JPH0737955B2 - Method of forming electrode terminal of sensor element - Google Patents

Method of forming electrode terminal of sensor element

Info

Publication number
JPH0737955B2
JPH0737955B2 JP61160421A JP16042186A JPH0737955B2 JP H0737955 B2 JPH0737955 B2 JP H0737955B2 JP 61160421 A JP61160421 A JP 61160421A JP 16042186 A JP16042186 A JP 16042186A JP H0737955 B2 JPH0737955 B2 JP H0737955B2
Authority
JP
Japan
Prior art keywords
electrode terminal
membrane electrode
sensor element
lead wire
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61160421A
Other languages
Japanese (ja)
Other versions
JPS6316255A (en
Inventor
春隆 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61160421A priority Critical patent/JPH0737955B2/en
Publication of JPS6316255A publication Critical patent/JPS6316255A/en
Publication of JPH0737955B2 publication Critical patent/JPH0737955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はリード線によって支持されるセンサ素子、特に
ガスセンサ素子の荷重を受ける前記センサ素子の電極端
子部の形成方法すなわち膜電極端子を前記センサ素子の
絶縁基板上に形成する方法と前記膜電極端子にリード線
を接合する方法とに関する。
The present invention relates to a method for forming an electrode terminal portion of a sensor element supported by a lead wire, particularly a gas sensor element, which receives a load of a gas sensor element, that is, a membrane electrode terminal is formed on an insulating substrate of the sensor element. And a method of joining a lead wire to the membrane electrode terminal.

〔従来技術とその問題点〕[Prior art and its problems]

セラミクス絶縁基板上にガス感応材料の薄膜や厚膜を形
成させたガスセンサ素子は、さらに前記の絶縁基板の裏
面に対しても薄膜法あるいは薄膜法によって加熱ヒータ
を形成させてセンサ素子を加熱するようにしている。こ
れは加熱による温度上昇によってガス感応材料へのガス
の吸脱着速度を増加させてセンサ素子の感度特性と応答
速度特性とを向上させることと、また素子表面に付着す
る汚れを加熱燃焼させてガスの検知部分を常に清浄に保
つこととを目的とする。
A gas sensor element in which a thin film or a thick film of a gas-sensitive material is formed on a ceramic insulating substrate is used to heat the sensor element by forming a heater on the back surface of the insulating substrate by a thin film method or a thin film method. I have to. This is because the temperature rise due to heating increases the adsorption / desorption rate of gas to / from the gas-sensitive material to improve the sensitivity characteristics and response speed characteristics of the sensor element, and the dirt adhering to the element surface is heated and burned to gas. The purpose is to always keep the detection part of.

このような加熱を行うセンサ素子においては、加熱用ヒ
ータの消費電力の低減化をはかるためセンサ素子のチッ
プを空中に浮かせて支持し、空気を断熱材としてセンサ
素子からの放熱を抑制するようにした断熱実装方式が多
く採用されている。この断熱実装方式のセンサではセン
サ素子がリード線によつて空中に支持されており、した
がってセラミクス絶縁基板上の膜電極端子とセラミクス
絶縁基板との接合ならびに膜電極端子とリード線との接
合に対してセンサ素子を保持するために十分な強度を与
えることが必要である。
In the sensor element that performs such heating, in order to reduce the power consumption of the heating heater, the chip of the sensor element is supported by floating in the air, and air is used as a heat insulating material to suppress heat radiation from the sensor element. The adiabatic mounting method is often used. In this adiabatic mounting type sensor, the sensor element is supported in the air by the lead wire, and therefore, for bonding the membrane electrode terminal on the ceramics insulating substrate to the ceramics insulating substrate and bonding the membrane electrode terminal to the lead wire, It is necessary to provide sufficient strength to hold the sensor element in place.

第5図に一般的なガスセンサの構成を示す。セラミクス
の絶縁基板1の上に通常の厚膜法で下部電極2と膜電極
端子3とを形成する。下部電極2の上にガス感応層4を
これも厚膜法で形成し、さらに同じく厚膜法で上部電極
5を重ね、上部電極5に連ねてセラミクス基板1上に膜
電極端子6を形成する。膜電極端子3と6とにはリード
線7と8とが接合される。またセラミクス基板1の裏面
には点線で示すように加熱用ヒータ9が厚膜法で形成さ
れ、この加熱用ヒータ9に連ねて形成した膜電極端子10
と11とにリード線12と13とが接合される。リード線7,8,
12,13はそれぞれステムピン14,15,16,17にスポット溶接
法で溶着され、センサ素子はリード線7,8,12,13によっ
て空中に支持されることになる。その結果絶縁基板1と
膜電極端子との接合部と膜電極端子とリード線との接合
部にはセンサ素子の重量による荷重がかかる。第6図は
膜電極端子3とリード線7との接合部の拡大図である。
他の膜電極端子とリード線についても全く同様である。
FIG. 5 shows the configuration of a general gas sensor. A lower electrode 2 and a membrane electrode terminal 3 are formed on a ceramic insulating substrate 1 by a normal thick film method. The gas-sensitive layer 4 is also formed on the lower electrode 2 by the thick film method, and the upper electrode 5 is also stacked by the thick film method, and the membrane electrode terminal 6 is formed on the ceramic substrate 1 so as to be continuous with the upper electrode 5. . Lead wires 7 and 8 are joined to the membrane electrode terminals 3 and 6. A heater 9 for heating is formed on the back surface of the ceramics substrate 1 by a thick film method as shown by a dotted line, and a film electrode terminal 10 formed in series with the heater 9 for heating is formed.
Lead wires 12 and 13 are joined to and 11. Lead wire 7,8,
12, 13 are welded to the stem pins 14, 15, 16, 17 by spot welding, respectively, and the sensor element is supported in the air by the lead wires 7, 8, 12, 13. As a result, a load due to the weight of the sensor element is applied to the joint between the insulating substrate 1 and the membrane electrode terminal and the joint between the membrane electrode terminal and the lead wire. FIG. 6 is an enlarged view of the joint between the membrane electrode terminal 3 and the lead wire 7.
The same applies to other membrane electrode terminals and lead wires.

従来技術においては下部電極2,膜電極端子3,6,10,11は
いずれもセラミクスの絶縁基板1に白金ペーストをスク
リーン印刷して厚さ10〜20μmに仕上げ乾燥後焼成して
形成する。上部電極5についても白金ペーストが用いら
れ、膜電極端子6に連なる一部がセラミクスの絶縁基板
1上にスクリーン印刷されるほかはガス感応層4の上に
スクリーン印刷されるが、形成の方法は全く同様であ
る。第6図について説明すれば焼成後の膜電極端子3に
白金または白金合金製のリード線7がスポット溶接で接
合される。スポット溶接を行うのは、リード線を膜電極
端子3に押しつけた状態で接合がなされること、膜電極
端子3とリード線7とが同系統の材料であって両者の間
に溶接の加熱冷却にともなう膨張係数の差による剥離な
どが生じないことなどの利点があるためである。
In the prior art, the lower electrode 2 and the membrane electrode terminals 3, 6, 10 and 11 are all formed by screen-printing a platinum paste on the ceramic insulating substrate 1 to a thickness of 10 to 20 μm, followed by drying and firing. Platinum paste is also used for the upper electrode 5, and a part connected to the membrane electrode terminal 6 is screen-printed on the ceramic insulating substrate 1 and screen-printed on the gas-sensitive layer 4. Exactly the same. Referring to FIG. 6, a lead wire 7 made of platinum or a platinum alloy is joined to the membrane electrode terminal 3 after firing by spot welding. Spot welding is performed by joining while the lead wire is pressed against the membrane electrode terminal 3, and the membrane electrode terminal 3 and the lead wire 7 are materials of the same system, and heating / cooling of welding is performed between them. This is because there is an advantage that peeling or the like due to the difference in expansion coefficient does not occur.

ところでガスセンサ素子が使われるガス洩れ警報器につ
いては振動や落下衝撃に十分耐え得ることが規定されて
いる。試験条件の最もきびしい落下衝撃テストにおいて
加えられる衝撃加速度値は約170Gである。センサ素子は
厚さ0.5mmの2.5mm角のセラミクス絶縁基板を用いている
ので、その重量は約12mgであることからこれに加わる衝
撃荷重は約2gとなる。安全係数を5倍にとっているため
これを考慮すると膜電極やリード線は10gの荷重に耐し
て剥離しない強度が必要となる。しかしながら白金ペー
ストを用いて形成した膜電極端子に白金線をスポット溶
接する従来技術においては、既に記したように膜電極端
子とリード線との接合は良好に行われるが、溶接時に熱
衝撃が加えられるため、白金の膜電極端子とセラミクス
絶縁基板との接合が弱まり、膜電極端子がセラミクス基
板より剥離しやすい状態となって上記の衝撃荷重に耐え
得る条件を満さなくなるおそれがあった。熱衝撃の加わ
り方の少ないリード線の接合方法としてはワイアボンデ
イング法やろう付け法があるがワイヤボンデイング法に
おいては使用し得るリード線の線径が細くガスセンサと
してのセンサ素子を支持するのに十分な強度をリード線
に与えることができない。またろう付け法においはろう
付けを容易に行えるように膜電極端子やリード線の表面
をNiCrのコーティング,蒸着あるいはスパッタなどによ
って被覆処理する必要があり、さらにろう付けの際には
リード線を膜電極端子表面に固定するための治具を必要
とするなど接合作業に手数を要する難点がある。
By the way, it is stipulated that a gas leak alarm device using a gas sensor element can sufficiently withstand vibration and drop impact. The impact acceleration value applied in the most severe drop impact test is 170G. Since the sensor element uses a 0.5 mm-thick 2.5 mm square ceramics insulating substrate, its weight is about 12 mg, so the impact load applied to it is about 2 g. Since the safety factor is set to 5 times, if this is taken into consideration, the membrane electrode and the lead wire must have a strength that can withstand a load of 10 g and do not peel off. However, in the conventional technique of spot welding a platinum wire to a membrane electrode terminal formed using a platinum paste, the membrane electrode terminal and the lead wire are joined well as already described, but a thermal shock is applied during welding. Therefore, the bonding between the platinum membrane electrode terminal and the ceramics insulating substrate is weakened, and the membrane electrode terminal may be easily peeled off from the ceramics substrate, which may not satisfy the above-mentioned conditions capable of withstanding the impact load. There are wire bonding and brazing methods for joining lead wires that are less likely to be subjected to thermal shock, but the wire diameter of the wire that can be used is small enough to support the sensor element as a gas sensor in the wire bonding method. Cannot be applied to the lead wire. In addition, in the brazing method, it is necessary to coat the surface of the membrane electrode terminal and the lead wire with NiCr coating, vapor deposition or sputtering so that brazing can be performed easily. There is a problem that the joining work is troublesome, such as requiring a jig for fixing the electrode terminal surface.

〔発明の目的〕[Object of the Invention]

この発明は上述の問題点を解決してセンサ素子のセラミ
クス絶縁基板と膜電極端子との接合強度を手数を要する
ことなく強固に保ち得る膜電極端子部の形成方法を提供
することを目的とする。
An object of the present invention is to solve the above-mentioned problems and to provide a method for forming a membrane electrode terminal portion that can firmly maintain the bonding strength between a ceramics insulating substrate and a membrane electrode terminal of a sensor element without requiring any trouble. .

〔発明の要点〕[Main points of the invention]

この発明は膜電極端子材料としてセラミクス絶縁基板に
対する接合強度がすぐれている白金ロジウムペーストを
用い、焼成した5μm以上50μm以下の厚みの膜電極端
子に対して金または金合金のリード線をスポット溶接法
にくらべて熱の加わり方が急激でない熱圧着法により接
合することによって、膜電極端子とセラミクス絶縁基板
との接合強度を向上させるとともに接合部に大きな熱衝
撃が加わることを避け、さらにリード線と膜電極との接
合性を良好にさせようとするものである。
This invention uses a platinum rhodium paste, which has excellent bonding strength to a ceramics insulating substrate, as a material for a membrane electrode terminal, and spot-welds a gold or gold alloy lead wire to a fired membrane electrode terminal having a thickness of 5 μm or more and 50 μm or less. Bonding by a thermocompression bonding method that heat is applied more rapidly than that of the conventional method improves the bonding strength between the membrane electrode terminal and the ceramics insulating substrate, avoids applying a large thermal shock to the bonding part, and It is intended to improve the bondability with the membrane electrode.

〔発明の実施例〕Example of Invention

本発明の実施例を第1図に示す。セラミクス絶縁基板と
してのアルミナ基板上に形成した白金ロジウムの膜電極
端子の厚みと、それに対する密着強度との関係が黒丸を
結ぶ線で示されている。膜電極端子部の構成は、膜電極
端子材料が白金ロジウム,リード線が金線,膜電極端子
へのリード線の接合方法が熱圧着法であることを除いて
は第6図と同様である。膜電極端子の形成はアルミナ絶
縁基板に白金ロジウムペーストをスクリーン印刷し、室
温乾燥によって溶剤を蒸発させた後100〜150℃で重合硬
化を行わせ、さらに昇温速度180℃/時間で1400℃まで
昇温させて1400℃で2時間焼成することによって行って
いる。焼成後の膜電極端子にリード線としての金線を熱
圧着法によって接合する。熱圧着法は膜電極端子にリー
ド線を接触させ、さらにリード線に加熱したヒータチッ
プを押し当てて膜電極端子に接合する方法であって、接
合界面は固相のままで接合材料同志の相互拡散によって
接合が行われる。この方法はスポット溶接法にくらべて
は加熱時間が長いため、接合時と熱応力が緩和されてい
るので膜電極端子とアルミナ基板の接合状態に支障をも
たらすことがない。またリード線が接合時にヒータチッ
プで膜電極端子に押しつけられているので、特にリード
線を固定するため治具を必要としない。上記の熱圧着法
で膜電極端子に接合された金線に荷重をかけ、アルミナ
基板から膜電極端子を垂直方向に引き剥がした時の荷重
の値を第1図の密着強度とする。密着強度にはバラツキ
があるので第1図においては多数の膜電極端子について
測定された値の平均値を実線で、バラツキの標準偏差
σの3倍を考慮した下限値すなわち−3σの値を点線
で示してある。バラツキの下限値を考慮しても5μmの
厚みで必要な密着強度10gの条件を満していることがわ
かる。したがって焼成後の膜厚5μmを本発明の方法に
よる下限値とする。第1図には比較のために白金ペース
トを用いて形成した膜電極端子についての測定値も白丸
で併記してある。一点鎖線が平均値であり、二点鎖線
が−3σである。この白金ペーストを用いた膜電極端
子の形成条件は前に述べた白金ロジウムペーストを用い
た膜電極端子の条件と全く同様であり、リード線も金線
の熱圧着法で接合したものである。したがってここで示
されている値は熱衝撃の影響のない状態でのものと考え
てよい。このような良好な条件の白金膜電極端子でも密
着強度のバラツキの下限値が10gを越えるには9μの厚
みを要し白金ロジウムの膜電極端子の密着強度ははるか
にすぐれていることがわかる。また第1図に示す測定の
範囲ではリード線と膜電極端子との接合状態には全く異
常が認められず、熱圧着法による接合が十分信頼できる
ことが判明している。
An embodiment of the present invention is shown in FIG. The relationship between the thickness of the platinum / rhodium film electrode terminal formed on the alumina substrate serving as the ceramics insulating substrate and the adhesion strength to the film electrode terminal is indicated by a line connecting black circles. The structure of the membrane electrode terminal portion is the same as that of FIG. 6 except that the material of the membrane electrode terminal is platinum rhodium, the lead wire is a gold wire, and the method of joining the lead wire to the membrane electrode terminal is thermocompression bonding. . Membrane electrode terminals are formed by screen-printing platinum rhodium paste on an alumina insulating substrate, evaporating the solvent by drying at room temperature, and then polymerizing and curing at 100 to 150 ° C, and further increasing the temperature to 180 ° C / hour up to 1400 ° C. It is performed by raising the temperature and baking at 1400 ° C. for 2 hours. A gold wire as a lead wire is joined to the membrane electrode terminal after firing by a thermocompression bonding method. The thermo-compression bonding method is a method in which a lead wire is brought into contact with a membrane electrode terminal, and a heater chip heated to the lead wire is pressed against the membrane electrode terminal to bond it to the membrane electrode terminal. Bonding is done by diffusion. Since this method has a longer heating time than the spot welding method, the thermal stress at the time of joining is relaxed, so that the joining state of the membrane electrode terminal and the alumina substrate is not hindered. Further, since the lead wire is pressed against the membrane electrode terminal by the heater chip at the time of joining, a jig is not particularly required to fix the lead wire. A load is applied to the gold wire bonded to the membrane electrode terminal by the above thermocompression bonding method, and the membrane electrode terminal is vertically peeled off from the alumina substrate, and the value of the load is defined as the adhesion strength in FIG. Since the adhesion strength varies, the average value of the values measured for a large number of membrane electrode terminals is shown by the solid line in FIG. 1, and the lower limit value that considers three times the standard deviation σ of the variations, that is, the value of -3σ is shown by the dotted line. It is indicated by. It can be seen that even if the lower limit of variation is taken into consideration, the condition of the required adhesion strength of 10 g is satisfied at a thickness of 5 μm. Therefore, the film thickness of 5 μm after firing is set as the lower limit value according to the method of the present invention. In FIG. 1, the measured values of the membrane electrode terminals formed by using the platinum paste are also shown by white circles for comparison. The one-dot chain line is the average value, and the two-dot chain line is -3σ. The conditions for forming the membrane electrode terminal using the platinum paste are exactly the same as the conditions for the membrane electrode terminal using the platinum rhodium paste described above, and the lead wire is also joined by the thermocompression bonding method of the gold wire. Therefore, it can be considered that the values shown here are in a state where there is no influence of thermal shock. It can be seen that even with the platinum film electrode terminal under such favorable conditions, a thickness of 9μ is required for the lower limit of the variation in adhesion strength to exceed 10 g, and the adhesion strength of the platinum rhodium film electrode terminal is far superior. Further, in the measurement range shown in FIG. 1, no abnormality was observed in the joining state between the lead wire and the membrane electrode terminal, and it has been proved that the joining by the thermocompression bonding method is sufficiently reliable.

第1図においては膜厚とともに密着強度が増大する傾向
のあることが認められる。これは膜電極端子の膜厚が薄
い時にはリード線を介して加わる荷重に対する膜自体の
強度が十分でないため、リード線と膜との接合部の境界
では膜が破壊し、前記の接合部に相当する微小面積に荷
重が集中するためであり、一方膜厚が増大すると膜自体
が荷重に耐えられるようになって膜電極端子の全面積に
相当する領域に荷重が分散することによるとして説明さ
れている。したがって膜厚の薄い場合にはリード線の接
合部分の膜が剥離し、膜厚の厚い場合は膜電極端子全体
が剥離する。センサ素子の面積が2.5mm角よりも大であ
り、厚みも0.5mmより増した場合には膜電極端子にかか
る荷重も増すので膜電極端子の膜厚の厚いことが必要と
なる。膜厚を増す場合には膜厚によってはスクリーン印
刷を複数回重ねる必要がある。焼成後の膜厚は印刷後の
膜厚の約半分に減少し、この減少の度合は白金ロジウム
ペーストのような厚膜導体ペーストに混練される原料導
体粉末とバインダの配合比によって異なる。またスクリ
ーン印刷1回当りの膜厚も上記配合比のほか印圧,印刷
速度,スクリーンの網目寸法や網厚などの依存する。こ
れは導体の比重とバインダの比重とに大きな差があり、
たとえば白金ペーストでは白金の比重21に対してバイン
ダの比重は約1であってペースト状態を保たせるための
バインダの容量比がきわめて大きくなっているためであ
る。場合によっては可塑剤が加えられることもあり、こ
の場合導体の容量比はさらに減少する。通常焼成後で10
μm近傍となる膜厚は1ないし2回のスクリーン印刷で
得られるが、それ以上の膜厚は印刷回数を増さなければ
得られない。しかしながら実用上のスクリーン印刷の回
数は4ないし5回が限度と考えられ、これに対応する膜
厚50μmを本発明による膜厚の上限とする。第1図より
50μmの膜厚における密着強度は十分な密着強度を与え
ることが推定できる。
In FIG. 1, it is recognized that the adhesion strength tends to increase with the film thickness. This is because when the film thickness of the membrane electrode terminal is thin, the strength of the film itself against the load applied via the lead wire is not sufficient, so the film breaks at the boundary of the joint between the lead wire and the film, which is equivalent to the aforementioned joint. It is explained that the load is concentrated on a very small area, and on the other hand, when the film thickness increases, the film itself can withstand the load and the load is distributed to the region corresponding to the entire area of the membrane electrode terminal. There is. Therefore, when the film thickness is thin, the film at the bonding portion of the lead wire is peeled off, and when the film thickness is thick, the entire membrane electrode terminal is peeled off. If the area of the sensor element is larger than 2.5 mm square and the thickness is larger than 0.5 mm, the load applied to the membrane electrode terminal is also increased, so that the membrane electrode terminal needs to be thick. When increasing the film thickness, it is necessary to repeat screen printing a plurality of times depending on the film thickness. The film thickness after firing is reduced to about half of the film thickness after printing, and the degree of this reduction depends on the compounding ratio of the raw material conductor powder and the binder to be kneaded in the thick film conductor paste such as platinum rhodium paste. Also, the film thickness per screen printing depends on printing pressure, printing speed, screen mesh size and mesh thickness, etc. in addition to the above composition ratio. There is a big difference between the specific gravity of the conductor and the specific gravity of the binder,
This is because, for example, in the case of platinum paste, the specific gravity of the binder is about 1 with respect to the specific gravity of platinum 21, and the capacity ratio of the binder for keeping the paste state is extremely large. In some cases, a plasticizer may be added, which further reduces the capacitance ratio of the conductor. 10 after normal firing
A film thickness in the vicinity of μm can be obtained by screen printing once or twice, but a film thickness larger than that cannot be obtained unless the number of printing is increased. However, it is considered that the practical screen printing is limited to 4 to 5 times, and the film thickness of 50 μm corresponding to this is set as the upper limit of the film thickness according to the present invention. From Figure 1
It can be estimated that the adhesion strength at a film thickness of 50 μm gives sufficient adhesion strength.

第2表は密着強度の経時変化を示した図であって、膜電
極端子の厚みを14μmとし絶縁基板の温度を400℃とし
て、4本のリード線をステムピンに固定した断熱実装構
造としたものについては測定した結果である。
Table 2 is a graph showing the change in adhesion strength over time. The thickness of the membrane electrode terminals is 14 μm, the temperature of the insulating substrate is 400 ° C., and the four-lead wires are fixed to the stem pins in an adiabatic mounting structure. Is the result of measurement.

この結果は1ロットのより40個のセンサ素子を抜き取
り、初期,5日後,10日後,20日後においてそれぞれ10個ず
つ破壊検査を行って得たもので、10個についての平均値
が示されている。破壊はいずれも膜電極端子と絶縁基板
との接合部で発生している。したがって本発明の方法に
より形成した膜電極端子と絶縁基板との密着強度および
膜電極端子とリード線との接合強度とには劣化は認めら
れないと結論できる。
This result was obtained by extracting 40 sensor elements from one lot and performing 10 destructive tests for each of the initial, 5 days, 10 days, and 20 days, and the average value for 10 is shown. There is. All of the breakdowns occurred at the joint between the membrane electrode terminal and the insulating substrate. Therefore, it can be concluded that the adhesion strength between the membrane electrode terminal formed by the method of the present invention and the insulating substrate and the joint strength between the membrane electrode terminal and the lead wire are not deteriorated.

第3図は本発明の第2の実施例を示した断面図である。
セラミクスの絶縁基板21に印刷された白金ロジウムの電
極リード22の膜電極端子23に相当する箇所のみに白金ロ
ジウムの膜電極24を重ねて膜電極端子23の厚みを増し、
この部分の密着強度を上げた上で膜電極24に金線をリー
ド線25として熱圧着したものである。この方法は電極リ
ード22に必要な密着強度を与える厚みを与えることがで
きない場合、たとえば特に膜厚が抵抗値との関係で制約
される加熱用ヒーターに連なる電極リードのある場合に
有効である。
FIG. 3 is a sectional view showing a second embodiment of the present invention.
Increasing the thickness of the membrane electrode terminal 23 by superimposing the platinum rhodium membrane electrode 24 only on the location corresponding to the membrane electrode terminal 23 of the platinum rhodium electrode lead 22 printed on the ceramic insulating substrate 21.
After increasing the adhesion strength of this portion, a gold wire is used as a lead wire 25 and thermocompression bonded to the membrane electrode 24. This method is effective when it is not possible to provide the electrode lead 22 with a thickness that provides the necessary adhesion strength, for example, when there is an electrode lead connected to a heating heater whose film thickness is restricted by the relationship with the resistance value.

第4図は本発明の第3の実施例を示したものである。白
金の膜電極に連ねて同じく白金膜で形成された電極リー
ド26に白金ロジウム膜のリード27を重ねて接続し、セラ
ミクス絶縁基板21との密着強度が強固であることの必要
な膜電極端子28を白金ロジウムで形成して、その上にリ
ード線29としての金線を熱圧着している。白金の膜電極
は荷重を受ける時の密着強度に問題がある点を除いて
は、高い導電率を有しており電極材料としてはすぐれて
いる。また材料自体に触媒作用があるので、ガスセンサ
素子の電極としてはガス感応膜の活性を助長する作用が
ある。したがって白金の上記の利点を有効に利用し、し
かも膜電極端子に十分な密着強度を与える点で第4図の
実施例は有効である。
FIG. 4 shows a third embodiment of the present invention. Platinum rhodium film lead 27 is connected to the platinum film electrode in the same manner as the platinum film electrode lead 26, and the film electrode terminal 28 is required to have strong adhesion strength with the ceramic insulating substrate 21. Is formed of platinum rhodium, and a gold wire as a lead wire 29 is thermocompression bonded thereto. Platinum membrane electrodes are excellent as electrode materials because they have high conductivity except that they have a problem of adhesion strength when a load is applied. Further, since the material itself has a catalytic action, it has an action of promoting the activity of the gas sensitive film as an electrode of the gas sensor element. Therefore, the embodiment of FIG. 4 is effective in that the above advantages of platinum are effectively used and that sufficient adhesion strength is given to the membrane electrode terminal.

〔発明の効果〕〔The invention's effect〕

この発明はガスセンサ素子を構成する重量が約12mgのセ
ラミクス絶縁基板上の膜電極端子を白金ロジウムペース
トのスクリーン印刷によって形成し、焼成した5μm以
上50μm膜電極端子に金または金合金のリード線を熱圧
着法によって接合するようにしたので、膜電極端子とセ
ラミクス絶縁基板との密着強度が従来の白金の膜電極よ
りも増加し、しかもリード線の膜電極端子への接合にお
ける加熱条件がスポット溶接法にくらべて緩和されて膜
電極端子とセラミクス基板との接合状態に悪影響を与え
ない。このため密着強度のバラツキの下限においても5
μm厚の膜電極端子で10g以上,8μm以上の膜厚で20g以
上の密着強度が確保され、また経時変化も認められず従
来の白金膜電極端子に対して強度が格段に向上してい
る。またリード線と膜電極端子との接合も良好であっ
て、断熱実装法における信頼性が向上し、基板も2.5mm
角という小型のものを用いることができて、加熱用ヒー
ターの消費電力を約0.5Wという低い値で用いることが可
能となった。
According to the present invention, a film electrode terminal on a ceramics insulating substrate having a weight of about 12 mg, which constitutes a gas sensor element, is formed by screen-printing a platinum rhodium paste, and a gold or gold alloy lead wire is heated on a baked film electrode terminal of 5 μm or more and 50 μm. Since the bonding is performed by the crimping method, the adhesion strength between the membrane electrode terminal and the ceramics insulating substrate is higher than that of the conventional platinum membrane electrode, and the heating condition for joining the lead wire to the membrane electrode terminal is the spot welding method. It is relaxed compared to the conventional method and does not adversely affect the bonding state between the membrane electrode terminal and the ceramic substrate. Therefore, even if the lower limit of the variation in adhesion strength is 5
Adhesion strength of 10 g or more for a membrane electrode terminal having a thickness of 8 μm and 20 g or more for a film thickness of 8 μm or more is secured, and there is no change over time, and the strength is significantly improved over the conventional platinum membrane electrode terminal. Also, the connection between the lead wire and the membrane electrode terminal is good, which improves the reliability of the heat insulation mounting method, and the substrate is 2.5 mm.
It is possible to use small corners, and it has become possible to use the heater with low power consumption of about 0.5W.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例における白金ロジウム膜電極端
子の膜厚と密着強度との関係図,第2図は本発明の実施
例における膜電極端子の密着強度と経過時間との関係
図,第3図は本発明の第2の実施例の断面図,第4図は
本発明の第3の実施例の斜視図,第5図はガスセンサ素
子の断熱実装状態を示す斜視図,第6図は従来技術にお
ける膜電極端子部の拡大図である。 1,21:絶縁基板、3,6,10,11,23,28:膜電極端子、7,8,12,
13,25,29:リード線。
FIG. 1 is a relationship diagram between the film thickness and adhesion strength of a platinum rhodium film electrode terminal in an embodiment of the present invention, and FIG. 2 is a relationship diagram between adhesion strength of a film electrode terminal and elapsed time in an embodiment of the present invention. FIG. 3 is a sectional view of the second embodiment of the present invention, FIG. 4 is a perspective view of the third embodiment of the present invention, and FIG. 5 is a perspective view showing a heat insulating mounting state of a gas sensor element, and FIG. [FIG. 3] is an enlarged view of a membrane electrode terminal portion in the prior art. 1,21: Insulating substrate, 3,6,10,11,23,28: Membrane electrode terminal, 7,8,12,
13,25,29: Lead wire.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量が約12mgのセラミクス絶縁基板上に白
金ロジウムペーストからなる電極端子をスクリーン印刷
して焼成後の厚みを5μm以上50μm以下に形成して該
電極端子とセラミクス絶縁基板とを接合させ、この焼成
後の電極端子にリード線を熱圧着法によって接合させる
ことを特徴とするセンサ素子の電極端子部の形成方法。
1. An electrode terminal made of a platinum rhodium paste is screen-printed on a ceramics insulating substrate having a weight of about 12 mg to form a thickness after firing of 5 μm or more and 50 μm or less, and the electrode terminal and the ceramics insulating substrate are bonded together. Then, a method for forming an electrode terminal portion of a sensor element is characterized in that a lead wire is joined to the electrode terminal after firing by a thermocompression bonding method.
【請求項2】特許請求の範囲第1項記載の方法におい
て、リード線が金線であることを特徴とするセンサ素子
の電極端子部の形成方法。
2. The method according to claim 1, wherein the lead wire is a gold wire, and the electrode terminal portion of the sensor element is formed.
【請求項3】特許請求の範囲第1項記載の方法におい
て、リード線が合金金線であることを特徴とするセンサ
素子の電極端子部の形成方法。
3. A method for forming an electrode terminal portion of a sensor element according to claim 1, wherein the lead wire is an alloy gold wire.
JP61160421A 1986-07-08 1986-07-08 Method of forming electrode terminal of sensor element Expired - Lifetime JPH0737955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61160421A JPH0737955B2 (en) 1986-07-08 1986-07-08 Method of forming electrode terminal of sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61160421A JPH0737955B2 (en) 1986-07-08 1986-07-08 Method of forming electrode terminal of sensor element

Publications (2)

Publication Number Publication Date
JPS6316255A JPS6316255A (en) 1988-01-23
JPH0737955B2 true JPH0737955B2 (en) 1995-04-26

Family

ID=15714560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61160421A Expired - Lifetime JPH0737955B2 (en) 1986-07-08 1986-07-08 Method of forming electrode terminal of sensor element

Country Status (1)

Country Link
JP (1) JPH0737955B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9411235U1 (en) * 1994-07-12 1994-09-08 Murata Elektronik Gmbh Sensor for detecting a temperature and / or a flow

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837552U (en) * 1981-09-04 1983-03-11 日本電気株式会社 ceramic gas sensor
JPS5837553U (en) * 1981-09-04 1983-03-11 日本電気株式会社 ceramic gas sensor
JPS6082952A (en) * 1983-10-14 1985-05-11 Hitachi Ltd Oxygen concentration detector

Also Published As

Publication number Publication date
JPS6316255A (en) 1988-01-23

Similar Documents

Publication Publication Date Title
KR100426939B1 (en) Gas sensor
JPS6039510A (en) Liquid level detecting element
JP2002188966A (en) Temperature sensor and its manufacturing method and manufacture control method
US5476003A (en) Measuring sensor for determining gas compositions
JPH0737955B2 (en) Method of forming electrode terminal of sensor element
JP3408910B2 (en) Gas sensor and manufacturing method thereof
JPWO2003031907A1 (en) Strain sensor and manufacturing method thereof
JPH02124456A (en) Connecting structure of solid-state electrolyte element
JPS6124178A (en) Method of contacting conductor with conductive strip or conductive layer in thermal resistant manner
JPH10208906A (en) Temperature sensor
JPH0996571A (en) Heat receiving body of temperature sensor
JP2829552B2 (en) Gas detection element
JP2002340832A (en) Semiconductor device, manufacturing method for semiconductor device, gas sensor and manufacturing method for gas sensor
JP2701565B2 (en) Thin film thermistor and method of manufacturing the same
JPH08255679A (en) Plate ceramic heater and its manufacture
JPS5842965A (en) Oxygen sensor element
JP2773526B2 (en) Manufacturing method of thin film thermistor
JPH10199708A (en) Temperature sensor
JP2734840B2 (en) Contact type thin film thermistor
JPH05340909A (en) Bonding pad
JPS59119250A (en) Sensor element
JPS62202501A (en) Thin film thermistor
JPS5821801B2 (en) Temperature sensing element for high temperature and its manufacturing method
JPH08283075A (en) Temperature sensor heat receiving body and its production
JPH0468264B2 (en)