JPS58147024A - Lateral epitaxial growth - Google Patents

Lateral epitaxial growth

Info

Publication number
JPS58147024A
JPS58147024A JP57028419A JP2841982A JPS58147024A JP S58147024 A JPS58147024 A JP S58147024A JP 57028419 A JP57028419 A JP 57028419A JP 2841982 A JP2841982 A JP 2841982A JP S58147024 A JPS58147024 A JP S58147024A
Authority
JP
Japan
Prior art keywords
heater
heated
substrate
region
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57028419A
Other languages
Japanese (ja)
Other versions
JPH0419698B2 (en
Inventor
Junji Sakurai
桜井 潤治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57028419A priority Critical patent/JPS58147024A/en
Publication of JPS58147024A publication Critical patent/JPS58147024A/en
Publication of JPH0419698B2 publication Critical patent/JPH0419698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To realize lateral epitaxial growth without largely changing the condition in substrate by effectively and equally heating a strip form region, which is parallel and adjacent to the strip form region in the plane being effectively and equally heated by a first heater, with a second heater. CONSTITUTION:A stick type heater 12 for preheating is provided in parallel to a stick type main heater 11 for additional heating and a polycrystalline Si layer 2 is heated preceding the movement of fusible strip form region. Since a region to be heated by the heater 12 has a reasonable width, the region preheated up to a considerable high temperature is heated additionally by the successive main heater 11. Accordingly, the single crystallization can be realized by comparatively quick scanning. Meanwhile, temperature rise of substrate is determined by the heating time of a pair of heaters, without resulting in breakdown of elements formed in the substrate and large scale change of characteristics.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明はラテラルエピタキシャル成長法に関するもので
、特に棒状ヒータを用いて行う、非単結晶シリコン層の
予備加熱に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a lateral epitaxial growth method, and more particularly to preheating of a non-single crystal silicon layer using a rod-shaped heater.

(b)技術の背景 近年、多層集積回路或いは三次元集積回路を実現する為
の技術として、ラテラルエピタキシャル成長が注目され
ている。
(b) Background of the Technology In recent years, lateral epitaxial growth has attracted attention as a technology for realizing multilayer integrated circuits or three-dimensional integrated circuits.

これは、例えば二酸化珪素層上に非晶質シリコン層を被
着し、その一箇所から再結晶化を開始して全域に及ぼす
もので、単結晶化が水平方向に進行することからラテラ
ルエピタキシャル成長と呼ばれている。
In this method, for example, an amorphous silicon layer is deposited on a silicon dioxide layer, and recrystallization starts from one point and affects the entire area.Since single crystallization progresses in the horizontal direction, it is called lateral epitaxial growth. being called.

ラテラルエピタキシャル成長は又、選択的に絶縁物を被
着した単結晶シリコン基板上で実施されることもある。
Lateral epitaxial growth may also be performed on single crystal silicon substrates with selectively deposited insulators.

此の場合、新に形成される単結晶層は、単結晶シリコン
上では基板結晶の結晶方位を受は継ぎ、絶縁物上ではそ
れ迄に成長した単結晶層の結晶方位を受は継ぐ事になる
In this case, the newly formed single crystal layer inherits the crystal orientation of the substrate crystal on single crystal silicon, and inherits the crystal orientation of the previously grown single crystal layer on the insulator. Become.

非単結晶シリコン層を単結晶化させる為の加熱手段とし
ては、レーザ光、電子ビーム等を走査的に照射するのが
一般的であるが、カーボンヒータ、アークランプ、ハロ
ゲンランプ等の棒状の加熱装置が用いられることもあ・
る、;一度に加熱し得る範囲は、レーザ光、電子ビーム
゛が点状の微細領域であるのに対し、棒状ヒータは帯状
であることが特徴である。前記点状加熱装置も、高速走
査加熱によって、実効的に帯状領域を加熱することがで
きる。更に、帯状加熱領域を掃引することによって、面
領域を加熱することもできる。
As a heating means for converting a non-single crystal silicon layer into a single crystal, scanning irradiation with laser light, electron beam, etc. is generally used, but bar-shaped heating means such as carbon heaters, arc lamps, halogen lamps, etc. Equipment may also be used.
The range that can be heated at one time is a point-like minute area with a laser beam or an electron beam, whereas a rod-shaped heater is characterized in that it is a band-like area. The spot heating device can also effectively heat a strip-shaped region by high-speed scanning heating. Furthermore, it is also possible to heat a surface area by sweeping the band-shaped heating area.

ラテラルエピタキシャル成長に棒状ヒータを使用すると
きは、多結晶シリコン層に生ゼしめた帯状の熔融領域を
、ヒータ或いは基板を移動することによって移動し、該
溶融領域が通過した多結晶シリコン層を単結晶化する。
When using a rod-shaped heater for lateral epitaxial growth, a band-shaped melted region formed in a polycrystalline silicon layer is moved by moving the heater or the substrate, and the polycrystalline silicon layer through which the melted region passes is transformed into a single crystal. become

その場合、棒状ヒータのみによる加熱では掃引速度を高
めることが困難なので、処理時間を短縮するには多結晶
シリコン層を含む基板の予備加熱が必要である。予備加
熱では溶融点近傍の温度まで上げることが行われるので
、シリコンの場合、基板は1300’C程度に加熱され
ることになる。
In that case, it is difficult to increase the sweep speed by heating only with a rod-shaped heater, so it is necessary to preheat the substrate including the polycrystalline silicon layer in order to shorten the processing time. In the preheating, the temperature is raised to near the melting point, so in the case of silicon, the substrate is heated to about 1300'C.

(C)従来技術と問題点 この予備加熱を、第1図に示すように、面積的に加熱す
るヒータによって実施すると、基板のほぼ全面を棒状ヒ
ータで掃引する時間中、上記の如き高温に保持される為
、基板内に既に形成されている素子や拡散領域等は破壊
的な影響を受けることになる。従って多層集積回路の形
成には、かかる方法は通していない。第1図で、■は基
板、2は例えば多結晶シリコン層、3は面加熱ヒータ、
4は棒状ヒータである。
(C) Prior art and problems If this preheating is performed using a heater that heats the area in an area as shown in Fig. 1, the high temperature as described above is maintained during the time when almost the entire surface of the substrate is swept with a rod-shaped heater. Therefore, elements, diffusion regions, etc. already formed in the substrate will be affected destructively. Therefore, such methods have not been used to form multilayer integrated circuits. In Fig. 1, ■ is a substrate, 2 is, for example, a polycrystalline silicon layer, 3 is a surface heating heater,
4 is a rod-shaped heater.

(d)発明の目的 本発明の目的は、基板が高温に保持される時間を短縮し
、基板内に既に形成されている素子の特性が大幅に変化
することのないラテラルエピタキシャル成長法を提供す
ることである。
(d) Purpose of the Invention The purpose of the present invention is to provide a lateral epitaxial growth method that reduces the time during which a substrate is held at high temperature and does not significantly change the characteristics of devices already formed within the substrate. It is.

(e)発明の構成 本発明のラテラルエピタキシャル成長法に於ては、基板
上に設けられた非単結晶半導体層を、平面内の帯状領域
を実効的に均等に加妬し得るヒータを用いて掃引的に加
熱し、単結晶化する工程に於て、平面内の帯状領域を実
効的に均等に加熱し得る第一のヒータが加熱する領域に
平行な隣接帯状領域を、該隣接領域を実効的に均等に加
熱し得る第二のヒータによって、加熱することが行われ
る。
(e) Structure of the Invention In the lateral epitaxial growth method of the present invention, a non-single-crystal semiconductor layer provided on a substrate is swept using a heater capable of effectively uniformly controlling a band-shaped region in a plane. In the process of heating the area parallel to the area to be heated, the first heater that can effectively and uniformly heat the area in the plane effectively and uniformly heats the area parallel to the area to be heated. Heating is performed by a second heater that can heat evenly.

(f)−発明の実施例 本発明の第一の実施例を第2図に示す。同図に於ては、
発明の要点を明確にする為、基板の保持機構、ヒータ或
いは基板の移動機構は省略されている。
(f) - Embodiment of the invention A first embodiment of the invention is shown in FIG. In the same figure,
In order to clarify the main points of the invention, the substrate holding mechanism, heater, or substrate moving mechanism is omitted.

主加熱用棒状ヒータ11によって基板1上に形成された
多結晶シリコン層2を加熱し、生じた帯状溶融領域を、
ヒータ又は基板を移動することによって掃引的に移動し
、多結晶シリコン層を単結晶化する点は従来技術と同様
である。本実施例に於ては、主加熱用棒状ヒータ11に
平行に予備加熱用棒状ヒータ12を設け、帯状溶融領域
の移動に先行して多結晶シリコン層を加熱することが行
われる。
The polycrystalline silicon layer 2 formed on the substrate 1 is heated by the main heating rod heater 11, and the resulting belt-shaped melted region is
This is similar to the prior art in that the polycrystalline silicon layer is made into a single crystal by moving the heater or the substrate in a sweeping manner. In this embodiment, a preliminary heating rod heater 12 is provided in parallel to the main heating rod heater 11 to heat the polycrystalline silicon layer prior to movement of the belt-shaped melting region.

予備加熱用ヒータ12による加熱領域には、若干の幅を
持たせずあるので、その直後を追随する主加熱用ヒータ
11は、既に十分高温に達した領域を加熱するごとにな
り、比較的速やかな掃引によって多結晶シリコン層を単
結晶化することができる。
Since the heating area by the preheating heater 12 does not have a slight width, the main heating heater 11 that follows immediately heats an area that has already reached a sufficiently high temperature, so it can be heated relatively quickly. The polycrystalline silicon layer can be made into a single crystal by sweeping the polycrystalline silicon layer.

一方基板の温度上昇は二本のヒータによって加熱される
時間だけであるから、基板内に既に形成されている素子
が破壊されたり、特性が大幅に変化することはない。
On the other hand, since the temperature of the substrate increases only during the time it takes to heat it with the two heaters, the elements already formed within the substrate will not be destroyed or their characteristics will change significantly.

予備加熱用ヒータ12と主加熱用ヒータ11は並行して
移動するのであるから、両ヒータを固定して、基板を同
じ速度で移動してもよいことは勿論である。両ヒータの
照射領域の間隔は、照射領域の移動に伴う多結晶シリコ
ン層の温度上昇の状況に応じて定められる量であるが、
既述したように、予備加熱用ヒータに・よって加熱され
た状態の多結晶シリコン層を、更に主加熱用ヒータによ
って加熱し、溶融状態に達せしめ)ことが可能なように
設定される。
Since the preheating heater 12 and the main heating heater 11 move in parallel, it goes without saying that both heaters may be fixed and the substrate may be moved at the same speed. The distance between the irradiation areas of both heaters is an amount determined depending on the temperature rise of the polycrystalline silicon layer due to movement of the irradiation area.
As described above, the polycrystalline silicon layer heated by the preheating heater is further heated by the main heater to reach a molten state.

本実施例に於て使用する棒状ヒータは、抵抗加熱装置で
あるカーボンヒータや、アークランプ、ハロゲンランプ
等であるが、電子ビームやレーザ光のように、実効的に
帯状領域を加熱し得る装置も、同様に使用することがで
きる。
The rod-shaped heater used in this example is a carbon heater that is a resistance heating device, an arc lamp, a halogen lamp, etc., but it is also possible to use a device that can effectively heat a strip-shaped area, such as an electron beam or a laser beam. can also be used in the same way.

予備加熱用ヒータは、第3図に示すように、基板の背面
から加熱するように設けてもよい、此の第二の実施例の
利点は、両ヒータを設置する上で空間的自由度が大きい
点である。
The preheating heater may be provided to heat the substrate from the back side, as shown in Figure 3.The advantage of this second embodiment is that there is less spatial freedom in installing both heaters. This is a big point.

溶融領域を冷却し、再結晶させる場合、その冷却速度に
より、生ずる単結晶の特性が変化したり、多結晶が生じ
たりすることは、当然起り得ることである。従って、第
4図に示す如く、主加熱用ヒータ11と予備加熱用ヒー
タ12の他に調整加熱用ヒータ13を設け、冷却速度を
制御することは有効である。
When a molten region is cooled and recrystallized, it is natural that the properties of the resulting single crystal may change or polycrystals may be formed depending on the cooling rate. Therefore, as shown in FIG. 4, it is effective to provide an adjustment heater 13 in addition to the main heater 11 and the preliminary heater 12 to control the cooling rate.

第3図の場合と同様、此等二種類の補助ヒータは基板の
背面側に設けてもよいから、第5図(a)、  (b)
、  (C)の如き配置も可能である。
As in the case of Figure 3, these two types of auxiliary heaters may be provided on the back side of the board, so Figures 5(a) and (b)
, (C) is also possible.

以上の説明は多結晶シリコン層の単結晶化に関して行わ
れたが、アモルファスシリコン層の単結晶化に於ても、
更に非単結晶半導体層の単結晶化にも、本発明を同様に
適用し得ることは明らかである。
The above explanation was made regarding single crystallization of a polycrystalline silicon layer, but it also applies to single crystallization of an amorphous silicon layer.
Furthermore, it is clear that the present invention can be similarly applied to single crystallization of a non-single crystal semiconductor layer.

(g)発明の詳細 な説明したように、本発明によれば、棒状ヒータを使用
する多結晶半導体層の単結晶化に於て、基板温度を必要
以上に上昇させることがないので、基板内の状態を大幅
に変化させることなく、ラテラルエピタキシャル成長を
実施することができる。
(g) As described in detail, according to the present invention, in the single crystallization of a polycrystalline semiconductor layer using a rod-shaped heater, the temperature of the substrate is not increased more than necessary. Lateral epitaxial growth can be performed without significantly changing the state of the .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術を示す図、第2図乃至第5図は本発明
を示す図であって、図に於て1は基板、2は多結晶シリ
コン層、3は面加熱ヒータ、4は棒状ヒータ、11は主
加熱用ヒータ、12は予備加熱用ヒータ、13は調整加
熱用ヒータである。 第 l (2) 葛2国    茅3゜ 第 5 口 手続補正1(方式) 1、事件の表示 昭和!7年特許願第z3呼19号 2、発明の名称 ラテラ)Vエビ1′  〜 ′良+;
気3、補正をする者 事件との関係     特許出願人 住所 神奈川県用崎市中原区上小田中1015t(52
2)名称富士通株式会1
FIG. 1 is a diagram showing the prior art, and FIGS. 2 to 5 are diagrams showing the present invention, in which 1 is a substrate, 2 is a polycrystalline silicon layer, 3 is a surface heating heater, and 4 is a diagram showing the present invention. A rod-shaped heater, 11 is a main heating heater, 12 is a preliminary heating heater, and 13 is an adjustment heating heater. Part l (2) Kudzu 2 countries Kaya 3゜ Part 5 Oral procedure amendment 1 (method) 1. Display of the case Showa! 7 Year Patent Application No. Z3 Call No. 19 2, Title of Invention Latera) V Shrimp 1' ~ 'Good +;
Q3. Relationship with the case of the person making the amendment Patent applicant address 1015t (52
2) Name Fujitsu Limited 1

Claims (1)

【特許請求の範囲】[Claims] 非単結晶半導体層を、平面内の帯状領域を実効的に均等
に加熱し得るヒータを用いて掃引的に加熱し、単結晶化
する工程に於て、平面内の帯状領域を実効的に均等に加
熱し得る第一のヒータが加熱する領域に平行な隣接帯状
領域を、該領域を実効的に均等に加熱し得る第二のヒー
タによりて、加熱することを特徴とするラテラルエピタ
キシャル成長法。
In the process of heating a non-single-crystal semiconductor layer in a sweeping manner using a heater that can effectively evenly heat a band-shaped region in a plane to form a single crystal, the band-shaped region in a plane is heated effectively evenly. A lateral epitaxial growth method characterized in that an adjacent band-shaped region parallel to a region heated by a first heater that can heat the region is heated by a second heater that can effectively and evenly heat the region.
JP57028419A 1982-02-24 1982-02-24 Lateral epitaxial growth Granted JPS58147024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57028419A JPS58147024A (en) 1982-02-24 1982-02-24 Lateral epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57028419A JPS58147024A (en) 1982-02-24 1982-02-24 Lateral epitaxial growth

Publications (2)

Publication Number Publication Date
JPS58147024A true JPS58147024A (en) 1983-09-01
JPH0419698B2 JPH0419698B2 (en) 1992-03-31

Family

ID=12248131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57028419A Granted JPS58147024A (en) 1982-02-24 1982-02-24 Lateral epitaxial growth

Country Status (1)

Country Link
JP (1) JPS58147024A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076117A (en) * 1983-09-30 1985-04-30 Sony Corp Method for crystallization of semiconductor thin film
JPS61136219A (en) * 1984-12-06 1986-06-24 Seiko Epson Corp Formation of single crystal si film
JPS62299011A (en) * 1986-06-18 1987-12-26 Matsushita Electric Ind Co Ltd Annealing of polycrystalline thin-film substrate
US4749438A (en) * 1986-01-06 1988-06-07 Bleil Carl E Method and apparatus for zone recrystallization
US4775443A (en) * 1986-02-06 1988-10-04 Bleil Carl E Method and apparatus for zone regrowth of crystal ribbons from bulk material
US4873063A (en) * 1986-01-06 1989-10-10 Bleil Carl E Apparatus for zone regrowth of crystal ribbons
JP2006032982A (en) * 2005-09-02 2006-02-02 Semiconductor Energy Lab Co Ltd Heating processing method of thin film
US7214574B2 (en) 1997-03-11 2007-05-08 Semiconductor Energy Laboratory Co., Ltd. Heating treatment device, heating treatment method and fabrication method of semiconductor device
US7300826B2 (en) 1997-02-10 2007-11-27 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor and manufacturing method of semiconductor device
GB2593950A (en) * 2020-04-08 2021-10-13 Corning Inc Solid state conversion of polycrystalline material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142630A (en) * 1980-04-09 1981-11-07 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142630A (en) * 1980-04-09 1981-11-07 Fujitsu Ltd Manufacture of semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076117A (en) * 1983-09-30 1985-04-30 Sony Corp Method for crystallization of semiconductor thin film
JPS61136219A (en) * 1984-12-06 1986-06-24 Seiko Epson Corp Formation of single crystal si film
US4749438A (en) * 1986-01-06 1988-06-07 Bleil Carl E Method and apparatus for zone recrystallization
US4873063A (en) * 1986-01-06 1989-10-10 Bleil Carl E Apparatus for zone regrowth of crystal ribbons
US4775443A (en) * 1986-02-06 1988-10-04 Bleil Carl E Method and apparatus for zone regrowth of crystal ribbons from bulk material
JPS62299011A (en) * 1986-06-18 1987-12-26 Matsushita Electric Ind Co Ltd Annealing of polycrystalline thin-film substrate
US7300826B2 (en) 1997-02-10 2007-11-27 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor and manufacturing method of semiconductor device
US7214574B2 (en) 1997-03-11 2007-05-08 Semiconductor Energy Laboratory Co., Ltd. Heating treatment device, heating treatment method and fabrication method of semiconductor device
US7410850B2 (en) 1997-03-11 2008-08-12 Semiconductor Energy Laboratory Co., Ltd. Heating treatment device, heating treatment method and fabrication method of semiconductor device
JP2006032982A (en) * 2005-09-02 2006-02-02 Semiconductor Energy Lab Co Ltd Heating processing method of thin film
GB2593950A (en) * 2020-04-08 2021-10-13 Corning Inc Solid state conversion of polycrystalline material
US11584656B2 (en) 2020-04-08 2023-02-21 Corning Incorporated Solid state conversion of polycrystalline material

Also Published As

Publication number Publication date
JPH0419698B2 (en) 1992-03-31

Similar Documents

Publication Publication Date Title
JPS58147024A (en) Lateral epitaxial growth
US4564403A (en) Single-crystal semiconductor devices and method for making them
US4578143A (en) Method for forming a single crystal silicon layer
JPS5946090B2 (en) Processing method for semiconductor wafers
JPS6115319A (en) Manufacture of semiconductor device
US4578144A (en) Method for forming a single crystal silicon layer
KR100278128B1 (en) Method for manufacturing polycrystal semiconductor film
US4585512A (en) Method for making seed crystals for single-crystal semiconductor devices
JPS59138329A (en) Fabrication of single crystal thin film on insulative substrate
US4549913A (en) Wafer construction for making single-crystal semiconductor device
JPS6347256B2 (en)
Cline Silicon thin films formed on an insulator by recrystallization
JPS58135631A (en) Lateral epitaxial growth
JPS60501501A (en) Processes and equipment for manufacturing single crystal and macrocrystalline layers, e.g. for photovoltaic cells
JPH06302511A (en) Manufacture of single crystal layer of semiconductor
JPS5825220A (en) Manufacture of semiconductor substrate
JPH01200615A (en) Method of forming insulator with thin single crystal semiconductor material layer
JPS6233418A (en) Band melting type single crystal semiconductor layer forming device
JPS58112323A (en) Process of annealing by electron beams
JPS62165908A (en) Forming method for single crystal thin-film
JPS61191013A (en) Manufacture of semiconductor device
JP2656466B2 (en) Semiconductor substrate manufacturing method
JPS59147425A (en) Formation of semiconductor crystal film
JPH03280418A (en) Manufacture of semiconductor film
JPH0371767B2 (en)