JPS61191013A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61191013A
JPS61191013A JP60031947A JP3194785A JPS61191013A JP S61191013 A JPS61191013 A JP S61191013A JP 60031947 A JP60031947 A JP 60031947A JP 3194785 A JP3194785 A JP 3194785A JP S61191013 A JPS61191013 A JP S61191013A
Authority
JP
Japan
Prior art keywords
layer
amorphous
single crystal
polycrystalline
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60031947A
Other languages
Japanese (ja)
Inventor
Takashi Ito
隆司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60031947A priority Critical patent/JPS61191013A/en
Publication of JPS61191013A publication Critical patent/JPS61191013A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Abstract

PURPOSE:To obtain a uniform single crystal layer without damaging a lower semiconductor layer by forming the single crystal layer forming a melted region irradiating an accelerated ion on an amorphous or a polycrystalline semiconductor thin film and by recrystallizing the melted region. CONSTITUTION:An ion beam 2 is irradiated in stripes on the surface of a substrate 1 formed with an amorphous or a polycrystalline Si layer on an oxide film and the amorphous or the polycrystalline Si layer of an irradiated part 3 is melted. Under these conditions, if the substrate 1 is moved to the direction shown by an arrow 5, the melted region is moved to a new amorphous or polycrystalline Si layer A according to the movement of the irradiation, meanwhile, the previous melted region is recrystallized in accordance with cooling to single crystal and is changed to a single crystal layer B. This enables forming a greater area single crystal layer without damaging an element formed on a base semiconductor or a base.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はSol (絶縁基板上の半導体)を製造する新
しい手段に係り、特C3iO,又はSi 、N、上の非
晶質別又は多結晶Si &局部的I:加熱して行きなが
ら、5int又はSL s M上の非晶質半導体又は多
結晶半導体を再結晶化し、単結晶層を形成する方法に関
するもので、3次元ICに適用される。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a new means for manufacturing Sol (semiconductor on an insulating substrate), in particular C3iO, or amorphous or polycrystalline on Si, N, etc. Si & Local I: Concerns a method of recrystallizing an amorphous or polycrystalline semiconductor on 5 int or SL s M while heating to form a single crystal layer, and is applied to three-dimensional ICs. .

〔発明の概要〕[Summary of the invention]

本発明は、基板の5ins層又はS i g A’4層
などの絶縁層の上に非晶質又は多結晶の半導体層を堆積
した後、!;i 、G−或いはH,Ar、Ha、Xg 
 など、該半導体層の半導体的性質に及ぼす影響が少な
いイオンビームを照射しながら該ストライプを移動させ
、5i02又は5 i 1 N4などの絶縁層上の非晶
質又は多結晶の半導体層を溶融再結晶化して単結晶を形
成するものである。
The present invention provides that after depositing an amorphous or polycrystalline semiconductor layer on top of an insulating layer such as a 5ins layer or a SigA'4 layer of a substrate; ;i, G- or H, Ar, Ha, Xg
The amorphous or polycrystalline semiconductor layer on the insulating layer such as 5i02 or 5i1N4 is melted and remelted by moving the stripe while irradiating it with an ion beam that has little effect on the semiconductor properties of the semiconductor layer. It crystallizes to form a single crystal.

〔従来の技術〕[Conventional technology]

従来の、5iOz上の非晶質又は多結晶層を局所的に加
熱して再結晶化し、単結晶化する手段には次の5つがあ
る。
There are the following five conventional methods for locally heating an amorphous or polycrystalline layer on 5iOz to recrystallize it to form a single crystal.

■レーザを用いる。■Uses a laser.

■電子ビームを用いる。■Uses an electron beam.

■ストライプ・ヒータを用いる。■Use a stripe heater.

■ランプ加熱を用いる。■Use lamp heating.

■高周波誘導加熱を用いる。■Uses high-frequency induction heating.

■、■のレーザや電子ビームはその発生が十分安定でな
いという欠点があし、■のレーザは制御が難しい欠点も
ある。■の電子ビームでは、エネルギ自体が十分とれず
大面積の表面を単結晶化できない。さらに、飛程が大き
いため奥まで侵入してしまい、下方に形成されているデ
バイスに影響を及ぼし、損傷を及ぼすため、特に多層化
したSOI製造に適尚でない。■のストライプ・ヒータ
は、非晶質又は多結晶層が形成された基板表面に近接し
てカーボン等の棒状ヒータを配し、電流を流して加熱す
ることにより、該棒状ヒータに沿ってストライプ状に非
晶質又は多結晶層を溶かしながら棒状ヒータを移動して
再結晶化して、単結晶層を形成するものである。
Lasers and electron beams (2) and (2) have the disadvantage that their generation is not stable enough, and (2) lasers also have the disadvantage that they are difficult to control. The electron beam (2) does not have enough energy to form a single crystal on a large surface area. Furthermore, since the range is large, it penetrates deep and affects and damages devices formed below, making it particularly unsuitable for multi-layered SOI manufacturing. In the stripe heater (2), a rod-shaped heater made of carbon or the like is arranged close to the surface of a substrate on which an amorphous or polycrystalline layer is formed, and by heating it by passing an electric current, a stripe is formed along the rod-shaped heater. A rod-shaped heater is moved while melting the amorphous or polycrystalline layer to recrystallize it to form a single crystal layer.

ストライプ・ヒータは制御性が良いので実用に近いが、
ヒータ自体から不純物が出ることが避は難り、溶融層に
混入して再結晶化層の結晶性に悪影響を与える問題があ
る。■のランプ加熱は、ハロゲン・ランプ等の光をスト
ライプ状に集光するものであるが、加熱の均一性の制御
がとれない等の問題があシ、■の誘導加熱も実用上の問
題がある。、 〔発明が解決しようとする問題点〕 本発明は以上のような従来技術における問題点を解決し
、十分なエネルギが得られ、汚染の恐れがなく、且つ下
方の半導体層に損傷を及ぼさないSOt形成方法を提供
するものであシ、特に基板上に大面積の再結晶化による
単結晶層を得るための問題点を解決しようとするもので
ある。
Striped heaters have good controllability and are close to practical use, but
Impurities are unavoidably emitted from the heater itself, and there is a problem that the impurities are mixed into the molten layer and adversely affect the crystallinity of the recrystallized layer. Lamp heating (2) focuses the light of a halogen lamp, etc. into a stripe shape, but there are problems such as the inability to control the uniformity of heating, and (2) induction heating also has practical problems. be. [Problems to be Solved by the Invention] The present invention solves the above-mentioned problems in the prior art, and provides a method in which sufficient energy can be obtained, there is no risk of contamination, and there is no damage to the underlying semiconductor layer. The present invention provides a method for forming SOt, and is particularly intended to solve problems in obtaining a large-area single-crystal layer on a substrate by recrystallization.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては、絶縁性基板上に堆積した非晶質或い
は多結晶の半導体薄膜に、該半導体の半導体的性質及び
結晶性に及ぼす影響が少ないイオンをストライプ(線)
状の集束ビーム、或いは点状ビームを実質上ストライプ
を形成するごとくあるいは円弧上あるいはリング状など
に走査して照射し、非晶質或いは多結晶のシリコン薄膜
を該ビーム照射領域に浴って溶融しながらストライプを
平行移動して行き、再結晶化によシ単結晶層を形成する
方法を提供する。
In the present invention, ions that have little influence on the semiconductor properties and crystallinity of the semiconductor are formed in stripes (lines) on an amorphous or polycrystalline semiconductor thin film deposited on an insulating substrate.
A focused beam or a point beam is scanned and irradiated to substantially form a stripe, an arc, or a ring, and the amorphous or polycrystalline silicon thin film is irradiated with the beam and melted. The present invention provides a method for forming a single crystal layer by recrystallizing a stripe by moving the stripe in parallel.

〔作 用〕[For production]

第1図で本発明の詳細な説明すると、酸化膜(S iO
v )上に非晶質又は多結晶Si層を形成した基板1に
イオンビーム(Si”) 2を基板1の表面にストライ
プ状に照射せしめ、該照射部3の非晶質又は多結晶51
層を溶融せしめる。 この状態で基板1を矢印5の方向
に移動せしめて行くと、照射部の移動につれて所要な非
晶質又は多結晶S!層部分(至)に溶融域が移動してい
き、−男前の溶融域(ハツチング部4)は冷えるにつれ
て再結晶化して単結晶層(E)に変化する。
To explain the present invention in detail with reference to FIG. 1, an oxide film (SiO
v) Ion beam (Si'') 2 is irradiated onto the surface of the substrate 1 on which an amorphous or polycrystalline Si layer is formed in a stripe pattern, and the amorphous or polycrystalline 51 of the irradiated portion 3 is
Allow the layers to melt. When the substrate 1 is moved in the direction of the arrow 5 in this state, the required amorphous or polycrystalline S! The melting region moves to the layer portion (end), and the -manly melting region (hatching portion 4) recrystallizes as it cools and changes into a single crystal layer (E).

本発明において使用されるイオンビームのシリコンイオ
ン(Si”)は、照射後において、基板上のSi層のS
!と区別がないため最も望ましく、その他Siの半導体
的性質に影響を及ぼすことが少ないSt”r II”’
 + Ar”、 Zrg”、 Xt+等のイオンが使用
可能テする。打込まれたイオンの運動エネルギは熱エネ
ルギに変換され、非晶質又は多結晶のシリコン層を溶融
する。
After irradiation, the silicon ions (Si") of the ion beam used in the present invention are
! St"r II"' is the most desirable because there is no difference between
Ions such as "+Ar", "Zrg", and Xt+ can be used. The kinetic energy of the implanted ions is converted into thermal energy and melts the amorphous or polycrystalline silicon layer.

本発明において、イオンビームの照射はビーム形状自体
を第1図のごとくストライプにする他に第2図のごとく
スポット23で照射し、これをスキャンして実質上スト
ライプ状になしても良い。
In the present invention, the ion beam may be irradiated in a stripe shape as shown in FIG. 1, or may be irradiated in a spot 23 as shown in FIG. 2 and scanned to form a substantially stripe shape.

この際、スポット23 が6)から(b)にスキャンさ
れた時に、(ロ))側も溶融状態にあシ、(ml−(b
)の線分が同じように溶けていることが少なくとも必要
であシ、実際上温度が一様で均一に溶けたストライプが
形成されるようにする。
At this time, when the spot 23 is scanned from 6) to (b), the (b) side is also in a molten state, and (ml-(b)
) are required to melt in the same way, so that in practice the temperature is uniform and uniformly melted stripes are formed.

次に、本発明の利点を列挙する。Next, the advantages of the present invention will be listed.

■ イオンビームは大電流照射装置が使用可能になって
おシ、電子ビームでは5mA位が最大であるのに対して
、イオンビームでは100m4も可能であシ、制御性も
良く、また汚染の恐れがない。
■ High current irradiation equipment has become available for ion beams, and while the maximum current for electron beams is around 5 mA, ion beams can reach up to 100 m4, are easier to control, and are less likely to cause contamination. There is no.

■ イオンは電子よシ何桁も重いので、はとんど打込み
表面の0.1μm位のところで止まってしまう。
■ Ions are many orders of magnitude heavier than electrons, so they usually stop at about 0.1 μm from the implanted surface.

したがって、表面層に有効にエネルギを与え、下地の半
導体あるいは下地に形成されている素子にダメージを与
える必配がない。
Therefore, energy is effectively applied to the surface layer, and there is no need to damage the underlying semiconductor or the elements formed thereon.

■ 特にイオンビームを用いる利点として、イオンビー
ムは以上のように亀子ビームに比べて側桁も高いエネル
ギを与えることが出来るので、大面積の単結晶層を形成
するのに有利である。
(2) A particular advantage of using an ion beam is that, as mentioned above, the ion beam can provide higher energy to the stringers than the Kameko beam, so it is advantageous for forming a large-area single crystal layer.

〔実施例〕〔Example〕

本発明の実施例を第3図によシ説明すると、基板1は、
すでに半導体素子が形成されている下地の半導体層31
の上に1〜2μmの5i01層32を堆積せしめ、その
上に非晶質のSi層33を0.5μ7x〜1μ罵の厚さ
に形成することにより構成している。
An embodiment of the present invention will be explained with reference to FIG. 3. The substrate 1 is
Base semiconductor layer 31 on which semiconductor elements have already been formed
A 5i01 layer 32 of 1 to 2 .mu.m is deposited thereon, and an amorphous Si layer 33 is formed thereon to a thickness of 0.5 .mu.m to 1 .mu.m.

この基板1に以下の条件でイオンを照射して、非晶質の
51層33(Aをω)の単結晶層にする。
This substrate 1 is irradiated with ions under the following conditions to form a single crystal layer of 51 amorphous layers 33 (A is ω).

イオン種    Si” 加速エネルギ  10100f エネルギ密度  I M W/cm” ウェハ走査速度 1〜へin なお、基板1をイオン照射時に500℃位に加熱してお
くことにより、基板中の熱膨張差を小さくし、歪の導入
を防止すると良い。
Ion species: Si" Acceleration energy: 10100f Energy density: I M W/cm" Wafer scanning speed: 1~in By heating the substrate 1 to about 500°C during ion irradiation, the difference in thermal expansion within the substrate can be reduced. , it is better to prevent the introduction of distortion.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以上のととく非晶質または多結晶のS
i薄膜に、イオンを照射してストライプ状の溶融部を形
成し、イオンの照射部を移動せしめていくことによシ、
ストライプ状の溶融部を移動させるとともに、溶融部を
再結晶化せしめるものであシ、以下の効果を有する。
According to the present invention, the above-mentioned amorphous or polycrystalline S
By irradiating the thin film with ions to form a striped melted area and moving the ion irradiated area,
This method moves the striped melted portion and recrystallizes the melted portion, and has the following effects.

■ イオンビームは大電流が得られ、制御性も良く、汚
染の恐れもない。したがって溶融部のシリコンは、均一
に溶は温度が一様にでき、また溶融部に半導体の結晶性
や特性に影響を及ぼす物質の混入がないので、再結晶化
によシ良好な半導体単結晶が得られる。
■ Ion beams provide large currents, are easy to control, and have no risk of contamination. Therefore, the silicon in the molten zone can be melted uniformly at a uniform temperature, and there is no substance mixed in the molten zone that affects the crystallinity or characteristics of the semiconductor, so it is easy to recrystallize and form a semiconductor single crystal. is obtained.

■ イオンビームは電子ビーム等に比べて側桁も大きな
エネルギを与えることができ、且つその重さが重いため
打込み表面に近い所に止まるので表面層に有効にエネル
ギを与え、下地の半導体或いは下地に形成されている素
子にダメージを与えることがないと共に、大面積の単結
晶層を形成できる。
■ Compared to electron beams, etc., ion beams can give larger energy to the beams, and because they are heavy, they stop close to the implanted surface, so they can effectively give energy to the surface layer and damage the underlying semiconductor or substrate. This method does not damage the elements formed on the substrate, and it is possible to form a single-crystal layer with a large area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の概念を示す図、第3図は本発
明の実施例を示す断面図。 1・・・基板 2・・・イオンビーム 3・・・照射部 4・・・ハツチング部(単結晶層) 5・・・移動方向 23・・・スポット(照射部) 31・・・下地の半導体層 62・・・5i02層 33・・・非晶質Si層
FIGS. 1 and 2 are diagrams showing the concept of the present invention, and FIG. 3 is a sectional view showing an embodiment of the present invention. 1... Substrate 2... Ion beam 3... Irradiation part 4... Hatching part (single crystal layer) 5... Movement direction 23... Spot (irradiation part) 31... Underlying semiconductor Layer 62...5i02 layer 33...Amorphous Si layer

Claims (1)

【特許請求の範囲】[Claims]  絶縁性基板上に、非晶質又は多結晶の半導体薄膜を形
成し、該半導体の半導体的性質に及ぼす影響が少ないイ
オンを加速して照射し、該非晶質又は多結晶の半導体薄
膜に溶融領域を形成し、該イオンの照射部を移動するこ
とにより、該線状の溶融領域を移動させ、移動方向後方
の溶融領域を再結晶化せしめて単結晶層を形成する工程
を含むことを特徴とする半導体装置の製造方法。
An amorphous or polycrystalline semiconductor thin film is formed on an insulating substrate, and ions that have little effect on the semiconductor properties of the semiconductor are accelerated and irradiated to melt the amorphous or polycrystalline semiconductor thin film. and moving the ion irradiation part to move the linear melted region and recrystallize the melted region behind the moving direction to form a single crystal layer. A method for manufacturing a semiconductor device.
JP60031947A 1985-02-20 1985-02-20 Manufacture of semiconductor device Pending JPS61191013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60031947A JPS61191013A (en) 1985-02-20 1985-02-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60031947A JPS61191013A (en) 1985-02-20 1985-02-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61191013A true JPS61191013A (en) 1986-08-25

Family

ID=12345156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60031947A Pending JPS61191013A (en) 1985-02-20 1985-02-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61191013A (en)

Similar Documents

Publication Publication Date Title
US4564403A (en) Single-crystal semiconductor devices and method for making them
JPH0419698B2 (en)
JPS6115319A (en) Manufacture of semiconductor device
JPS61191013A (en) Manufacture of semiconductor device
JPH027415A (en) Formation of soi thin film
US4585512A (en) Method for making seed crystals for single-crystal semiconductor devices
US4549913A (en) Wafer construction for making single-crystal semiconductor device
JPS6221209A (en) High-frequency annealing method
JPS6347256B2 (en)
JPH02112227A (en) Manufacture of semiconductor crystal layer
JPH0311727A (en) Manufacture of semiconductor thin film
JPS5825220A (en) Manufacture of semiconductor substrate
JPH0779081B2 (en) Method for manufacturing semiconductor single crystal layer
JPH0136970B2 (en)
JPH0355975B2 (en)
JPS5958821A (en) Manufacture of semiconductor single crystal film
JPS59147425A (en) Formation of semiconductor crystal film
JPH01162321A (en) Manufacture of semiconductor single crystal layer
JPH0371767B2 (en)
JPS6221789A (en) Recrystallization
JPH031526A (en) Manufacture of semiconductor single crystal layer
JPS60257123A (en) Apparatus for growing crystal by fusing surface zone
JPH027414A (en) Formation of soi thin film
JPS62250631A (en) Manufacture of semiconductor thin-film crystal layer
JPS62165908A (en) Forming method for single crystal thin-film