JPH0741500A - サイクロイヌロオリゴサッカライド フラクタノトランスフェラーゼ活性を有する新規なタンパク質およびそれをコードする遺伝子ならびに該遺伝子を含有する形質転換体による環状イヌロオリゴ糖の製造方法 - Google Patents
サイクロイヌロオリゴサッカライド フラクタノトランスフェラーゼ活性を有する新規なタンパク質およびそれをコードする遺伝子ならびに該遺伝子を含有する形質転換体による環状イヌロオリゴ糖の製造方法Info
- Publication number
- JPH0741500A JPH0741500A JP5188147A JP18814793A JPH0741500A JP H0741500 A JPH0741500 A JP H0741500A JP 5188147 A JP5188147 A JP 5188147A JP 18814793 A JP18814793 A JP 18814793A JP H0741500 A JPH0741500 A JP H0741500A
- Authority
- JP
- Japan
- Prior art keywords
- gly
- asp
- val
- glu
- ala
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
(57)【要約】 (修正有)
【構成】 サイクロイヌロサッカライド フラクタノト
ランスフェラーゼ活性を有し、SDS−ポリアクリルア
ミドゲル電気泳動及びゲル濾過法による分子量約12
0,000の新規な水溶性酵素タンパク質をバチルス
(Bacillus)属菌から分離精製した。該タンパ
ク質をコードする遺伝子の塩基配列を決定し、該塩基配
列を有する発現ベクターにより形質転換された形質転換
体を用いて該タンパク質を産生させる。該形質転換体を
培養して得られる培養液、分離菌体等をβ−2,1−フ
ラクトースオリゴ糖、イヌリン等に作用させて環状イヌ
ロオリゴ糖を製造する。 【効果】 本発現プラスミドを有する形質転換体の培養
により得られる培養液、分離菌体等を用いることにより
β−2,1−フラクトースオリゴ糖、イヌリン等から環
状イヌロオリゴ糖を効率よく生産可能である。
ランスフェラーゼ活性を有し、SDS−ポリアクリルア
ミドゲル電気泳動及びゲル濾過法による分子量約12
0,000の新規な水溶性酵素タンパク質をバチルス
(Bacillus)属菌から分離精製した。該タンパ
ク質をコードする遺伝子の塩基配列を決定し、該塩基配
列を有する発現ベクターにより形質転換された形質転換
体を用いて該タンパク質を産生させる。該形質転換体を
培養して得られる培養液、分離菌体等をβ−2,1−フ
ラクトースオリゴ糖、イヌリン等に作用させて環状イヌ
ロオリゴ糖を製造する。 【効果】 本発現プラスミドを有する形質転換体の培養
により得られる培養液、分離菌体等を用いることにより
β−2,1−フラクトースオリゴ糖、イヌリン等から環
状イヌロオリゴ糖を効率よく生産可能である。
Description
【0001】
【産業上の利用分野】本発明はサイクロイヌロオリゴサ
ッカライド フラクタノトランスフェラーゼ活性を有す
る新規なタンパク質およびそれをコードする遺伝子並び
に該遺伝子を含有する形質転換体による環状イヌロオリ
ゴ糖の製造方法に関する。詳しくは、β−2,1−フラ
クトースオリゴ糖またはイヌリンから環状イヌロオリゴ
糖を生成させる活性を有する新規なタンパク質およびそ
れをコードする遺伝子と、少なくとも該遺伝子発現に必
要なプロモーター配列、当該タンパク質をコードするD
NA配列及びターミネーター配列を有する発現ベクター
により形質転換された形質転換体、さらにその形質転換
体を培養することにより当該タンパク質を産生させる方
法、ならびに該形質転換体を培養して得られる培養液、
分離菌体、菌体処理物、タンパク質またはこれらの固定
化物をβ−2,1−フラクトースオリゴ糖またはイヌリ
ンに作用させて環状イヌロオリゴ糖を製造する方法に関
する。
ッカライド フラクタノトランスフェラーゼ活性を有す
る新規なタンパク質およびそれをコードする遺伝子並び
に該遺伝子を含有する形質転換体による環状イヌロオリ
ゴ糖の製造方法に関する。詳しくは、β−2,1−フラ
クトースオリゴ糖またはイヌリンから環状イヌロオリゴ
糖を生成させる活性を有する新規なタンパク質およびそ
れをコードする遺伝子と、少なくとも該遺伝子発現に必
要なプロモーター配列、当該タンパク質をコードするD
NA配列及びターミネーター配列を有する発現ベクター
により形質転換された形質転換体、さらにその形質転換
体を培養することにより当該タンパク質を産生させる方
法、ならびに該形質転換体を培養して得られる培養液、
分離菌体、菌体処理物、タンパク質またはこれらの固定
化物をβ−2,1−フラクトースオリゴ糖またはイヌリ
ンに作用させて環状イヌロオリゴ糖を製造する方法に関
する。
【0002】
【従来の技術および発明が解決しようとする課題】近
年、内山らにより初めて見いだされた新規環状オリゴ糖
であるサイクロフラクタン(Cycloinulo−o
ligosaccharidesの総称。以下、「CF
R」と略す)及びその誘導体は、それらの特殊な構造、
物性に起因する優れた包接作用から、現在主に食品分野
で包接剤として利用されている環状オリゴ糖のサイクロ
デキストリンと同様な用途への利用が考えられている。
さらに、金属の補捉剤、分離剤、有機合成反応への利用
等、非常に多方面の用途への利用が考えられているクラ
ウンエーテルと同様な用途に利用可能な物質としても注
目を集めている(バイオ インダストリー,9(1
1),28−33,1992)。
年、内山らにより初めて見いだされた新規環状オリゴ糖
であるサイクロフラクタン(Cycloinulo−o
ligosaccharidesの総称。以下、「CF
R」と略す)及びその誘導体は、それらの特殊な構造、
物性に起因する優れた包接作用から、現在主に食品分野
で包接剤として利用されている環状オリゴ糖のサイクロ
デキストリンと同様な用途への利用が考えられている。
さらに、金属の補捉剤、分離剤、有機合成反応への利用
等、非常に多方面の用途への利用が考えられているクラ
ウンエーテルと同様な用途に利用可能な物質としても注
目を集めている(バイオ インダストリー,9(1
1),28−33,1992)。
【0003】これまでに本発明者の一部はこのCFRの
効率的な生産法について検討した結果、Bacillu
s circulans MCI−2554(生命研菌
寄第11940号(FERM P−11940))由来
のサイクロイヌロオリゴサッカライド フラクタノトラ
ンスフェラーゼ(cycloinulo−oligos
accharide fructanotransfe
rase。以下、「CFTase」と略す。)が効率よ
く環状イヌロオリゴ糖を生産することを見出し、バイオ
リアクターによる生産方法を検討している(特開平4−
237496号公報)。
効率的な生産法について検討した結果、Bacillu
s circulans MCI−2554(生命研菌
寄第11940号(FERM P−11940))由来
のサイクロイヌロオリゴサッカライド フラクタノトラ
ンスフェラーゼ(cycloinulo−oligos
accharide fructanotransfe
rase。以下、「CFTase」と略す。)が効率よ
く環状イヌロオリゴ糖を生産することを見出し、バイオ
リアクターによる生産方法を検討している(特開平4−
237496号公報)。
【0004】しかしながらバイオリアクターを構築する
為の酵素液調製の課程において、その微生物の最適培養
法の検討など、用いる微生物触媒の生物学的性質に応じ
て数多くの検討を行う必要があり、生物触媒としての活
性をコストの上で工業的に利用できるレベルにまであげ
ることは必ずしも容易ではない。
為の酵素液調製の課程において、その微生物の最適培養
法の検討など、用いる微生物触媒の生物学的性質に応じ
て数多くの検討を行う必要があり、生物触媒としての活
性をコストの上で工業的に利用できるレベルにまであげ
ることは必ずしも容易ではない。
【0005】
【課題を解決するための手段】本発明者らは、より高い
CFTase生産能を持つ微生物菌体を調製する目的
で、CFTase活性を有するタンパク質を組換えDN
A技術により形質転換体中、あるいは培養液中に大量に
生産させようと鋭意検討を重ね、かかる目的に有用な新
規なタンパク質を初めて単離・精製した。さらに、これ
をコードする遺伝子も初めて分離取得し、この遺伝子を
発現ベクターに組み込み形質転換体を得て、その形質転
換体によりCFTaseを大量に生産させることに成功
し、本発明を完成するに至った。
CFTase生産能を持つ微生物菌体を調製する目的
で、CFTase活性を有するタンパク質を組換えDN
A技術により形質転換体中、あるいは培養液中に大量に
生産させようと鋭意検討を重ね、かかる目的に有用な新
規なタンパク質を初めて単離・精製した。さらに、これ
をコードする遺伝子も初めて分離取得し、この遺伝子を
発現ベクターに組み込み形質転換体を得て、その形質転
換体によりCFTaseを大量に生産させることに成功
し、本発明を完成するに至った。
【0006】すなわち本発明の要旨は、下記の理化学的
性質を有することを特徴とする新規なタンパク質および
それをコードする遺伝子ならびに該遺伝子を含有する形
質転換体による環状イヌロオリゴ糖の製造方法に関す
る。 SDS−ポリアクリルアミドゲル電気泳動、及びゲ
ル濾過法による分子量が約120,000の水溶性酵素
タンパク質。
性質を有することを特徴とする新規なタンパク質および
それをコードする遺伝子ならびに該遺伝子を含有する形
質転換体による環状イヌロオリゴ糖の製造方法に関す
る。 SDS−ポリアクリルアミドゲル電気泳動、及びゲ
ル濾過法による分子量が約120,000の水溶性酵素
タンパク質。
【0007】 サイクロイヌロオリゴサッカライド
フラクタノトランスフェラーゼ活性を有する。 以下本発明をさらに詳細に説明するに、本発明の新規な
タンパク質CFTaseは、例えば後述の実施例に記述
するように、土壌から分離したBacillus ci
rculans MCI−2554(特開平4−237
496号公報、生命研菌寄第11940号(FERM
P−11940);以下、「本菌株」または「MCI2
554菌」と称することもある)を培養し、それを遠心
分離した後の上清に含まれる酵素を硫安沈澱(65%飽
和)により回収し、さらにDEAE−Toyopear
l 650M、SP−Toyopearl 650M
(いずれも東ソー社製)カラムクロマトグラフィー等に
より分画し、最後にToyopearl HW55F
(東ソー社製)等の分子ふるいクロマトグラフィーに供
することにより精製標品が得られる。精製された本発明
のタンパク質は、SDS−ポリアクリルアミドゲル電気
泳動、及びゲルろ過による分子量が約120,000の
水溶性タンパク質であり、β−2,1−フラクトースオ
リゴ糖またはイヌリンから環状イヌロオリゴ糖を生成さ
せる活性、すなわちCFTase活性を有する。
フラクタノトランスフェラーゼ活性を有する。 以下本発明をさらに詳細に説明するに、本発明の新規な
タンパク質CFTaseは、例えば後述の実施例に記述
するように、土壌から分離したBacillus ci
rculans MCI−2554(特開平4−237
496号公報、生命研菌寄第11940号(FERM
P−11940);以下、「本菌株」または「MCI2
554菌」と称することもある)を培養し、それを遠心
分離した後の上清に含まれる酵素を硫安沈澱(65%飽
和)により回収し、さらにDEAE−Toyopear
l 650M、SP−Toyopearl 650M
(いずれも東ソー社製)カラムクロマトグラフィー等に
より分画し、最後にToyopearl HW55F
(東ソー社製)等の分子ふるいクロマトグラフィーに供
することにより精製標品が得られる。精製された本発明
のタンパク質は、SDS−ポリアクリルアミドゲル電気
泳動、及びゲルろ過による分子量が約120,000の
水溶性タンパク質であり、β−2,1−フラクトースオ
リゴ糖またはイヌリンから環状イヌロオリゴ糖を生成さ
せる活性、すなわちCFTase活性を有する。
【0008】また、本発明のCFTaseは、配列表の
配列番号4及び5に示す部分アミノ酸配列を有するタン
パク質であり、具体的には配列表の配列番号1に示すよ
うなアミノ酸配列を有するタンパク質が挙げられる。か
かるタンパク質としては、環状イヌロオリゴ糖を生成さ
せる活性を損なわない範囲で一部のアミノ酸を除去、置
換、修飾または追加するなどの改変を行ったものも、本
発明のタンパク質に含まれる。
配列番号4及び5に示す部分アミノ酸配列を有するタン
パク質であり、具体的には配列表の配列番号1に示すよ
うなアミノ酸配列を有するタンパク質が挙げられる。か
かるタンパク質としては、環状イヌロオリゴ糖を生成さ
せる活性を損なわない範囲で一部のアミノ酸を除去、置
換、修飾または追加するなどの改変を行ったものも、本
発明のタンパク質に含まれる。
【0009】上記のCFTaseをコードする遺伝子と
しては、例えば、配列表の配列番号2または3に示すよ
うな塩基配列を有するものが挙げられる。本発明のCF
Taseをコードする遺伝子のDNA断片は、例えば次
のような方法によって得られる。本発明のタンパク質を
コードする遺伝子を含有するDNAライブラリーとして
は、土壌から分離してきたMCI−2554菌から調製
してきた染色体DNAを用いて公知の常法により作成し
たプラスミドライブラリーが利用できる。このDNAラ
イブラリーからプラスミドをT.Maniatisらの
方法(「モレキュラー クローニング」,コールド ス
プリング ハーバー ラボラトリー,85,1982
年)により宿主大腸菌に形質転換し培養する。培養後に
形成されたコロニーを部分DNA断片あるいは決定した
本発明のタンパク質の部分アミノ酸配列に対応する塩基
配列を持つDNA断片をプローブとしてコロニーハイブ
リダイゼーション法(「モレキュラー クローニン
グ」,コールド スプリング ハーバー ラボラトリ
ー,320−328,1982年)によって選択し、目
的とするDNAを得ることができる。
しては、例えば、配列表の配列番号2または3に示すよ
うな塩基配列を有するものが挙げられる。本発明のCF
Taseをコードする遺伝子のDNA断片は、例えば次
のような方法によって得られる。本発明のタンパク質を
コードする遺伝子を含有するDNAライブラリーとして
は、土壌から分離してきたMCI−2554菌から調製
してきた染色体DNAを用いて公知の常法により作成し
たプラスミドライブラリーが利用できる。このDNAラ
イブラリーからプラスミドをT.Maniatisらの
方法(「モレキュラー クローニング」,コールド ス
プリング ハーバー ラボラトリー,85,1982
年)により宿主大腸菌に形質転換し培養する。培養後に
形成されたコロニーを部分DNA断片あるいは決定した
本発明のタンパク質の部分アミノ酸配列に対応する塩基
配列を持つDNA断片をプローブとしてコロニーハイブ
リダイゼーション法(「モレキュラー クローニン
グ」,コールド スプリング ハーバー ラボラトリ
ー,320−328,1982年)によって選択し、目
的とするDNAを得ることができる。
【0010】このコロニーハイブリダイゼーション法に
使用するプローブには、ポリメラーゼチェイン反応(以
下、「PCR」と略す)法(サイエンス[Scienc
e],239,487−491,1988年)によって
得られるCFTaseタンパク質をコードする遺伝子の
部分DNA断片が用いられる。例えば配列表の配列番号
5に示す+鎖DNAプライマーと、配列表の配列番号6
に示す−鎖DNAプライマーを用いてPCRを行い、得
られた配列表の配列番号2に示した1379bpのDN
A断片を作成してプローブとして用いる。またCFTa
seアミノ酸配列より推定されるDNA配列に基づき合
成したオリゴヌクレオチドをプローブとして用いてもよ
い。
使用するプローブには、ポリメラーゼチェイン反応(以
下、「PCR」と略す)法(サイエンス[Scienc
e],239,487−491,1988年)によって
得られるCFTaseタンパク質をコードする遺伝子の
部分DNA断片が用いられる。例えば配列表の配列番号
5に示す+鎖DNAプライマーと、配列表の配列番号6
に示す−鎖DNAプライマーを用いてPCRを行い、得
られた配列表の配列番号2に示した1379bpのDN
A断片を作成してプローブとして用いる。またCFTa
seアミノ酸配列より推定されるDNA配列に基づき合
成したオリゴヌクレオチドをプローブとして用いてもよ
い。
【0011】さらに上記のスクリーニング陽性のコロニ
ーからT.Maniatisらの方法(「モレキュラー
クローニング」,コールド スプリング ハーバー
ラボラトリー,85,1982年)によりDNAを調製
し、適当な制限酵素、例えばBamHI等で切断後,p
UC18等のプラスミドにクローニングし、Sange
rらのジデオキシ法(プロシーディングス オブ ナシ
ョナル アカデミーサイエンス ユー エス エー[P
roc.Natl.Acad.Sci.USA],7
4,5463,1977年)によって目的DNA断片の
塩基配列が決定できる。
ーからT.Maniatisらの方法(「モレキュラー
クローニング」,コールド スプリング ハーバー
ラボラトリー,85,1982年)によりDNAを調製
し、適当な制限酵素、例えばBamHI等で切断後,p
UC18等のプラスミドにクローニングし、Sange
rらのジデオキシ法(プロシーディングス オブ ナシ
ョナル アカデミーサイエンス ユー エス エー[P
roc.Natl.Acad.Sci.USA],7
4,5463,1977年)によって目的DNA断片の
塩基配列が決定できる。
【0012】このようにして決定されるDNA断片の塩
基配列(例えば、配列表の配列番号3)は、CFTas
e(1,503アミノ酸残基)のタンパク質をコードし
ている、全長5,248ヌクレオチド長からなるもので
ある。また本発明によるDNA断片は配列表の配列番号
1に示すアミノ酸配列をコードするものに限らず、その
DNA断片から翻訳されるタンパク質がCFTase活
性を持つ限りはそのアミノ酸配列を改変したものをコー
ドするものも含まれる。
基配列(例えば、配列表の配列番号3)は、CFTas
e(1,503アミノ酸残基)のタンパク質をコードし
ている、全長5,248ヌクレオチド長からなるもので
ある。また本発明によるDNA断片は配列表の配列番号
1に示すアミノ酸配列をコードするものに限らず、その
DNA断片から翻訳されるタンパク質がCFTase活
性を持つ限りはそのアミノ酸配列を改変したものをコー
ドするものも含まれる。
【0013】上記のようにして得られるDNA断片は、
その5’末端を修飾して公知の発現ベクターにそれ自体
公知の方法でプロモーターの下流に挿入され、次いで上
記のDNAが挿入された発現ベクターは、大腸菌、酵
母、動物細胞宿主等、公知の細胞中にそれ自体公知の方
法により導入される。本発明のCFTaseの産生方法
につき詳細に説明すると、発現ベクターとしては上記の
ようにして得られたCFTaseをコードするDNAを
転写できる位置にプロモーターを含有しているものが使
用される。たとえば大腸菌、枯草菌等の微生物を宿主と
するときには、発現ベクターはプロモーター、リボゾー
ム結合(SD)配列、CFTase遺伝子、転写終結配
列、及びプロモーターを制御する遺伝子より成ることが
好ましい。
その5’末端を修飾して公知の発現ベクターにそれ自体
公知の方法でプロモーターの下流に挿入され、次いで上
記のDNAが挿入された発現ベクターは、大腸菌、酵
母、動物細胞宿主等、公知の細胞中にそれ自体公知の方
法により導入される。本発明のCFTaseの産生方法
につき詳細に説明すると、発現ベクターとしては上記の
ようにして得られたCFTaseをコードするDNAを
転写できる位置にプロモーターを含有しているものが使
用される。たとえば大腸菌、枯草菌等の微生物を宿主と
するときには、発現ベクターはプロモーター、リボゾー
ム結合(SD)配列、CFTase遺伝子、転写終結配
列、及びプロモーターを制御する遺伝子より成ることが
好ましい。
【0014】プロモーターとしては、大腸菌、ファージ
等由来のもの、例えばトリプトファン合成酵素(tr
p)、ラクトースオペロン(lac)、ラムダファージ
PL 、PR 、T5 ファージの初期遺伝子のプロモーター
であるP25、P26プロモーター等が挙げられる。また、
これらは例えばpacプロモーター(アグリカルチュラ
ル アンド バイオロジカル ケミストリー[Agri
c.Biol.Chem.],52,983−988,
1988年)のように独自に改変、設計された配列でも
良い。
等由来のもの、例えばトリプトファン合成酵素(tr
p)、ラクトースオペロン(lac)、ラムダファージ
PL 、PR 、T5 ファージの初期遺伝子のプロモーター
であるP25、P26プロモーター等が挙げられる。また、
これらは例えばpacプロモーター(アグリカルチュラ
ル アンド バイオロジカル ケミストリー[Agri
c.Biol.Chem.],52,983−988,
1988年)のように独自に改変、設計された配列でも
良い。
【0015】リボゾーム結合配列としては、大腸菌、フ
ァージ等由来のものでも良いが、DNA合成により作成
した16SリボゾームRNAの3’末端領域に相補的な
配列を4塩基以上連続してもつコンセンサス配列を持っ
たものでも良い。転写終結配列は必ずしも必要ではない
が、ρ非依存性のもの、例えばリポプロテインターミネ
ーター、trpオペロンターミネーター等を有している
方が好ましい。
ァージ等由来のものでも良いが、DNA合成により作成
した16SリボゾームRNAの3’末端領域に相補的な
配列を4塩基以上連続してもつコンセンサス配列を持っ
たものでも良い。転写終結配列は必ずしも必要ではない
が、ρ非依存性のもの、例えばリポプロテインターミネ
ーター、trpオペロンターミネーター等を有している
方が好ましい。
【0016】更にこれらの発現に必要な因子の発現プラ
スミド上での配列順序は、5’上流から、プロモータ
ー、SD配列、CFTase遺伝子、転写終結因子の順
に並ぶことが望ましい。また発現ベクター上のSD配列
とCFTase遺伝子とのユニットを複数個同方向に挿
入することにより、ベクター上の転写単位のコピー数を
増加させる方法(特開平1−95798号公報)を用い
ることもできる。
スミド上での配列順序は、5’上流から、プロモータ
ー、SD配列、CFTase遺伝子、転写終結因子の順
に並ぶことが望ましい。また発現ベクター上のSD配列
とCFTase遺伝子とのユニットを複数個同方向に挿
入することにより、ベクター上の転写単位のコピー数を
増加させる方法(特開平1−95798号公報)を用い
ることもできる。
【0017】発現ベクターとして使用できるものとして
は、pUAI2(特開平1−95798号公報)やpU
B110(Gene,14,325−328,1981
年)、pNBL2(Gene,69,59−69,19
88年)、市販のpKK233−2(ファルマシア社
製)等がある。また、融合蛋白として発現させる発現ベ
クターpGEXシリーズ(ファルマシア社製)等も同様
にして使用できる。
は、pUAI2(特開平1−95798号公報)やpU
B110(Gene,14,325−328,1981
年)、pNBL2(Gene,69,59−69,19
88年)、市販のpKK233−2(ファルマシア社
製)等がある。また、融合蛋白として発現させる発現ベ
クターpGEXシリーズ(ファルマシア社製)等も同様
にして使用できる。
【0018】宿主の形質転換法としては、常法に従い行
うことができる。形質転換体の培養は、モレキュラー
クローニング(コールド スプリングハーバー ラボラ
トリー,1982年)に記載の方法を参考にして行うこ
とができる。培養温度としては、28〜42℃が適当で
ある。また、形質転換に用いる宿主としては、例えば後
述の実施例のように大腸菌あるいは枯草菌があげられる
が、とくにこれらの微生物に限定されるものではなく、
他の微生物、動物細胞、昆虫細胞などの宿主生物を用い
ることができる。
うことができる。形質転換体の培養は、モレキュラー
クローニング(コールド スプリングハーバー ラボラ
トリー,1982年)に記載の方法を参考にして行うこ
とができる。培養温度としては、28〜42℃が適当で
ある。また、形質転換に用いる宿主としては、例えば後
述の実施例のように大腸菌あるいは枯草菌があげられる
が、とくにこれらの微生物に限定されるものではなく、
他の微生物、動物細胞、昆虫細胞などの宿主生物を用い
ることができる。
【0019】上記形質転換体を培養して得られるCFT
aseは、公知の方法で宿主から単離・精製される。本
発明においては、環状イヌロオリゴ糖の生産には、上記
で得られたCFTaseの他に形質転換体の培養液(培
養上清を含む)、分離菌体、菌体処理物、固定化菌体、
粗酵素液、酵素処理物、固定化酵素等が用いられる。
aseは、公知の方法で宿主から単離・精製される。本
発明においては、環状イヌロオリゴ糖の生産には、上記
で得られたCFTaseの他に形質転換体の培養液(培
養上清を含む)、分離菌体、菌体処理物、固定化菌体、
粗酵素液、酵素処理物、固定化酵素等が用いられる。
【0020】また、本発明で対象とする基質としては、
例えばβ−2,1−フラクトースオリゴ糖、イヌリンが
挙げられる。
例えばβ−2,1−フラクトースオリゴ糖、イヌリンが
挙げられる。
【0021】
【実施例】以下の実施例により、本発明を更に詳細に説
明するが、本発明はその要旨を越えない限り以下の実施
例によって限定されるものではない。 実施例1 CFTaseの精製と部分アミノ酸配列の決
定 土壌分離菌Bacillus circulans M
CI−2554(特開平4−237496号公報、生命
研菌寄第11940号(FERM P−11940))
を培地(イヌリン 1%,コーンスティープリカー
0.5%,硝酸ナトリウム 0.2%,硫酸マグネシウ
ム 0.05%,塩化カリウム 0.05%,リン酸一
カリウム 0.05%,塩化第二鉄 0.001%,p
H7.5)500mlに接種し、160rpmで30
℃、30時間培養した後、遠心分離(6,000×g、
20分間)により菌体を除去し、培養上清を得た。培養
上清400mlに等量の脱イオン水を加え、この混合液
をQAE−Toyopearl650Mカラム(30×
150mm、東ソー社製)にて分画した。すなわち、ト
リス緩衝液でカラムを十分洗浄した後、0.3MのNa
Clを含む緩衝液でさらに洗浄し、続いて0.3Mから
0.7MのNaClの濃度勾配溶出を行ってCFTas
e活性を含む画分を得た。
明するが、本発明はその要旨を越えない限り以下の実施
例によって限定されるものではない。 実施例1 CFTaseの精製と部分アミノ酸配列の決
定 土壌分離菌Bacillus circulans M
CI−2554(特開平4−237496号公報、生命
研菌寄第11940号(FERM P−11940))
を培地(イヌリン 1%,コーンスティープリカー
0.5%,硝酸ナトリウム 0.2%,硫酸マグネシウ
ム 0.05%,塩化カリウム 0.05%,リン酸一
カリウム 0.05%,塩化第二鉄 0.001%,p
H7.5)500mlに接種し、160rpmで30
℃、30時間培養した後、遠心分離(6,000×g、
20分間)により菌体を除去し、培養上清を得た。培養
上清400mlに等量の脱イオン水を加え、この混合液
をQAE−Toyopearl650Mカラム(30×
150mm、東ソー社製)にて分画した。すなわち、ト
リス緩衝液でカラムを十分洗浄した後、0.3MのNa
Clを含む緩衝液でさらに洗浄し、続いて0.3Mから
0.7MのNaClの濃度勾配溶出を行ってCFTas
e活性を含む画分を得た。
【0022】この活性画分を10mMリン酸緩衝液に対
して透析したのち、同液で平衡化したヒドロキシアパタ
イトカラム(20×100mm)に共して分画した。す
なわち、10mMから100mMのリン酸緩衝液の濃度
勾配溶出を行い、CFTase活性を含む画分を得た。
この活性画分に飽和硫安を終濃度が10%になるように
加え、フェニルセファロースカラムで分画した。すなわ
ち、10%硫安を含む5mMトリス−HCl緩衝液で平
衡化したカラムにサンプルをアプライして同緩衝液で洗
浄した後、硫安濃度10%から0%を含む5mMトリス
−HCl緩衝液の濃度勾配溶出を行い、活性画分を得
た。この活性画分を0.05Mリン酸緩衝液(pH7.
0)に対して透析した。得られた精製標品はSDS−ポ
リアクリルアミド電気泳動により単一バンドを示した。
して透析したのち、同液で平衡化したヒドロキシアパタ
イトカラム(20×100mm)に共して分画した。す
なわち、10mMから100mMのリン酸緩衝液の濃度
勾配溶出を行い、CFTase活性を含む画分を得た。
この活性画分に飽和硫安を終濃度が10%になるように
加え、フェニルセファロースカラムで分画した。すなわ
ち、10%硫安を含む5mMトリス−HCl緩衝液で平
衡化したカラムにサンプルをアプライして同緩衝液で洗
浄した後、硫安濃度10%から0%を含む5mMトリス
−HCl緩衝液の濃度勾配溶出を行い、活性画分を得
た。この活性画分を0.05Mリン酸緩衝液(pH7.
0)に対して透析した。得られた精製標品はSDS−ポ
リアクリルアミド電気泳動により単一バンドを示した。
【0023】精製酵素画分を4M尿素を含む50mM
トリス−塩酸緩衝液(pH8.5)に溶解し、リジルエ
ンドペプチダーゼ(和光純薬製)により酵素:基質=
1:200で37℃、18時間作用させて高速液体クロ
マトグラフィー(HPLC)によりペプチド断片を得
た。その画分をそれぞれ減圧乾燥した後、50%TFA
60μlに溶解し、ポリブレン処理したグラスフィルタ
ーに吸着させ、Applied Biosystem社
製470型シークエンサーでエドマン分解し、N末端側
からのアミノ酸配列を決定した。この結果、配列表の配
列番号4および配列表の配列番号5に示すリジルエンド
ペプチダーゼ断片のアミノ酸配列を得た。
トリス−塩酸緩衝液(pH8.5)に溶解し、リジルエ
ンドペプチダーゼ(和光純薬製)により酵素:基質=
1:200で37℃、18時間作用させて高速液体クロ
マトグラフィー(HPLC)によりペプチド断片を得
た。その画分をそれぞれ減圧乾燥した後、50%TFA
60μlに溶解し、ポリブレン処理したグラスフィルタ
ーに吸着させ、Applied Biosystem社
製470型シークエンサーでエドマン分解し、N末端側
からのアミノ酸配列を決定した。この結果、配列表の配
列番号4および配列表の配列番号5に示すリジルエンド
ペプチダーゼ断片のアミノ酸配列を得た。
【0024】実施例2 PCR法によるCFTase遺
伝子の部分DNA断片の取得 基質となる土壌分離菌MCI2554菌の染色体DNA
は常法に従って作製される。すなわち培養菌体よりフェ
ノール−クロロホルム法(「モレキュラークローニン
グ」,コールドスプリングハーバーラボラトリー,19
82年)に従い、若干の改良を加えて以下のごとく調製
した。
伝子の部分DNA断片の取得 基質となる土壌分離菌MCI2554菌の染色体DNA
は常法に従って作製される。すなわち培養菌体よりフェ
ノール−クロロホルム法(「モレキュラークローニン
グ」,コールドスプリングハーバーラボラトリー,19
82年)に従い、若干の改良を加えて以下のごとく調製
した。
【0025】MCI2554菌をLB培地100mlに
植菌して培養した後集菌し、この菌体をTES[10m
M Tris−HCl(pH7.5),1mM EDT
A,50mM NaCl]で洗浄後、TE[10mM
Tris−HCl(pH7.5),1mM EDTA]
5mlに懸濁し、リゾチーム10mgを加えて37℃で
30分間インキュベートした後、凍結−再融解を繰り返
して細胞を破壊する。次に1/2量の1%(w/v)の
SDSを穏やかに振とうしながら加え、更にプロテイナ
ーゼK(シグマ社製)を終濃度0.1mg/mlになる
よう加えて60℃で5時間インキュベートする。次に等
量のTE飽和フェノール・クロロホルムを加え、一晩室
温で緩やかに振とうする(以下、この操作をフェノール
処理と呼ぶ)。遠心後、上層をとり等量のクロロホルム
を加えて再抽出する。遠心後の上層に等量のエタノール
を加えたのちガラス棒でDNAを巻きとり、70%、8
5%、99.5%のエタノールで順次脱水する。次にD
NAを3mlのTEバッファーに溶解させたのち100
℃、10分間の加熱処理したRNaseA水溶液を終濃
度10μg/mlになるよう加えて37℃で1時間保温
する。その後フェノール処理、エタノール沈澱によりD
NAを回収する。この結果、約1.5mgの染色体DN
Aが得られた。
植菌して培養した後集菌し、この菌体をTES[10m
M Tris−HCl(pH7.5),1mM EDT
A,50mM NaCl]で洗浄後、TE[10mM
Tris−HCl(pH7.5),1mM EDTA]
5mlに懸濁し、リゾチーム10mgを加えて37℃で
30分間インキュベートした後、凍結−再融解を繰り返
して細胞を破壊する。次に1/2量の1%(w/v)の
SDSを穏やかに振とうしながら加え、更にプロテイナ
ーゼK(シグマ社製)を終濃度0.1mg/mlになる
よう加えて60℃で5時間インキュベートする。次に等
量のTE飽和フェノール・クロロホルムを加え、一晩室
温で緩やかに振とうする(以下、この操作をフェノール
処理と呼ぶ)。遠心後、上層をとり等量のクロロホルム
を加えて再抽出する。遠心後の上層に等量のエタノール
を加えたのちガラス棒でDNAを巻きとり、70%、8
5%、99.5%のエタノールで順次脱水する。次にD
NAを3mlのTEバッファーに溶解させたのち100
℃、10分間の加熱処理したRNaseA水溶液を終濃
度10μg/mlになるよう加えて37℃で1時間保温
する。その後フェノール処理、エタノール沈澱によりD
NAを回収する。この結果、約1.5mgの染色体DN
Aが得られた。
【0026】PCRはパーキン・エルマー・シータス・
DNA・サーマル・サイクラー(Perkin・Elm
er・Cetus・DNA・Thermal Cycl
er)を使用して、使用説明書に基づき、ジーンアンプ
キット(Gene AmpDNA Amplifica
tion Reagent Kit,宝酒造製)を使っ
て行った。すなわち基質DNA 0.5μl(1μg相
当量)、10培濃度の反応緩衝液[500mM KC
l,100mM Tris−HCl(pH8.3),1
5mM MgCl2 、0.1%(w/v)ゼラチン]1
0μl、1.25mM 4dNTP 16μl、50μ
Mプライマー#1として配列表の配列番号6の+鎖DN
Aプライマー及びプライマー#2として配列表の配列番
号7の−鎖DNAプライマー各5μl、TaqDNAポ
リメラーゼ0.5μlを加えて100μlの系とする。
反応は94℃、10分間の前処理後、94℃1分間(変
性ステップ)、48℃1.5分間(アニーリングステッ
プ)、72℃2分間(伸長ステップ)のインキュベーシ
ョンを35サイクル行った。最後に72℃で7分間のイ
ンキュベーションを行い反応を終了した。得られた反応
液をフェノ−ル:クロロホルム=1:1で抽出し、エタ
ノール沈澱を行った。この沈澱を16μl滅菌脱イオン
水に溶解した後、5%ポリアクリルアミドゲル電気泳動
を行い、特異的に増幅された約1,400bpのバンド
を常法に従って切り出してDNAフラグメントを回収
し、エタノール沈澱を行った。
DNA・サーマル・サイクラー(Perkin・Elm
er・Cetus・DNA・Thermal Cycl
er)を使用して、使用説明書に基づき、ジーンアンプ
キット(Gene AmpDNA Amplifica
tion Reagent Kit,宝酒造製)を使っ
て行った。すなわち基質DNA 0.5μl(1μg相
当量)、10培濃度の反応緩衝液[500mM KC
l,100mM Tris−HCl(pH8.3),1
5mM MgCl2 、0.1%(w/v)ゼラチン]1
0μl、1.25mM 4dNTP 16μl、50μ
Mプライマー#1として配列表の配列番号6の+鎖DN
Aプライマー及びプライマー#2として配列表の配列番
号7の−鎖DNAプライマー各5μl、TaqDNAポ
リメラーゼ0.5μlを加えて100μlの系とする。
反応は94℃、10分間の前処理後、94℃1分間(変
性ステップ)、48℃1.5分間(アニーリングステッ
プ)、72℃2分間(伸長ステップ)のインキュベーシ
ョンを35サイクル行った。最後に72℃で7分間のイ
ンキュベーションを行い反応を終了した。得られた反応
液をフェノ−ル:クロロホルム=1:1で抽出し、エタ
ノール沈澱を行った。この沈澱を16μl滅菌脱イオン
水に溶解した後、5%ポリアクリルアミドゲル電気泳動
を行い、特異的に増幅された約1,400bpのバンド
を常法に従って切り出してDNAフラグメントを回収
し、エタノール沈澱を行った。
【0027】DNA沈澱を25μl滅菌脱イオン水に溶
解し、うち0.2μlを用いて精製DNA断片をInv
itrogen社のTA Cloning Kitを用
いてpCRIIベクターにクローン化した。さらに、こ
のDNA断片を種々の制限酵素で小断片化してpUC1
9ベクターに挿入し、得られたサブクローンからプラス
ミドDNAを常法により調製し、デュポン社製蛍光シー
クエンサーGENESIS2,000システム、および
ABI社製蛍光シークエンサー373Aを用いて配列を
決定した。シークエンスプライマーとして配列表の配列
番号8及び配列表の配列番号9の2種の合成プライマー
を使用し、該DNA断片の+鎖、一鎖の塩基配列を決定
した。この結果、決定したPCRフラグメントの塩基配
列は配列表の配列番号2に示すとおりである。このPC
Rフラグメントの全長は1,379bpであったが、こ
のDNA断片ががコードするアミノ酸配列のうち5’側
から8アミノ酸が配列表の配列番号4の4〜11番目の
アミノ酸に、また3’側から7アミノ酸が配列表の配列
番号5の1〜7番目のアミノ酸に相当し、精製CFTa
seから決定したアミノ酸配列に一致した。
解し、うち0.2μlを用いて精製DNA断片をInv
itrogen社のTA Cloning Kitを用
いてpCRIIベクターにクローン化した。さらに、こ
のDNA断片を種々の制限酵素で小断片化してpUC1
9ベクターに挿入し、得られたサブクローンからプラス
ミドDNAを常法により調製し、デュポン社製蛍光シー
クエンサーGENESIS2,000システム、および
ABI社製蛍光シークエンサー373Aを用いて配列を
決定した。シークエンスプライマーとして配列表の配列
番号8及び配列表の配列番号9の2種の合成プライマー
を使用し、該DNA断片の+鎖、一鎖の塩基配列を決定
した。この結果、決定したPCRフラグメントの塩基配
列は配列表の配列番号2に示すとおりである。このPC
Rフラグメントの全長は1,379bpであったが、こ
のDNA断片ががコードするアミノ酸配列のうち5’側
から8アミノ酸が配列表の配列番号4の4〜11番目の
アミノ酸に、また3’側から7アミノ酸が配列表の配列
番号5の1〜7番目のアミノ酸に相当し、精製CFTa
seから決定したアミノ酸配列に一致した。
【0028】実施例3 CFTaseをコードする完全
長DNA断片を含むクローンのスクリーニング 上記実施例2で作製した1,379bpのPCR断片を
モレキュラークローニング(コールドスプリングハーバ
ーラボラトリー,1982年)に記載の方法に従い32P
標識することによりスクリーニング用プローブとした。
長DNA断片を含むクローンのスクリーニング 上記実施例2で作製した1,379bpのPCR断片を
モレキュラークローニング(コールドスプリングハーバ
ーラボラトリー,1982年)に記載の方法に従い32P
標識することによりスクリーニング用プローブとした。
【0029】上記実施例2で調製した染色体DNA標品
2.5μl(5μg相当量)に10倍濃度制限酵素緩衝
液[50mMトリス−塩酸(pH7.5),10mM塩
化マグネシウム,100mM塩化ナトリウム,1mM
DTT]2μl、滅菌脱イオン水14.5μl、制限酵
素SalI 1μl(15ユニット)を加え37℃で3
時間反応させた後、アガロースゲル電気泳動(65V、
4時間)を行い、前記のプローブを用いてモレキュラー
クローニング(コールドスプリングハーバーラボラトリ
ー,1982年)に記載の方法に従いサザンハイブリダ
イゼーションを行った結果、約5.3kbpの位置にプ
ローブと強くハイブリダイズするDNA断片が存在する
ことが明らかになった。
2.5μl(5μg相当量)に10倍濃度制限酵素緩衝
液[50mMトリス−塩酸(pH7.5),10mM塩
化マグネシウム,100mM塩化ナトリウム,1mM
DTT]2μl、滅菌脱イオン水14.5μl、制限酵
素SalI 1μl(15ユニット)を加え37℃で3
時間反応させた後、アガロースゲル電気泳動(65V、
4時間)を行い、前記のプローブを用いてモレキュラー
クローニング(コールドスプリングハーバーラボラトリ
ー,1982年)に記載の方法に従いサザンハイブリダ
イゼーションを行った結果、約5.3kbpの位置にプ
ローブと強くハイブリダイズするDNA断片が存在する
ことが明らかになった。
【0030】そこで前出の染色体DNA標品10μl
(20μg相当量)に10倍濃度制限酵素緩衝液[50
mMトリス−塩酸(pH7.5),10mM塩化マグネ
シウム,100mM塩化ナトリウム,1mM DTT]
4μl、滅菌脱イオン水13μl、制限酵素SalI
3μl(45ユニット)を加え37℃で2時間反応させ
た後、アガロースゲル電気泳動(65V、5時間)を行
い、モレキュラークローニング(コールドスプリングハ
ーバーラボラトリー,1982年)に記載の方法に従い
5.3kbp付近のDNA断片を分離・回収した。
(20μg相当量)に10倍濃度制限酵素緩衝液[50
mMトリス−塩酸(pH7.5),10mM塩化マグネ
シウム,100mM塩化ナトリウム,1mM DTT]
4μl、滅菌脱イオン水13μl、制限酵素SalI
3μl(45ユニット)を加え37℃で2時間反応させ
た後、アガロースゲル電気泳動(65V、5時間)を行
い、モレキュラークローニング(コールドスプリングハ
ーバーラボラトリー,1982年)に記載の方法に従い
5.3kbp付近のDNA断片を分離・回収した。
【0031】こうして回収した約5.3kbpのDNA
断片を少なくとも10pmol用意し、ライゲーション
キット(宝酒造社製)を用いて、pUC19プラスミド
ベクター(東洋紡績社製)のマルチクローニングサイト
内にあるSalIサイトに組み込んだ。この時ライゲー
ションに用いたベクターDNAは、次の様に用意された
ものを20ng使用した。即ち、pUC19のDNAを
制限酵素SalI(東洋紡績社製)で切断し、フェノー
ル/クロロホルム処理、エタノール沈澱させた後、さら
にアルカリフォスタファーゼ(ベーリンガーマンハイム
社製)で5′末端を脱リン酸化して[モレキュラークロ
ーニング,コールドスプリングハーバーラボラトリー,
1982年]、フェノール/クロロホルム処理、エタノ
ール沈澱させた。
断片を少なくとも10pmol用意し、ライゲーション
キット(宝酒造社製)を用いて、pUC19プラスミド
ベクター(東洋紡績社製)のマルチクローニングサイト
内にあるSalIサイトに組み込んだ。この時ライゲー
ションに用いたベクターDNAは、次の様に用意された
ものを20ng使用した。即ち、pUC19のDNAを
制限酵素SalI(東洋紡績社製)で切断し、フェノー
ル/クロロホルム処理、エタノール沈澱させた後、さら
にアルカリフォスタファーゼ(ベーリンガーマンハイム
社製)で5′末端を脱リン酸化して[モレキュラークロ
ーニング,コールドスプリングハーバーラボラトリー,
1982年]、フェノール/クロロホルム処理、エタノ
ール沈澱させた。
【0032】このようにして作成したDNAを東洋紡績
社製の大腸菌DH5αのコンピテントセル(COMPE
TENT HIGH)を用いてトランスフォーメーショ
ンを行い、直径15cmのシャーレ中のアンピシリン含
有(50μg/ml)LB寒天培地(1%酵母抽出物,
0.5%バクトトリプトン,0.5%塩化ナトリウム)
に菌液を塗布した。一枚あたり102 〜103 個のコロ
ニーが出現したシャーレをバンクのスクリーニングに用
いた。
社製の大腸菌DH5αのコンピテントセル(COMPE
TENT HIGH)を用いてトランスフォーメーショ
ンを行い、直径15cmのシャーレ中のアンピシリン含
有(50μg/ml)LB寒天培地(1%酵母抽出物,
0.5%バクトトリプトン,0.5%塩化ナトリウム)
に菌液を塗布した。一枚あたり102 〜103 個のコロ
ニーが出現したシャーレをバンクのスクリーニングに用
いた。
【0033】バンクのスクリーニングはNEN社製のナ
イロンメンブレン、Colony/PlaqueScr
eenを用いて添付の説明書に従って行った。すなわち
プレート上に生育したコロニーをプレート1枚あたり2
枚のメンブレンに移し取った後、そのメンブレンを0.
5M水酸化ナトリウムが染み込んだ濾紙上に2分間静置
し、続いて1Mトリス−塩酸(pH7.5)が染み込ん
だ濾紙上で5分間静置した。このフィルターの処理を更
に2回繰り返した後、ウオッシングバッファー(2×S
SC(2倍SSC溶液),0.1%SDS)でフィルタ
ーを洗浄し、乾いた濾紙上で風乾した。次にこのメンブ
レンに120mJ/cm2 のUV照射を行うことにより
メンブレンに移したDNAの固定を行った。
イロンメンブレン、Colony/PlaqueScr
eenを用いて添付の説明書に従って行った。すなわち
プレート上に生育したコロニーをプレート1枚あたり2
枚のメンブレンに移し取った後、そのメンブレンを0.
5M水酸化ナトリウムが染み込んだ濾紙上に2分間静置
し、続いて1Mトリス−塩酸(pH7.5)が染み込ん
だ濾紙上で5分間静置した。このフィルターの処理を更
に2回繰り返した後、ウオッシングバッファー(2×S
SC(2倍SSC溶液),0.1%SDS)でフィルタ
ーを洗浄し、乾いた濾紙上で風乾した。次にこのメンブ
レンに120mJ/cm2 のUV照射を行うことにより
メンブレンに移したDNAの固定を行った。
【0034】こうして処理したメンブレン4枚(1,0
00コロニー相当)に30mlのプレハイブリダイゼー
ション液[1M NaCl,50mM Tris−塩酸
(pH7.5),200μg/ml鱒精子DNA]に6
5℃で30分浸した。この間に実施例3で作製した約1
380bpのDNA断片をPharmacia社製RT
G DNA Labelling Kitを用いて、添
付の説明書に従い32P標識した。次にこの32P標識DN
A断片を1μCi/mlの濃度で含むハイブリダイゼー
ション液[1M NaCl,50mM Tris−塩酸
(pH7.5),10%硫酸デキストラン,1%SD
S,200μg/ml鱒精子DNA]25ml中に上述
のフィルターを65℃で16時間浸した。その後メンブ
レンを取り出し2×SSC、0.1%SDS溶液中での
洗浄を室温で2回行い、更に0.2×SSC、0.1%
SDS溶液中で65℃で15分の洗浄を2回行った後に
オートラジオグラフィーを取った。この結果、2枚1組
のメンブレンのオートラジオグラフィー上のポジティブ
なシグナルが一致したコロニーが4個得られた。
00コロニー相当)に30mlのプレハイブリダイゼー
ション液[1M NaCl,50mM Tris−塩酸
(pH7.5),200μg/ml鱒精子DNA]に6
5℃で30分浸した。この間に実施例3で作製した約1
380bpのDNA断片をPharmacia社製RT
G DNA Labelling Kitを用いて、添
付の説明書に従い32P標識した。次にこの32P標識DN
A断片を1μCi/mlの濃度で含むハイブリダイゼー
ション液[1M NaCl,50mM Tris−塩酸
(pH7.5),10%硫酸デキストラン,1%SD
S,200μg/ml鱒精子DNA]25ml中に上述
のフィルターを65℃で16時間浸した。その後メンブ
レンを取り出し2×SSC、0.1%SDS溶液中での
洗浄を室温で2回行い、更に0.2×SSC、0.1%
SDS溶液中で65℃で15分の洗浄を2回行った後に
オートラジオグラフィーを取った。この結果、2枚1組
のメンブレンのオートラジオグラフィー上のポジティブ
なシグナルが一致したコロニーが4個得られた。
【0035】このコロニーをLB培地(1%酵母抽出
物,0.5%バクトトリプトン,0.5%塩化ナトリウ
ム)で培養した後に希釈してLB寒天培地(50μg/
mlのアンピシリンを含む)にシャーレ一枚当たりコロ
ニーが100個程度出現するように塗布し、再度32P標
識DNA断片を用いたハイブリダイゼーション法を行う
ことによりポジティブクローンを純化した。
物,0.5%バクトトリプトン,0.5%塩化ナトリウ
ム)で培養した後に希釈してLB寒天培地(50μg/
mlのアンピシリンを含む)にシャーレ一枚当たりコロ
ニーが100個程度出現するように塗布し、再度32P標
識DNA断片を用いたハイブリダイゼーション法を行う
ことによりポジティブクローンを純化した。
【0036】実施例4 DNA断片のサブクローニング
及び塩基配列の決定 純化したポジティブクローンのうちの一つからプラスミ
ドDNA(pCFS1と名付けた)を常法(「モレキュ
ラークローニング」,コールドスプリングハーバーラボ
ラトリー,86−96(1982))に従い調製し、必
要なDNA領域を適宜制限酵素で小断片化した後にプラ
スミドベクターpUC19にサブクローニングを行っ
た。得られたサブクローンからプラスミドDNAを常法
により調製し、実施例2と同様にしてデュポン社製蛍光
シークエンサーGENESIS2,000システム、お
よびABI社製蛍光シークエンサー477Aを用いて、
配列を決定した。この結果、配列表の配列番号3に示す
ような塩基配列が得られた。
及び塩基配列の決定 純化したポジティブクローンのうちの一つからプラスミ
ドDNA(pCFS1と名付けた)を常法(「モレキュ
ラークローニング」,コールドスプリングハーバーラボ
ラトリー,86−96(1982))に従い調製し、必
要なDNA領域を適宜制限酵素で小断片化した後にプラ
スミドベクターpUC19にサブクローニングを行っ
た。得られたサブクローンからプラスミドDNAを常法
により調製し、実施例2と同様にしてデュポン社製蛍光
シークエンサーGENESIS2,000システム、お
よびABI社製蛍光シークエンサー477Aを用いて、
配列を決定した。この結果、配列表の配列番号3に示す
ような塩基配列が得られた。
【0037】実施例5 形質転換体を用いた大腸菌での
CFTaseの生産と該CFTaseを用いたイヌリン
のサイクロフラクタン(CFR)への変換 実施例3で得られたpCFS1を含有する形質転換体を
20mlのLB(50μg/mlのアンピシリン含有)
培地に接種し、37℃でOD660 が0.8になるまで培
養した後、プロモーターの転写誘導剤であるIPTG
(イソプロピル−β−D(−)−チオガラクトピラノシ
ド)を終濃度1mMになるよう添加し、一晩(12〜1
6時間)培養した。菌体を遠心分離により集め、これを
生理食塩水で一回洗浄したのち1.6mlのリン酸緩衝
液(pH7.0、0.05M)に懸濁した。菌体懸濁液
を氷中で超音波破砕(100W、5分間)した後、終濃
度5%になるようにイヌリンを添加して30℃で2時間
反応させた。反応終了後、反応液中に生じたCFRを高
速液体クロマトグラフィーを用いて検出したところ、反
応液中にはCFRが検出された。この時のCFR6(フ
ラクトースが6個環状に結合したもの)の生産効率は
1.33g/リットルブロス/hrであった。
CFTaseの生産と該CFTaseを用いたイヌリン
のサイクロフラクタン(CFR)への変換 実施例3で得られたpCFS1を含有する形質転換体を
20mlのLB(50μg/mlのアンピシリン含有)
培地に接種し、37℃でOD660 が0.8になるまで培
養した後、プロモーターの転写誘導剤であるIPTG
(イソプロピル−β−D(−)−チオガラクトピラノシ
ド)を終濃度1mMになるよう添加し、一晩(12〜1
6時間)培養した。菌体を遠心分離により集め、これを
生理食塩水で一回洗浄したのち1.6mlのリン酸緩衝
液(pH7.0、0.05M)に懸濁した。菌体懸濁液
を氷中で超音波破砕(100W、5分間)した後、終濃
度5%になるようにイヌリンを添加して30℃で2時間
反応させた。反応終了後、反応液中に生じたCFRを高
速液体クロマトグラフィーを用いて検出したところ、反
応液中にはCFRが検出された。この時のCFR6(フ
ラクトースが6個環状に結合したもの)の生産効率は
1.33g/リットルブロス/hrであった。
【0038】これに対し、上記発現プラスミドpCFS
1を含まない大腸菌DH5α株を用いて同様な試験を行
ったところ、反応終了後の反応液中にCFRが検出でき
なかった。 実施例6 枯草菌の形質転換体の構築と形質転換体を用
いたCFRの生産 枯草菌の発現ベクターには大腸菌と枯草菌のシャトルプ
ラスミドであるpNBL2を用いた。プラスミドpCF
S1のDNAから、常法に従いCFTase遺伝子を含
むSalI断片を切り出し、別に調製したベクターDN
A(pNBL2のDNAをSalIで消化後、アルカリ
フォスファターゼにより末端の脱リン酸化処理をしたも
の)とT4DNAリガーゼにより連結した。これを常法
により枯草菌MI112株に形質転換した後、CFTa
seのDNA断片をもつ形質転換体を常法により選択し
た。
1を含まない大腸菌DH5α株を用いて同様な試験を行
ったところ、反応終了後の反応液中にCFRが検出でき
なかった。 実施例6 枯草菌の形質転換体の構築と形質転換体を用
いたCFRの生産 枯草菌の発現ベクターには大腸菌と枯草菌のシャトルプ
ラスミドであるpNBL2を用いた。プラスミドpCF
S1のDNAから、常法に従いCFTase遺伝子を含
むSalI断片を切り出し、別に調製したベクターDN
A(pNBL2のDNAをSalIで消化後、アルカリ
フォスファターゼにより末端の脱リン酸化処理をしたも
の)とT4DNAリガーゼにより連結した。これを常法
により枯草菌MI112株に形質転換した後、CFTa
seのDNA断片をもつ形質転換体を常法により選択し
た。
【0039】得られた形質転換体を培地(イヌリン 4
%,酵母エキス 0.2%,硝酸ナトリウム 0.5
%,硫酸マグネシウム 0.05%,塩化カリウム
0.05%,リン酸一カリウム 0.05%,塩化第二
鉄 0.001%,トリメトプリム 100mg/l)
に1白金耳接種し、160rpmで30℃、30時間培
養した。培養終了後、遠心分離により菌体を除去し、培
養上清を得た。この培養上清に含まれるCFRを高速液
体クロマトグラフィーにより検出したところ、CFRが
検出された。
%,酵母エキス 0.2%,硝酸ナトリウム 0.5
%,硫酸マグネシウム 0.05%,塩化カリウム
0.05%,リン酸一カリウム 0.05%,塩化第二
鉄 0.001%,トリメトプリム 100mg/l)
に1白金耳接種し、160rpmで30℃、30時間培
養した。培養終了後、遠心分離により菌体を除去し、培
養上清を得た。この培養上清に含まれるCFRを高速液
体クロマトグラフィーにより検出したところ、CFRが
検出された。
【0040】
【発明の効果】本発明によりCFTase活性を有する
ポリペプチドをコードする新規なDNA断片が得られ、
その塩基配列が明らかにされた。そして本発明で構築し
た発現プラスミドを有する形質転換体を培養することに
より得られる菌体、菌体抽出物等を用いることによりイ
ヌリンからサイクロフラクタンを生産させることが可能
となった。本発明を用いることによりイヌリンよりサイ
クロフラクタンを効率よく製造することができる。
ポリペプチドをコードする新規なDNA断片が得られ、
その塩基配列が明らかにされた。そして本発明で構築し
た発現プラスミドを有する形質転換体を培養することに
より得られる菌体、菌体抽出物等を用いることによりイ
ヌリンからサイクロフラクタンを生産させることが可能
となった。本発明を用いることによりイヌリンよりサイ
クロフラクタンを効率よく製造することができる。
【0041】
配列番号:1 配列の長さ:1503 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:Bacillus circulans MCI−2554 配列 Met Arg Glu Val Lys Arg Gly Lys Lys Ser Gly Phe Ala Ala Leu Ala 1 5 10 15 Ile Trp Ser Leu Phe Phe Gln Leu Ile Ala Pro Gly Ile Ser Ala Ala 20 25 30 Ala Glu Pro Gly Ala Asp Ile Glu Asp Ala Leu Ile Ser Glu Ala Glu 35 40 45 Ser Glu Ile Pro Val Thr Asp Ala Val Tyr Gln Ile Glu Asn Pro Gly 50 55 60 Phe Glu Thr Gly Asp Leu Thr Gly Trp Ser Val Ala Glu Gly Gly Ala 65 70 75 80 Phe Gly Pro Asp Ser Val Ser Asp Glu Thr Val Trp Trp Ala Glu Arg 85 90 95 Ile Pro Tyr Asp Gln Glu Gly Ala Tyr His Leu Asn Gly Trp Lys Tyr 100 105 110 Pro Glu Ser Glu Thr Gly Val Leu Arg Ser Ser Thr Phe Glu Leu Gly 115 120 125 Gly Ser Gly Trp Ile Ser Phe Lys Leu Gly Gly Ala Lys Asp Pro Asp 130 135 140 Lys Ala Phe Ile Asn Ile Val Glu Ala Asp Thr Gly Gln Val Val Ala 145 150 155 160 Arg Tyr Gly Asn Ser Ala Phe Thr Asp Val Gly Phe Pro Asp Pro Ala 165 170 175 Gln Gly Met Arg Leu Ala Asn Met Glu Gln Tyr Lys Ala Asp Leu Ser 180 185 190 Gly His Ile Gly Lys Lys Leu Tyr Ile Glu Ile Val Asp His Ala Thr 195 200 205 Ser Asp Trp Gly Leu Ile Phe Ala Asp Ala Phe Phe Met Tyr His Glu 210 215 220 Ser Glu Pro Ala Glu Gly Ile Val Ala Thr Asp Ile Lys Pro Asp Phe 225 230 235 240 Glu Arg Tyr Gln Ile Glu Asn Pro Ser Phe Glu Thr Gly Asp Leu Thr 245 250 255 Gly Trp Thr Val Ile Glu Gly Asp Ala Phe Gly Pro Asn Ser Val Ser 260 265 270 Asp Glu Thr Val Trp Trp Ala Glu Arg Ile Pro Tyr Asp Gln Glu Gly 275 280 285 Ala Tyr His Leu Asn Gly Trp Lys Tyr Pro Glu Ser Glu Thr Gly Val 290 295 300 Leu Arg Ser Ser Thr Phe Glu Leu Gly Gly Ser Gly Trp Ile Thr Phe 305 310 315 320 Lys Leu Gly Gly Gly Lys His Thr Asp Gln Val Tyr Val Ser Val Ile 325 330 335 Glu Ala Glu Thr Gly Asn Leu Ile Ala Arg Tyr Gly Asn Ser Ala Phe 340 345 350 Thr Asp Val Gly Phe Pro Asp Pro Ala Gln Gly Met Arg Leu Ala Asn 355 360 365 Met Glu Gln Tyr Lys Ala Asp Leu Ser Lys His Ile Gly Lys Lys Leu 370 375 380 Tyr Leu Glu Ile Val Asp His Gly Val Ser Asp Trp Gly Leu Val Phe 385 390 395 400 Ala Asp Ala Phe Arg Thr Phe His Glu Ile Val Pro Glu Asp Gly Val 405 410 415 Val Ala Glu Asn Ile Ile Pro Ala Glu Ile Ala Asn Arg Gly Phe Glu 420 425 430 Thr Gly Asn Leu Asp Gly Trp Thr Val Glu Gly Asp Ala Phe His Val 435 440 445 Thr Asp Glu Ala His Ala Ala Lys Glu Gly Asn Phe Tyr Ala Leu Ser 450 455 460 Ser Thr Glu Gly Gln Gly Ser Ile Thr Ser Asn Thr Phe Thr Leu Gln 465 470 475 480 Gly Ala Gly Ile Ile Asn Phe Thr Val Leu Asp Ile Leu Asn Pro Glu 485 490 495 Gly Ala Tyr Val Ala Leu Tyr Asp Ala Ser Ser Asn Thr Val Ile Lys 500 505 510 Ile Thr Gly Asn Ile Gly Ala Asn Glu Gln Ile Ser Trp Lys Val Gln 515 520 525 Glu His Tyr Asn Lys Lys Leu Tyr Val Lys Val Val Asp Gln Ser Gly 530 535 540 Asp Ala Gly Ile Ala Val Asp Gly Phe Gln Ala Arg Thr Glu Gly Thr 545 550 555 560 Val Val His Leu Gly Leu Asp Glu Gly Ala Gly Lys Lys Ala Leu Glu 565 570 575 Glu Val Arg Asn Val Glu His Asp Val Asn Tyr Val Phe Asn Asp Ala 580 585 590 Arg Tyr Met Ala Pro Lys Asp Pro Arg Trp Thr Pro Arg Gly Val Lys 595 600 605 Gly Gly Ala Leu Leu Phe Asp Gly Tyr Ser Asn Tyr Ile Glu Ile Asp 610 615 620 Ala Asp Glu Thr Val Pro Val Ser Asp Ala Leu Thr Ile Glu Ala Trp 625 630 635 640 Val Ala Pro Arg Ser Tyr Glu Trp Gly Asp Gly Asn Lys Leu Ser Ala 645 650 655 Ile Val Asn Gln Ser Asp Gln Asp Lys Ala Glu Gly Phe Ala Leu Gly 660 665 670 Met Tyr Arg His Gly Thr Trp Ser Leu Gln Ala Gly Ile Gly Gly Arg 675 680 685 Trp Ile Gln Ala Trp Val Asn Asp His Pro Leu Glu Lys Tyr Lys Trp 690 695 700 705 710 715 720 Tyr Leu Asn Gly Glu Glu Val Ala Ser Gln Ala Thr Pro Ala Gly Val 725 730 735 Pro Ile Ser Pro Ser Gly Glu Ser Leu Ile Val Gly Lys Asn Asn Lys 740 745 750 Pro Val Glu Leu Ala Gly Leu Phe Ser Phe Asn Met Phe Ser Gly Leu 755 760 765 Ile Asp Glu Val Lys Val His Asn Arg Ala Leu Thr Asn Gly Glu Ile 770 775 780 Leu Ala Glu Tyr Glu Ser Ala Lys Ala Leu His Gly Gly Val Val Pro 785 790 795 800 Glu Ile Pro Asn Ala Asp Ile Asp Glu Asp Pro Ser Val Phe Asp Gly 805 810 815 Asp Gln His Arg Pro Gln Tyr His Ala Ile Pro Pro Gln Asn Trp Met 820 825 830 Asn Glu Ala His Ala Pro Ile Tyr Tyr Asn Gly Lys Tyr His Leu Phe 835 840 845 Tyr Gln His Asn Pro Gln Gly Pro Tyr Trp His Gln Ile His Trp Gly 850 855 860 His Trp Val Ser Asp Asp Met Val His Trp Glu Asn Val Arg Pro Ala 865 870 875 880 Leu Ala Pro Glu Ala Gly Ser Leu Asp Pro Asp Gly Ala Trp Ser Gly 885 890 895 Ser Ala Ala Tyr Asp Arg Asn Gly Asn Pro Val Leu Phe Tyr Thr Ala 900 905 910 Gly Asn Asp Ser Glu Ser Pro Asn Gln Arg Thr Gly Leu Ala Thr Pro 915 920 925 Ala Asp Leu Ser Asp Pro Tyr Leu Glu Gln Trp Val Lys Tyr Pro Glu 930 935 940 Pro Val Thr Glu Gln Asn Gly Ile Gly Ile His Asn Glu Phe Arg Asp 945 950 955 960 Pro Phe Val Trp Tyr Asp Glu Glu Thr Asp Lys Trp Tyr Gln Leu Val 965 970 975 Thr Ser Gly Leu Pro Asp Phe Ser Ser Gly Thr Ala Leu Val Tyr Val 980 985 990 Ser Asp Asp Met Tyr Asn Trp Glu Tyr Lys Gly Pro Leu Tyr Val Ser 995 1000 1005 Asp Arg Ser Leu Tyr Pro Glu Leu Gly Thr Val Trp Glu Leu Pro Val 1010 1015 1020 Leu Leu Pro Leu Gly Thr Asp Ser Thr Gly Lys Lys Lys His Ile Phe 1025 1030 1035 1040 Ile Ile Asn Pro His Glu Lys Pro Glu His Val Pro Pro Ala Lys Asp 1045 1050 1055 Val Gln Arg Asp Val Glu Val Tyr Tyr Trp Ile Gly Thr Trp Asp Arg 1060 1065 1070 Asp Asn Phe Arg Phe Ile Pro Asp Arg Glu Ala Pro Ser Lys Met Asp 1075 1080 1085 Val Gly Asp Gly Tyr Leu Thr Ala Glu Ser Gly Leu Val Thr Pro Asp 1090 1095 1100 Gly Arg Thr Val Val Phe Ser Met Val Gln Asn Val Arg Thr Pro Gln 1105 1110 1115 1120 Ala Glu Tyr Gln Ser Gly Trp Ala His Asn Leu Ala Leu Pro Val Ala 1125 1130 1135 Leu Ser Leu Asp Glu His Asp Glu Leu Arg Ile Glu Pro Ile Gln Glu 1140 1145 1150 Leu Gln Ser Leu Arg Gly Asn Lys Leu Ala Asp Ile Ser Asp Lys Asn 1155 1160 1165 Leu Glu Ser Ala Asn Gln Leu Ile Lys Asp Ile Lys Gly Asp Met Leu 1170 1175 1180 Glu Ile Val Met Glu Ile Asp Pro Gly Glu Ala Gln Lys Phe Gly Leu 1185 1190 1195 1200 Lys Val Arg Arg Ser Glu Asn Gly Gln Glu Glu Thr Leu Ile Tyr Tyr 1205 1210 1215 Asp Lys Ser Asp Ser Thr Phe Asn Val Asp Arg Thr Lys Ser Ser Ile 1220 1225 1230 Asp Pro Asp Val Arg Val Asp Gly Ile Gln Gly Gly Tyr Val Asn Leu 1235 1240 1245 Asp Gly Glu Asn Leu Lys Leu His Ile Phe Leu Asp Arg Ser Val Val 1250 1255 1260 Glu Ala Phe Ala Asn Tyr Lys Lys Lys Leu Thr Thr Arg Val Tyr Val 1265 1270 1275 1280 Gly Arg Tyr Asp Ser Leu Gly Leu Gln Ile Trp Ala Asp Gly Asp Ile 1285 1290 1295 Thr Val Lys Ser Met Glu Val Trp Ala Met Asn Ala Leu Thr Gly Glu 1300 1305 1310 Pro Ala Ala Pro Val Tyr Val Pro Glu Asn Trp Asp Asn Ser Val Tyr 1315 1320 1325 Lys Asp Ile Thr Glu Leu Pro Asn His Asp Phe Ala Met Gly Asp Leu 1330 1335 1340 Thr Gly Trp Ile Ala Glu Gly Asp Ala Phe Gln Asn Ile His Val Thr 1345 1350 1355 1360 Asp Ala Lys Phe Phe Trp Asp Thr Ile Tyr Phe Asn Pro Ser Gln Lys 1365 1370 1375 Ile Pro Gly Gly Tyr His Leu Trp Gly Phe Asn Glu Gln Ala Gly Gly 1380 1385 1390 Asp Ser Leu Thr Gly Thr Leu Arg Ser Gln Asn Phe Val Leu Gly Gly 1395 1400 1405 Asn Gly Arg Ile Asp Phe Leu Met Ser Gly Gly Arg Asp Ile Asp Arg 1410 1415 1420 Leu Tyr Val Ala Leu Val Arg Ala Ser Asp Gly Lys Glu Leu Phe Lys 1425 1430 1435 1440 Glu Thr Ala Thr Asn Tyr Glu Glu Tyr Gln Arg Lys Ile Trp Asp Ala 1445 1450 1455 Ser Asp Tyr Ile Gly Glu Glu Leu Tyr Ile Lys Val Val Asp Gln Ser 1460 1465 1470 Thr Gly Gly Phe Gly His Leu Asn Val Asp Asp Phe Asn Val Pro Val 1475 1480 1485 Gln Val Met Arg Thr Asp Arg Ser Asn Arg Ser Asn Asn Arg Ser 1490 1495 1500
【0042】配列番号:2 配列の長さ:1379 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Bacillus circulans MCI−2554 直接の起源 クローン名:pCF331−9A 配列の特徴 特徴を表す記号:P CDS(partial amino acid seq
uence of CFTase) 存在位置:1..1379 特徴を決定した方法:E 配列 TTY TAY CAR CAY AAY CCG CAA GGA CCC TAT TGG CAT CAA ATC CAT TGG 48 Phe Tyr Gln His Asn Pro Gln Gly Pro Tyr Trp His Gln Ile His Trp 1 5 10 15 GGG CAT TGG GTG AGC GAC GAT ATG GTG CAT TGG GAA AAT GTA AGG CCT 96 Gly His Trp Val Ser Asp Asp Met Val His Trp Glu Asn Val Arg Pro 20 25 30 GCT CTT GCG CCC GAA GCG GGC TCG CTT GAT CCG GAC GGC GCA TGG TCG 144 Ala Leu Ala Pro Glu Ala Gly Ser Leu Asp Pro Asp Gly Ala Trp Ser 35 40 45 GGG AGC GCA GCC TAT GAC CGC AAC GGC AAT CCC GTT CTG TTC TAT ACC 192 Gly Ser Ala Ala Tyr Asp Arg Asn Gly Asn Pro Val Leu Phe Tyr Thr 50 55 60 GCC GGC AAC GAC TCC GAG TCG CCG AAC CAA AGA ACG GGG CTT GCA ACG 240 Ala Gly Asn Asp Ser Glu Ser Pro Asn Gln Arg Thr Gly Leu Ala Thr 65 70 75 80 CCG GCC GAT TTG TCC GAT CCT TAT TTG GAG CAA TGG GTC AAA TAT CCG 288 Pro Ala Asp Leu Ser Asp Pro Tyr Leu Glu Gln Trp Val Lys Tyr Pro 85 90 95 GAA CCG GTA ACG GAG CAG AAC GGG ATC GGC ATC CAC AAC GAG TTT CGC 336 Glu Pro Val Thr Glu Gln Asn Gly Ile Gly Ile His Asn Glu Phe Arg 100 105 110 GAT CCG TTC GTA TGG TAC GAC GAA GAG ACG GAT AAG TGG TAT CAG TTA 384 Asp Pro Phe Val Trp Tyr Asp Glu Glu Thr Asp Lys Trp Tyr Gln Leu 115 120 125 GTG ACT TCA GGC CTT CCG GAT TTC AGC AGC GGC ACG GCT TTG GTG TAT 432 Val Thr Ser Gly Leu Pro Asp Phe Ser Ser Gly Thr Ala Leu Val Tyr 130 135 140 GTA TCC GAC GAT ATG TAC AAT TGG GAG TAT AAG GGC CCT TTA TAC GTG 480 Val Ser Asp Asp Met Tyr Asn Trp Glu Tyr Lys Gly Pro Leu Tyr Val 145 150 155 160 AGT GAC AGA AGT CTT TAT CCG GAG TTG GGC ACG GTT TGG GAA CTG CCG 528 Ser Asp Arg Ser Leu Tyr Pro Glu Leu Gly Thr Val Trp Glu Leu Pro 165 170 175 GTA TTA TTG CCT TTA GGC ACG GAT AGT ACG GGG AAG AAA AAA CAT ATT 576 Val Leu Leu Pro Leu Gly Thr Asp Ser Thr Gly Lys Lys Lys His Ile 180 185 190 TTT ATC ATC AAT CCT CAC GAA AAG CCG GAG CAT GTT CCC CCG GCG AAA 624 Phe Ile Ile Asn Pro His Glu Lys Pro Glu His Val Pro Pro Ala Lys 195 200 205 GAT GTG CAA AGA GAT GTT GAG GTT TAT TAC TGG ATC GGC ACT TGG GAC 672 Asp Val Gln Arg Asp Val Glu Val Tyr Tyr Trp Ile Gly Thr Trp Asp 210 215 220 CGG GAT AAC TTC AGG TTT ATT CCC GAT CGG GAG GCG CCT TCC AAA ATG 720 Arg Asp Asn Phe Arg Phe Ile Pro Asp Arg Glu Ala Pro Ser Lys Met 225 230 235 240 GAC GTA GGC GAC GGC TAT TTA ACT GCT GAG AGC GGT CTG GTC ACG CCT 768 Asp Val Gly Asp Gly Tyr Leu Thr Ala Glu Ser Gly Leu Val Thr Pro 245 250 255 GAC GGA CGA ACT GTC GTT TTC TCC ATG GTG CAA AAC GTA AGG ACG CCG 816 Asp Gly Arg Thr Val Val Phe Ser Met Val Gln Asn Val Arg Thr Pro 260 265 270 CAA GCC GAA TAT CAA TCC GGA TGG GCG CAT AAT TTG GCT TTG CCG GTT 864 Gln Ala Glu Tyr Gln Ser Gly Trp Ala His Asn Leu Ala Leu Pro Val 275 280 285 GCC TTA AGC CTG GAT GAG CAT GAC GAA TTG CGT ATC GAG CCG ATT CAA 912 Ala Leu Ser Leu Asp Glu His Asp Glu Leu Arg Ile Glu Pro Ile Gln 290 295 300 GAA TTG CAG AGT CTC CGG GGA AAT AAG CTG GCG GAT ATT TCG GAC AAA 960 Glu Leu Gln Ser Leu Arg Gly Asn Lys Leu Ala Asp Ile Ser Asp Lys 305 310 315 320 AAT TTG GAG AGC GCA AAT CAA CTA ATC AAG GAT ATC AAA GGC GAT ATG 1008 Asn Leu Glu Ser Ala Asn Gln Leu Ile Lys Asp Ile Lys Gly Asp Met 325 330 335 CTG GAG ATT GTG ATG GAA ATC GAT CCG GGC GAA GCG CAG AAA TTC GGC 1056 Leu Glu Ile Val Met Glu Ile Asp Pro Gly Glu Ala Gln Lys Phe Gly 340 345 350 CTC AAG GTG AGG CGT TCC GAG AAC GGC CAG GAG GAG ACG CTC ATC TAC 1104 Leu Lys Val Arg Arg Ser Glu Asn Gly Gln Glu Glu Thr Leu Ile Tyr 355 360 365 TAT GAC AAG TCG GAT AGT ACC TTT AAC GTG GAC CGT ACC AAA AGC AGC 1152 Tyr Asp Lys Ser Asp Ser Thr Phe Asn Val Asp Arg Thr Lys Ser Ser 370 375 380 ATC GAT CCG GAC GTC CGG GTG GAC GGC ATT CAA GGC GGA TAC GTC AAC 1200 Ile Asp Pro Asp Val Arg Val Asp Gly Ile Gln Gly Gly Tyr Val Asn 385 390 395 400 CTT GAC GGA GAG AAC TTG AAG CTT CAT ATT TTC CTC GAC CGC TCG GTC 1248 Leu Asp Gly Glu Asn Leu Lys Leu His Ile Phe Leu Asp Arg Ser Val 405 410 415 GTC GAA GCG TTT GCC AAT TAC AAG AAA AAG CTG ACA ACC CGC GTC TAC 1296 Val Glu Ala Phe Ala Asn Tyr Lys Lys Lys Leu Thr Thr Arg Val Tyr 420 425 430 GTA GGC AGA TAC GAC TCC TTA GGC TTG CAG ATC TGG GCT GAC GGC GAT 1344 Val Gly Arg Tyr Asp Ser Leu Gly Leu Gln Ile Trp Ala Asp Gly Asp 435 440 445 ATT ACG GTC AAG TCG ATG GAR GTN TGG GCN ATG AA 1379 Ile Thr Val Lys Ser Met Glu Val Trp Ala Met 450 455 (上記式中NはA、G、C、Tのいずれか、RはAまた
はGを、YはCまたはTを表す)
uence of CFTase) 存在位置:1..1379 特徴を決定した方法:E 配列 TTY TAY CAR CAY AAY CCG CAA GGA CCC TAT TGG CAT CAA ATC CAT TGG 48 Phe Tyr Gln His Asn Pro Gln Gly Pro Tyr Trp His Gln Ile His Trp 1 5 10 15 GGG CAT TGG GTG AGC GAC GAT ATG GTG CAT TGG GAA AAT GTA AGG CCT 96 Gly His Trp Val Ser Asp Asp Met Val His Trp Glu Asn Val Arg Pro 20 25 30 GCT CTT GCG CCC GAA GCG GGC TCG CTT GAT CCG GAC GGC GCA TGG TCG 144 Ala Leu Ala Pro Glu Ala Gly Ser Leu Asp Pro Asp Gly Ala Trp Ser 35 40 45 GGG AGC GCA GCC TAT GAC CGC AAC GGC AAT CCC GTT CTG TTC TAT ACC 192 Gly Ser Ala Ala Tyr Asp Arg Asn Gly Asn Pro Val Leu Phe Tyr Thr 50 55 60 GCC GGC AAC GAC TCC GAG TCG CCG AAC CAA AGA ACG GGG CTT GCA ACG 240 Ala Gly Asn Asp Ser Glu Ser Pro Asn Gln Arg Thr Gly Leu Ala Thr 65 70 75 80 CCG GCC GAT TTG TCC GAT CCT TAT TTG GAG CAA TGG GTC AAA TAT CCG 288 Pro Ala Asp Leu Ser Asp Pro Tyr Leu Glu Gln Trp Val Lys Tyr Pro 85 90 95 GAA CCG GTA ACG GAG CAG AAC GGG ATC GGC ATC CAC AAC GAG TTT CGC 336 Glu Pro Val Thr Glu Gln Asn Gly Ile Gly Ile His Asn Glu Phe Arg 100 105 110 GAT CCG TTC GTA TGG TAC GAC GAA GAG ACG GAT AAG TGG TAT CAG TTA 384 Asp Pro Phe Val Trp Tyr Asp Glu Glu Thr Asp Lys Trp Tyr Gln Leu 115 120 125 GTG ACT TCA GGC CTT CCG GAT TTC AGC AGC GGC ACG GCT TTG GTG TAT 432 Val Thr Ser Gly Leu Pro Asp Phe Ser Ser Gly Thr Ala Leu Val Tyr 130 135 140 GTA TCC GAC GAT ATG TAC AAT TGG GAG TAT AAG GGC CCT TTA TAC GTG 480 Val Ser Asp Asp Met Tyr Asn Trp Glu Tyr Lys Gly Pro Leu Tyr Val 145 150 155 160 AGT GAC AGA AGT CTT TAT CCG GAG TTG GGC ACG GTT TGG GAA CTG CCG 528 Ser Asp Arg Ser Leu Tyr Pro Glu Leu Gly Thr Val Trp Glu Leu Pro 165 170 175 GTA TTA TTG CCT TTA GGC ACG GAT AGT ACG GGG AAG AAA AAA CAT ATT 576 Val Leu Leu Pro Leu Gly Thr Asp Ser Thr Gly Lys Lys Lys His Ile 180 185 190 TTT ATC ATC AAT CCT CAC GAA AAG CCG GAG CAT GTT CCC CCG GCG AAA 624 Phe Ile Ile Asn Pro His Glu Lys Pro Glu His Val Pro Pro Ala Lys 195 200 205 GAT GTG CAA AGA GAT GTT GAG GTT TAT TAC TGG ATC GGC ACT TGG GAC 672 Asp Val Gln Arg Asp Val Glu Val Tyr Tyr Trp Ile Gly Thr Trp Asp 210 215 220 CGG GAT AAC TTC AGG TTT ATT CCC GAT CGG GAG GCG CCT TCC AAA ATG 720 Arg Asp Asn Phe Arg Phe Ile Pro Asp Arg Glu Ala Pro Ser Lys Met 225 230 235 240 GAC GTA GGC GAC GGC TAT TTA ACT GCT GAG AGC GGT CTG GTC ACG CCT 768 Asp Val Gly Asp Gly Tyr Leu Thr Ala Glu Ser Gly Leu Val Thr Pro 245 250 255 GAC GGA CGA ACT GTC GTT TTC TCC ATG GTG CAA AAC GTA AGG ACG CCG 816 Asp Gly Arg Thr Val Val Phe Ser Met Val Gln Asn Val Arg Thr Pro 260 265 270 CAA GCC GAA TAT CAA TCC GGA TGG GCG CAT AAT TTG GCT TTG CCG GTT 864 Gln Ala Glu Tyr Gln Ser Gly Trp Ala His Asn Leu Ala Leu Pro Val 275 280 285 GCC TTA AGC CTG GAT GAG CAT GAC GAA TTG CGT ATC GAG CCG ATT CAA 912 Ala Leu Ser Leu Asp Glu His Asp Glu Leu Arg Ile Glu Pro Ile Gln 290 295 300 GAA TTG CAG AGT CTC CGG GGA AAT AAG CTG GCG GAT ATT TCG GAC AAA 960 Glu Leu Gln Ser Leu Arg Gly Asn Lys Leu Ala Asp Ile Ser Asp Lys 305 310 315 320 AAT TTG GAG AGC GCA AAT CAA CTA ATC AAG GAT ATC AAA GGC GAT ATG 1008 Asn Leu Glu Ser Ala Asn Gln Leu Ile Lys Asp Ile Lys Gly Asp Met 325 330 335 CTG GAG ATT GTG ATG GAA ATC GAT CCG GGC GAA GCG CAG AAA TTC GGC 1056 Leu Glu Ile Val Met Glu Ile Asp Pro Gly Glu Ala Gln Lys Phe Gly 340 345 350 CTC AAG GTG AGG CGT TCC GAG AAC GGC CAG GAG GAG ACG CTC ATC TAC 1104 Leu Lys Val Arg Arg Ser Glu Asn Gly Gln Glu Glu Thr Leu Ile Tyr 355 360 365 TAT GAC AAG TCG GAT AGT ACC TTT AAC GTG GAC CGT ACC AAA AGC AGC 1152 Tyr Asp Lys Ser Asp Ser Thr Phe Asn Val Asp Arg Thr Lys Ser Ser 370 375 380 ATC GAT CCG GAC GTC CGG GTG GAC GGC ATT CAA GGC GGA TAC GTC AAC 1200 Ile Asp Pro Asp Val Arg Val Asp Gly Ile Gln Gly Gly Tyr Val Asn 385 390 395 400 CTT GAC GGA GAG AAC TTG AAG CTT CAT ATT TTC CTC GAC CGC TCG GTC 1248 Leu Asp Gly Glu Asn Leu Lys Leu His Ile Phe Leu Asp Arg Ser Val 405 410 415 GTC GAA GCG TTT GCC AAT TAC AAG AAA AAG CTG ACA ACC CGC GTC TAC 1296 Val Glu Ala Phe Ala Asn Tyr Lys Lys Lys Leu Thr Thr Arg Val Tyr 420 425 430 GTA GGC AGA TAC GAC TCC TTA GGC TTG CAG ATC TGG GCT GAC GGC GAT 1344 Val Gly Arg Tyr Asp Ser Leu Gly Leu Gln Ile Trp Ala Asp Gly Asp 435 440 445 ATT ACG GTC AAG TCG ATG GAR GTN TGG GCN ATG AA 1379 Ile Thr Val Lys Ser Met Glu Val Trp Ala Met 450 455 (上記式中NはA、G、C、Tのいずれか、RはAまた
はGを、YはCまたはTを表す)
【0043】配列番号:3 配列の長さ:5248 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Bacillus circulans MCI−2554 直接の起源 クローン名:pCFS1 配列の特徴 特徴を表す記号:P CDS(CFTase) 存在位置:468..4976 特徴を決定した方法:E 配列 GTCGACCGGA CGAAAACGAC GCTCCATCCG GGAGAAAAGT GCGGAGGGAT TCAAGGCGGC 60 AAGCTGGAGC TGTTAGGAGA GAATTTGAAG CTTCATATTT ATTTGGACCG CTCCATGATC 120 GAAGCTTATG CAAACGGATT AAAAAGCTTG ACGACCCGGG CGTATCCGAG CCGCAGCGAT 180 GCTTTGGGGC TTGAGCTTTG GGCGGATGGG GATACGGCCG TTAAGTCGAT GGATATTTGG 240 GATATGCAGT CCATTTGGTA GCGCGAGCGC TTAGGCGCTC CTTACCGCAT GGATCATGAA 300 ACAATCGATC AAGTGACTTT ACATTTCTGT GAATTGGAAA CGTTTCATAT TTCCCTCTTA 360 ACCTCTTGAT TATTCATCCT TGTAAGGGGA GCATTTCGAA ATAGCGAAAT TCGAAATCGG 420 GCAACGATAG GTTGGCATGA ATAAGAGACG ATGAAGGAGG CCCTTCAATG AGGGAAGTAA 480 AAAGAGGAAA AAAATCCGGG TTCGCCGCGT TGGCGATCTG GAGTCTGTTC TTTCAGCTAA 540 TCGCTCCCGG AATCTCGGCC GCAGCCGAAC CCGGAGCCGA TATTGAGGAT GCGCTCATTT 600 CTGAGGCTGA ATCGGAAATA CCGGTTACGG ACGCGGTCTA TCAAATCGAA AATCCGGGAT 660 TTGAAACCGG GGACTTGACG GGATGGTCCG TTGCCGAAGG CGGAGCATTC GGTCCGGACA 720 GCGTATCGGA CGAAACGGTC TGGTGGGCGG AACGAATTCC GTACGACCAG GAAGGCGCTT 780 ATCATCTAAA CGGCTGGAAG TATCCCGAAT CGGAAACAGG CGTGCTTCGT TCCAGTACGT 840 TCGAGCTCGG CGGCAGCGGC TGGATCAGCT TCAAGCTTGG CGGCGCAAAA GATCCGGACA 900 AAGCATTTAT AAATATCGTG GAAGCGGATA CGGGACAAGT CGTTGCGAGA TACGGCAACA 960 GCGCCTTCAC CGACGTCGGC TTTCCCGATC CGGCGCAAGG CATGCGGCTT GCCAATATGG 1020 AGCAATATAA GGCCGATCTT TCCGGGCATA TCGGCAAAAA ATTGTATATA GAGATCGTTG 1080 ACCACGCGAC CTCGGATTGG GGACTGATTT TTGCGGACGC ATTCTTCATG TACCATGAAT 1140 CCGAGCCGGC CGAAGGCATA GTTGCAACGG ATATCAAGCC GGATTTCGAA CGCTATCAAA 1200 TCGAAAACCC AAGCTTCGAA ACCGGGGATT TGACGGGATG GACCGTGATC GAAGGTGACG 1260 CATTCGGTCC GAACAGCGTA TCGGACGAAA CGGTCTGGTG GGCGGAACGA ATTCCGTACG 1320 ACCAGGAAGG CGCTTATCAT CTAAACGGTT GGAAGTATCC CGAATCGGAG ACAGGCGTGC 1380 TTCGTTCCAG TACGTTCGAG CTGGGCGGCA GCGGTTGGAT TACGTTCAAG CTGGGAGGGG 1440 GCAAGCATAC GGACCAAGTG TATGTGAGCG TCATCGAAGC GGAAACGGGA AACTTGATCG 1500 CGCGATACGG CAACAGCGCC TTCACCGACG TCGGCTTCCC CGATCCGGCG CAAGGCATGC 1560 GGCTTGCCAA TATGGAGCAA TATAAAGCGG ATCTGTCCAA GCATATCGGC AAAAAACTGT 1620 ATCTCGAAAT CGTTGACCAC GGCGTATCGG ACTGGGGACT GGTCTTTGCG GACGCCTTCC 1680 GCACCTTTCA CGAGATCGTG CCGGAGGATG GGGTCGTTGC CGAGAATATA ATCCCGGCGG 1740 AGATCGCGAA CCGCGGCTTT GAAACCGGCA ATCTCGACGG CTGGACGGTT GAGGGAGACG 1800 CTTTTCACGT GACCGATGAA GCTCACGCCG CCAAAGAAGG GAACTTCTAC GCCTTATCCT 1860 CCACGGAAGG ACAGGGCTCC ATCACCTCCA ATACGTTCAC GCTTCAAGGA GCGGGAATCA 1920 TTAACTTCAC CGTTCTGGAC ATCCTCAATC CGGAAGGCGC CTATGTCGCG CTTTACGATG 1980 CGAGCAGCAA TACAGTGATT AAAATAACCG GGAATATCGG CGCTAACGAG CAAATTTCCT 2040 GGAAGGTGCA GGAGCACTAC AACAAGAAGC TTTATGTTAA GGTCGTTGAC CAATCCGGTG 2100 ACGCCGGCAT TGCCGTTGAC GGTTTCCAAG CGCGCACGGA GGGTACCGTT GTCCATCTGG 2160 GCCTCGATGA AGGCGCCGGC AAGAAAGCGT TGGAAGAAGT ACGAAATGTT GAGCATGATG 2220 TCAACTATGT TTTTAACGAT GCAAGATACA TGGCGCCGAA GGATCCGAGG TGGACCCCGC 2280 GCGGAGTAAA AGGCGGAGCC TTGTTGTTCG ACGGGTATTC GAATTATATC GAGATCGATG 2340 CAGACGAGAC CGTTCCGGTA AGCGACGCCT TAACGATCGA AGCATGGGTT GCGCCGCGCA 2400 GCTATGAATG GGGAGACGGC AATAAGCTGT CTGCAATCGT GAACCAATCC GATCAAGATA 2460 AAGCGGAAGG CTTCGCCCTC GGCATGTACC GGCACGGTAC ATGGTCGTTG CAGGCCGGCA 2520 TTGGCGGACG GTGGATTCAG GCTTGGGTAA ACGATCATCC GTTGGAAAAA TACAAGTGGA 2580 ATTATGTGGC TGCTACTTTC GATAAAGAAG ACGGAATGAT GAGATTATAT TTAAACGGCG 2640 AGGAAGTGGC TTCCCAAGCG ACGCCTGCCG GCGTGCCGAT CTCGCCGTCG GGAGAAAGCT 2700 TGATTGTCGG TAAAAATAAT AAGCCTGTAG AGCTCGCAGG GTTGTTCTCC TTCAATATGT 2760 TCAGCGGACT TATAGATGAA GTGAAGGTGC ATAACCGAGC CCTTACAAAC GGGGAGATAC 2820 TTGCCGAATA TGAGAGCGCG AAGGCGCTTC ATGGCGGTGT CGTTCCGGAA ATTCCGAACG 2880 CGGACATCGA TGAAGACCCT AGCGTGTTCG ACGGAGACCA GCACCGCCCC CAATATCACG 2940 CGATACCTCC GCAGAACTGG ATGAATGAAG CCCATGCGCC GATTTATTAT AACGGCAAAT 3000 ACCATTTATT TTATCAACAT AACCCGCAAG GACCCTATTG GCATCAAATC CATTGGGGGC 3060 ATTGGGTGAG CGACGATATG GTGCATTGGG AAAATGTAAG GCCTGCTCTT GCGCCCGAAG 3120 CGGGCTCGCT TGATCCGGAC GGCGCATGGT CGGGGAGCGC AGCCTATGAC CGCAACGGCA 3180 ATCCCGTTCT GTTCTATACC GCCGGCAACG ACTCCGAGTC GCCGAACCAA AGAACGGGGC 3240 TTGCAACGCC GGCCGATTTG TCCGATCCTT ATTTGGAGCA ATGGGTCAAA TATCCGGAAC 3300 CGGTAACGGA GCAGAACGGG ATCGGCATCC ACAACGAGTT TCGCGATCCG TTCGTATGGT 3360 ACGACGAAGA GACGGATAAG TGGTATCAGT TAGTGACTTC AGGCCTTCCG GATTTCAGCA 3420 GCGGCACGGC TTTGGTGTAT GTATCCGACG ATATGTACAA TTGGGAGTAT AAGGGCCCTT 3480 TATACGTGAG TGACAGAAGT CTTTATCCGG AGTTGGGCAC GGTTTGGGAA CTGCCGGTAT 3540 TATTGCCTTT AGGCACGGAT AGTACGGGGA AGAAAAAACA TATTTTTATC ATCAATCCTC 3600 ACGAAAAGCC GGAGCATGTT CCCCCGGCGA AAGATGTGCA AAGAGATGTT GAGGTTTATT 3660 ACTGGATCGG CACTTGGGAC CGGGATAACT TCAGGTTTAT TCCCGATCGG GAGGCGCCTT 3720 CCAAAATGGA CGTAGGCGAC GGCTATTTAA CTGCTGAGAG CGGTCTGGTC ACGCCTGACG 3780 GACGAACTGT CGTTTTCTCC ATGGTGCAAA ACGTAAGGAC GCCGCAAGCC GAATATCAAT 3840 CCGGATGGGC GCATAATTTG GCTTTGCCGG TTGCCTTAAG CCTGGATGAG CATGACGAAT 3900 TGCGTATCGA GCCGATTCAA GAATTGCAGA GTCTCCGGGG AAATAAGCTG GCGGATATTT 3960 CGGACAAAAA TTTGGAGAGC GCAAATCAAC TAATCAAGGA TATCAAAGGC GATATGCTGG 4020 AGATTGTGAT GGAAATCGAT CCGGGCGAAG CGCAGAAATT CGGCCTCAAG GTGAGGCGTT 4080 CCGAGAACGG CCAGGAGGAG ACGCTCATCT ACTATGACAA GTCGGATAGT ACCTTTAACG 4140 TGGACCGTAC CAAAAGCAGC ATCGATCCGG ACGTCCGGGT GGACGGCATT CAAGGCGGAT 4200 ACGTCAACCT TGACGGAGAG AACTTGAAGC TTCATATTTT CCTCGACCGC TCGGTCGTCG 4260 AAGCGTTTGC CAATTACAAG AAAAAGCTGA CAACCCGCGT CTACGTAGGC AGATACGACT 4320 CCTTAGGCTT GCAGATCTGG GCTGACGGCG ATATTACGGT CAAGTCGATG GAAGTATGGG 4380 CGATGAATGC GTTAACGGGC GAACCGGCTG CTCCGGTTTA TGTGCCCGAA AATTGGGACA 4440 ATTCCGTGTA CAAGGATATT ACGGAACTGC CTAACCATGA TTTTGCCATG GGCGACTTAA 4500 CAGGGTGGAT TGCGGAAGGA GACGCCTTCC AGAATATTCA TGTGACCGAC GCCAAGTTTT 4560 TCTGGGACAC CATTTATTTC AACCCGTCGC AAAAAATACC TGGCGGCTAT CATCTGTGGG 4620 GATTCAATGA GCAAGCCGGC GGCGACAGTT TAACGGGAAC GCTAAGATCG CAAAATTTCG 4680 TCCTTGGCGG GAACGGCAGG ATCGATTTCC TTATGAGCGG CGGCCGCGAT ATTGACCGTC 4740 TGTATGTTGC GCTCGTTCGG GCGTCGGACG GCAAAGAGTT ATTTAAAGAG ACAGCGACCA 4800 ATTATGAAGA ATATCAACGG AAAATTTGGG ACGCTTCGGA TTATATCGGC GAGFAGCTTT 4860 ACATTAAGGT AGTGGACCAA TCCACAGGCG GTTTTGGACA TCTTAACGTC GATGATTTCA 4920 ATCTGCCGGT ACAAGTGATG AGAACAGATC GTTCCAACCG TTCGAACAAT CGCTCATAAT 4980 TCCCTCGGAG CCATACGTAA AAGGAACCGC CGACCGGCGG TTCCTTTCTT TCTATTTCAC 5040 CAATTGACAT ATCGTAAATT ATCGATATAA TTACAGGTAT GGATCCTATT GAAGTGTTTA 5100 AAGCGTTGTC GAACGAGTCG AGACTGCAGA TCTTGCAATG GCTTAAGGAG CCGGAAAAAC 5160 ATTTTGTCCC CCACGAAGGG ATTGATATGA GAAAAATCGG GGTATGCGTC AGTCAAGTGA 5220 CCGATAAGCT GAACATGACG CAGTCGAC 5248
【0044】配列番号:4 配列の長さ:11 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間部フラグメント 起源 生物名:Bacillus circulans MCI−2554
【0045】配列番号:5 配列の長さ:10 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間部フラグメント 起源 生物名:Bacillus circulans MCI−2554
【0046】配列番号:6 配列の長さ:17 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TTYTAYCARC AYAAYCC 17 (上記式中、YはCまたはTを、RはGまたはAを表
す)
す)
【0047】配列番号:7 配列の長さ:18 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TTCATNGCCC ANACYTCC 18 (上記式中Nはイノシン、YはCまたはTを表す)
【0048】配列番号:8 配列の長さ:17 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GTAAAACGAC GGCCAGT 17
【0049】配列番号:9 配列の長さ:17 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CAGGAAACAG CTATGAC 17
【図1】本発明のCFTaseをコードする遺伝子領域
を含むDNA断片を有するプラスミドクローン、pCF
S1の構築を表す図面である。図中Ampr はアンピシ
リン耐性遺伝子を、oriは複製開始領域を表す。
を含むDNA断片を有するプラスミドクローン、pCF
S1の構築を表す図面である。図中Ampr はアンピシ
リン耐性遺伝子を、oriは複製開始領域を表す。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12P 19/04 Z 7432−4B //(C12N 9/10 C12R 1:19) (C12N 15/09 C12R 1:09) C12R 1:09) (72)発明者 森本 裕紀 神奈川県横浜市緑区鴨志田町1000番地 三 菱化成株式会社総合研究所内 (54)【発明の名称】 サイクロイヌロオリゴサッカライド フラクタノトランスフェラーゼ活性を有する新規なタンパ ク質およびそれをコードする遺伝子ならびに該遺伝子を含有する形質転換体による環状イヌロオ リゴ糖の製造方法
Claims (9)
- 【請求項1】 下記の理化学的性質を有することを特徴
とする新規なタンパク質。 SDS−ポリアクリルアミドゲル電気泳動、及びゲ
ル濾過法による分子量が約120,000の水溶性酵素
タンパク質。 サイクロイヌロオリゴサッカライド フラクタノト
ランスフェラーゼ活性を有する。 - 【請求項2】 配列表の配列番号4及び5に記載の部分
アミノ酸配列を含有してなることを特徴とする請求項1
記載のタンパク質。 - 【請求項3】 配列表の配列番号1に記載のアミノ酸配
列で表されることを特徴とする請求項1記載のタンパク
質。 - 【請求項4】 請求項1〜3のいずれかに記載のタンパ
ク質をコードするDNA配列。 - 【請求項5】 配列表の配列番号2あるいは配列表の配
列番号3に記載の塩基配列で表されることを特徴とする
請求項4記載のDNA配列。 - 【請求項6】 請求項4または5に記載のDNA配列に
よりコードされるポリペプチドを発現する組換え発現ベ
クター。 - 【請求項7】 請求項6記載の組換え発現ベクターで、
宿主細胞を形質転換させて得られた形質転換体。 - 【請求項8】 請求項7記載の形質転換体を培養して請
求項1に記載のタンパク質を製造させる方法。 - 【請求項9】 請求項7記載の形質転換体を培養して得
られる形質転換体の培養液、該培養液から分離された菌
体、該菌体処理物、請求項1に記載のタンパク質または
これらの固定化物を用いた環状イヌロオリゴ糖の製造方
法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5188147A JPH0741500A (ja) | 1993-07-29 | 1993-07-29 | サイクロイヌロオリゴサッカライド フラクタノトランスフェラーゼ活性を有する新規なタンパク質およびそれをコードする遺伝子ならびに該遺伝子を含有する形質転換体による環状イヌロオリゴ糖の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5188147A JPH0741500A (ja) | 1993-07-29 | 1993-07-29 | サイクロイヌロオリゴサッカライド フラクタノトランスフェラーゼ活性を有する新規なタンパク質およびそれをコードする遺伝子ならびに該遺伝子を含有する形質転換体による環状イヌロオリゴ糖の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0741500A true JPH0741500A (ja) | 1995-02-10 |
Family
ID=16218575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5188147A Pending JPH0741500A (ja) | 1993-07-29 | 1993-07-29 | サイクロイヌロオリゴサッカライド フラクタノトランスフェラーゼ活性を有する新規なタンパク質およびそれをコードする遺伝子ならびに該遺伝子を含有する形質転換体による環状イヌロオリゴ糖の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0741500A (ja) |
-
1993
- 1993-07-29 JP JP5188147A patent/JPH0741500A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000506017A (ja) | α―ガラクトシダーゼ | |
JP3154633B2 (ja) | ニトリラーゼ遺伝子発現のための調節因子およびその遺伝子 | |
JP3073037B2 (ja) | ハロヒドリンエポキシダ−ゼ遺伝子を有する組換え体プラスミドおよび該プラスミドにより形質転換された微生物 | |
JP3408737B2 (ja) | ニトリルヒドラターゼの活性化に関与するタンパク質及びそれをコードする遺伝子 | |
AU708538B2 (en) | Sucrose metabolism mutants | |
JPH11155565A (ja) | キチン脱アセチル化酵素遺伝子、該遺伝子を含むベクター及び形質転換体 | |
KR100387302B1 (ko) | 말토오스를 트레할로오스로 변환하는 재조합형 효소 | |
US5314819A (en) | Protein having nitrile hydratase activity obtained from rhizobium, gene encoding the same, and a method for producing amides from nitriles via a transformant containing the gene | |
JP4216719B2 (ja) | ハロゲン化合物耐性新規ギ酸脱水素酵素及びその製造方法 | |
JP2004313074A (ja) | 新規α−1,2−マンノシダーゼおよびその遺伝子、ならびに該酵素を用いたα−マンノシル糖化合物の製造方法 | |
JPH06303971A (ja) | ニトリルヒドラターゼ活性を有する新規なタンパク質およびそれをコードする遺伝子ならびに該遺伝子を含有する形質転換体によるニトリル類からアミド類の製造方法 | |
JPH0741500A (ja) | サイクロイヌロオリゴサッカライド フラクタノトランスフェラーゼ活性を有する新規なタンパク質およびそれをコードする遺伝子ならびに該遺伝子を含有する形質転換体による環状イヌロオリゴ糖の製造方法 | |
WO2002055715A1 (fr) | Adn codant pour une d-myo-inositol 1-épimérase | |
JP3709422B2 (ja) | ニトリラーゼ遺伝子発現に関わる調節因子およびその遺伝子 | |
JPH05317066A (ja) | ハロヒドリンエポキシダ−ゼ遺伝子を有する組換え体プラ スミドにより形質転換された微生物による3−ヒドロキシ ニトリル化合物の製造法 | |
US5928925A (en) | Rice ornithine carbamyltransferase gene, and a vector containing said gene and a transformant | |
JP4021123B2 (ja) | ラフィノースの新規製造方法 | |
JP3557276B2 (ja) | 酵素をコードするdnaとそれを含む組換えdna並びに形質転換体 | |
JPH11313683A (ja) | 新規キシロシダーゼ遺伝子、ベクター、それを用いた形質転換体及びその利用 | |
JP3557271B2 (ja) | 酵素をコードするdnaとそれを含む組換えdna並びに形質転換体 | |
US5712139A (en) | Pyranose oxidase, pyranose oxidase gene, novel recombinant DNA and process for producing pyranose oxidase | |
US7811784B2 (en) | Transgenic organisms with lower growth temperature | |
JPH10248574A (ja) | 新規な乳酸酸化酵素 | |
JPH06303981A (ja) | ホルムアルデヒド脱水素酵素活性を有する蛋白質の遺伝情報を有するdna並びにホルムアルデヒド脱水素酵素の製造法 | |
JPH09275982A (ja) | エステル分解酵素遺伝子およびそれを用いるエステル分解酵素の製造法 |