JPS6233418A - Band melting type single crystal semiconductor layer forming device - Google Patents

Band melting type single crystal semiconductor layer forming device

Info

Publication number
JPS6233418A
JPS6233418A JP17647585A JP17647585A JPS6233418A JP S6233418 A JPS6233418 A JP S6233418A JP 17647585 A JP17647585 A JP 17647585A JP 17647585 A JP17647585 A JP 17647585A JP S6233418 A JPS6233418 A JP S6233418A
Authority
JP
Japan
Prior art keywords
semiconductor layer
single crystal
heating source
radiant heating
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17647585A
Other languages
Japanese (ja)
Inventor
Tadashi Nishimura
正 西村
Kazuyuki Sugahara
和之 須賀原
Shigeru Kusunoki
茂 楠
Yasuaki Inoue
靖朗 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17647585A priority Critical patent/JPS6233418A/en
Publication of JPS6233418A publication Critical patent/JPS6233418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a single crystal semiconductor with large space and high quality by a method wherein, when a band melting region of sample is moving, the temperature in the front region connecting with the band region is controlled to be higher than the temperature in the rear region connecting with the band region. CONSTITUTION:A position sensor 21 is provided on one side of a wafer support 14 to detect the relative position thereof to the moving band melting region of a sample wafer 30. A controller 20 controls the power supply for each substrate heating tubularlamp 19a-19j below the rear region connecting with the band melting region to be lower than the power supply for each substrate heating tubularlamp below the front region connecting with the band melting region according to the outputs from the position sensor 21. Through these procedures, the temperature distribution of sample wafer 30 in the scanning direction can be controlled so that the temperature in the front region connecting with the band melting region may be higher than the temperature in the rear region.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は帯域溶融型単結晶半導体層形成装置に関し、
特に絶縁層上の多結晶または非晶質半導体層を再結晶化
させることにより、比較的大きな面積でかつ高品質の単
結晶層を製造することができる帯域溶融型単結晶半導体
層形成装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a zone melting type single crystal semiconductor layer forming apparatus,
In particular, it relates to a zone melting type single crystal semiconductor layer forming apparatus that can manufacture a high quality single crystal layer with a relatively large area by recrystallizing a polycrystalline or amorphous semiconductor layer on an insulating layer. It is.

[従来の技術] 従来用いられている帯域溶融型単結晶半導体層形成装置
を第3図に示して説明すると、図において、1は後述す
る試料ウェハ3を下部面からカo熱。
[Prior Art] A conventionally used zone melting type single crystal semiconductor layer forming apparatus will be described with reference to FIG. 3. In the figure, reference numeral 1 refers to a sample wafer 3, which will be described later, which is heated from the bottom surface.

昇温するように構成されたカーボンなどからなる板状の
下部ヒータ、2は同じく試料ウェハ3を上部から加熱、
昇温するとともにその一端がら他端へ向かって微速で移
動するように構成された直線状の上部ヒータである。矢
印5は上部ヒータ2の移動方向を示している。また、試
料ウェハ3は溶融、再結晶化されるべき多結晶シリコン
層を有する。この試料ウェハ3は、第4図に示すように
、単結晶のシリコン基板6の一生面上に0.5μm程度
の厚い二酸化シリコン層7が形成され、その面上に溶融
、再結晶化されるべき多結晶シリコン@8が0.5μl
l18!度の厚さを有して形成されている。また、多結
晶シリコン層8の面上には、この多結晶シリコン層が溶
融時に単結晶のシリコン基板6から剥離することを防ぐ
ための保護層として2μmの二酸化シリコン層つと3Q
nm程度の窒化シリコン層10とが積層して形成されて
いる。
A plate-shaped lower heater made of carbon or the like configured to raise the temperature, 2 also heats the sample wafer 3 from above;
This is a linear upper heater configured to raise the temperature and move at a very slow speed from one end to the other end. An arrow 5 indicates the direction of movement of the upper heater 2. The sample wafer 3 also has a polycrystalline silicon layer to be melted and recrystallized. As shown in FIG. 4, this sample wafer 3 has a silicon dioxide layer 7 about 0.5 μm thick formed on the whole surface of a single-crystal silicon substrate 6, and is melted and recrystallized on that surface. 0.5 μl of polycrystalline silicon @8
l18! It is formed to have a thickness of 100 degrees. Further, on the surface of the polycrystalline silicon layer 8, a 2 μm thick silicon dioxide layer is formed as a protective layer to prevent this polycrystalline silicon layer from peeling off from the single crystal silicon substrate 6 during melting.
A silicon nitride layer 10 having a thickness of approximately nm is laminated.

而して、試料ウェハ3中の多結晶シリコン@8を再結晶
化して単結晶にするには、下部ヒータ1で試料ウェハ3
を下部面から1200℃に加熱。
Therefore, in order to recrystallize the polycrystalline silicon@8 in the sample wafer 3 into a single crystal, the sample wafer 3 is heated using the lower heater 1.
is heated to 1200℃ from the bottom side.

昇温する。そして、上部ヒータ2を2000℃に昇温し
た下で、この上部ヒータ2を試料ウェハ3の上面より1
〜2m1N程1[しその一端から矢印5で示す一定方向
に、たとえば2m1ll/秒のi1度で移動せしめて試
料ウェハ3の全域を走査する。このとき、試料ウェハ3
中には上部ヒータ2の形状に応じた溶融層4ができ、こ
れが上部ヒータ2の移動に伴って移動することにより、
試料ウェハ3中の多結晶シリコン層8の大結晶粒化が図
られることになる。なお、かかる成長はアルゴンなどの
不活性ガス雰囲気中で行なわれる。
Increase temperature. Then, while raising the temperature of the upper heater 2 to 2000° C., the upper heater 2 is heated to 100° C. from the upper surface of the sample wafer 3.
The entire area of the sample wafer 3 is scanned by moving the sample wafer 3 by approximately 2 mlN from one end in a fixed direction shown by the arrow 5, for example, at a rate of 2 ml/sec. At this time, sample wafer 3
A molten layer 4 corresponding to the shape of the upper heater 2 is formed inside, and as this moves as the upper heater 2 moves,
Large crystal grains of the polycrystalline silicon layer 8 in the sample wafer 3 will be achieved. Note that this growth is performed in an inert gas atmosphere such as argon.

第5図は、従来技術のもう1つの例である帯域溶融型単
結晶半導体層形成装置を示す図である。
FIG. 5 is a diagram showing a zone melting type single crystal semiconductor layer forming apparatus, which is another example of the prior art.

図において、この装置は、大略第3図の下部ヒータ1.
上部ヒータ2をそれぞれ複数本のMW加熱用管状ランプ
11a〜11e、溶融体形成用管状ランプ12で置き換
えた構成となっている。ざらに詳細に説明すると、ウェ
ハ保持板14上に、第4図と同様な構成の試料ウェハ3
oが置かれる。
In the figure, this device generally includes the lower heater 1. of FIG.
The upper heater 2 is replaced with a plurality of MW heating tubular lamps 11a to 11e and a melt forming tubular lamp 12, respectively. To explain in detail, a sample wafer 3 having a structure similar to that shown in FIG. 4 is placed on the wafer holding plate 14.
o is placed.

試料ウェハ30の上部にはこの上面に平行に集光ミラー
120を有する溶融体形成用管状ランプ12が設けられ
ている。集光ミラー120は溶融体形成用管状ランプ1
2からの光を試料ウェハ30に集光照射してこれを加熱
し、その多結晶シリコン層を帯状に溶融させる。また、
ウェハ保持板14の下部には、このウェハ保持板の下面
に平行に複数本の基板加熱用環状ランプ11a〜11e
が設けられており、各基板加熱用管状ランプlla〜1
1eはそれぞれ反射ミラー110a〜110eを有して
いる。各基板加熱用管状ランプ11a〜11eの管軸は
、溶融体形成用管状ランプ12の管軸と平行にかつ互い
に等しい間隔を隔てて配置されている。各反射ミラー1
10a〜110eはそれぞれ各基板加熱用管状ランプ1
1a〜11eからの光の散i会を防ぐa基板加熱用管状
ランプ11a〜11eからの光はウニA保持板14の全
下面を照射してこれを加熱し、それによって試料ウェハ
3oの単結晶のシリコン基板を加熱する。
A tubular lamp 12 for forming a melt is provided above the sample wafer 30 and has a condensing mirror 120 parallel to the upper surface. The condensing mirror 120 is a tubular lamp 1 for forming a melt.
The sample wafer 30 is heated by condensed light from the sample wafer 2, and the polycrystalline silicon layer is melted in a band shape. Also,
At the bottom of the wafer holding plate 14, a plurality of annular lamps 11a to 11e for substrate heating are provided in parallel to the lower surface of the wafer holding plate.
are provided, and each substrate heating tubular lamp lla~1 is provided.
1e has reflective mirrors 110a to 110e, respectively. The tube axes of the substrate heating tubular lamps 11a to 11e are arranged parallel to the tube axis of the melt forming tubular lamp 12 and at equal intervals. Each reflective mirror 1
10a to 110e are tubular lamps 1 for heating each substrate, respectively.
The light from the substrate heating tubular lamps 11a to 11e that prevents the scattering of light from 1a to 11e irradiates the entire lower surface of the A holding plate 14 and heats it, thereby heating the single crystal of the sample wafer 3o. heating the silicon substrate.

この装置では、試料ウェハ3oの単結晶のシリコン基板
を均一に加熱するために、110熱用管状ランプの本数
を比較的多くしている。試料ウニl\30を基板加熱用
管状ランプ11a〜11eとともに矢印15方向に溶融
体形成用管状ランプ12に対して移動し、この溶融体形
成用管状ランプ12からの光で試料ウェハ30を照射し
ながらその全域を走査する。このとき、帯状に溶融され
た領域はその上下の二酸化シリコン1間で移動され、こ
のようにして試料ウェハ30の多結晶シリコン層は再結
晶化されて単結晶になる。
In this apparatus, the number of heat tubular lamps 110 is relatively large in order to uniformly heat the single crystal silicon substrate of the sample wafer 3o. The sample urchin l\30 is moved along with the substrate heating tubular lamps 11a to 11e in the direction of the arrow 15 relative to the melt forming tubular lamp 12, and the sample wafer 30 is irradiated with light from the melt forming tubular lamp 12. while scanning the entire area. At this time, the belt-shaped melted region is moved between the silicon dioxide 1 above and below it, and in this way the polycrystalline silicon layer of the sample wafer 30 is recrystallized to become a single crystal.

また、上述と同様に、試料ウェハのシリコン基板を均一
に加熱するために、基板加熱用管状ランプの本数を1本
だけに限った装置も提供されていた。
Further, as described above, in order to uniformly heat the silicon substrate of the sample wafer, an apparatus has also been provided in which the number of tubular lamps for heating the substrate is limited to one.

[発明が解決しようとする問題点] 従来の帯域溶融型単結晶半導体層形成装置は以上のよう
に構成されており、試料ウェハの単結晶のシリコン基板
の加熱に関しては、これを十分均一にできるような配慮
がなされていた。しかしながら、従来の装置で実際に帯
域溶融を行なうと、試料ウェハはその上下両面から加熱
されるため、試料ウェハ中央部から熱が逃げにくく中央
部と周辺部の溶融条件が異なってくる現象が起こり、如
何に設計しても直径4インチ以上の大面積の試料ウェハ
を一度の走査による帯域溶融では再結晶化できないとい
う問題点があった。
[Problems to be Solved by the Invention] The conventional zone melting type single crystal semiconductor layer forming apparatus is configured as described above, and can heat the single crystal silicon substrate of the sample wafer sufficiently uniformly. Such consideration was given. However, when band melting is actually performed using conventional equipment, the sample wafer is heated from both its top and bottom surfaces, which makes it difficult for heat to escape from the center of the sample wafer, resulting in a phenomenon in which the melting conditions at the center and the periphery differ. However, there was a problem in that no matter how designed, a large area sample wafer with a diameter of 4 inches or more could not be recrystallized by band melting by one scan.

また、試料ウェハの中央の一部のみが溶融できるよう加
熱濃度を配慮して実験をした場合も、溶融から固体に至
る際の固化潜熱を充分逃がしきれず結晶成長にかかわる
温度勾配が緩くなり、結晶成長面が帯域溶融の進行方向
に垂直な面とならない現象が起こる。この現象について
、第6図(A)、(B)を参照してさらに詳細に説明す
る。第6図(A)は、帯域溶融中の試料ウェハの断面図
であり、第6図(B)は第6図(A>の多結晶シリコン
層を含む平面図である。図において、80は多結晶シリ
コン層8のランプ光13による帯状溶融領域であり、8
1は単結晶化されたシリコン層である。結晶成長にかか
わる濃度勾配が緩くなると、結晶成長面16は〈111
〉面となり鋸歯のようになってしまう。このため、17
のような場所に不純物の1析やストレスの増加が生じて
小傾角ではあるが結晶粒界18が発生し、多結晶シリコ
ン層が全面単結晶とはなり得ないという問題点があった
In addition, even if the heating concentration was adjusted so that only a part of the center of the sample wafer could be melted, the latent heat of solidification from melting to solid state could not be sufficiently dissipated, and the temperature gradient related to crystal growth would become gentle. A phenomenon occurs in which the crystal growth plane is not perpendicular to the direction of progress of zone melting. This phenomenon will be explained in more detail with reference to FIGS. 6(A) and 6(B). FIG. 6(A) is a cross-sectional view of the sample wafer during zone melting, and FIG. 6(B) is a plan view including the polycrystalline silicon layer of FIG. 6(A). This is a belt-shaped melted region of the polycrystalline silicon layer 8 caused by the lamp light 13;
1 is a single crystal silicon layer. When the concentration gradient related to crystal growth becomes gentle, the crystal growth surface 16 becomes <111
> surface, resulting in a sawtooth-like appearance. For this reason, 17
There is a problem in that the crystal grain boundaries 18 are generated although the tilt angle is small due to impurity precipitation and stress increase in locations such as , and the polycrystalline silicon layer cannot become a single crystal over the entire surface.

この発明は上記のような問題点を解消するためになされ
たもので、大面積でかつ高品質の単結晶半導体層を形成
することができる帯域溶融型単結晶半導体層形成装置を
得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a zone melting type single crystal semiconductor layer forming apparatus that can form a large area and high quality single crystal semiconductor layer. shall be.

[問題点を解決するための手段〕 この発明に係る帯域溶融型単結晶半導体層形成装置は、
絶縁層と該絶縁層上に形成される多結晶または非晶質半
導体層を含む試料を台に置き、試料の上面と隔てて平行
に、この試料を照射し加熱して上記半導体層を帯状に溶
融させる第1長手状輻射加熱源を設け、台の下面と隔て
て平行にかつこの台に対して固定的に、試料を照射し加
熱する第2輔射加熱源を設け、移動手段により第2輻射
加熱源を第1長手状輻射加熱源の長手方向にほぼ直角な
方向に第1長手状輻射加熱源に対して相対的に移動して
、帯状溶融領域を絶縁層上で移動させ、この帯状溶!!
領域の移vI時に、帯状溶融領域に続く前方領緘の濃度
を高くし、帯状溶融領域に続く後方領域の温度を低くす
るよう、l][+熱制御手段により第2輻射加熱源の加
熱を制御するようにしたものである。
[Means for solving the problems] The zone melting type single crystal semiconductor layer forming apparatus according to the present invention includes:
A sample including an insulating layer and a polycrystalline or amorphous semiconductor layer formed on the insulating layer is placed on a stand, and the sample is irradiated and heated parallel to and apart from the top surface of the sample to form the semiconductor layer into a band shape. A first elongated radiant heating source for melting the sample is provided, a second radiant heating source for irradiating and heating the sample is provided parallel to and separated from the lower surface of the table and fixedly relative to this table, and a second elongated radiant heating source is provided for irradiating and heating the sample by moving means The radiant heating source is moved relative to the first longitudinal radiant heating source in a direction substantially perpendicular to the longitudinal direction of the first longitudinal radiant heating source to move a band-shaped melting region over the insulating layer; Melt! !
When the region is transferred, the heating of the second radiant heating source is controlled by the heat control means so as to increase the concentration of the front region following the belt-shaped melting region and lower the temperature of the rear region following the belt-shaped melting region. It was designed to be controlled.

[作用] この発明においては、試料の帯状溶融領域の移動的に、
帯状領域に続く前方領域の温度を高(し、帯状溶融領域
に続く後方領域の温度を低くするよう制御されるので、
帯状溶!!領域の後縁における固液界面での温度勾配が
大きくなる。
[Function] In the present invention, in the movement of the band-shaped melted region of the sample,
The temperature is controlled to be high in the front region following the belt-like melting region and to lower the temperature in the rear region following the belt-like melting region.
Band melt! ! The temperature gradient at the solid-liquid interface at the trailing edge of the region increases.

[実施例] 以下、この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明の実施例である帯域溶融型単結晶半
導体層形成装置を示す図である。この装置の構成につい
て説明すると、図において、ウェハ保持板14はカーボ
ン製であり、その厚みを611Im〜10111.その
形状を正方形または長方形にしである。ウェハ保持板1
4上に試料ウェハ3oが置かれる。この試料ウェハは、
第4図の試料ウェハと同様に構成されている。すなわち
、単結晶のシリコン基板上に、二酸化シリコン層、多結
晶シリコン層、二酸化シリコン層、窒化シリコン層がこ
の順序で積層して形成されており、単結晶化すべき多結
晶シリコン層は絶縁層内に挾まれている。
FIG. 1 is a diagram showing a zone melting type single crystal semiconductor layer forming apparatus according to an embodiment of the present invention. To explain the configuration of this device, in the figure, the wafer holding plate 14 is made of carbon, and its thickness is 611 Im to 10111 Im. Make the shape square or rectangular. Wafer holding plate 1
A sample wafer 3o is placed on top of the sample wafer 4. This sample wafer is
It has the same structure as the sample wafer shown in FIG. That is, a silicon dioxide layer, a polycrystalline silicon layer, a silicon dioxide layer, and a silicon nitride layer are laminated in this order on a single-crystal silicon substrate, and the polycrystalline silicon layer to be made into a single crystal is formed within an insulating layer. is sandwiched between.

試料ウェハ30の上部にはこの上面に平行に集光ミラー
120を有する溶融体形成用管状ランプ12が設けられ
ている。集光ミラー120は溶融体形成用管状ランプ1
2がらの光を試料ウェハ3゜に集光照射してこれを加熱
し、多結晶シリコン層をその上下の絶縁層間で帯状に溶
融させる。また、ウェハ保持板14の下部には、このウ
ェハ保持板の下面に平行にかつ溶融体形成用管状ランプ
12の管軸と平行に10本の!S板加熱用筐状ランプ1
9a−19jが互いに狂い間隔を隔てて密集して設置プ
られている。昼仮加熱用管状ランプ19a〜19jから
の光はウェハ保持板14の全下面を照射してこれを加熱
し、それによって試料ウェハ30の単結晶のシリコン基
板を加熱する。基板加熱用管状ランプ19a〜19Jと
ウェハ保持板14とは互いに固定されており、移gtJ
装置(図示せず)は、試料ウェハ30が置かれたウェハ
保持板14と基板加熱用管状ランプ19a〜19jとを
溶融体形成用管状ランプ12の管軸にほぼ直角な矢印1
5方向に溶融体形成用管状ランプ12に対して相対的に
移動させる。これに−より、試料ウェハ30の全域は溶
融体形成用管状ランプ12がらの光で照射されながら走
査され、多結晶シリコン層の帯状r8融領域はその上下
の絶縁層間で走査方向に移動される。ウェハ保持板14
の側部に位置センサ21が設けられており、この位置セ
ンサは移動する帯状溶融領域の試料ウェハ30に対する
位置を検出する。位置センサ21は副部装置20に接続
され、この制御装置20は各基板加熱用管状ランプ19
a〜19jに接続されている。制m装置2oは電源を含
み、各基板加熱用管状ランプ19a〜19Jに電力を供
給するとともに、各基板加熱用管状ランプに供給する電
力を位置センサ21出力に基づいて制御し、これによっ
て試料ウェハ3oの温度分布を制御する。
A tubular lamp 12 for forming a melt is provided above the sample wafer 30 and has a condensing mirror 120 parallel to the upper surface. The condensing mirror 120 is a tubular lamp 1 for forming a melt.
Two beams of light are condensed onto the sample wafer at 3° to heat it, and the polycrystalline silicon layer is melted in a strip between the upper and lower insulating layers. Further, at the bottom of the wafer holding plate 14, there are ten lamps parallel to the lower surface of the wafer holding plate and parallel to the tube axis of the tubular lamp 12 for forming the melt. Housing lamp 1 for heating S plate
9a to 19j are installed closely spaced apart from each other. The light from the daytime temporary heating tubular lamps 19a to 19j illuminates and heats the entire lower surface of the wafer holding plate 14, thereby heating the single crystal silicon substrate of the sample wafer 30. The substrate heating tubular lamps 19a to 19J and the wafer holding plate 14 are fixed to each other, and the transfer gtJ
The apparatus (not shown) moves the wafer holding plate 14 on which the sample wafer 30 is placed and the substrate heating tubular lamps 19a to 19j in the direction of an arrow 1 substantially perpendicular to the tube axis of the melt forming tubular lamp 12.
It is moved in five directions relative to the tubular lamp 12 for forming the melt. As a result, the entire area of the sample wafer 30 is scanned while being irradiated with light from the melt forming tubular lamp 12, and the belt-shaped r8 melting region of the polycrystalline silicon layer is moved in the scanning direction between the upper and lower insulating layers. . Wafer holding plate 14
A position sensor 21 is provided on the side of the sample wafer 30, which detects the position of the moving belt-shaped melting region with respect to the sample wafer 30. The position sensor 21 is connected to a subsidiary device 20, which control device 20 controls each substrate heating tubular lamp 19.
connected to a to 19j. The control device 2o includes a power supply, supplies power to each of the substrate heating tubular lamps 19a to 19J, and controls the power supplied to each substrate heating tubular lamp based on the output of the position sensor 21, thereby controlling the sample wafer. Control the temperature distribution of 3o.

次に、この装置で帯域溶融を行なう場合について説明す
る。基板加熱用管状ランプ19a〜19jからの光によ
りウェハ保持板14の全下面を照射して加熱し、溶融体
形成用管状ランプ12からの光により試料ウェハ30の
上面を照射して加熱し、この状態で移動装置により試料
ウェハ30が置かれたウェハ保持板14を基板加熱用管
状ランプ19a〜19jとともに、溶融体形成用管状ラ
ンプ12の管軸にほぼ直角な矢印15方向に溶融体形成
用管状ランプ12に対して相対的に移動させる。このと
き、溶融体形成用管状ランプ12からの光により試料ウ
ェハ3oは照射されながら走査され、試料ウェハ3oの
絶縁層間に約2IllII幅の多結晶シリコン層の帯状
溶融領域が生じ、この溶融領域はその後縁で結晶成長さ
せながら絶縁層間を試料ウェハ30の一方端から他方端
に移動される。このとき、位置センサ21により帯状溶
融領域の試料ウェハ30に対する位置が検出され、この
位置センサ21出力に基づいて制御I装置2oにより、
帯状溶融領域の移動に応じて、帯状溶融領域に続く後方
wta下の各基板加熱用管状ランプへの供給電力が帯状
溶融領域に続く前方領域下の各基板加熱用管状ランプへ
の供給電力より低下するように制御され、これによって
、試料ウェハ3゜の走査方向の温度分布は、帯状溶融領
域に続く前方領域の温度が高くなり、帯状溶融領域に続
く後方領域の温度が低くなるように制御される。すなわ
ち、第2図(A>に示すように、帯状溶融領域に続く接
方領域下の各基板加熱用管状ランプ19a〜19cへの
供給電力が帯状溶融領域に続(前方領域下の各基板加熱
用管状ランプ196〜19Jへの供給電力より低下する
ように制御され、このとき、試料ウェハ30の走査方向
の温度分布は、第2図(B>に示すように、基板加熱用
管状ランプ196〜19j上の帯状溶融領域に続く前方
領域の1r!120が高くなり、M仮加熱用管状ランプ
19a〜19c上の帯状溶融領域に続く後方fiI緘の
温度21が低くなるように制御される。このため、帯状
溝!!!領域の後縁での再結晶にかかわる温度勾配が急
峻になって固化潜熱の吐き出しなど放熱を妨げる要因が
取り除かれ、結晶成長面が走査方向に垂直な面となり、
不純物の偏析などの発生が抑えられて大面積で高品質の
単結晶シリコン層を二酸化シリコン層上に容易に形yi
することができる。
Next, the case where zone melting is performed using this apparatus will be explained. The entire lower surface of the wafer holding plate 14 is irradiated and heated with light from the substrate heating tubular lamps 19a to 19j, and the upper surface of the sample wafer 30 is irradiated and heated with light from the melt forming tubular lamp 12. In this state, the wafer holding plate 14 on which the sample wafer 30 is placed is moved along with the substrate heating tubular lamps 19a to 19j by the moving device in the direction of arrow 15, which is approximately perpendicular to the tube axis of the melt forming tubular lamp 12. It is moved relative to the lamp 12. At this time, the sample wafer 3o is scanned while being irradiated with light from the melt-forming tubular lamp 12, and a band-shaped melted region of the polycrystalline silicon layer with a width of about 2IllII is created between the insulating layers of the sample wafer 3o, and this melted region is The sample wafer 30 is moved from one end of the sample wafer 30 to the other end between the insulating layers while causing crystal growth at its trailing edge. At this time, the position of the belt-shaped melted region with respect to the sample wafer 30 is detected by the position sensor 21, and based on the output of this position sensor 21, the control I device 2o
According to the movement of the belt-shaped melting region, the power supplied to each substrate heating tubular lamp under the rear wta following the belt-shaped melting region is lower than the power supplied to each substrate heating tubular lamp under the front region following the belt-shaped melting region. As a result, the temperature distribution in the scanning direction of the sample wafer 3° is controlled such that the temperature in the front region following the belt-shaped melting region is high, and the temperature in the rear region following the belt-shaped melting region is low. Ru. That is, as shown in FIG. At this time, the temperature distribution of the sample wafer 30 in the scanning direction is controlled to be lower than the power supplied to the substrate heating tubular lamps 196 to 19J, as shown in FIG. 1r!120 of the front region following the belt-shaped melting region on M temporary heating tubular lamps 19a to 19c is controlled so that the temperature 21 of the rear fiI strip following the belt-shaped melting region on M temporary heating tubular lamps 19a to 19c is lowered. Therefore, the temperature gradient associated with recrystallization at the trailing edge of the band-shaped groove region becomes steeper, and factors that hinder heat radiation, such as discharging latent heat of solidification, are removed, and the crystal growth plane becomes a plane perpendicular to the scanning direction.
Easily forms a large-area, high-quality single-crystal silicon layer on a silicon dioxide layer with less segregation of impurities.
can do.

なお、上記実施例では、基板の加熱に複数の管状ランプ
を使用する場合について示したが、複数の線状ヒータを
使用して基板を加熱してもよく、また、ウェハ保持板を
陽極とし複数の線状アークトーチを陰極として基板を加
熱するようにしてもよく、これらの場合にも上記実施例
と同様の効果を秦する。
In the above embodiment, a case is shown in which a plurality of tubular lamps are used to heat the substrate, but the substrate may be heated using a plurality of linear heaters. The substrate may be heated using a linear arc torch as a cathode, and in these cases, the same effect as in the above embodiment can be obtained.

また、上記実施例では、多結晶シリコン層を単結晶化す
る場合について示したが、単結晶化する層としては他の
多結晶半導体層や非晶質半導体層であってもよく、この
場合にも上記実施例と同櫟の効果を奏する。
Further, in the above embodiment, a case where a polycrystalline silicon layer is made into a single crystal is shown, but the layer to be made into a single crystal may be another polycrystalline semiconductor layer or an amorphous semiconductor layer, and in this case, This embodiment also has the same effect as the above embodiment.

また、上記実施例では、二酸化シリコン層上の多結晶シ
リコン層を11結晶化する場合について示したが、他の
絶縁層上の多結晶シリコン層を単結晶化してもよく、こ
の場合にも上記実施例と同様の効果を奏する。
Further, in the above embodiment, the case where the polycrystalline silicon layer on the silicon dioxide layer is crystallized is shown, but the polycrystalline silicon layer on the other insulating layer may be made into a single crystal. The same effects as in the embodiment are achieved.

また、上記実施例では、基板加熱用管状ランプに供給す
る電力を制御して試料ウェハの温度分布を制御する場合
について示したが、基板加熱用管状ランプからの光を遮
断する断熱材を、溶融帯形成用管状ランプに対して固定
的に設け、かつこの断熱材をウェハ保持板と基板加熱用
管状ランプ間に試料の帯状溶融領域に続く後方領域に対
応して位置するように挿入して、試料ウェハの温度を制
御するようにしてもよい。
Furthermore, in the above embodiment, the temperature distribution of the sample wafer is controlled by controlling the power supplied to the tubular lamp for heating the substrate. The heat insulating material is fixedly provided to the band-forming tubular lamp, and is inserted between the wafer holding plate and the substrate heating tubular lamp so as to correspond to the rear area following the band-shaped melting area of the sample. The temperature of the sample wafer may also be controlled.

[発明の効果] 以上のようにこの発明によれば、絶縁層と該絶縁層上に
形成される多結晶または非晶質半導体層を含む試料を台
に置き、試料の上面と隔てて平行に、この試料を照射し
加熱して上記半導体層を帯状に溶融させる第1長手状輻
射加熱源を設け、台の下面と隔てて平行にかつこの台に
対して固定的に、試料を照射し加熱する第2I!躬加熱
源を設け、移動手段により第2輻射加熱源を第1長手状
輻射加熱源の長手方向にほぼ直角な方向に第1長手状輻
射加熱源に対して相対的に移動して、帯状溶融領域を絶
縁層上で移動させ、この帯状溶融領域の移動時に、帯状
溶融領域に続く前方領域の湿度を高くし、帯状溶Ft1
1領域に涜く漬方f!4域の温度を低くするよう、加熱
制御手段により第2輻射加熱源の加熱を制御するように
したので、大面積でかつ高品質の単結晶半導体層を絶縁
1上に形成することができる帯域溶融型単結晶半導体層
形成装置を得ることができる。
[Effects of the Invention] As described above, according to the present invention, a sample including an insulating layer and a polycrystalline or amorphous semiconductor layer formed on the insulating layer is placed on a stand, and the sample is placed parallel to the upper surface of the sample. A first longitudinal radiant heating source is provided to irradiate and heat the sample to melt the semiconductor layer in a band shape, and irradiates and heats the sample parallel to and apart from the lower surface of the table and fixedly to the table. 2nd I to do! A belt-like heating source is provided, and the second radiant heating source is moved by the moving means relative to the first longitudinal radiant heating source in a direction substantially perpendicular to the longitudinal direction of the first longitudinal radiant heating source, thereby melting the belt-shaped radiant heating source. The region is moved on the insulating layer, and when the belt-shaped melting region is moved, the humidity in the front region following the belt-shaped melting region is increased, and the belt-shaped melting Ft1 is increased.
How to pickle in one area f! Since the heating of the second radiant heating source is controlled by the heating control means so as to lower the temperature in zone 4, a zone where a large-area and high-quality single crystal semiconductor layer can be formed on insulator 1. A molten single crystal semiconductor layer forming apparatus can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例である帯域溶融型単結晶半
導体層形成装置を示す図である。 第2図(A>、(B)は、この発明の実施例である帯域
溶融型単結晶゛に導体層形成装置における試料ウェハの
走査方向の温度分布の制御を説明するための図である。 第3図は、従来のカーボンヒータ、を用いた帯域溶融型
単結晶半導体層形成装置を示す図である。 第4図は試料ウェハの断面図である。 第5図は、従来の管状ランプを用いた帯域溶融型単結晶
半導体層形成装置を示す図である。 第6図(A)は帯域溶融中の試料つ1ハの断面図であり
、第6図(B)は第6図<A)の多結晶シリコン層を含
む平面図である。 図において、3,30は試料ウェハ、6は単結晶のシリ
コン基板、7.9は二酸化シリコン層、8は多結晶シリ
コン層、10は窒化シリコン層、12は溶融体形成用管
状ランプ、120は反射ミラー、14はウェハ保持板、
19a〜19jは基板加熱用管状ランプ、20は制御装
置、21は位置センサである。 なお、各図中同一符号は同一または相当部分を示す。 代  理  人     大  岩  増  雄第1図 第2図 第3図 第4図
FIG. 1 is a diagram showing a zone melting type single crystal semiconductor layer forming apparatus according to an embodiment of the present invention. FIGS. 2A and 2B are diagrams for explaining control of the temperature distribution in the scanning direction of a sample wafer in an apparatus for forming a conductor layer on a band-melting single crystal according to an embodiment of the present invention. Fig. 3 is a diagram showing a zone melting type single crystal semiconductor layer forming apparatus using a conventional carbon heater. Fig. 4 is a cross-sectional view of a sample wafer. Fig. 5 is a diagram showing a conventional tubular lamp. 6 is a diagram showing the zone melting type single crystal semiconductor layer forming apparatus used. FIG. 6(A) is a cross-sectional view of the sample during zone melting, and FIG. ) is a plan view including a polycrystalline silicon layer. In the figure, 3 and 30 are sample wafers, 6 is a single crystal silicon substrate, 7.9 is a silicon dioxide layer, 8 is a polycrystalline silicon layer, 10 is a silicon nitride layer, 12 is a tubular lamp for forming a melt, and 120 is a a reflecting mirror; 14 is a wafer holding plate;
19a to 19j are tubular lamps for heating the substrate, 20 is a control device, and 21 is a position sensor. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 2 Figure 3 Figure 4

Claims (7)

【特許請求の範囲】[Claims] (1)絶縁層と該絶縁層上に形成される単結晶または非
晶質半導体層を含む試料において、前記半導体層を帯状
に溶融させ、この帯状溶融領域を前記絶縁層上で移動さ
せて前記半導体層を単結晶化する装置であって、 前記試料を置く台と、 前記台に対して該台に置かれた前記試料の側に、該試料
の上面と隔てて平行に設けられ、該試料を照射し加熱し
て前記半導体層を帯状に溶融させる第1長手状輻射加熱
源と、 前記台に対して前記第1長手状輻射加熱源と反対側に、
該台の下面と隔てて平行にかつ該台に対して固定的に設
けられ、前記試料を照射し加熱する第2輻射加熱源と、 前記第2輻射加熱源を、前記第1長手状輻射加熱源の長
手方向にほぼ直角な方向に該第1長手状輻射加熱源に対
して相対的に移動させる移動手段と、 前記試料の前記帯状溶融領域の移動時に、該帯状溶融領
域に続く前方領域の温度を高くし、該帯状溶融領域に続
く後方領域の温度を低くするよう、前記第2輻射加熱源
の加熱を制御する加熱制御手段とを備えた帯域溶融型単
結晶半導体層形成装置。
(1) In a sample including an insulating layer and a single crystal or amorphous semiconductor layer formed on the insulating layer, the semiconductor layer is melted in a band shape, and this band-shaped melted region is moved on the insulating layer to An apparatus for single-crystallizing a semiconductor layer, comprising: a table on which the sample is placed; and a table provided on the side of the sample placed on the table with respect to the table, parallel to the top surface of the sample and separated from the top surface of the sample; a first longitudinal radiant heating source that irradiates and heats the semiconductor layer to melt the semiconductor layer in a band shape; on the opposite side of the table from the first longitudinal radiant heating source;
a second radiant heating source that is fixedly provided parallel to and apart from the lower surface of the table and irradiates and heats the sample; a moving means for moving relative to the first longitudinal radiant heating source in a direction substantially perpendicular to the longitudinal direction of the source; A zone melting type single crystal semiconductor layer forming apparatus, comprising: heating control means for controlling heating of the second radiant heating source so as to increase the temperature and lower the temperature of a rear region following the belt-shaped melting region.
(2)前記多結晶または非晶質半導体層はシリコン層で
あり、 前記絶縁層は二酸化シリコン層である特許請求の範囲第
1項記載の帯域溶融型単結晶半導体層形成装置。
(2) The zone melting single crystal semiconductor layer forming apparatus according to claim 1, wherein the polycrystalline or amorphous semiconductor layer is a silicon layer, and the insulating layer is a silicon dioxide layer.
(3)前記第1長手状輻射加熱源は管状ランプである特
許請求の範囲第1項記載の帯域溶融型単結晶半導体層形
成装置。
(3) The zone melting type single crystal semiconductor layer forming apparatus according to claim 1, wherein the first longitudinal radiant heating source is a tubular lamp.
(4)前記第2輻射加熱源は複数の管状ランプから構成
され、該各管状ランプは互いに間隔を隔てかつそれらの
管軸は前記第1長手状輻射加熱源の長手方向にほぼ平行
である特許請求の範囲第1項記載の帯域溶融型単結晶半
導体層形成装置。
(4) The second radiant heating source is comprised of a plurality of tubular lamps, each tubular lamp being spaced apart from each other and having their tube axes substantially parallel to the longitudinal direction of the first elongated radiant heating source. A zone melting type single crystal semiconductor layer forming apparatus according to claim 1.
(5)前記第2輻射加熱源は複数の線状ヒータから構成
され、該各線状ヒータは互いに間隔を隔てかつそれらの
長手軸は前記第1長手状輻射加熱源の長手方向にほぼ平
行である特許請求の範囲第1項記載の帯域溶融型単結晶
半導体層形成装置。
(5) The second radiant heating source includes a plurality of linear heaters, each of which is spaced apart from each other, and whose longitudinal axis is substantially parallel to the longitudinal direction of the first elongated radiant heating source. A zone melting type single crystal semiconductor layer forming apparatus according to claim 1.
(6)前記第2輻射加熱源は複数の線状アークトーチか
ら構成され、該各線状アークトーチは互いに間隔を隔て
かつそれらの長手軸は前記第1長手状輻射加熱源の長手
方向にほぼ平行である特許請求の範囲第1項記載の帯域
溶融型単結晶半導体層形成装置。
(6) The second radiant heating source is comprised of a plurality of linear arc torches, each of which is spaced apart from each other, and whose longitudinal axes are substantially parallel to the longitudinal direction of the first longitudinal radiant heating source. A zone melting single crystal semiconductor layer forming apparatus according to claim 1.
(7)前記加熱制御手段は、前記台と前記第2輻射加熱
源間に、前記試料の前記帯状溶融領域に続く前記後方領
域に対応して位置するよう挿入され、かつ前記第1長手
状輻射加熱源に対して固定的に設けられる断熱材である
特許請求の範囲第1項記載の帯域溶融型単結晶半導体層
形成装置。
(7) The heating control means is inserted between the table and the second radiant heating source so as to be positioned corresponding to the rear region following the band-shaped melting region of the sample, and 2. The zone melting type single crystal semiconductor layer forming apparatus according to claim 1, which is a heat insulating material fixedly provided with respect to the heat source.
JP17647585A 1985-08-07 1985-08-07 Band melting type single crystal semiconductor layer forming device Pending JPS6233418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17647585A JPS6233418A (en) 1985-08-07 1985-08-07 Band melting type single crystal semiconductor layer forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17647585A JPS6233418A (en) 1985-08-07 1985-08-07 Band melting type single crystal semiconductor layer forming device

Publications (1)

Publication Number Publication Date
JPS6233418A true JPS6233418A (en) 1987-02-13

Family

ID=16014319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17647585A Pending JPS6233418A (en) 1985-08-07 1985-08-07 Band melting type single crystal semiconductor layer forming device

Country Status (1)

Country Link
JP (1) JPS6233418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274084A (en) * 2000-03-24 2001-10-05 Hiroshi Komiyama Method of manufacturing crystalline silicon thin film and solar battery using the same
JP2010532570A (en) * 2007-06-26 2010-10-07 マサチューセッツ インスティテュート オブ テクノロジー Recrystallization of semiconductor wafers in thin film capsules and related processes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274084A (en) * 2000-03-24 2001-10-05 Hiroshi Komiyama Method of manufacturing crystalline silicon thin film and solar battery using the same
JP2010532570A (en) * 2007-06-26 2010-10-07 マサチューセッツ インスティテュート オブ テクノロジー Recrystallization of semiconductor wafers in thin film capsules and related processes
US8633483B2 (en) 2007-06-26 2014-01-21 Massachusetts Institute Of Technology Recrystallization of semiconductor wafers in a thin film capsule and related processes
US9932689B2 (en) 2007-06-26 2018-04-03 Massachusetts Institute Of Technology Semiconductor wafers recrystallized in a partially surrounding thin film capsule

Similar Documents

Publication Publication Date Title
US4694143A (en) Zone melting apparatus for monocrystallizing semiconductor layer on insulator layer
US8882077B2 (en) Seed layers and process of manufacturing seed layers
US6235110B1 (en) Method of producing recrystallized-material-member, and apparatus and heating method therefor
US4873063A (en) Apparatus for zone regrowth of crystal ribbons
US4547256A (en) Method for thermally treating a semiconductor substrate
US4749438A (en) Method and apparatus for zone recrystallization
JPS58147024A (en) Lateral epitaxial growth
JPS6233418A (en) Band melting type single crystal semiconductor layer forming device
JPS5946090B2 (en) Processing method for semiconductor wafers
JPS6083322A (en) Crystallizing method of semiconductor thin-film
JPH01200615A (en) Method of forming insulator with thin single crystal semiconductor material layer
JPS62500517A (en) How to improve the crystallinity of semiconductor ribbons
Eyer et al. Silicon sheets grown from powder layers by a zone melting process
JP2944426B2 (en) Molecular beam epitaxy equipment
JPS6245016A (en) Method for recrystallization of semiconductor thin film
KR101482424B1 (en) Silicon wafer recrystaliztion device and method of recrystalizing silicon wafer
JPH0354819A (en) Manufacture of soi substrate
Moore et al. SOI Structures Formed Using Line-Source Electron Beam Recrystallization
JPH11157981A (en) Production of single crystal of semiconductor
JPS6088423A (en) Method for epitaxial growth of wafer
JPS598691A (en) Microzone melting process
JPH03190121A (en) Laser recrystallization device
JPS5846620A (en) Epitaxial growth method of amorphous silicon or polycrystalline silicon on wafer
JPH04246819A (en) Manufacture of semiconductor thin film
JPH03286520A (en) Manufacture of thin crystalline semiconductor film