JPH0738377B2 - Method for forming single crystal silicon film - Google Patents

Method for forming single crystal silicon film

Info

Publication number
JPH0738377B2
JPH0738377B2 JP59258164A JP25816484A JPH0738377B2 JP H0738377 B2 JPH0738377 B2 JP H0738377B2 JP 59258164 A JP59258164 A JP 59258164A JP 25816484 A JP25816484 A JP 25816484A JP H0738377 B2 JPH0738377 B2 JP H0738377B2
Authority
JP
Japan
Prior art keywords
silicon film
crystal silicon
single crystal
forming
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59258164A
Other languages
Japanese (ja)
Other versions
JPS61136219A (en
Inventor
吉文 恒川
弘之 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP59258164A priority Critical patent/JPH0738377B2/en
Publication of JPS61136219A publication Critical patent/JPS61136219A/en
Priority to JP4161243A priority patent/JPH0777196B2/en
Publication of JPH0738377B2 publication Critical patent/JPH0738377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、単結晶基板又は絶縁基板上の非単結晶シリコ
ン膜を加熱溶融した後、単結晶化させる単結晶シリコン
膜の形成方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for forming a single crystal silicon film in which a non-single crystal silicon film on a single crystal substrate or an insulating substrate is melted by heating and then single crystallized. Is.

[従来の技術] 従来の単結晶シリコン膜の形成方法には、特開昭59-114
815号公報及びJ.Appl.Phys.Suppl.20−1,pp39−42(198
1)等に開示されているように、ストリップヒーター
(以下ヒーターと略称する)又はレーザビーム(以下LB
と略称する)あるいは電子ビーム(以下EBと略称する)
のみによる非単結晶シリコン膜の加熱溶融・単結晶化す
る方法であった。
[Prior Art] A conventional method for forming a single crystal silicon film is disclosed in Japanese Patent Laid-Open No. 59-114.
815 publication and J. Appl. Phys. Suppl. 20-1, pp39-42 (198
1) etc., a strip heater (hereinafter abbreviated as a heater) or a laser beam (hereinafter LB)
Electron beam (hereinafter abbreviated as EB)
It was a method of heating, melting, and single-crystallizing a non-single-crystal silicon film by using only.

また、特開昭58-147024号公報には、非単結晶シリコン
層を単結晶化する為の加熱手段として、レーザ光、電子
ビーム等を照射するのが一般的であるが、カーボンヒー
ター、アークランプ、ハロゲンランプ等の棒状の加熱装
置が用いられることが開示されている。
Further, in JP-A-58-147024, it is general to irradiate a laser beam, an electron beam, or the like as a heating means for single-crystallizing a non-single-crystal silicon layer. It is disclosed that a rod-shaped heating device such as a lamp or a halogen lamp is used.

[発明が解決しようとする課題] しかし、従来の技術では、ヒーターのみによる非単結晶
シリコン膜の加熱溶融・単結晶化においては、ヒーター
下の非単結晶シリコン膜を含むすべての膜が非単結晶シ
リコン膜の溶融温度近傍の高温にさらされることにな
り、3次元集積回路の如く不純物拡散等を実施して、既
にデバイスを形成した層がある場合には、その層上での
単結晶化となるので下層デバイスにおける不純物の再拡
散の結果、所望のデバイス特性からのずれを生じ、さら
にデバイスの熱による特性劣化へとつながる。
[Problems to be Solved by the Invention] However, in the conventional technique, when the non-single-crystal silicon film is heated and melted and single-crystallized only by the heater, all the films including the non-single-crystal silicon film under the heater are non-single-crystallized. If the layer is already exposed to a high temperature near the melting temperature of the crystalline silicon film and has already formed a device by performing impurity diffusion, etc. like a three-dimensional integrated circuit, single crystallization on that layer Therefore, as a result of re-diffusion of impurities in the lower layer device, a deviation from desired device characteristics occurs, which further leads to characteristic deterioration due to heat of the device.

またLB又はEBのみによる溶融単結晶化においては、加熱
溶融が比較的表面近傍のみに生ずる。従って、結晶成長
の際、種となる単結晶が下層に存在するような非単結晶
シリコン膜の単結晶化では、種結晶に達するような溶融
が困難になり、3次元集積回路のように、多層にデバイ
スを形成する際、上層の半導体層の結晶性は下層の半導
体層の結晶性より悪くなることが考えられ、デバイス間
のばらつき、特性の不均一性が生ずるという問題を有す
る。
Further, in the melt single crystallization using only LB or EB, heat melting occurs only in the relatively vicinity of the surface. Therefore, when crystallizing a non-single-crystal silicon film in which a single crystal to be a seed is present in a lower layer during crystal growth, melting to reach a seed crystal becomes difficult, and as in a three-dimensional integrated circuit, When forming a multi-layered device, the crystallinity of the upper semiconductor layer is considered to be worse than that of the lower semiconductor layer, which causes problems such as variations among devices and non-uniformity of characteristics.

本発明は、このような問題点を解決するもので、その目
的とするところは、高性能なデバイス特性を必要とする
多層構造による多機能素子における如く、単結晶化後ト
ランジスタ等を形成した際の能動領域を形成することに
なる単結晶化する非単結晶シリコン膜が、各種用途に必
要な層により隔てられて存在する場合にも、下層部の単
結晶化したシリコン膜と品質上差のない均一な単結晶シ
リコン膜の形成方法を提供することにある。
The present invention solves such a problem, and an object thereof is to form a transistor or the like after single crystallization, as in a multifunctional element having a multilayer structure that requires high performance device characteristics. Even if the non-single-crystal silicon film that is to be single-crystallized to form the active region of is separated by the layers necessary for various applications, there is a difference in quality from the single-crystallized silicon film in the lower layer. Another object of the present invention is to provide a method for forming a uniform single crystal silicon film.

[課題を解決するための手段] 本発明の単結晶シリコン膜の形成方法の第1は、 シリコン単結晶基板上方に複数のシリコンを含む膜を絶
縁膜を介して積層したシリコン半導体基板の最上層に設
けられた非単結晶シリコン膜を加熱溶融した後、単結晶
化させる単結晶シリコン膜の形成方法において、 シリコン単結晶基板上に、単結晶化の際の種となる
種部上をエッチング除去した絶縁膜を形成する工程、 絶縁膜上及び前記シリコン単結晶基板の種部上に非
単結晶シリコン膜を形成する工程 シリコン単結晶基板の種部の上部に固定的に存在
し、かつ非単結晶シリコン膜の融点以上の温度に保たれ
た主ヒーターと、シリコン単結晶基板の種部の下部に固
定的に存在する副ヒーターとから構成され、前記種部を
上下から挟み込むように存在するストリップヒーターに
より、種部及び種部上に位置する非単結晶シリコン膜の
最上層までの第1領域を加熱溶融する工程 しかる後に前記ストリップヒーターの温度を下げ、
第1領域から、第1領域の周辺部へ向かって、レーザー
ビームあるいは電子ビームを非単結晶シリコン膜に対し
て相対的に移動することにより、非単結晶シリコン膜
を、種部の結晶性を受け継ぎながら単結晶化する工程か
らなることを特徴とするものであり、 単結晶シリコン膜の形成方法の第2は、 絶縁基板上方に複数のシリコンを含む膜を絶縁膜を介し
て積層したシリコン半導体基板の最上層に設けられた非
単結晶シリコン層を加熱溶融した後、単結晶化させる単
結晶シリコン膜の形成方法において、 絶縁基板を加工して該絶縁基板上にレリーフを形成
するか又は絶縁基板上に絶縁膜を形成し、該絶縁膜をエ
ッチングしてレリーフを形成する工程、 前記レリーフが設けられた前記絶縁基板上に非単結晶シ
リコン膜を形成する工程、 前記非単結晶膜の種部となる部分の上部に固定的に
存在し、かつ前記非単結晶シリコン膜の融点以上の温度
に保たれた主ヒーターと、前記種部下の前記絶縁基板下
部に固定的に存在する副ヒーターとから構成され、前記
種部を上下から挟み込むように存在するストリップヒー
ターにより、前記種部に位置する前記非単結晶シリコン
膜の最上層までを加熱の第1領域を加熱溶融する工程、 しかる後に前記ストリップヒーターの温度を下げ、
前記第1領域から、前記第1領域の周辺部へ向かって、
レーザービームあるいは電子ビームを前記非単結晶シリ
コン膜に対して相対的に移動することにより、前記単結
晶シリコン膜を、前記レリーフの形状により決まる面方
位を有しながら単結晶化する工程、 有することを特徴とするものである。
[Means for Solving the Problems] A first method of forming a single crystal silicon film according to the present invention is the uppermost layer of a silicon semiconductor substrate in which a plurality of films containing silicon are stacked above a silicon single crystal substrate via an insulating film. In the method of forming a single crystal silicon film, in which the non-single crystal silicon film provided on the substrate is heated and melted, the single crystal silicon film is formed by etching and removing the seed portion that becomes a seed for single crystal formation on the silicon single crystal substrate. Forming a non-single-crystal silicon film on the insulating film and on the seed portion of the silicon single crystal substrate. A main heater maintained at a temperature equal to or higher than the melting point of the crystalline silicon film, and a sub-heater fixedly present below the seed portion of the silicon single crystal substrate, and a heater existing so as to sandwich the seed portion from above and below. The lip heater, to lower the temperature of the strip heater to step thereafter heating and melting the first region to the uppermost non-single crystal silicon film located on the seed portion and seed unit,
By moving the laser beam or the electron beam relative to the non-single-crystal silicon film from the first region toward the peripheral portion of the first region, the non-single-crystal silicon film is made to have crystallinity of the seed part. The second method of forming a single crystal silicon film is a silicon semiconductor in which a plurality of films containing silicon are stacked above an insulating substrate with the insulating film interposed therebetween. In a method for forming a single crystal silicon film in which a non-single crystal silicon layer provided on the uppermost layer of a substrate is heated and melted, and then single crystallized, an insulating substrate is processed to form a relief on the insulating substrate or to insulate. Forming an insulating film on a substrate and forming a relief by etching the insulating film; forming a non-single-crystal silicon film on the insulating substrate provided with the relief; A main heater, which is fixedly present above the seed portion of the single crystal film and is maintained at a temperature equal to or higher than the melting point of the non-single crystal silicon film, and fixedly below the insulating substrate below the seed portion. A first heater for heating up to the uppermost layer of the non-single-crystal silicon film located in the seed portion is heated and melted by a strip heater that is configured to include an existing sub-heater and that sandwiches the seed portion from above and below. Step, after which the temperature of the strip heater is lowered,
From the first area toward the periphery of the first area,
Moving the laser beam or the electron beam relative to the non-single-crystal silicon film to single-crystallize the single-crystal silicon film while having a plane orientation determined by the shape of the relief. It is characterized by.

[作用] 本発明の上記のような構成によれば、シリコン単結晶基
板の種部の上部及び下部に夫々固定的に存在する主・副
ヒーターから構成され、種部を上下から挟み込むように
存在するストリップヒーターによる加熱により、上層の
非単結晶シリコン膜から下層の種結晶シリコン層まで溶
融が可能となり、かつレーザービームLBあるいは電子ビ
ームEBを非単結晶シリコン膜に対して相対的に移動する
ことにより、基板面方向の表面の非単結晶シリコン膜の
みの溶融が可能となり、かつ各工程における加熱方法の
組み合わせにより、下層のデバイスへの熱的影響を与え
ることなく、上層の非単結晶シリコン膜は種結晶の結晶
性を受け継ぎながら成長するものである。
[Operation] According to the above-described configuration of the present invention, the silicon single crystal substrate is composed of the main and auxiliary heaters that are fixedly present above and below the seed portion, and the seed portion is sandwiched from above and below. By heating with a strip heater, it is possible to melt from the upper non-single crystal silicon film to the lower seed crystal silicon layer, and to move the laser beam LB or electron beam EB relative to the non-single crystal silicon film. As a result, only the non-single-crystal silicon film on the surface in the substrate surface direction can be melted, and the combination of the heating methods in each step allows the upper-layer non-single-crystal silicon film to be obtained without thermally affecting the lower-layer device. Grows while inheriting the crystallinity of the seed crystal.

また、本発明の第2は、前記のような構成によれば、絶
縁基板を加工して絶縁基板上にレリーフを形成するか又
は絶縁基板上に絶縁膜を形成し、レリーフが設けられた
絶縁基板上に非単結晶シリコン膜を形成し、レリーフが
設けられた絶縁基板上に非単結晶シリコン膜を形成し、
第1発明と同様に固定的に存在するストリップヒーター
により、種部に位置する非単結晶シリコン膜の最上層ま
でを加熱溶融し、加熱溶融した領域から、周辺部へ向か
って、LBあるいはEBを非単結晶シリコン膜に対して、相
対的に移動することにより、加熱溶融後の単結晶化で、
結晶方位を揃えることが可能となり、絶縁基板上での非
単結晶シリコン膜の単結晶化を可能とする。
According to a second aspect of the present invention, according to the above-described structure, an insulating substrate is processed to form a relief on the insulating substrate, or an insulating film is formed on the insulating substrate, and insulation provided with a relief is provided. A non-single crystal silicon film is formed on a substrate, and a non-single crystal silicon film is formed on an insulating substrate provided with a relief,
As in the first aspect of the present invention, the fixedly present strip heater heats and melts up to the uppermost layer of the non-single-crystal silicon film located in the seed part, and LB or EB is applied from the heat-melted region toward the peripheral part. By moving relative to the non-single crystal silicon film, the single crystallization after heating and melting,
The crystal orientations can be made uniform, and the non-single-crystal silicon film can be single-crystallized on the insulating substrate.

[実施例] 第1図〜第3図に基づいて、本発明の一実施態様例につ
いて述べる。
[Embodiment] An embodiment of the present invention will be described with reference to FIGS. 1 to 3.

第1図は、本発明の一実施例における非単結晶シリコン
膜の結晶化方法の説明図であり、1はシリコン単結晶基
板、2は種部、3は絶縁膜、4は非単結晶シリコン膜、
5はヒーター、5aは主ヒーター、5bは副ヒーター、6は
LBまたはEB、7は溶融部であり、7aはヒーターによる溶
融領域、7bはLBまたはEBによる溶融領域、7cはヒーター
とLBまたはEBによる共溶融領域を示す。
FIG. 1 is an explanatory view of a crystallization method of a non-single crystal silicon film in one embodiment of the present invention, in which 1 is a silicon single crystal substrate, 2 is a seed portion, 3 is an insulating film, and 4 is non-single crystal silicon. film,
5 is a heater, 5a is a main heater, 5b is a sub heater, and 6 is
LB or EB, 7 is a fusion zone, 7a is a fusion zone by a heater, 7b is a fusion zone by LB or EB, and 7c is a co-fusion zone by a heater and LB or EB.

第1図に基づいて、本発明の非単結晶シリコン膜の結晶
化方法について説明する。
The crystallization method of the non-single crystal silicon film of the present invention will be described with reference to FIG.

先ず、シリコン単結晶基板1上に、単結晶化の際の
種となる種部2上をエッチング除去した絶縁膜3を形成
する。
First, an insulating film 3 is formed on a silicon single crystal substrate 1 by etching away a seed portion 2 which is a seed for single crystallization.

絶縁膜3上及びシリコン単結晶基板1の種部2上に
非単結晶シリコン膜4を形成する。
The non-single crystal silicon film 4 is formed on the insulating film 3 and the seed portion 2 of the silicon single crystal substrate 1.

次に、非単結晶シリコン膜4を挟み込むように設け
られた主ヒーター5a並びに副ヒーター5bから成るヒータ
ー5をONして、種部2上の非単結晶シリコン膜4を単結
晶化を進めたい最上層まで加熱溶融し、溶融領域7aを形
成する。
Next, the heater 5 including the main heater 5a and the sub-heater 5b provided so as to sandwich the non-single-crystal silicon film 4 is turned on, and the non-single-crystal silicon film 4 on the seed portion 2 is desired to be single-crystallized. The uppermost layer is heated and melted to form a melted region 7a.

なお、主ヒーター5aは非単結晶シリコンの融点以上の温
度を保ちながら加熱溶融し、一方副ヒーター5bは融点以
下の低い温度に保つことにより、シリコン単結晶基板1
からの熱の放散を抑え非単結晶シリコン膜4の均一な溶
融状態を実現する。
The main heater 5a is heated and melted while maintaining a temperature equal to or higher than the melting point of non-single-crystal silicon, while the sub-heater 5b is maintained at a low temperature equal to or lower than the melting point so that the silicon single crystal substrate 1
The non-single-crystal silicon film 4 is realized in a uniform molten state by suppressing the heat dissipation from the.

固定されたヒーター5によって加熱溶融されている
溶融領域7a直近のLBあるいはEB6により、ヒーター5に
よる溶融領域7a直近の最上層の非単結晶シリコン膜4の
加熱溶融し、その領域の周辺部に向かって、LBあるいは
EBを上記非単結晶シリコン膜4に対して相対的に移動す
ることにより溶融領域7bを形成する。
The LB or EB6 in the vicinity of the melting region 7a, which is heated and melted by the fixed heater 5, heats and melts the uppermost non-single-crystal silicon film 4 in the vicinity of the melting region 7a by the heater 5 and moves toward the peripheral portion of the region. LB or
The EB is moved relative to the non-single crystal silicon film 4 to form the molten region 7b.

ヒーター5による溶融領域7aとLBあるいはEBによる溶融
領域7bが接合し、共溶融領域7cが形成されるまでヒータ
ー5による溶融を行う。
The melting by the heater 5 is performed until the melting area 7a by the heater 5 and the melting area 7b by the LB or EB are joined and the co-melting area 7c is formed.

ヒーター5による加熱溶融が終了することにより、ヒー
ター5による溶融領域7aは、種部2の結晶性を受け継ぎ
ながら単結晶化する。
When the heating and melting by the heater 5 is completed, the melting region 7a by the heater 5 becomes a single crystal while inheriting the crystallinity of the seed portion 2.

第2図又は第3図に図示する如く、LBあるいはEBを走査
して、LBあるいはEBによる溶融領域の中心付近から周辺
部に向って最上層の非単結晶シリコン膜4を単結晶化す
る。
As shown in FIG. 2 or 3, LB or EB is scanned to single crystallize the uppermost non-single-crystal silicon film 4 from the vicinity of the center of the melting region by LB or EB toward the peripheral portion.

以上〜の工程からなる単結晶シリコン膜の形成方法
である。
The method for forming a single crystal silicon film comprises the above steps.

第2図は、本実施例において用いたLB加熱溶融の際のLB
の形状およびその光エネルギー強度並びに温度分布を示
す説明図であり、縦軸は温度または光エネルギー強度
を、横軸は距離を示し、8はLB、9は温度または光エネ
ルギー強度を示す。
FIG. 2 shows the LB used in the heating and melting of the LB used in this example.
FIG. 4 is an explanatory view showing the shape of the above and its light energy intensity and temperature distribution, the vertical axis indicates temperature or light energy intensity, the horizontal axis indicates distance, 8 indicates LB, and 9 indicates temperature or light energy intensity.

第2図の如く、双峰型エネルギー密度分布のLBの形状を
得るためには、2つのLBを使用する方法、あるいは1つ
のLBをレンズ系もしくは水晶複屈折板を使用して2つに
分割する。
As shown in Fig. 2, in order to obtain the shape of the LB of the bimodal energy density distribution, the method of using two LBs, or dividing one LB into two by using a lens system or a crystal birefringent plate. To do.

次に、本実施例において用いたEB加熱溶融の際のEBの形
状およびそれを達成する方法を第3図に基いて説明す
る。
Next, the shape of EB used in the EB heating and melting used in this example and the method for achieving it will be described with reference to FIG.

第3図はEBを線状化する方法の説明図であり、10はEB、
11は偏向コイルを示す。
FIG. 3 is an explanatory view of a method for linearizing EB, 10 is EB,
Reference numeral 11 represents a deflection coil.

第3図において、y方向に数kHz以上さらに好ましくは1
MHz以上の高周波で例えば5MHzの高周波をのせて、偏向
コイル11により高速偏向させることによりEB10を線状化
する。
In FIG. 3, several kHz or more in the y direction, more preferably 1
The EB 10 is linearized by applying a high frequency of, for example, 5 MHz at a high frequency of MHz or more and performing high-speed deflection by the deflection coil 11.

この線状化EB10を第3図に示す如くx方向に走査するこ
とにより帯状に溶融部が形成される。
By scanning the linearized EB10 in the x direction as shown in FIG. 3, a fusion zone is formed in a band shape.

またこの際の結晶化領域の温度分布は第2図に示すよう
な分布となる。
Further, the temperature distribution in the crystallization region at this time has a distribution as shown in FIG.

第2図に示す温度分布を実現することにより、中心部は
温度が低く、周辺部では高い双峰型の温度分布となるの
で、溶融領域の中心付近から周辺部へ向かって結晶が成
長するので、走査方向のx方向に単結晶化が進み大面積
の単結晶化が可能となる。
By realizing the temperature distribution shown in FIG. 2, the temperature is low in the central part and high in the peripheral part, so that the temperature distribution is bimodal, so that the crystal grows from the vicinity of the center of the melting region toward the peripheral part. The single crystallization progresses in the x direction of the scanning direction, and a large area single crystallization is possible.

固定されたヒーター5による加熱では、LBあるいはEBを
非単結晶シリコン膜4に対して相対的に移動することに
より、種部2上の最上層の非単結晶シリコン膜4から最
下層の非単結晶シリコン膜4までの溶融が可能となるの
で、単結晶化では常に、種結晶2の結晶性を受け継ぎな
がら非単結晶シリコン膜4を単結晶化することができる
ので、各単結晶化されたシリコン層は、特性の均一な層
となる。
In heating by the fixed heater 5, LB or EB is moved relative to the non-single-crystal silicon film 4, so that the non-single-crystal silicon film 4 from the uppermost layer on the seed portion 2 to the non-single-crystal silicon film on the lowermost layer. Since it is possible to melt up to the crystalline silicon film 4, the non-single-crystal silicon film 4 can always be single-crystallized while inheriting the crystallinity of the seed crystal 2 in single-crystallization. The silicon layer becomes a layer having uniform characteristics.

一方、LB又はEBによる加熱溶融では、熱の吸収はほとん
ど表面の非単結晶シリコン膜4で生ずるので、表面の非
単結晶シリコン膜4のみ溶融し下層への熱による影響を
与えることはない。
On the other hand, in the heating and melting by LB or EB, most of the heat absorption occurs in the non-single crystal silicon film 4 on the surface, so that only the non-single crystal silicon film 4 on the surface is melted and the lower layer is not affected by the heat.

従って、下層にデバイスが形成している場合にも、熱に
よるデバイスの破壊あるいは不純物の再拡散によるデバ
イスの特性のばらつきは押さえられ、各層に均一なデバ
イスの形成を可能にする。
Therefore, even when a device is formed in the lower layer, variations in device characteristics due to device destruction due to heat or re-diffusion of impurities are suppressed, and uniform devices can be formed in each layer.

第4図は、別の本発明の実施態様例における絶縁基板上
に形成する非単結晶シリコン膜の単結晶化を示す説明図
である。
FIG. 4 is an explanatory view showing single crystallization of a non-single-crystal silicon film formed on an insulating substrate in another embodiment of the present invention.

図において、12は絶縁基板、13はレリーフである。In the figure, 12 is an insulating substrate and 13 is a relief.

次に第4図の場合の単結晶シリコン膜の形成方法につい
て説明する。
Next, a method of forming the single crystal silicon film in the case of FIG. 4 will be described.

絶縁基板12を加工して絶縁基板12上にレリーフ13を
形成するか又は絶縁基板12上に絶縁膜3を形成し、絶縁
膜3をエッチングしてレリーフ13を形成する。
The insulating substrate 12 is processed to form the relief 13 on the insulating substrate 12, or the insulating film 3 is formed on the insulating substrate 12, and the insulating film 3 is etched to form the relief 13.

絶縁基板12上に非単結晶シリコン膜を形成する。 A non-single crystal silicon film is formed on the insulating substrate 12.

非単結晶シリコン膜4を挟み込むように設けられた
主、副ヒーター5a、5bから成るヒーターにより、主ヒー
ター5aは非単結晶シリコンの融点以上、一方副ヒーター
5bは融点以下の温度を保ちながら、種部2上の非単結晶
シリコン膜4を最上層まで加熱溶融し、ヒーターによる
溶融領域7aを形成する。
The main heater 5a has a melting point of non-single-crystal silicon or more, and the sub-heater is a sub-heater, which is formed by sandwiching the non-single-crystal silicon film 4 between the main and sub-heaters 5a and 5b.
5b heats and melts the non-single-crystal silicon film 4 on the seed portion 2 to the uppermost layer while maintaining a temperature equal to or lower than the melting point to form a melting region 7a by a heater.

固定されたヒーター5によって加熱溶融されている
溶融領域7a直近の最上層の非単結晶シリコン膜4の加熱
溶融により、その領域の周辺部へ向かってLBあるいはEB
を非単結晶シリコン膜4に対して相対的に移動すること
により溶融領域を形成する。
By heating and melting the uppermost non-single-crystal silicon film 4 in the immediate vicinity of the melting region 7a which is being heated and melted by the fixed heater 5, LB or EB is directed toward the peripheral portion of the region.
Are moved relative to the non-single crystal silicon film 4 to form a molten region.

ヒーター5による溶融領域7aとLBあるいはEBによる溶融
領域7bが接合し、共溶融領域7cが形成されるまでヒータ
ー5による加熱溶融を行う。
Heating and melting are performed by the heater 5 until the melting region 7a by the heater 5 and the melting region 7b by LB or EB are joined and the co-melting region 7c is formed.

ヒーター5による加熱溶融が終了することによりヒータ
ー5による溶融領域7aは、レリーフ13の形状により決ま
る面方位を有しながら単結晶化し、 LBあるいはEBを走査して、LBあるいはEBによる溶融領域
の中心付近から周辺部に向って最上層の非単結晶シリコ
ン膜4を単結晶化する。
When the heating and melting by the heater 5 is completed, the melting region 7a by the heater 5 becomes a single crystal while having a plane orientation determined by the shape of the relief 13 and is scanned by LB or EB to form the center of the melting region by LB or EB. The uppermost non-single-crystal silicon film 4 is single-crystallized from the vicinity to the peripheral portion.

以上〜の工程からなる単結晶シリコン膜の形成方法
である。
The method for forming a single crystal silicon film comprises the above steps.

以上の単結晶シリコン膜の形成方法に述べた如く、絶縁
基板12上にレリーフ13を形成し、絶縁基板12上の非単結
晶シリコン膜4を加熱溶融し、結晶化すると、結晶方位
を規制することができ、均一な層を形成できる特徴があ
る。この場合、結晶方位はレリーフ13の形状により異な
り、第4図に示すような形状のレリーフでは(100)面
方位を有する単結晶化が可能となる。
When the relief 13 is formed on the insulating substrate 12 and the non-single crystal silicon film 4 on the insulating substrate 12 is heated and melted and crystallized, the crystal orientation is regulated as described in the method for forming the single crystal silicon film above. It is possible to form a uniform layer. In this case, the crystal orientation depends on the shape of the relief 13, and a relief having a shape as shown in FIG. 4 enables single crystallization having a (100) plane orientation.

従ってレリーフ形状を決定して、前述のシリコン単結晶
基板と同様に非単結晶シリコン膜の単結晶化を実行する
ことで、各単結晶化シリコン膜間で、品質のバラツキの
ない均一な単結晶化シリコン膜の形成が可能となる。
Therefore, by determining the relief shape and performing the single crystallization of the non-single-crystal silicon film in the same manner as the above-mentioned silicon single crystal substrate, a uniform single crystal with no quality variation among the single crystallized silicon films is obtained. A silicon oxide film can be formed.

[発明の効果] 以上述べたように、本発明の単結晶シリコン膜の形成方
法によれば、結晶性を決定する種部上の非単結晶シリコ
ン膜の加熱溶融には、固定されたヒーターを使用し、絶
縁膜上の非単結晶シリコン膜の加熱溶融には、双峰型の
温度分布を形成するように構成したLB又はEBを使用して
非単結晶シリコン膜の単結晶化を行うことにより、3次
元集積回路の如く層状に絶縁膜と非単結晶シリコン膜を
形成する場合にも、種部上では、絶縁層上の非単結晶シ
リコン膜の結晶化毎に、最上層の非単結晶シリコン膜か
ら最下層の非単結晶シリコン膜まで加熱溶融し、その後
LB又はEBを非単結晶シリコン膜に対して相対的に移動す
ることにより絶縁膜上に非単結晶シリコン膜を加熱溶融
して単結晶化を行うので、常に種部の結晶性を受け継ぎ
ながら単結晶化できることになり、各単結晶化シリコン
膜間の結晶性は均一となる。
[Effect of the Invention] As described above, according to the method for forming a single crystal silicon film of the present invention, a fixed heater is used for heating and melting the non-single crystal silicon film on the seed portion that determines the crystallinity. For heating and melting the non-single-crystal silicon film on the insulating film, use LB or EB that is configured to form a bimodal temperature distribution to single-crystallize the non-single-crystal silicon film. Thus, even when the insulating film and the non-single-crystal silicon film are formed in layers as in a three-dimensional integrated circuit, the non-single-crystal silicon film on the seed layer is crystallized every time the non-single-crystal silicon film on the insulating layer is crystallized. From the crystalline silicon film to the non-single crystalline silicon film in the bottom layer is heated and melted, then
By moving LB or EB relative to the non-single-crystal silicon film, the non-single-crystal silicon film is heated and melted on the insulating film to be single-crystallized. It becomes possible to crystallize, and the crystallinity between the single crystallized silicon films becomes uniform.

また、絶縁層上の非単結晶シリコン膜の単結晶化では、
絶縁基板にレリーフ加工することにより、加熱溶融後の
結晶化で、結晶面方位を揃えることが可能となるので、
本発明の単結晶シリコン膜の形成方法により、絶縁基板
上での非単結晶シリコン膜の単結晶化を可能にする等の
効果を奏するものである。
Further, in the single crystallization of the non-single-crystal silicon film on the insulating layer,
By performing relief processing on the insulating substrate, it is possible to align the crystal plane orientation by crystallization after heating and melting,
The method for forming a single crystal silicon film of the present invention has effects such as enabling single crystallization of a non-single crystal silicon film on an insulating substrate.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の単結晶シリコン膜の形成方法の一実施
例を示す説明図、第2図はLBの形状およびその光エネル
ギー強度並びに温度分布を示す説明図、第3図はEBを線
状化する方法の説明図、第4図は、別の本発明の実施態
様例における単結晶シリコン膜の形成方法を示す説明
図。 図において、1……シリコン単結晶基板、2……種部、
3……絶縁膜、4……非単結晶シリコン膜、5……ヒー
ター、5a……主ヒーター、5b……副ヒーター、6……LB
又はEB、7……溶融部、7a……ヒーターによる溶融領
域、7b……LB又はEBによる溶融領域、7c……共溶融領
域、8……LB、9……温度又は光エネルギー強度、10…
…EB、11……偏向コイル、12……絶縁基板、13……レリ
ーフ。
FIG. 1 is an explanatory view showing one embodiment of the method for forming a single crystal silicon film of the present invention, FIG. 2 is an explanatory view showing the shape of LB and its light energy intensity and temperature distribution, and FIG. FIG. 4 is an explanatory view of a method of forming a crystal, and FIG. 4 is an explanatory view showing a method of forming a single crystal silicon film in another embodiment of the present invention. In the figure, 1 ... Silicon single crystal substrate, 2 ... Seed part,
3 ... Insulating film, 4 ... Non-single crystal silicon film, 5 ... Heater, 5a ... Main heater, 5b ... Sub heater, 6 ... LB
Or EB, 7 ... fusion part, 7a ... heater fusion region, 7b ... LB or EB fusion region, 7c ... co-fusion region, 8 ... LB, 9 ... temperature or light energy intensity, 10 ...
… EB, 11 …… Deflection coil, 12 …… Insulation substrate, 13 …… Relief.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】複数のシリコンを含む膜を絶縁膜を介して
積層したシリコン半導体基板の最上層に設けられた非単
結晶シリコン膜を加熱溶融した後、単結晶化させる単結
晶シリコン膜の形成方法において、 シリコン単結晶基板上に、単結晶化の際の種となる種部
上をエッチング除去した絶縁膜を形成する工程、 前記絶縁膜上及び前記シリコン単結晶基板の前記種部上
に非単結晶シリコン膜を形成する工程、 前記シリコン単結晶基板の前記種部の上部に固定的に存
在し、かつ前記非単結晶シリコン膜の融点以上の温度に
保たれた主ヒーターと、前記シリコン単結晶基板の前記
種部の下部に固定的に存在する副ヒーターとから構成さ
れ、前記種部を上下から挟み込むように存在するストリ
ップヒーターにより、前記種部及び前記種部上に位置す
る前記非単結晶シリコン膜の最上層までの第1領域を加
熱溶融する工程、 しかる後に前記ストリップヒーターの温度を下げ、前記
第1領域から、前記第1領域の周辺部へ向かって、レー
ザービームあるいは電子ビームを前記非単結晶シリコン
膜に対して相対的に移動することにより、前記非単結晶
シリコン膜を、前記種部の結晶性を受け継ぎながら単結
晶化する工程、 を有することを特徴とする単結晶シリコン膜の形成方
法。
1. A single-crystal silicon film is formed by heating and melting a non-single-crystal silicon film provided on the uppermost layer of a silicon semiconductor substrate in which a plurality of films containing silicon are laminated with an insulating film interposed therebetween, and then monocrystallized. In the method, a step of forming, on a silicon single crystal substrate, an insulating film obtained by etching away a seed portion that becomes a seed during single crystallization, and forming a non-exposed film on the insulating film and the seed portion of the silicon single crystal substrate. A step of forming a single crystal silicon film, a main heater fixedly present above the seed portion of the silicon single crystal substrate, and maintained at a temperature equal to or higher than the melting point of the non-single crystal silicon film; A seed heater fixed to the lower portion of the seed portion of the crystal substrate and positioned on the seed portion and the seed portion by a strip heater existing so as to sandwich the seed portion from above and below. The step of heating and melting the first region up to the uppermost layer of the non-single-crystal silicon film, after which the temperature of the strip heater is lowered, and a laser beam or a laser beam is emitted from the first region toward the periphery of the first region. Moving the electron beam relative to the non-single crystal silicon film to single crystallize the non-single crystal silicon film while inheriting the crystallinity of the seed portion. Method for forming single crystal silicon film.
【請求項2】前記レーザービームは、2つのビーム又は
1つのビームを2つに分割し、双峰型エネルギー密度分
布を形成して、前記非単結晶シリコン膜を加熱溶融し、
単結晶化させることを特徴とする特許請求の範囲第1項
記載の単結晶シリコン膜の形成方法。
2. The laser beam divides two beams or one beam into two, forms a bimodal energy density distribution, and heat-melts the non-single-crystal silicon film,
The method for forming a single crystal silicon film according to claim 1, wherein the single crystal silicon film is formed into a single crystal.
【請求項3】前記電子ビームは、数kHz以上の周波数に
よる高速偏向によりビームを線状にして前記単非結晶シ
リコン膜を加熱溶融し単結晶化することを特徴とする特
許請求の範囲第1項記載の単結晶シリコン膜の形成方
法。
3. The electron beam is formed into a linear beam by high-speed deflection at a frequency of several kHz or more, and the single amorphous silicon film is heated and melted to form a single crystal. 7. A method for forming a single crystal silicon film according to the item.
【請求項4】複数のシリコンを含む膜を絶縁膜を介して
積層したシリコン半導体基板の最上層に設けられた非単
結晶シリコン層を加熱溶融した後、単結晶化させる単結
晶シリコン膜の形成方法において、 絶縁基板を加工して該絶縁基板上にレリーフを形成する
か又は絶縁基板上に絶縁膜を形成し、該絶縁膜をエッチ
ングしてレリーフを形成する工程、 前記レリーフが設けられた前記絶縁基板上に非単結晶シ
リコン膜を形成する工程、 前記非単結晶膜の種部となる部分の上部に固定的に存在
し、かつ前記非単結晶シリコン膜の融点以上の温度に保
たれた主ヒーターと、前記種部下の前記絶縁基板下部に
固定的に存在する副ヒーターとから構成され、前記種部
を上下から挟み込むように存在するストリップヒーター
により、前記種部に位置する前記非単結晶シリコン膜の
最上層までを加熱の第1領域を加熱溶融する工程、 しかる後に前記ストリップヒーターの温度を下げ、前記
第1領域から、前記第1領域の周辺部へ向かって、レー
ザービームあるいは電子ビームを前記非単結晶シリコン
膜に対して相対的に移動することにより、前記単結晶シ
リコン膜を、前記レリーフの形状により決まる面方位を
有しながら単結晶化する工程、 を有することを特徴とする単結晶シリコン膜の形成方
法。
4. A single crystal silicon film is formed by heating and melting a non-single crystal silicon layer provided on the uppermost layer of a silicon semiconductor substrate in which a plurality of films containing silicon are laminated with an insulating film interposed therebetween, and then single crystallized. In the method, a step of processing an insulating substrate to form a relief on the insulating substrate or forming an insulating film on the insulating substrate, and etching the insulating film to form a relief, wherein the relief is provided. A step of forming a non-single-crystal silicon film on an insulating substrate, the non-single-crystal silicon film is fixedly present above the seed portion of the non-single-crystal film, and kept at a temperature equal to or higher than the melting point of the non-single-crystal silicon film. The main heater and a sub-heater that is fixedly present under the insulating substrate below the seed portion are located in the seed portion by a strip heater that is present so as to sandwich the seed portion from above and below. The step of heating and melting the first region of heating up to the uppermost layer of the non-single-crystal silicon film, after which the temperature of the strip heater is lowered, and the laser is emitted from the first region toward the peripheral portion of the first region. Beam or electron beam is moved relative to the non-single-crystal silicon film to single-crystallize the single-crystal silicon film while having a plane orientation determined by the shape of the relief. And a method for forming a single crystal silicon film.
【請求項5】前記レーザービームは、2つのビーム又は
1つのビームを2つに分割し、双峰型エネルギー密度分
布を形成して、前記非単結晶シリコン膜を加熱溶融し、
単結晶化させることを特徴とする特許請求の範囲第2項
記載の単結晶シリコン膜の形成方法。
5. The laser beam splits two beams or one beam into two, forms a bimodal energy density distribution, and heat-melts the non-single-crystal silicon film,
The method for forming a single crystal silicon film according to claim 2, wherein the single crystal is formed into a single crystal.
【請求項6】前記電子ビームは、数kHz以上の周波数に
よる高速偏向によりビームを線状にして前記非単結晶シ
リコン膜を加熱溶融し単結晶化することを特徴とする特
許請求の範囲第2項記載の単結晶シリコン膜の形成方
法。
6. The electron beam is formed into a linear beam by high-speed deflection at a frequency of several kHz or more, and the non-single-crystal silicon film is heated and melted to be single-crystallized. 7. A method for forming a single crystal silicon film according to the item.
JP59258164A 1984-12-06 1984-12-06 Method for forming single crystal silicon film Expired - Lifetime JPH0738377B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59258164A JPH0738377B2 (en) 1984-12-06 1984-12-06 Method for forming single crystal silicon film
JP4161243A JPH0777196B2 (en) 1984-12-06 1992-06-19 Method for forming single crystal silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59258164A JPH0738377B2 (en) 1984-12-06 1984-12-06 Method for forming single crystal silicon film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4161243A Division JPH0777196B2 (en) 1984-12-06 1992-06-19 Method for forming single crystal silicon film

Publications (2)

Publication Number Publication Date
JPS61136219A JPS61136219A (en) 1986-06-24
JPH0738377B2 true JPH0738377B2 (en) 1995-04-26

Family

ID=17316417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59258164A Expired - Lifetime JPH0738377B2 (en) 1984-12-06 1984-12-06 Method for forming single crystal silicon film

Country Status (1)

Country Link
JP (1) JPH0738377B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336515A (en) * 1986-07-30 1988-02-17 Sony Corp Manufacture of thin single-crystal semiconductor film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147024A (en) * 1982-02-24 1983-09-01 Fujitsu Ltd Lateral epitaxial growth

Also Published As

Publication number Publication date
JPS61136219A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
US5371381A (en) Process for producing single crystal semiconductor layer and semiconductor device produced by said process
US4330363A (en) Thermal gradient control for enhanced laser induced crystallization of predefined semiconductor areas
JPH084067B2 (en) Method for manufacturing semiconductor device
JPH0454370B2 (en)
US4599133A (en) Method of producing single-crystal silicon film
JPH0793258B2 (en) Recrystallization method for conductor film
JPS62160712A (en) Manufacture of semiconductor device
JPH0738377B2 (en) Method for forming single crystal silicon film
JPH027415A (en) Formation of soi thin film
JPH0777196B2 (en) Method for forming single crystal silicon film
JPS61135110A (en) Manufacture of semiconductor device
JP2929660B2 (en) Method for manufacturing semiconductor device
JP2993107B2 (en) Semiconductor thin film manufacturing method
JPH0442358B2 (en)
JPS5856457A (en) Manufacture of semiconductor device
JPS62219510A (en) Formation of single crystal island region
JPH03286520A (en) Manufacture of thin crystalline semiconductor film
JPS6083322A (en) Crystallizing method of semiconductor thin-film
JPS60191090A (en) Manufacture of semiconductor device
JPH0283915A (en) Manufacture of semiconductor single crystal thin film
JPH0449250B2 (en)
JPH0287519A (en) Manufacture of single crystal semiconductor thin film
JPS6236381B2 (en)
JPS5919311A (en) Manufacture of semiconductor device
JPH0670964B2 (en) Method for manufacturing semiconductor device