JPS624471B2 - - Google Patents

Info

Publication number
JPS624471B2
JPS624471B2 JP15710583A JP15710583A JPS624471B2 JP S624471 B2 JPS624471 B2 JP S624471B2 JP 15710583 A JP15710583 A JP 15710583A JP 15710583 A JP15710583 A JP 15710583A JP S624471 B2 JPS624471 B2 JP S624471B2
Authority
JP
Japan
Prior art keywords
alloy
anode
mold
solution
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15710583A
Other languages
Japanese (ja)
Other versions
JPS60106988A (en
Inventor
Ichiro Komatsu
Fusao Shidara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onahama Smelting and Refining Co Ltd
Original Assignee
Onahama Smelting and Refining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onahama Smelting and Refining Co Ltd filed Critical Onahama Smelting and Refining Co Ltd
Priority to JP58157105A priority Critical patent/JPS60106988A/en
Publication of JPS60106988A publication Critical patent/JPS60106988A/en
Publication of JPS624471B2 publication Critical patent/JPS624471B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、銅を含む硫酸酸性溶液から銅を電解
採取により回収する際のPb合金アノードの製造
法に関する。 従来、銅を含む硫酸酸性溶液からの銅の電解回
収には、一般にPbまたはPb合金等の不溶性アノ
ードが用いられており、該アノード板は置型すな
わち鋳型にPbまたはPb合金の溶体を注湯する鋳
造法により製造されるのが普通であつた。しかし
ながら、鋳型に1枚1枚注湯して出来たアノード
は、鋳造速度が遅いばかりでなく、1枚1枚の厚
さの不均一による重量バラツキが多く、しかもア
ノード表面の冷却時のシワ、あるいは鋳型の劣化
によるシワ等の表面の粗さも多く、しかも鋳型へ
の注湯がオープン注湯であるため酸素のまき込み
が多く、良質なアノードを得ることが困難であつ
た。 この傾向は特に酸化されやすい成分を含むPb
―Ca合金アノードの製造の場合に著るしかつ
た。 本発明者は、上記従来法の問題点に鑑みアノー
ド表面の平滑度の向上とアノード厚みの均一性向
上を目的に、アノードの連続鋳造を試みたとこ
ろ、この方法で製造されたアノードが、銅の電解
回収の際に予想をはるかに上回る寿命を示すこと
を見い出し、さらに従来銅電解用PbCa合金アノ
ードの場合にCaの上限値と考えられていたCa含
有量0.1%(例えば特公昭58―14514または特開昭
51―91804など)を越えたCa含有量のPb合金を製
造できることを見い出した。 本発明によれば、Pb―Sn溶湯にCaシヨツトを
投入し、Arガスで撹拌して溶解させた後、該Pb
―Ca―Sn溶体を非酸化性雰囲気の下でモールド
を通過させ、連続的に引抜いて帯状のPb合金を
得、該帯状Pb合金をアノード形状に切断するこ
とを特徴とする銅電解用Pb合金アノードの製造
方法が提供される。 本発明の製造方法は、実施例に記載されるよう
に、Pb―Sn溶湯にCaシヨツトを投入し、Arガス
で撹拌して溶解させる工程と、該溶解工程の後に
該溶湯を凝固するまで非酸化性雰囲気のモールド
内に保持し、凝固したPb―Ca―Sn合金を該モー
ルドから連続的にピンチロールにより引出す連続
鋳造工程と、該鋳造により得られた帯状のPb合
金をアノード形状に切断する成形工程とからな
る。 上記溶融工程において、Caの添加は、Caシヨ
ツトを小孔を多数設けたセラミツク容器に収納
し、該容器をPb―Sn溶体に入れる方法によると
良い。この場合、溶体内のCaシヨツトは周囲の
Pbと合金を形成し、Caの融点より大幅に低い温
度で溶解し、更に溶け出したCaがArガスによる
撹拌により周囲に拡散してCaの低温溶解が一層
促進される。 上記溶解工程によつて得られたPb合金の溶体
をタンデイツシユからモールドに通過させ、連続
鋳造により帯状に引抜く。 上記組成の溶湯から連続鋳造する際、凝固する
までは窒素、アルゴンなどの非酸化性ガス雰囲気
の下におくことが必要で、こうすることにより合
金の酸化を防止することができる。 本発明に好適な連続鋳造装置としては、溶湯を
タンデイツシユからモールドに注ぐ通常のタイプ
のものでよく、モールドを通過して凝固したPb
合金は、ピンチロールにより圧引され、さらにレ
ベラーによつて上下から狭正された後シヤーリン
グによりアノード形状に切断される。このときタ
ンデイツシユからモールドに注湯されたPb合金
は、モールド内が還元性雰囲気であり、溶湯が凝
固するまではクローズドであるため、酸素まき込
みが極めて少ない。また、アノード表面の平滑度
やアノード厚みの均一性が従来の置型鋳造法より
はるかに優れているため、電解時に電解槽中に正
確に懸吊でき、かつアノードとカソードの面間隔
も一定になつて局部的な電流の濃淡が減少した
上、合金組成の効果が加わつた結果、Pbのカソ
ードへの移行が極めて少なくなると共に電解効率
も改良される等の効果が見られ、それらに合金組
成の効果を加えた総合的効果としてアノードライ
フの延長がもたらされる。また、製造歩留まりも
置型鋳造法に比しはるかに向上した。 以下実施例によりさらに具体的に説明する。 実施例 1 容量5トンの溶解鍋にPbを溶解し、該溶体に
320〜340℃でPb1000Kg当りSn5Kgを加えて溶解し
た後、420±10℃まで昇温し、径3mmの小孔を多
数設けたセラミツク容器にCaシヨツトをPb1000
Kg当り1.1Kgとなるように入れて前記溶体に浸漬
し、Arガスで撹拌して溶解した。(この方法は、
本出願人の先願発明特開昭56―146840「合金製造
法」に基づく)このようにして得られた溶体をタ
ンデイツシユからモールドに通過させ、凝固した
Pb合金を第一ピンチロールおよび第二ピンチロ
ールで連続的に引き抜いて、レベラーによつて上
下から厚さ12mmに調整し、シヤーリングによつて
縦980mm、横960mmのアノード形状に切断してアノ
ード板45枚を製造した。なお、モールド内部は密
閉式とし、Arガスにてシールして溶体の酸化を
防止した。得られたアノードの組成はCa0.12重
量%、Sn0.5重量%残部がPbであつた。かくして
得られたアノード45枚と銅カソード46枚を銅を含
む硫酸酸性溶液中に懸吊して電流密度250A/m2
銅の電解回収試験を反復実施した。 比較のために組成を変えて連続鋳造した本発明
アノードおよび公知のPb―Ca合金アノードなら
びに従来の置型鋳造法による公知Pb―Ca合金ア
ノードを用いて行つた電解回収試験の結果とを表
1に並べて記載した。
The present invention relates to a method for producing a Pb alloy anode when copper is recovered from a copper-containing sulfuric acid solution by electrowinning. Conventionally, in the electrolytic recovery of copper from a sulfuric acid acidic solution containing copper, an insoluble anode such as Pb or a Pb alloy is generally used. It was commonly manufactured by the casting method. However, anodes made by pouring metal into a mold one by one not only have a slow casting speed, but also have many weight variations due to uneven thickness of each anode, and wrinkles on the anode surface when cooling. In addition, there are many surface roughness such as wrinkles due to deterioration of the mold, and since the metal is poured into the mold in an open manner, a large amount of oxygen is mixed in, making it difficult to obtain a high-quality anode. This tendency is especially true for Pb, which contains components that are easily oxidized.
- This was particularly noticeable in the production of Ca alloy anodes. In view of the above-mentioned problems of the conventional method, the present inventor attempted continuous casting of anodes with the aim of improving the smoothness of the anode surface and improving the uniformity of the anode thickness. We discovered that the lifetime of PbCa alloy anodes for copper electrolysis was much longer than expected during electrolytic recovery. or Tokukai Akira
We have discovered that it is possible to produce Pb alloys with Ca contents exceeding 51-91804, etc.). According to the present invention, a Ca shot is introduced into the Pb-Sn molten metal, and after stirring and dissolving it with Ar gas, the Pb
- A Pb alloy for copper electrolysis, characterized by passing a Ca-Sn solution through a mold under a non-oxidizing atmosphere, continuously drawing it out to obtain a strip-shaped Pb alloy, and cutting the strip-shaped Pb alloy into an anode shape. A method of manufacturing an anode is provided. As described in the Examples, the production method of the present invention includes a step of introducing a Ca shot into a Pb-Sn molten metal and dissolving it by stirring with Ar gas, and after the melting step, a step of keeping the molten metal in a state of non-operation until solidification. A continuous casting process in which the Pb-Ca-Sn alloy is held in a mold in an oxidizing atmosphere and the solidified Pb-Ca-Sn alloy is continuously pulled out from the mold using pinch rolls, and the strip-shaped Pb alloy obtained by the casting is cut into an anode shape. It consists of a molding process. In the above melting step, Ca may be added by placing the Ca shot in a ceramic container with a large number of small holes, and placing the container in the Pb--Sn solution. In this case, the Ca shot in the solution is
It forms an alloy with Pb and melts at a temperature significantly lower than the melting point of Ca, and the dissolved Ca is further diffused into the surrounding area by stirring with Ar gas, further promoting low-temperature dissolution of Ca. The Pb alloy solution obtained in the above melting step is passed through a tundish into a mold and drawn into a strip by continuous casting. When continuously casting a molten metal having the above composition, it is necessary to place it under a non-oxidizing gas atmosphere such as nitrogen or argon until it solidifies, and by doing so, oxidation of the alloy can be prevented. Continuous casting equipment suitable for the present invention may be of the usual type, in which the molten metal is poured from a tundish into a mold, and the Pb solidified as it passes through the mold.
The alloy is compressed by pinch rolls, further narrowed from above and below by levelers, and then cut into an anode shape by shearing. At this time, the Pb alloy poured into the mold from the tundish is in a reducing atmosphere inside the mold and is closed until the molten metal solidifies, so there is extremely little oxygen incorporation. In addition, the smoothness of the anode surface and the uniformity of the anode thickness are far superior to those of conventional stationary casting methods, so it can be accurately suspended in the electrolytic bath during electrolysis, and the spacing between the anode and cathode surfaces is also constant. As a result of reducing the local current density and adding the effects of the alloy composition, the migration of Pb to the cathode is extremely reduced and the electrolytic efficiency is improved. The overall effect of these effects is an extension of the anode life. Furthermore, the manufacturing yield was much improved compared to the stationary mold casting method. This will be explained in more detail below with reference to Examples. Example 1 Dissolve Pb in a melting pot with a capacity of 5 tons, and add it to the solution.
After adding and melting 5 kg of Sn per 1000 kg of Pb at 320 to 340°C, the temperature was raised to 420 ± 10°C, and Ca shots were added to 1000 kg of Pb in a ceramic container with many small holes with a diameter of 3 mm.
The solution was charged at a concentration of 1.1 kg per kg, immersed in the solution, and dissolved by stirring with Ar gas. (This method is
The solution thus obtained (based on the applicant's earlier patent application JP-A-56-146840 "Alloy manufacturing method") was passed through a tundish into a mold and solidified.
The Pb alloy is continuously pulled out using a first pinch roll and a second pinch roll, adjusted to a thickness of 12 mm from the top and bottom using a leveler, and cut into an anode shape of 980 mm in length and 960 mm in width by shearing to form an anode plate. 45 pieces were produced. The inside of the mold was sealed with Ar gas to prevent oxidation of the solution. The composition of the obtained anode was 0.12% by weight of Ca, 0.5% by weight of Sn, and the balance was Pb. The 45 anodes and 46 copper cathodes thus obtained were suspended in an acidic sulfuric acid solution containing copper, and a copper electrolytic recovery test was repeatedly conducted at a current density of 250 A/m 2 . For comparison, Table 1 shows the results of an electrolytic recovery test conducted using the anode of the present invention and a known Pb-Ca alloy anode continuously cast with different compositions, as well as a known Pb-Ca alloy anode made by the conventional stationary casting method. Listed side by side.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 Pb―Sn溶湯にCaシヨツトを投入し、Arガス
で撹拌して溶解させた後、該Pb―Ca―Sn溶体を
非酸化性雰囲気の下でモールドを通過させ、連続
的に引抜いて帯状のPb合金を得、該帯状Pb合金
をアノード形状に切断することを特徴とする銅電
解用Pb合金アノードの製造方法。
1. Pb--Sn molten metal is charged with a Ca shot, stirred with Ar gas to dissolve it, and then the Pb--Ca--Sn solution is passed through a mold under a non-oxidizing atmosphere and continuously pulled out to form a strip. 1. A method for producing a Pb alloy anode for copper electrolysis, which comprises obtaining a Pb alloy and cutting the strip-shaped Pb alloy into an anode shape.
JP58157105A 1983-08-30 1983-08-30 Production of pb alloy anode for copper electrolysis Granted JPS60106988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58157105A JPS60106988A (en) 1983-08-30 1983-08-30 Production of pb alloy anode for copper electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157105A JPS60106988A (en) 1983-08-30 1983-08-30 Production of pb alloy anode for copper electrolysis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58136874A Division JPS6029481A (en) 1983-07-28 1983-07-28 Electrolytic recovering method of copper

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP59036167A Division JPS6096782A (en) 1984-02-29 1984-02-29 Pb-alloy anode for copper electrolysis

Publications (2)

Publication Number Publication Date
JPS60106988A JPS60106988A (en) 1985-06-12
JPS624471B2 true JPS624471B2 (en) 1987-01-30

Family

ID=15642337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157105A Granted JPS60106988A (en) 1983-08-30 1983-08-30 Production of pb alloy anode for copper electrolysis

Country Status (1)

Country Link
JP (1) JPS60106988A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739637B2 (en) * 1986-05-16 1995-05-01 三菱マテリアル株式会社 Anode for zinc and cadmium electrolysis
CN101248547B (en) * 2005-08-01 2010-05-19 托马斯·约翰·迈耶 An electrode and a method for forming an electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534888A (en) * 1976-07-01 1978-01-17 Miyawaki Arimi Device and method of guiding cable for interior wiring work
JPS589448U (en) * 1981-07-13 1983-01-21 荒井 博海 Formwork tightening device

Also Published As

Publication number Publication date
JPS60106988A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
US4124482A (en) Method and apparatus for casting anodes
CN106399744A (en) Multi-element intermediate alloy for impure copper refining, preparation thereof and application thereof
US2923671A (en) Copper electrodeposition process and anode for use in same
JPS624471B2 (en)
CA1103205A (en) Insoluble anode for the electrowinning of copper
CN215746296U (en) Rare earth metal or alloy condensation structure
JPS6096782A (en) Pb-alloy anode for copper electrolysis
JPS624470B2 (en)
US4490223A (en) Electrode for electrometallurgical processes
JP4399572B2 (en) Method for producing nickel-zinc mother alloy
JPH10211546A (en) Hot-top casting method
US2720459A (en) Highly wear-resistant zinc base alloy
JPS62267489A (en) Anode for electrolyzing zinc and cadmium
JP2785044B2 (en) Copper anode mold and copper anode manufacturing method
JPS6396299A (en) Insoluble anode made of lead alloy
US2752242A (en) Copper-nickel-titanium alloy and process for making same
JP3018809B2 (en) Method of manufacturing thin sheet ingot by electromagnetic force
JPS622638B2 (en)
US1552610A (en) Nickel anode and method of producing the same, etc
RU2044089C1 (en) Method to produce aluminum-titanium-boron alloying composition
CN114378265A (en) Zinc alloy cooling forming process method
CN108441675A (en) A kind of new zinc anode for electrolysis alloy material and its low-loss preparation method
US2899304A (en) Highly wear-resistant zinc base alloy
JPH0313296B2 (en)
JPS5989800A (en) Production of anode material for copper plating