JPH0739637B2 - Anode for zinc and cadmium electrolysis - Google Patents

Anode for zinc and cadmium electrolysis

Info

Publication number
JPH0739637B2
JPH0739637B2 JP61110528A JP11052886A JPH0739637B2 JP H0739637 B2 JPH0739637 B2 JP H0739637B2 JP 61110528 A JP61110528 A JP 61110528A JP 11052886 A JP11052886 A JP 11052886A JP H0739637 B2 JPH0739637 B2 JP H0739637B2
Authority
JP
Japan
Prior art keywords
anode
zinc
electrolysis
lead alloy
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61110528A
Other languages
Japanese (ja)
Other versions
JPS62267489A (en
Inventor
一郎 小松
彰 片井
健児 矢島
房男 設楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP61110528A priority Critical patent/JPH0739637B2/en
Publication of JPS62267489A publication Critical patent/JPS62267489A/en
Publication of JPH0739637B2 publication Critical patent/JPH0739637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Continuous Casting (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 [技術分野] 本発明は鉛の溶出が殆どなく回収亜鉛、カドミウムの品
位が高く、耐蝕性、電解効率にも優れる亜鉛およびカド
ミウム電解用アノードに関する。
TECHNICAL FIELD The present invention relates to an anode for zinc and cadmium electrolysis in which lead is hardly eluted and the recovered zinc and cadmium are high in quality, and corrosion resistance and electrolysis efficiency are excellent.

[従来技術と問題点] 従来、亜鉛の電解製練においては一般に鉛合金のアノー
ドが用いられており、その一例として、Pb-Ag(Ag;0.2
〜2%)、Pb-Ag-アルカリ土類金属等の鉛合金アノード
が知られている。該アノードは置型すなわち鋳型に鉛合
金を注湯する鋳造法により製造されるのが普通である。
ところが上記置型鋳造法により製造されたアノードはオ
ープン注湯であるため外気を巻込み、アノード内部に小
孔すなわちプローホールを生じ易く、このような鋳造欠
陥を起因して電圧損失が増大し、また欠陥部分で通電時
にショートを生じ易く、このため電流効率が大幅に低下
する問題がある。更に、該欠陥部分から鉛が電解液中に
溶出し、カソード亜鉛の鉛品位が増加して品質の低下を
招く。
[Prior Art and Problems] Conventionally, lead alloy anodes have been generally used in zinc electrolytic smelting, and one example thereof is Pb-Ag (Ag; 0.2
~ 2%), lead alloy anodes of Pb-Ag-alkaline earth metals and the like are known. The anode is usually manufactured by a casting method in which a lead alloy is poured into a stationary mold.
However, since the anode manufactured by the above-mentioned stationary casting method is open pouring, outside air is engulfed, and small holes, that is, plow holes are easily generated inside the anode, and voltage loss increases due to such casting defects, and There is a problem that a short circuit is apt to occur at the time of energization in the defective portion, which causes a significant decrease in current efficiency. Further, lead is eluted from the defective portion into the electrolytic solution, leading to an increase in the lead quality of the cathode zinc and a deterioration in quality.

また、亜鉛電解では、上記鉛アノードの表面には電解液
中に鉛が溶出しないように酸化鉛の被膜が形成される
が、ブローホールが存在すると、その構造欠陥部分で酸
化被膜が充分に形成されず、電解液中に鉛が溶出してカ
ソード亜鉛の品質低下を招く問題もある。
In zinc electrolysis, a lead oxide film is formed on the surface of the lead anode so that lead does not elute in the electrolytic solution, but if blowholes exist, the oxide film is sufficiently formed at the structural defect portion. However, there is also a problem that lead is eluted into the electrolytic solution and the quality of the cathode zinc deteriorates.

因に、従来の置型鋳造による鉛合金アノードには断面幅
620mm中に0.3〜2mmφの大きさのブローホールが平均約1
0〜18個程度存在する。
However, the cross-sectional width of the lead alloy anode produced by conventional stationary casting is
Blown holes of 0.3 to 2 mmφ in 620 mm average about 1
There are about 0-18.

更に、亜鉛の電解製練に用いるアノードは銅製錬のもの
より板厚が薄く、上記ブローホールの存在は銅製錬の場
合以上に影響が大きい。
Further, the anode used for electrolytic smelting of zinc is thinner than that of copper smelting, and the presence of the above-mentioned blow holes has a greater influence than in the case of copper smelting.

銅製錬の電流密度は、通常150〜220A/m2であるが、亜鉛
電解では通常300〜600A/m2であり、従って一枚のアノー
ドに流れる電流密度は銅製錬の場合の2〜3倍となり、
その影響が大きい。
The current density of copper smelting is usually 150 to 220 A / m 2 , but it is usually 300 to 600 A / m 2 in zinc electrolysis, so the current density flowing in one anode is 2-3 times that of copper smelting. Next to
The influence is great.

また、亜鉛電解においては電解槽内部での電解液の回流
を良好に維持するためアノードの中央部に孔を穿設する
ことが行なわれ、またスペーサを取付けるための孔も穿
設される。従ってアノードの内部に上記ブローホールが
存在すると、この部分が外部に露出し、腐食されや易く
耐蝕性を損ない、更に鉛が溶出してカソード亜鉛の品質
を低下させる問題を生じる。通常、銅電解製錬において
はこのような有孔アノードは用いられず、亜鉛電解製錬
においては銅製錬以上にブローホールを排除する必要が
ある。
Further, in zinc electrolysis, a hole is formed in the center of the anode in order to maintain good circulation of the electrolytic solution inside the electrolytic cell, and a hole for attaching a spacer is also formed. Therefore, when the blowhole exists inside the anode, this portion is exposed to the outside and is easily corroded, impairing the corrosion resistance, and lead elutes to deteriorate the quality of the cathode zinc. Normally, such a perforated anode is not used in copper electrolytic smelting, and it is necessary to eliminate blowholes more than copper smelting in zinc electrolytic smelting.

上記問題はカドミウムの電解においても見られる。カド
ミウム電解においても不溶性アノードとして鉛合金板を
用いており、回収カドミウムの品質向上および電流効率
の向上を図るため、ブローホールの少ないアノードが求
められる。
The above problem is also found in the electrolysis of cadmium. A lead alloy plate is also used as an insoluble anode in cadmium electrolysis, and an anode with few blowholes is required in order to improve the quality of recovered cadmium and the current efficiency.

[問題点の解決手段] 本発明者等は、亜鉛およびカドミウムの電解回収におい
て、前述のように鉛合金アノードの内部に存在するブロ
ーホールが大きな影響を及ぼすことを見出し、他方連続
鋳造によって得られたアノードにはブローホールが殆ど
存在しないことに注目し、該連続鋳造によって製造され
た鉛合金アノードを用いることにより従来の問題を解決
した。
[Means for Solving Problems] The present inventors have found that the blowholes existing inside the lead alloy anode have a great influence on the electrolytic recovery of zinc and cadmium, and on the other hand, they were obtained by continuous casting. It was noted that the anode had almost no blowholes, and the conventional problems were solved by using the lead alloy anode manufactured by the continuous casting.

[発明の構成] 本発明によれば、鉛合金湯をモールドから連続的に帯状
に引抜いた後、アノード形状に切断して得られる鉛合金
アノードであって、空孔率が1.0%以下である亜鉛およ
びカドミウム電解用アノードが提供される。
[Constitution of the Invention] According to the present invention, a lead alloy hot water is obtained by continuously drawing a lead alloy hot water from a mold in a strip shape, and then cutting it into an anode shape, which has a porosity of 1.0% or less. An anode for zinc and cadmium electrolysis is provided.

またその好適な実施態様として、鉛合金湯をモールドか
ら連続的に引抜くと同時に或は引抜いた後に、圧延して
アノード形状に切断するアノードが提供され、さらに、
非酸化性ガス雰囲気下で鉛合金湯をモールドから連続的
に帯状に引抜いた後に、アノード形状に切断して得られ
るアノードが提供される。
Further, as a preferred embodiment thereof, there is provided an anode in which the lead alloy hot water is continuously drawn from the mold at the same time or after the drawing, and then rolled and cut into an anode shape.
Provided is an anode obtained by continuously drawing a lead alloy hot water from a mold in a strip shape in a non-oxidizing gas atmosphere, and then cutting it into an anode shape.

本発明における鉛合金のアノードは、鉛合金湯をモール
ドから連続的に引抜いて得られた帯状の鉛合金をアノー
ド形状に切断して製造されたものを用いる。
The lead alloy anode used in the present invention is manufactured by cutting a strip-shaped lead alloy obtained by continuously drawing a lead alloy hot water from a mold into an anode shape.

上記アノードを製造する好適な連続鋳造装置としては、
熔湯をタンデッシュからモールドに注ぐ通常の形式のも
のでよい。モールドを通過して凝固した鉛合金は、ピン
チロールにより圧引され、さらにレベラーによって上下
から狭圧された後、アノード形状に切断される。連続鋳
造においてはタンデッシュからモールドに注湯される
際、外気の巻込みが極めて少なく、ブローホールの発生
が確実に防止される。因に、従来の置型鋳造法によるア
ノードの空孔率は約1.4〜4.2%であるのに対し、本発明
によるアノードの空孔率は1.0%以下であり、空孔率が
大幅に低下している。
As a preferred continuous casting apparatus for producing the above anode,
It may be of the usual type in which the melt is poured from a tundish into a mold. The lead alloy that has passed through the mold and solidified is pressed by a pinch roll, further narrowed down by a leveler, and then cut into an anode shape. In continuous casting, when pouring molten metal from a tundish into a mold, the amount of outside air entrapped is extremely small and blowholes are reliably prevented. Incidentally, the porosity of the anode by the conventional stationary casting method is about 1.4 to 4.2%, whereas the porosity of the anode according to the present invention is 1.0% or less, and the porosity is significantly reduced. There is.

上記連続鋳造の際、鉛合金を窒素、アルゴン等の非酸化
性ガス雰囲気下でモールドを通過させるようにすると良
い。これにより合金の酸化を防止することができる。ま
た、連続鋳造法により製造されたアノードは従来の置型
鋳造法のものより板圧の均一性が優れている利点を有す
る。
During the continuous casting, it is preferable that the lead alloy is passed through the mold under a non-oxidizing gas atmosphere such as nitrogen and argon. This can prevent oxidation of the alloy. Further, the anode manufactured by the continuous casting method has an advantage that the plate pressure is more uniform than that of the conventional stationary casting method.

次に、鉛合金をモールドから圧引する際、板厚を5〜30
mm程度に調整する。亜鉛電解製錬において用いるアノー
ドは電解槽の大きさ等に起因して、銅製錬のアノード
(通常10mm以上)より板厚が薄く、5〜7mm程度のもの
が用いられる。上記板厚を得るには、連続鋳造の際、モ
ールドから引抜いた帯状の鉛合金を、そのまま熱間圧延
してもよく、また、予めモールドから引抜いた帯状合金
をその後加熱して圧延してもよい。尚、帯状合金を圧延
したものは表面が平滑過ぎアノード表面の保護膜となる
PbO2やMnO2が剥離し易いので、圧延後、ブラッシングに
より表面に微細な疵を形成し、上記被膜の付着性を高め
るとよい。
Next, when the lead alloy is drawn from the mold, the plate thickness should be 5-30
Adjust to about mm. The anode used in zinc electrolytic smelting has a plate thickness smaller than that of a copper smelting anode (usually 10 mm or more) and is about 5 to 7 mm due to the size of the electrolytic cell. In order to obtain the above plate thickness, during continuous casting, the strip-shaped lead alloy drawn from the mold may be hot rolled as it is, or the strip-shaped alloy previously drawn from the mold may be heated and then rolled. Good. The rolled alloy strip is too smooth and serves as a protective film on the anode surface.
Since PbO 2 and MnO 2 are easily peeled off, it is advisable to form fine flaws on the surface by brushing after rolling to enhance the adhesiveness of the coating film.

上記鉛合金アノードはカドミウムの電解にも用いること
が出来る。
The lead alloy anode can also be used for cadmium electrolysis.

[実施例および比較例] 実施例1(空孔率の比較) 本発明のアノード(Pb-1%Ag、板幅:62.0cm、長さ:101c
m、板厚:7mm)を水平に11等分に切断し、各切断片の空
孔率を測定した。一方、従来から使用している置型鋳造
のアノード(Pb-1%Ag、板幅:62.0cm、長さ:101cm、板
厚:7mm)を同様に切断し、その空孔率を測定した。その
結果を第1表に示す。
[Examples and Comparative Examples] Example 1 (comparison of porosity) Anode of the present invention (Pb-1% Ag, plate width: 62.0 cm, length: 101c)
m, plate thickness: 7 mm) was horizontally cut into 11 equal parts, and the porosity of each cut piece was measured. On the other hand, a conventional stationary anode (Pb-1% Ag, plate width: 62.0 cm, length: 101 cm, plate thickness: 7 mm) that had been conventionally used was similarly cut and the porosity was measured. The results are shown in Table 1.

実施例2(Pb-1%Agアノードの製造) 容量5トンの溶解鍋にPbを溶解し、該熔体に320〜340℃
でPb1000Kg当りAg10Kgを加えて溶解した後、410〜430℃
に昇温してPb−Ag合金を得た。該熔体をタンデイシュか
らモールドに通過させ、凝固したPb合金を第1ピンチロ
ール、第2ピンチロールで連続的に引抜いて、レベラー
によって上下から厚さ7mmに調整し、シャーリングによ
って縦1010mm、横620mmのアノード形状に切断してアノ
ード板25枚を製造した。なお、モールド内部は密閉式と
し、Arガスによりシールして熔体の酸化を防止した。得
られたアノードの組成はAg:0.98重量%、残部がPbであ
った。該アノード25枚とAl板のカソード板24枚を亜鉛電
解槽に懸架して電流密度500A/m2で亜鉛の電解回収を行
なった。
Example 2 (Production of Pb-1% Ag Anode) Pb was dissolved in a melting pot having a capacity of 5 tons, and the melt was heated at 320 to 340 ° C.
After adding 10Kg of Ag per 1000Kg of Pb to dissolve at 410-430 ℃
The temperature was raised to 0 to obtain a Pb-Ag alloy. The melt is passed through the mold from the tundish, the solidified Pb alloy is continuously drawn out by the first pinch roll and the second pinch roll, and the thickness is adjusted to 7 mm from above and below by the leveler, and 1010 mm in length and 620 mm in width by shirring. 25 pieces of anode plates were manufactured by cutting into the shape of the anode. The inside of the mold was of a hermetic type, and was sealed with Ar gas to prevent the oxidation of the melt. The composition of the obtained anode was Ag: 0.98% by weight, and the balance was Pb. The 25 anodes and 24 Al cathode plates were suspended in a zinc electrolytic cell to electrolytically recover zinc at a current density of 500 A / m 2 .

同様に従来の置型鋳造によるアノードを用いて上記電解
条件により亜鉛の電解回収を実施した。これらの結果を
第2表に示す。
Similarly, electrolytic recovery of zinc was carried out under the above-mentioned electrolysis conditions by using a conventional stationary casting anode. The results are shown in Table 2.

[発明の効果] 本発明のアノードは、ブローホールが極めて少ないの
で、鉛の溶出によりカソード亜鉛の品質を低下する虞も
殆どなく、回収亜鉛の品質が向上す 更に、本発明のアノードは従来の置型鋳造法のものより
板圧の均一性が優れている。この結果、アノードとカソ
ードとの面間隔が一定となり、局部的な電流密度の偏り
が防止され、またアノード相互間でのショートが殆どな
く、従って電流効率が向上する。
[Advantages of the Invention] Since the anode of the present invention has extremely few blow holes, there is almost no possibility of degrading the quality of cathode zinc due to elution of lead, and the quality of recovered zinc is improved. The plate pressure is more uniform than the stationary casting method. As a result, the surface distance between the anode and the cathode becomes constant, a local bias in the current density is prevented, and there is almost no short circuit between the anodes, thus improving the current efficiency.

また本発明で用いるアノードは有孔アノードを形成する
場合にも従来のものより耐蝕性がよく、従来の電解回収
に比べ、アノードの保守等を大幅に軽減出来る。
Further, the anode used in the present invention has better corrosion resistance than the conventional one even when forming a perforated anode, and maintenance of the anode and the like can be greatly reduced as compared with the conventional electrolytic recovery.

更に本発明に用いるアノードはその組織が均一であり、
銅電解用アノードに比べ板厚が薄いアノードを用いる亜
鉛電解においては電流密度の不均一等を防止するうえで
一層有効である。亜鉛電解のアノードは銅電解の場合に
比べ、上記ブローホールの影響が大きいが、上記連続鋳
造によって製造したアノードを用いることによりこの問
題が解消でき、効率良く亜鉛の電解操業を実施できる。
Further, the anode used in the present invention has a uniform structure,
Zinc electrolysis using an anode having a thinner plate thickness than the copper electrolysis anode is more effective in preventing uneven current density. The effect of blowholes is greater in the zinc electrolysis anode than in the case of copper electrolysis, but this problem can be solved and the zinc electrolysis operation can be efficiently performed by using the anode produced by the continuous casting.

またカドミウム電解用アノードに用いる場合にも、鉛の
溶出が少ないので回収カドミウムの品質が高く、さらに
電流密度が均一であり電流効率が向上し、耐蝕性にも優
れる。
Also, when used as an anode for cadmium electrolysis, the quality of recovered cadmium is high because less lead is eluted, and the current density is uniform, the current efficiency is improved, and the corrosion resistance is also excellent.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉛合金湯をモールドから連続的に帯状に引
抜いた後、アノード形状に切断して得られる鉛合金アノ
ードであって、空孔率が1.0%以下である亜鉛およびカ
ドミウム電解用アノード。
1. A lead alloy anode obtained by continuously drawing a lead alloy hot water from a mold in a strip shape and then cutting it into an anode shape, the anode having a porosity of 1.0% or less for zinc and cadmium electrolysis. .
【請求項2】鉛合金湯をモールドから連続的に引抜くと
同時に或は引抜いた後に、圧延してアノード形状に切断
する特許請求の範囲第1項のアノード。
2. The anode according to claim 1, wherein the lead alloy hot water is continuously drawn from the mold at the same time as or after being drawn, and then rolled to be cut into an anode shape.
【請求項3】非酸化性ガス雰囲気下で鉛合金湯をモール
ドから連続的に帯状に引抜いた後、アノード形状に切断
して得られる特許請求の範囲第1項のアノード。
3. The anode according to claim 1, which is obtained by continuously withdrawing a lead alloy hot water from a mold in a strip shape in a non-oxidizing gas atmosphere and then cutting it into an anode shape.
JP61110528A 1986-05-16 1986-05-16 Anode for zinc and cadmium electrolysis Expired - Lifetime JPH0739637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61110528A JPH0739637B2 (en) 1986-05-16 1986-05-16 Anode for zinc and cadmium electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61110528A JPH0739637B2 (en) 1986-05-16 1986-05-16 Anode for zinc and cadmium electrolysis

Publications (2)

Publication Number Publication Date
JPS62267489A JPS62267489A (en) 1987-11-20
JPH0739637B2 true JPH0739637B2 (en) 1995-05-01

Family

ID=14538090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61110528A Expired - Lifetime JPH0739637B2 (en) 1986-05-16 1986-05-16 Anode for zinc and cadmium electrolysis

Country Status (1)

Country Link
JP (1) JPH0739637B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101268A (en) * 2010-11-12 2012-05-31 Mitsubishi Materials Corp Apparatus for continuous production of anode pellet for plating
JP5740924B2 (en) * 2010-11-12 2015-07-01 三菱マテリアル株式会社 Anode pellet for Sn plating and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096782A (en) * 1984-02-29 1985-05-30 Onahama Smelt & Refining Co Ltd Pb-alloy anode for copper electrolysis
JPS60106988A (en) * 1983-08-30 1985-06-12 Onahama Smelt & Refining Co Ltd Production of pb alloy anode for copper electrolysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106988A (en) * 1983-08-30 1985-06-12 Onahama Smelt & Refining Co Ltd Production of pb alloy anode for copper electrolysis
JPS6096782A (en) * 1984-02-29 1985-05-30 Onahama Smelt & Refining Co Ltd Pb-alloy anode for copper electrolysis

Also Published As

Publication number Publication date
JPS62267489A (en) 1987-11-20

Similar Documents

Publication Publication Date Title
NO20021952D0 (en) Low temperature cells for aluminum electrical recovery
US4364807A (en) Method of electrolytically recovering zinc
US4272339A (en) Process for electrowinning of metals
CN114134538A (en) Zinc electrodeposition system suitable for high current density
JPH0739637B2 (en) Anode for zinc and cadmium electrolysis
US2723230A (en) Anode for electrowinning of manganese
US2923671A (en) Copper electrodeposition process and anode for use in same
US20210276061A1 (en) Method for the manufacture of insoluble lead anodes, used in electrowinning or electro-refining processes of high purity metals
US4410412A (en) Cathode for an electrolytic cell for producing aluminum via the fused salt electrolytic process
JPH0867932A (en) Copper anode for high-current density plating
JP2001279351A (en) Rolled copper alloy foil and its production method
AU567973B2 (en) Electrode for electrometallurgical process.
JPS624470B2 (en)
JPS6096782A (en) Pb-alloy anode for copper electrolysis
JP2896764B2 (en) Casting method of anode for copper electrolysis
CN101928839A (en) Slag system for electroslag remelting of manganese-based alloy steel and using method thereof
JPS624471B2 (en)
CN110170634A (en) A kind of casting connection method of aluminium electrolysis prebaked anode carbon block and steel pawl
JP2785044B2 (en) Copper anode mold and copper anode manufacturing method
JP2529557B2 (en) Lead alloy insoluble anode
JPH10211546A (en) Hot-top casting method
JP3419437B2 (en) Horizontal continuous casting method of brass and method of manufacturing brass strip
Prengaman Wrought Lead--Calcium--Tin Anodes for Electrowinning
CA1046799A (en) Electrowinning of zinc using aluminum alloy
JP3809558B2 (en) Aluminum alloy for cathode