅのSiO2の超微粒子を平均密度20個/μm2を樹
脂固定した塗布層をあらかじめ配したものを用いた)を
直径1mの20℃に冷却した回転キャンに沿わせて巻き
取りながら酸素を導入して入射角65度から33度の範
囲でCO(80)−Ni(20)を電子ビーム蒸着して
磁性層を0.18μ形成した。酸素ガス導入ノズルは最
小入射角を規定するマスクの内面に配した。電子ビーム
加熱は90度偏向の40KV、最大出力300KWの電
子ビーム発生器で行った。耐火物容器はマグネシアで幅
方向に1.1m、長手方向に10cm、内容積5280cc
のものを用いた。水冷銅ハースは耐火物容器に固化した
蒸着材が再度容易に装填できるように設計したものを用
いた。
The thickness is 7.1 μm, the Young's modulus is 540,590 [Kg / mm 2 ] in the longitudinal direction and the width direction, and the average roughness is 3
0Å polyethylene terephthalate film (diameter 15
O 2 ultrafine particles of SiO 2 with an average density of 20 particles / μm 2 were fixed on the resin was used in advance.) Was wound up along a rotary can cooled to 20 ° C. with a diameter of 1 m to collect oxygen. After introduction, CO (80) -Ni (20) was electron-beam evaporated at an incident angle of 65 ° to 33 ° to form a magnetic layer of 0.18 μm. The oxygen gas introduction nozzle was arranged on the inner surface of the mask that defines the minimum incident angle. The electron beam heating was performed by an electron beam generator with a 90 ° deflection of 40 KV and a maximum output of 300 KW. The refractory container is made of magnesia with a width of 1.1 m, a length of 10 cm, and an internal volume of 5280 cc.
I used the one. The water-cooled copper hearth was designed so that the vapor deposition material solidified in the refractory container could be easily loaded again.

【0011】従来例は同じ位置に、同一ロットの耐火物
容器を配設し、蒸着材の供給はいずれもペレット状で供
給を行った。蒸着に用いたフィルムは5000mで面の
均一性は同一ロット内では磁気テープとしての特性に影
響を与える程の差は無いことを3次元走査型電子顕微鏡
で多数箇所サンプリングして確認した。
In the conventional example, refractory containers of the same lot were arranged at the same position, and the vapor deposition material was supplied in the form of pellets. The film used for vapor deposition was 5000 m, and it was confirmed by sampling at many points with a three-dimensional scanning electron microscope that the surface uniformity was not so different as to affect the characteristics as a magnetic tape within the same lot.

【0012】夫々蒸着後、バックコート層を0.5μ
m、トップコート層(パーフルオロステアリン酸)を4
nm形成し、6.35mmにスリットし、特性を比較し
た。試験用デッキでビット長0.24μm、トラックピ
ッチ10μmでオーバーライト記録でのエラーレートの
相対比較で行った。磁気テープの長さは100mとし、
幅方向に5巻選び出して5巻の平均値で表示した。
After vapor deposition, a back coat layer of 0.5 μm was formed.
m, topcoat layer (perfluorostearic acid) 4
nm and slit to 6.35 mm to compare the characteristics. The test deck was used for relative comparison of error rates in overwriting recording with a bit length of 0.24 μm and a track pitch of 10 μm. The length of the magnetic tape is 100m,
Five rolls were selected in the width direction and displayed as an average value of five rolls.

【0013】本実施例による磁気記録媒体の特性と比較
例の磁気記録媒体の特性を(表1)に比較して示してい
る。
The characteristics of the magnetic recording medium according to this example and the characteristics of the magnetic recording medium of the comparative example are shown in comparison with each other (Table 1).

【0014】実施例は1回目の蒸着が完了した直後、約
30KgのCo(80)−Ni(20)溶湯を耐火物容器
を傾斜させて、水冷銅ハースに移し、固化し、高分子フ
ィルムをセットしなおして固化したCo−Ni合金を耐
火物容器に再度セットし、真空排気後再び加熱電子ビー
ムで加熱溶解し、蒸着に供するといったサイクルをくり
返した。
Immediately after the first vapor deposition was completed, about 30 kg of molten Co (80) -Ni (20) was transferred to a water-cooled copper hearth and solidified to form a polymer film immediately after the completion of the first vapor deposition. The Co-Ni alloy that was set again and solidified was set again in the refractory container, and after evacuation, it was heated and melted again by the heating electron beam and subjected to vapor deposition.

【0015】別の実施態様として、固化したものを再利
用せずに、溶湯を排出した耐火物容器を再利用し、新し
い蒸着材料を都度セットして蒸着を行ったものも示し
た。
As another embodiment, there is also shown a case where the solidified product is not reused, the refractory container from which the molten metal is discharged is reused, and a new vapor deposition material is set every time vapor deposition is performed.

【0016】従来例は耐火物容器を真空にたもって冷却
固化し、次の蒸着で再び溶解加熱蒸発させる方法を採っ
た。
The conventional example employs a method in which the refractory container is cooled and solidified in a vacuum and then melted and evaporated again in the next vapor deposition.

【0017】[0017]

【表1】 [Table 1]

【0018】この(表1)から明らかなように、本実施
例によって製造された磁気記録媒体は、オーバーライト
記録での高密度ディジタル記録を良好な状態で実現でき
るといった優れた効果が得られることがわかり優れた製
造方法であることが理解される。以上の様に本実施例の
製造方法によれば、耐火物容器内の蒸着材料を加速電子
で加熱蒸発させる蒸発源にあって、蒸着完了後溶湯を耐
火物容器外に排出するようにすることで、オーバーライ
ト記録での高密度ディジタル記録を良好な状態で実現で
きる磁気記録媒体を均一に且つ大量に製造することがで
きる。
As is clear from (Table 1), the magnetic recording medium manufactured according to the present example has an excellent effect that high-density digital recording in overwrite recording can be realized in a good state. Is understood to be an excellent manufacturing method. As described above, according to the manufacturing method of this embodiment, in the evaporation source for heating and evaporating the vapor deposition material in the refractory container with accelerated electrons, the molten metal is discharged to the outside of the refractory container after vapor deposition is completed. Thus, it is possible to uniformly manufacture a large number of magnetic recording media capable of realizing high-density digital recording in overwrite recording in a good state.

【0019】尚、冷却固化の容器の冷却法、材料等は適
宜選択することができるものである。
The cooling method of the container for cooling and solidification, the material and the like can be appropriately selected.

【0020】(実施例2)以下本発明の第2の実施例に
ついて説明する。
(Second Embodiment) A second embodiment of the present invention will be described below.

【0021】図2は本発明の第2の実施例の蒸発源容器
の状態図で、図2(a)は蒸着時の状態で厳密性は別に
して、耐火物容器12は水平(X−X′)におかれ、蒸
着材料からなる溶湯15は容器の内容積の70〜85%
程度を満たす状態に制御(材料補充を行う技術は一般的
な中から選べば良い)される。又蒸着が完了したら、図
2(b)に一例を示すように水平面にたいし傾斜した状
態で溶湯を固化させる。溶湯の残量は少なくした方が好
ましいと言えるが、三次元的に姿勢を同じにならないよ
うに保持することがポイントである。
FIG. 2 is a state diagram of an evaporation source container according to a second embodiment of the present invention. FIG. 2 (a) shows the refractory container 12 in a horizontal (X- X '), the molten metal 15 made of vapor deposition material is 70 to 85% of the inner volume of the container.
It is controlled to satisfy the condition (the technique for replenishing materials can be selected from general ones). When vapor deposition is completed, the molten metal is solidified in a state of being inclined with respect to the horizontal plane as shown in FIG. 2 (b). It can be said that it is preferable to reduce the remaining amount of the molten metal, but the point is to keep the postures so that they do not become the same in three dimensions.

【0022】以下更に本実施例の効果について明確にす
るために具体的に上記した構成の装置を用い磁気記録媒
体を試作し、従来法で得られたものと特性比較を行った
結果について詳しく述べる。
In order to further clarify the effect of this embodiment, a magnetic recording medium is prototyped by using the apparatus having the above-mentioned constitution, and the result of the characteristic comparison with that obtained by the conventional method will be described in detail. .

【0023】厚み6.1μmで、長手方向、幅方向夫々
940,1050[Kg/mm2]のヤング率で、平均粗さ
30Åのポリイミドフィルム(直径150ÅのSiO2
の超微粒子を平均密度20個/μm2を樹脂固定した塗
布層をあらかじめ配したものを用いた)を直径1mの2
0℃に冷却した回転キャンに沿わせて巻き取りながら酸
素を導入して入射角90〜40度でCoを電子ビーム蒸
着して磁性層を0.18μ形成した。耐火物容器、電子
ビーム加熱等は実施例1と同じにした。容器の傾斜角は
もっとも簡単に、フィルム幅方向に一方の端部をあげて
10度傾斜させて、その次にはもう一方の端部をあげて
10度傾斜させた。その次には端部を10度傾けその状
態でフィルムの長手方向に対して20度傾けて保持し
た。溶湯の残量はほぼ12Kgとした。
A polyimide film with a thickness of 6.1 μm and a Young's modulus of 940 and 1050 [Kg / mm 2 ] in the longitudinal and width directions and an average roughness of 30 Å (SiO 2 with a diameter of 150 Å) is used.
Of the ultrafine particles of which the average density was 20 / μm 2 was fixed on the resin, and the coating layer was previously arranged).
While winding along a rotary can cooled to 0 ° C., oxygen was introduced and Co was electron beam evaporated at an incident angle of 90 to 40 ° to form a magnetic layer of 0.18 μm. The refractory container, electron beam heating, etc. were the same as in Example 1. The inclination angle of the container was the easiest, and one end was raised in the film width direction to incline 10 degrees, and then the other end was raised to incline 10 degrees. Then, the end portion was tilted by 10 degrees and, in that state, it was tilted by 20 degrees with respect to the longitudinal direction of the film and held. The remaining amount of molten metal was set to about 12 kg.

【0024】従来例は水平保持で溶湯の残量は同じく1
2Kgとした。それぞれ磁性層の上に、ダイヤモンド状硬
質炭素膜を60Å形成した。その形成はメタンガスを高
周波放電でイオン化して炭素膜を形成するプラズマCV
D法で行った。炭素膜の上に更に潤滑剤としてパーフル
オロポリエーテルを40Å溶液塗布法で配し、バックコ
ート層を0.45μm形成し6.35mm幅の磁気テープ
に加工した。これらのテープを試験用のデッキによって
6μトラック、ビット長0.2μのディジタル記録を行
いオーバーライト記録でエラーレートを相対比較した。
耐久性についても5℃、85%RHで100パス履歴を
加えた後のエラーレートで評価した。
In the conventional example, the amount of molten metal remaining is 1 with horizontal holding.
It was 2 kg. A 60-liter diamond-like hard carbon film was formed on each magnetic layer. The formation is plasma CV in which methane gas is ionized by high frequency discharge to form a carbon film.
Method D was used. Perfluoropolyether as a lubricant was further placed on the carbon film by a 40 Å solution coating method to form a back coat layer of 0.45 μm and processed into a 6.35 mm wide magnetic tape. These tapes were digitally recorded with a 6 .mu. Track and a bit length of 0.2 .mu. By a test deck, and relative error rates were compared by overwrite recording.
The durability was also evaluated by the error rate after adding a 100-pass history at 5 ° C. and 85% RH.

【0025】本実施例による磁気記録媒体の特性と従来
磁気記録媒体の特性を(表2)に比較して示している。
The characteristics of the magnetic recording medium according to this embodiment and the characteristics of the conventional magnetic recording medium are shown in comparison with each other (Table 2).

【0026】[0026]

【表2】 [Table 2]

【0027】この(表2)から明らかなように、本実施
例により製造された磁気記録媒体は、狭トラック条件で
の高密度ディジタル記録を良好なエラー率で行うことが
できるといった優れた効果がある。
As is clear from (Table 2), the magnetic recording medium manufactured according to this example has an excellent effect that high-density digital recording under a narrow track condition can be performed with a good error rate. is there.

【0028】以上のように本実施例によれば耐火物容器
内の蒸着材料を加速電子で加熱蒸発させる蒸発源にあっ
て、溶湯を耐火物容器の蒸着時と異なる姿勢で固化し、
蒸着材として再利用することで優れた耐久性と良好なオ
ーバーライトディジタル記録性能を兼ね備えた薄型の磁
気記録媒体を再現よく製造できるようになる。
As described above, according to this embodiment, in the evaporation source for heating and evaporating the vapor deposition material in the refractory container with accelerated electrons, the molten metal is solidified in a posture different from that during vapor deposition of the refractory container,
By reuse as a vapor deposition material, it becomes possible to reproducibly manufacture a thin magnetic recording medium having both excellent durability and good overwrite digital recording performance.

【0029】[0029]

【発明の効果】以上の様に本発明によれば、耐火物容器
内の蒸着材料を加速電子で加熱蒸発させる蒸発源にあっ
て、蒸着完了後溶湯を耐火物容器外に排出するようにす
ることで、オーバーライト記録での高密度ディジタル記
録を良好な状態で実現できる磁気記録媒体を均一に且つ
大量に製造することができる。
As described above, according to the present invention, in the evaporation source for heating and evaporating the vapor deposition material in the refractory container with accelerated electrons, the molten metal is discharged to the outside of the refractory container after vapor deposition is completed. As a result, it is possible to uniformly manufacture a large number of magnetic recording media that can realize high-density digital recording in overwrite recording in a good state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における蒸発源の使用法
の概念図
FIG. 1 is a conceptual diagram of usage of an evaporation source in a first embodiment of the present invention.

【図2】本発明の第2の実施例の蒸発源容器の状態図FIG. 2 is a state diagram of an evaporation source container according to a second embodiment of the present invention.

【図3】従来の磁気記録媒体の製造に用いた製造装置の
要部構成図
FIG. 3 is a configuration diagram of a main part of a manufacturing apparatus used for manufacturing a conventional magnetic recording medium.

【符号の説明】[Explanation of symbols]

12 耐火物容器 15 蒸着材料 16 固化容器 12 refractory container 15 vapor deposition material 16 solidification container

───────────────────────────────────────────────────── フロントページの続き (72)発明者 国枝 敏明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 篠原 紘一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiaki Kunieda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Koichi Shinohara, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 耐火物容器内の蒸着材料を加速電子で加
熱蒸発させる蒸発源にあって、蒸着完了後溶湯を耐火物
容器外に排出することを特徴とする電子ビーム加熱蒸発
源。
1. An electron beam heating evaporation source for an evaporation source for heating and evaporating a vapor deposition material in a refractory container with accelerated electrons, wherein the molten metal is discharged to the outside of the refractory container after completion of vapor deposition.
【請求項2】 耐火物容器内の蒸着材料を加速電子で加
熱蒸発させる蒸発源にあって、蒸着完了後溶湯を耐火物
容器外に排出し固化し、固化した合金を再利用すること
を特徴とする電子ビーム加熱蒸発源。
2. An evaporation source for heating and evaporating a vapor deposition material in a refractory container with accelerated electrons, wherein after the vapor deposition is completed, the molten metal is discharged outside the refractory container and solidified, and the solidified alloy is reused. And electron beam heating evaporation source.
【請求項3】 耐火物容器内の蒸着材料を加速電子で加
熱蒸発させる蒸発源にあって、溶湯を耐火物容器の蒸着
時と異なる姿勢で固化し、蒸着材として再利用すること
を特徴とする電子ビーム加熱蒸発源。
3. An evaporation source for heating and evaporating a vapor deposition material in a refractory container with accelerated electrons, wherein the molten metal is solidified in a posture different from that during vapor deposition of the refractory container and reused as a vapor deposition material. An electron beam heating evaporation source.
JP19107693A 1993-08-02 1993-08-02 Electron beam-heated vaporization source Pending JPH0741938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19107693A JPH0741938A (en) 1993-08-02 1993-08-02 Electron beam-heated vaporization source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19107693A JPH0741938A (en) 1993-08-02 1993-08-02 Electron beam-heated vaporization source

Publications (1)

Publication Number Publication Date
JPH0741938A true JPH0741938A (en) 1995-02-10

Family

ID=16268470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19107693A Pending JPH0741938A (en) 1993-08-02 1993-08-02 Electron beam-heated vaporization source

Country Status (1)

Country Link
JP (1) JPH0741938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116697A1 (en) * 2009-04-08 2010-10-14 パナソニック株式会社 Production device and production method of thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116697A1 (en) * 2009-04-08 2010-10-14 パナソニック株式会社 Production device and production method of thin film
CN102272346A (en) * 2009-04-08 2011-12-07 松下电器产业株式会社 Production device and production method of thin film

Similar Documents

Publication Publication Date Title
JP2003193220A (en) Method of vapor deposition onto film
JPH0741938A (en) Electron beam-heated vaporization source
EP0468488A1 (en) Method for making a magnetic recording medium
JPH103638A (en) Magnetic recording medium
JP3867544B2 (en) Magnetic recording medium and method for manufacturing the same
US5202149A (en) Method for making a magnetic recording medium
JPS62185246A (en) Production of magnetic recording medium
JP2568643B2 (en) Manufacturing method of magnetic recording medium
JPH06116729A (en) Production of magnetic recording medium
JPH1064035A (en) Magnetic recording medium and its production
JPH07114731A (en) Production of magnetic recording medium
JPH11120535A (en) Magnetic recording medium
JP2006048840A (en) Magnetic recording medium, its manufacturing method and recording and reproducing method of magnetic recording medium
JPS6297133A (en) Production of magnetic recording medium
JPH06231457A (en) Production of magnetic recording medium
JP2548232B2 (en) Method of manufacturing magnetic recording medium
JP2563449B2 (en) Method of manufacturing magnetic recording medium
JP2558753B2 (en) Magnetic recording media
JPH06111299A (en) Manufacture of magnetic recording medium
JPH11161952A (en) Production of magnetic recording medium
JP2951892B2 (en) Magnetic recording media
JPH0714160A (en) Production of magnetic recording medium
JPH01211235A (en) Manufacture of magnetic recording medium
JP2002373410A (en) Magnetic recording medium, recording and reproducing method of the same and manufacturing method therefor
JPH04147434A (en) Production of magnetic recording medium