JP3408910B2 - Gas sensor and manufacturing method thereof - Google Patents

Gas sensor and manufacturing method thereof

Info

Publication number
JP3408910B2
JP3408910B2 JP03261596A JP3261596A JP3408910B2 JP 3408910 B2 JP3408910 B2 JP 3408910B2 JP 03261596 A JP03261596 A JP 03261596A JP 3261596 A JP3261596 A JP 3261596A JP 3408910 B2 JP3408910 B2 JP 3408910B2
Authority
JP
Japan
Prior art keywords
lead
gas sensor
film
pad
thick film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03261596A
Other languages
Japanese (ja)
Other versions
JPH0968512A (en
Inventor
毅 中原
智弘 井上
博宣 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP03261596A priority Critical patent/JP3408910B2/en
Publication of JPH0968512A publication Critical patent/JPH0968512A/en
Application granted granted Critical
Publication of JP3408910B2 publication Critical patent/JP3408910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】この発明は金属酸化物半導体ガスセ
ンサの改良に関し、特にセンサ本体の外部端子への接続
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a metal oxide semiconductor gas sensor, and more particularly to connection of a sensor body to an external terminal.

【0002】[0002]

【従来技術】金属酸化物半導体ガスセンサに対する主な
要求は消費電力を減少させ、ガスセンサの駆動に必要な
電源回路のコストを減少させることである。このために
は、印刷技術や薄膜技術を用いてガスセンサを小型化
し、かつガスセンサに用いるリードの熱伝導を減少させ
ることが必要である。即ちリードはガスセンサからの放
熱の主要部分を占め、消費電力を減少させるためにはリ
ードに熱伝導率の低い素材を用い、またリードの線径を
小さくする必要がある。
BACKGROUND OF THE INVENTION The main requirements for metal oxide semiconductor gas sensors are to reduce power consumption and reduce the cost of the power supply circuit required to drive the gas sensor. For this purpose, it is necessary to use printing technology or thin film technology to miniaturize the gas sensor and reduce the heat conduction of the leads used in the gas sensor. That is, the lead occupies a major part of heat radiation from the gas sensor, and in order to reduce power consumption, it is necessary to use a material with low thermal conductivity for the lead and to reduce the wire diameter of the lead.

【0003】金属酸化物半導体ガスセンサに関して注目
されている用途は、COの検出である。この場合、ガス
センサの温度を周期的に変化させ、高温への加熱でガス
センサの金属酸化物半導体をヒートクリーニングし、か
つ低温側で金属酸化物半導体膜の出力にCOへの選択性
が生じることを利用して、COを検出する。このことは
ガスセンサに絶えず熱衝撃が加わることを意味する。
An application of interest for metal oxide semiconductor gas sensors is the detection of CO. In this case, the temperature of the gas sensor is periodically changed to heat-clean the metal oxide semiconductor of the gas sensor by heating to a high temperature, and the output of the metal oxide semiconductor film at the low temperature side has selectivity to CO. It is used to detect CO. This means that the gas sensor is constantly subjected to thermal shock.

【0004】発明者は、消費電力が小さく、かつCOの
検出に適したガスセンサの開発の過程で、以下の問題に
直面した。 1) リードを接続するための厚膜電極パッドに単味の金
を用いると、温度変化の繰り返しによりパッドが基板か
ら剥離する。 2) これを避けるために、厚膜電極パッドに白金を用い
ると、リードの接続が困難になる。 3) 消費電力の小さなリードに適したPt−W線(Pt
−W合金線)やAPM線(Au−Pd−Mo合金線)
は、パッドへの接続が難しく、白金パッドでは充分な接
続強度が得られない。そこで消費電力が小さく、温度変
化に対する耐久性の高いガスセンサを得るには、基板と
の付着力が高く、かつリードとの接続性能に優れた厚膜
電極パッドが必要になる。
The inventor has encountered the following problems in the process of developing a gas sensor which consumes less power and is suitable for detecting CO. 1) When plain gold is used for the thick film electrode pad for connecting the lead, the pad peels from the substrate due to repeated temperature changes. 2) If platinum is used for the thick film electrode pad to avoid this, it becomes difficult to connect the leads. 3) Pt-W wire (Pt suitable for leads with low power consumption)
-W alloy wire) and APM wire (Au-Pd-Mo alloy wire)
, It is difficult to connect to a pad, and a platinum pad cannot provide sufficient connection strength. Therefore, in order to obtain a gas sensor with low power consumption and high durability against temperature changes, a thick film electrode pad that has high adhesion to the substrate and excellent connection performance with leads is required.

【0005】ここで関連する先行技術を示すと、特開平
3−130654号公報は以下のガスセンサを開示して
いる。即ち、ほぼ正方形の基板の一方の主面に金属酸化
物半導体膜を配置し、反対側の主面にヒータ膜を配置す
る。金属酸化物半導体膜に接続した電極をスルーホール
を介してヒータ膜側に導き、ヒータ膜と金属酸化物半導
体膜に白金からなる厚膜の電極パッドを接続する。そし
てこれらの電極パッドにリードを熱圧着で接続する。こ
れらの結果、電極パッドはヒータ膜側に揃えられ、基板
の両主面はスルーホールで接続される。しかしながら電
極パッドは白金で、Pt−WやAPM線等の高抵抗で熱
伝導率が低いリードの接続は困難となり、消費電力の減
少に限界がある。
As a related prior art, Japanese Patent Laid-Open No. 3-130654 discloses the following gas sensor. That is, the metal oxide semiconductor film is arranged on one main surface of the substantially square substrate and the heater film is arranged on the opposite main surface. The electrode connected to the metal oxide semiconductor film is guided to the heater film side through the through hole, and a thick film electrode pad made of platinum is connected to the heater film and the metal oxide semiconductor film. Then, the leads are connected to these electrode pads by thermocompression bonding. As a result, the electrode pads are aligned on the heater film side, and both main surfaces of the substrate are connected by through holes. However, since the electrode pad is platinum, it is difficult to connect a lead having high resistance and low thermal conductivity such as Pt-W or APM wire, and there is a limit to the reduction of power consumption.

【0006】これ以外の先行技術として、特開昭60−
209161号公報は、ZrO2酸素センサへのリード
接続に、厚膜の白金電極パッドを用い、Ptリードを熱
圧着やスポット溶接で接続し、溶接部を白金ペーストで
被覆することを開示している。このようにすれば、白金
パッドと白金リードとの接続強度の不足を、白金ペース
トによる被覆で改善できる。しかしながらこの公報は、
基板との付着力と、リードとの接続性能の双方に優れた
パッド材料を提供していない。また白金ペーストによる
被覆は、金属酸化物半導体ガスセンサの場合には問題が
ある。即ち白金ペーストの焼成には900℃程度の温度
が必要で、これはガス検出用の金属酸化物半導体の最高
焼成温度(通常600〜700℃程度)よりも高く、金
属酸化物半導体を劣化させる。さらにいずれの先行技術
も、ガスセンサに繰り返し温度変化を与える際に、パッ
ドと基板との付着力が問題になることを示唆していな
い。
As another prior art, Japanese Patent Laid-Open No. 60-
JP209161 discloses using a thick film platinum electrode pad for lead connection to a ZrO 2 oxygen sensor, connecting Pt leads by thermocompression bonding or spot welding, and coating the weld with platinum paste. . In this way, the lack of connection strength between the platinum pad and the platinum lead can be improved by coating with the platinum paste. However, this publication
It does not provide a pad material that is excellent in both the adhesion to the substrate and the connection performance with the leads. Also, the coating with platinum paste is problematic in the case of metal oxide semiconductor gas sensors. That is, the baking of the platinum paste requires a temperature of about 900 ° C., which is higher than the maximum baking temperature (usually about 600 to 700 ° C.) of the metal oxide semiconductor for gas detection and deteriorates the metal oxide semiconductor. Furthermore, neither of the prior arts suggests that the adhesive force between the pad and the substrate becomes a problem when the temperature change is repeatedly applied to the gas sensor.

【0007】[0007]

【発明の課題】この発明の課題は、ガスセンサの落下や
振動等に対する耐久性と、温度変化の繰り返しに対する
耐久性の双方を改善し、さらに消費電力を軽減すること
にある(請求項1〜5)。この発明の他の課題は、ガス
センサへのリードの取付を容易にすることにある(請求
項4)。
[Problem of the invention is an object of the present invention, and durability against falling or vibration of the gas sensor, and improve both the durability against repeated temperature changes is to further reduce the power consumption (claims 1 to 5 ). Another object of the present invention is to facilitate attachment of the lead to the gas sensor (Claim 4).

【0008】[0008]

【発明の構成】この発明では、耐熱絶縁基板に、ガスに
より抵抗値が変化する金属酸化物半導体膜とヒータ膜と
複数の厚膜電極パッドとを設けて、該複数の厚膜電極パ
ッドに前記金属酸化物半導体膜と前記ヒータ膜,及びリ
ードを接続したガスセンサにおいて、前記複数の厚膜電
極パッドがAu−Pt,Au−Pd,Au−Rhのいず
れかの合金からなり、かつ前記リードがPt−W,Au
−Pd−Mo,Pt−ZrO2,Pt−Pdのいずれか
からなり、さらにリードと厚膜電極パッドとの接続部を
厚膜で被覆する。
According to the present invention, a heat-resistant insulating substrate is provided with a metal oxide semiconductor film whose resistance value changes with gas, a heater film and a plurality of thick film electrode pads, and the plurality of thick film electrode pads are provided with In a gas sensor in which a metal oxide semiconductor film, the heater film, and leads are connected, the plurality of thick film electrode pads are made of an alloy of Au-Pt, Au-Pd, or Au-Rh, and the leads are Pt. -W, Au
-Pd-Mo, made from either Pt-ZrO 2, Pt-Pd , further covers the connecting portion between the lead and the thick film electrode pads in a thick film.

【0009】ここに基板はアルミナやシリカ,ZrO2
等の耐熱絶縁基板を用い、例えば正方形や長方形状と
し、金属酸化物半導体膜とヒータ膜と厚膜の電極パッド
とを配置する。金属酸化物半導体膜やヒータ膜は薄膜で
も厚膜でも良いが、電極パッドは厚膜とする。これは薄
膜パッドでは基板とパッドとの付着力が不十分で、リー
ドの熱圧着や溶接時にパッドが容易に剥離するからであ
る。電極パッドの膜厚は例えば2〜50μm,好ましく
は5〜20μmとする。電極パッドの材料は金を含有す
る合金とし、Au−Pt,Au−Rh,Au−Pdを用
いる。電極パッドはこれらの合金を材料として1層で構
成しても良いが、例えば下地を白金,上地を金とした2
層で成膜しても良い。このような2層のパッドは上層の
成分と下層の成分が混合して合金化する。電極パッドと
して特に好ましいのはAu−Pt合金で、最初から合金
として電極パッドを成膜しても、あるいは下層を白金,
上層を金として成膜し、上層と下層の合金化によりAu
−Pt合金パッドとしても良い。また基板の表裏両主面
を用いて、その一方の主面にSnO 2 膜やZnO膜,I
2 3 等の金属酸化物半導体膜を配置し、他方の主面に
RuO 2 やPt等のヒータ膜を配置する。そして主面の
一方に厚膜電極パッドを配置し、反対側の主面とはスル
ーホール等で接続する。反対側の主面との接続には、ス
ルーホールの他に、例えば基板の端部や側面に設けた導
電膜等を用いても良い。このようにすれば基板面積を減
少させて消費電力を削減し、リードの取付面を1面に揃
えて取付を容易にすることができる。
Here, the substrate is alumina, silica, ZrO 2
A heat-resistant insulating substrate such as the above is used to form, for example, a square shape or a rectangular shape, and the metal oxide semiconductor film, the heater film, and the thick film electrode pad are arranged. The metal oxide semiconductor film and the heater film may be thin or thick, but the electrode pads are thick. This is because the adhesive force between the substrate and the pad is insufficient with the thin film pad, and the pad is easily peeled off during thermocompression bonding or welding of the lead. The film thickness of the electrode pad is, for example, 2 to 50 μm, preferably 5 to 20 μm. Material of electrode pad contains gold
Au-Pt, Au-Rh, Au-Pd
There is. The electrode pad may be formed of a single layer using these alloys, but for example, the base is platinum and the top is gold.
You may form into a layer. In such a two-layer pad, the components of the upper layer and the components of the lower layer are mixed and alloyed. An Au-Pt alloy is particularly preferable as the electrode pad, and even if the electrode pad is formed as an alloy from the beginning, or if the lower layer is platinum,
The upper layer is formed as gold, and the upper layer and the lower layer are alloyed to form Au.
It may be a -Pt alloy pad. In addition, both the front and back main surfaces of the board
On one of its main surfaces, a SnO 2 film, a ZnO film, an I
A metal oxide semiconductor film such as n 2 O 3 is arranged on the other main surface.
A heater film such as RuO 2 or Pt is arranged. And of the main surface
Place the thick film electrode pad on one side and
-Connect with a hole. In addition to the through holes, for example, a conductive film or the like provided on the end portion or side surface of the substrate may be used for the connection with the main surface on the opposite side. By doing so, it is possible to reduce the board area, reduce the power consumption, and align the lead mounting surface with one surface to facilitate mounting.

【0010】ガスセンサの消費電力を減少させるため、
リードを高抵抗の線材で構成し、高抵抗線は一般に熱伝
導率が小さい。線材の種類は、Pt−W線(W含有量2
〜12重量%程度)、APM線(Pd含有量10〜60
重量%程度,Mo含有量1〜10重量%程度,残りは
金),Pt−ZGS線(Ptの結晶粒界にZrO 2 を析
出させたPt−ZrO 2 合金,ZrO 2 含有量は1〜0.
01重量%程度),Pt−Pd線(Pd含有量5〜60
重量%程度)のいずれかとする。これらは貴金属合金線
で、特に好ましいのはPt−W線とAPM線である。
In order to reduce the power consumption of the gas sensor,
The lead is composed of a high resistance wire, and the high resistance wire generally has a low thermal conductivity. The type of wire is Pt-W wire (W content 2
~ 12 wt%), APM line (Pd content 10-60
Wt%, Mo content 1-10 wt%, the rest
Gold), Pt-ZGS line (ZrO 2 is deposited at the grain boundary of Pt.
The content of Pt-ZrO 2 alloy and ZrO 2 that were taken out was 1 to 0.
01 wt%), Pt-Pd wire (Pd content 5-60
Weight%). These are noble metal alloy wires, and particularly preferred are Pt-W wires and APM wires.

【0011】ガスセンサの使用方法は任意であるが、ガ
スセンサの温度を周期的に変化させる場合に、この発明
は特に適している。ガスセンサの温度を周期的に変化さ
せると、電極パッドと基板との界面に繰り返し熱衝撃が
加わり、パッドが剥離する。この問題に対してこの発明
では、金合金の厚膜電極パッドを用いることにより、基
板とパッドの付着力を改善し、パッドの剥離を防止す
る。そして金合金パッドはリードとの接続が容易で、接
続の難しい高抵抗貴金属合金線を用いても、充分な接続
強度が得られる。そして貴金属合金線を用いることがで
きるので、リードからの熱損失を抑制し、ガスセンサの
消費電力を小さくできる。
The method of using the gas sensor is arbitrary, but the present invention is particularly suitable when the temperature of the gas sensor is changed periodically. When the temperature of the gas sensor is periodically changed, thermal shock is repeatedly applied to the interface between the electrode pad and the substrate, and the pad is peeled off. To solve this problem, the present invention improves the adhesive force between the substrate and the pad and prevents the peeling of the pad by using a thick film electrode pad of gold alloy. The gold alloy pad can be easily connected to the lead, and sufficient connection strength can be obtained even if a high resistance noble metal alloy wire that is difficult to connect is used. Since the noble metal alloy wire can be used, heat loss from the leads can be suppressed and the power consumption of the gas sensor can be reduced.

【0012】次にリードと厚膜電極パッドの接続部を厚
膜で被覆すると、被覆した厚膜によりリードをパッドに
固定できる。この結果、リードとパッドとの接続強度を
改善できる。厚膜材料には、AuやAu−Pt,Au−
Rh等を用いる。厚膜材料は例えばペーストとして接続
部に塗布し、焼成して固化させる。ここで焼成温度を低
くし、金属酸化物半導体の変質を防止するため、低温焼
成が容易な金が厚膜被覆材料に好ましい。また金はパッ
ドやリードと容易に結合する材料で、リードの接続強度
を増すためにも、金が好ましい。さらに電極パッドを基
板の1主面上に4個設け、これらを4角形の頂点に配置
し、各電極パッド毎にリードを各1本接続し、各リード
を接続した電極パッドを通る4角形の対角線に実質的に
平行に、リードを配置する。
Next, the connecting portion between the lead and the thick film electrode pad is thickened.
When coated with a film, the coated thick film leads to pads
Can be fixed. As a result, the connection strength between the lead and the pad can be improved. Thick film materials include Au, Au-Pt, Au-
Rh or the like is used. The thick film material is applied, for example, as a paste to the connection portion and is baked and solidified. Here, gold is preferable for the thick-film coating material because it can be easily fired at a low temperature in order to lower the firing temperature and prevent alteration of the metal oxide semiconductor. Further, gold is a material that is easily bonded to the pads and the leads, and gold is preferable in order to increase the connection strength of the leads. Furthermore, based on the electrode pad
Four pieces are provided on one main surface of the plate, and these are arranged at the vertices of the quadrangle
Then, connect one lead for each electrode pad and
To the diagonal of the quadrangle passing through the electrode pad
Place the leads in parallel.

【0013】リードと厚膜電極パッドとの接続には、パ
ラレルギャップ溶接等の溶接や、金ペースト等の厚膜に
よる固定、あるいは超音波熱圧着等を用いる。ここでパ
ラレルギャップ溶接と超音波熱圧着とを比較すると、溶
接の方が作業性に優れている。しかし溶接では、溶接自
体によりパッド上でリードを切断できず、別の工程でリ
ードを切断する必要がある。この工程には好ましくは溶
断を用いる。即ち1本のリードを基板の2つのパッドに
溶接すると、パッド間にリードが残る。次にこれらの2
つのパッド間のリードに大電流の溶断電流を流すと、リ
ードは発熱で溶断される。例えば当初2本のリードを十
字状に配置し、各リードを4角形の対角2頂点にある2
つのパッドを結ぶように接続する。この後2本のリード
を溶断すると、基板からはリードが十字状に外に伸びる
ことになる。この場合、各リードは前記4角形の対角線
に実質的に平行になる。そしてリードが基板から十字状
に伸びるので、様々な向きの振動や外力に対して、ガス
センサの耐久性が増す。
To connect the lead and the thick film electrode pad, welding such as parallel gap welding, fixing with a thick film of gold paste or ultrasonic thermocompression bonding is used. When parallel gap welding and ultrasonic thermocompression bonding are compared here, welding is superior in workability. However, in welding, the lead cannot be cut on the pad by the welding itself, and it is necessary to cut the lead in another step. Fusing is preferably used for this step. That is, when one lead is welded to two pads on the substrate, the lead remains between the pads. Then these two
When a large fusing current is applied to the lead between two pads, the lead is fused due to heat generation. For example, initially, two leads are arranged in a cross shape, and each lead is located at the two corners of the quadrangle.
Connect so that the two pads are tied together. After that, when the two leads are melted and cut, the leads extend outward in a cross shape from the substrate. In this case, each lead is substantially parallel to the diagonal of the quadrangle. Since the leads extend in a cross shape from the substrate, the durability of the gas sensor is increased against vibrations and external forces in various directions.

【0014】またこの発明は、耐熱絶縁基板に、ガスに
より抵抗値が変化する金属酸化物半導体膜とヒータ膜と
複数の厚膜電極パッドとを設けて、該複数の厚膜電極パ
ッドに前記金属酸化物半導体膜と前記ヒータ膜,及びリ
ードを接続したガスセンサの製造方法において、Au−
Pt,Au−Pd,Au−Rhのいずれかの合金からな
る厚膜電極パッドを絶縁基板上に成膜する工程と、前記
厚膜電極パッドと、Pt−W,Au−Pd−Mo,Pt
−ZrO 2 ,Pt−Pdのいずれかからリードとの接続
部を、厚膜で被覆し、ここで枠に前記リードを十字状に
張った状態で、前記厚膜電極パッドにリードを取り付け
て、前記厚膜で被覆する。
The present invention also provides a heat-resistant insulating substrate for gas.
A metal oxide semiconductor film and a heater film whose resistance value changes more
A plurality of thick film electrode pads are provided, and the plurality of thick film electrode pads are provided.
The metal oxide semiconductor film, the heater film, and the lead
In a method of manufacturing a gas sensor connected to a battery, the Au-
Made of any alloy of Pt, Au-Pd and Au-Rh
A step of forming a thick film electrode pad on an insulating substrate,
Thick film electrode pad, Pt-W, Au-Pd-Mo, Pt
-ZrO 2, connection from one of Pt-Pd and lead
Part with thick film, where the leads are crossed to the frame.
Attach the lead to the thick film electrode pad in the tensioned state
And coat with the thick film.

【0015】[0015]

【発明の作用と効果】この発明では、ガスセンサの厚膜
電極パッドに金合金を用いる。この結果、パッドと基板
との付着力が高く、ガスセンサに温度変化を繰り返し加
えても、パッドが基板から剥離しない。そして金合金パ
ッドはリードとの接続強度が高く、熱伝導率の小さな貴
金属合金線等をリードに用いても、リードの接続強度を
高く保つことができ、厚膜で被覆するので接続強度をさ
らに改善できる。また電極パッドを基板の1主面上に4
個設けて4角形の4頂点に配置し、リードを4角形の対
角線に実質的に平行に配置すると、リードが基板から十
字状に伸びるので、様々な向きの振動や外力に対して、
ガスセンサの耐久性が増す。これらの結果、ガスセンサ
の消費電力を小さくできる。またこの発明のガスセンサ
の製造方法では、消費電力が小さく、パッドへのリード
の接続強度が高いガスセンサが得られる。
In the present invention, the gold alloy is used for the thick film electrode pad of the gas sensor. As a result, the adhesive force between the pad and the substrate is high, and the pad is not peeled from the substrate even if the temperature change is repeatedly applied to the gas sensor. The gold alloy pad has a high connection strength with the lead, and the connection strength of the lead can be kept high even if a precious metal alloy wire or the like having a small thermal conductivity is used for the lead, and since it is covered with a thick film, the connection strength is improved.
Can be improved further. In addition, 4 electrode pads are provided on one main surface of the substrate.
Individually arranged and placed at the four vertices of the quadrangle, and the leads
Placing the leads substantially parallel to the square wire will allow the leads to move away from the substrate.
Since it extends in a letter shape, it is possible to respond to vibrations and external forces in various directions.
The durability of the gas sensor is increased. As a result, the power consumption of the gas sensor can be reduced. Further, the gas sensor of the present invention
In this manufacturing method, the power consumption is small and the lead to the pad is
A gas sensor with high connection strength can be obtained.

【0016】リードとパッドとの接続は、パラレルギャ
ップ溶接等の溶接,超音波熱圧着等の熱圧着,あるいは
金等の厚膜からなる保護膜での固定のいずれを用いても
良いが、好ましくは溶接や熱圧着でリードを接続し、接
続部を厚膜の保護膜で覆う。このようにすれば、リード
とパッドとの接続強度が増す。保護膜に好ましいのは、
低温焼成が容易でリードとの付着力にも優れた金であ
る。
The lead and the pad may be connected by welding such as parallel gap welding, thermocompression bonding such as ultrasonic thermocompression bonding, or fixing with a protective film made of a thick film such as gold, but it is preferable. Connect the leads by welding or thermocompression and cover the connection with a thick protective film. By doing so, the connection strength between the lead and the pad is increased. The preferred protective film is
Gold that is easy to fire at low temperatures and has excellent adhesion to leads.

【0017】次にリードを溶接や保護膜でパッドに接続
する場合、溶断を用いれば簡単にリードをパッド上で切
断できる。ここで例えば電極パッドが4個の場合、リー
ドを4個のパッドを結ぶ4角形の対角線に実質的に平行
に配置すると、リードの向きが様々なので、基板は4本
のリードで平面的に支えられ、様々な方向からの振動や
外力に対して、基板を保持できる。そしてこのために
は、リードを4角形の対角線に沿って配置して接続した
後に溶断すれば良い。
Next, when the lead is connected to the pad by welding or a protective film, the lead can be easily cut on the pad by using fusing. Here, for example, when there are four electrode pads, if the leads are arranged substantially parallel to the diagonal line of the quadrangle connecting the four pads, the directions of the leads are different, so the substrate is supported flatly by the four leads. Therefore, the substrate can be held against vibrations and external forces from various directions. For this purpose, the leads may be arranged along the diagonal lines of the quadrangle, connected, and then blown.

【0018】[0018]

【実施例】図1〜図13に、実施例とその変形とを示
す。なお各変形例において、特に指摘した点以外は、実
施例と同様に実施する。図1に実施例のガスセンサの要
部を示し、2はセンサ本体で、4はアルミナ,シリカ,
ZrO2等の耐熱絶縁基板で、6a〜6dは4個の厚膜
電極パッドで、基板4の1つの主面5上に集約する。各
電極パッド6は金合金からなり、Au−Pt,Au−R
h,Au−Pdを用い、実施例ではAu−Pt合金を用
いる。電極パッドの6の厚さは例えば2〜50μm、好
ましくは基板4との付着力を高め、かつ1〜2回の印刷
で形成できる厚さである5〜20μmとする。さらにパ
ッド6でのAu含有量は、パッド6の深さ方向で組成が
変わる場合があることを考慮し、パッド6での平均で、
5〜95重量%、好ましくは20〜80重量%とする。
8はRuO2膜(膜厚約10μm)や薄膜のPt等から
なるヒータ膜で、RuO2膜の場合、例えば表面にオー
バーコートガラスからなる絶縁膜を設ける。またヒータ
膜8にはヒータ電極10a,10bを接続する。そして
ヒータ電極10a,10bを前記の電極パッド6a,6
bに接続する。
Embodiments FIGS. 1 to 13 show an embodiment and its modification. In addition, in each modification, it implements like an Example except the point especially pointed out. FIG. 1 shows a main part of a gas sensor of the embodiment, 2 is a sensor body, 4 is alumina, silica,
A heat resistant insulating substrate such as ZrO 2 and 6a to 6d are four thick film electrode pads, which are gathered on one main surface 5 of the substrate 4. Each electrode pad 6 is made of a gold alloy and is made of Au-Pt, Au-R.
h, Au-Pd is used, and an Au-Pt alloy is used in the embodiment. The thickness of the electrode pad 6 is, for example, 2 to 50 μm, preferably 5 to 20 μm, which is a thickness that enhances the adhesive force with the substrate 4 and can be formed by printing once or twice. Furthermore, considering that the composition may change in the depth direction of the pad 6, the Au content in the pad 6 is an average in the pad 6,
The amount is 5 to 95% by weight, preferably 20 to 80% by weight.
Reference numeral 8 denotes a heater film made of a RuO 2 film (film thickness of about 10 μm) or a thin film of Pt or the like. In the case of the RuO 2 film, for example, an insulating film made of overcoat glass is provided on the surface. Further, heater electrodes 10a and 10b are connected to the heater film 8. The heater electrodes 10a and 10b are connected to the electrode pads 6a and 6 described above.
Connect to b.

【0019】基板4の反対側の主面7には、SnO2
等の金属酸化物半導体膜12を例えば膜厚10μmに設
け、一対の電極14a,14bを接続し、内壁に導電膜
を設けたスルーホール16を介して、電極パッド6c,
6dに接続する。なお第3図に示すように、基板4の頂
点端部等に導電膜を設けて、スルーホール16に変えて
も良い。このような例を図3に示し、3は新たなセンサ
本体を、17a,17bは新たな電極を示す。また電極
10,14はパッド6と同じ材質でも異なる材質でもよ
く、また膜厚はパッド6と同じでも異なっても良い。
A metal oxide semiconductor film 12 such as a SnO 2 film having a film thickness of, for example, 10 μm is provided on the main surface 7 on the opposite side of the substrate 4, a pair of electrodes 14a and 14b are connected, and a conductive film is provided on the inner wall. Through the through hole 16, the electrode pad 6c,
Connect to 6d. As shown in FIG. 3, a conductive film may be provided at the top end portion of the substrate 4 or the like, and the through hole 16 may be used instead. Such an example is shown in FIG. 3, 3 is a new sensor body, and 17a and 17b are new electrodes. The electrodes 10 and 14 may be made of the same material as the pad 6 or different materials, and the film thickness may be the same as or different from that of the pad 6.

【0020】図1,図2に戻り、20は貴金属合金線か
らなるリードで、22はリード20を溶接した外部端子
としてのピンである。リード20にはPt−WやAu−
Pd−Mo等の高抵抗で熱伝導率が小さな合金線を用
い、特に好ましいものは熱伝導が小さくかつパッド6へ
の接続が容易なPt−W線である。またリード20の線
径は例えば20〜60μm,より好ましくは30〜50
μmとする。さらに24は金ペーストを焼成した厚膜の
保護膜で、パッド6とリード20の接続部を覆い、リー
ド20とパッド6との接続強度が充分高い場合、設けな
くても良い。
Returning to FIGS. 1 and 2, 20 is a lead made of a noble metal alloy wire, and 22 is a pin as an external terminal to which the lead 20 is welded. The lead 20 is Pt-W or Au-
An alloy wire having a high resistance and a small thermal conductivity such as Pd-Mo is used, and a particularly preferable one is a Pt-W wire which has a small thermal conductivity and is easily connected to the pad 6. The wire diameter of the lead 20 is, for example, 20 to 60 μm, and more preferably 30 to 50 μm.
μm. Further, reference numeral 24 is a thick protective film formed by baking a gold paste, which covers the connection portion between the pad 6 and the lead 20 and may be omitted if the connection strength between the lead 20 and the pad 6 is sufficiently high.

【0021】図4に、パッド6へのリード20の接続部
を示す。パッド6は基板4との付着力を増すため金合金
とし、図4では、単味の白金からなる下層24上に単味
の金から上層26を積層した例を示す。しかしながら図
5に示すように、下層24と上層26は、上層26の焼
成過程等で合金化し、実際に得られるのは金と白金の合
金パッドである。例えば発明者は、Pt下層24を7μ
m厚に印刷して850℃で焼成した後、金上層26を7
μm厚に印刷し、850℃で焼成した。得られた合金パ
ッドの表面は金色を呈さず、銀白色の金−Pt合金の色
を呈した。このように金と白金は容易に合金化するの
で、実際に得られのは2層を別の組成で印刷した場合で
も、金−白金合金である。また合金化はAu−Ptに限
らず、Au−Rh,Au−Pd等の他の材料でも生じ
た。
FIG. 4 shows a connecting portion of the lead 20 to the pad 6. The pad 6 is made of a gold alloy in order to increase the adhesion to the substrate 4, and FIG. 4 shows an example in which an upper layer 26 made of plain gold is laminated on a lower layer 24 made of plain platinum. However, as shown in FIG. 5, the lower layer 24 and the upper layer 26 are alloyed in the firing process of the upper layer 26, etc., and what is actually obtained is an alloy pad of gold and platinum. For example, the inventor
After printing to m thickness and baking at 850 ° C., the gold upper layer 26 is
Printed to a thickness of μm and baked at 850 ° C. The surface of the obtained alloy pad did not have a gold color but the color of a silver-white gold-Pt alloy. Thus, gold and platinum are easily alloyed, so that what is actually obtained is a gold-platinum alloy even when two layers are printed with different compositions. Further, alloying was not limited to Au-Pt, but occurred with other materials such as Au-Rh and Au-Pd.

【0022】28,28はパラレルギャップ溶接による
溶接部で、リード20とパッド6との接続にはこれ以外
に超音波熱圧着を用いることもでき、あるいは溶接や熱
圧着を行わず、単に保護膜27でリード20をパッド6
に固定するだけでも良い。30はリード20の溶断部で
ある。図1の実施例の場合、2本のリードを用意し、一
方をパッド6a,6cを結ぶように配置して、パラレル
ギャップ溶接する。同様に他方のリードをパッド6b,
6dを結ぶように配置して、パラレルギャップ溶接す
る。次に溶断部30の付近でリードに一対の溶接電極を
接触させ、パッド6a,6c間やパッド6b,6d間に
大電流を流す。リードはパッド間では、基板4から浮い
ており熱の逃げ場が無いので、切断される。この時リー
ド20の端部に生じるのが溶断部30である。
Reference numerals 28 and 28 denote welds formed by parallel gap welding, and ultrasonic thermocompression bonding may be used for connecting the leads 20 and the pads 6 to each other. Alternatively, welding or thermocompression bonding is not performed, and a protective film is simply used. Pad the lead 20 with 27
Just fix it to. Reference numeral 30 is a fusing portion of the lead 20. In the case of the embodiment of FIG. 1, two leads are prepared, one of them is arranged so as to connect the pads 6a and 6c, and parallel gap welding is performed. Similarly, the other lead is connected to the pad 6b,
It is arranged so as to connect 6d, and parallel gap welding is performed. Next, a pair of welding electrodes are brought into contact with the leads in the vicinity of the fusing part 30, and a large current is passed between the pads 6a and 6c and between the pads 6b and 6d. Between the pads, the leads are floated from the substrate 4 and there is no escape area for heat, so the leads are cut. At this time, the fusing part 30 is formed at the end of the lead 20.

【0023】得られたガスセンサの特性を示す。なお基
板4は厚さが0.5mmの長方形で、図1の横方向の長
さが1mm,図1での縦方向の長さが0.9mmであ
る。また金属酸化物半導体膜12はSnO2(膜厚約1
0μm)からなり、SnO2の印刷後の焼成温度は70
0℃である。またパッド6が1層で最初から合金化した
パッドを用いる場合は、厚さ7μmとした。2層で下層
を白金,上層を金として合金化させる場合には、白金層
7μm,金層7μmの合計14μm厚のパッドとした。
次にリード20には、白金線(線径40μm,線径は直
径を示す),Pt−ZGS線(線径50μm,Ptの結
晶粒界にZrO2を析出させた線で、ZrO2含有量は約
0.06wt%),APM線(線径40μm,Au55
重量%,Pd40重量%,Mo5重量%),Pt−W線
(線径40μm,Pt92重量%,W8重量%)を用
い、これらの線材は田中貴金属工業製である。パッド6
への溶接条件(パラレルギャップ溶接)は、溶接電圧が
5Vで溶接電流を加えた時間が11m秒である。さらに
保護膜27の材料には金ペーストを用い、塗布後に70
0℃で焼成した。
The characteristics of the obtained gas sensor are shown below. The substrate 4 has a rectangular shape with a thickness of 0.5 mm, and has a horizontal length of 1 mm in FIG. 1 and a vertical length of 0.9 mm in FIG. The metal oxide semiconductor film 12 is SnO 2 (film thickness of about 1
0 μm) and the baking temperature after printing SnO 2 is 70
It is 0 ° C. When the pad 6 is a single layer and is initially alloyed, the thickness is 7 μm. When alloying two layers with platinum as the lower layer and gold as the upper layer, a pad having a total thickness of 14 μm including a platinum layer of 7 μm and a gold layer of 7 μm was used.
Next, in the lead 20, a platinum wire (wire diameter 40 μm, wire diameter indicates diameter), a Pt-ZGS wire (wire diameter 50 μm, a wire in which ZrO 2 is deposited on the crystal grain boundary of Pt, and the ZrO 2 content is Is about 0.06 wt%), APM wire (wire diameter 40 μm, Au55
% By weight, Pd 40% by weight, Mo 5% by weight), and Pt-W wire (wire diameter 40 μm, Pt 92% by weight, W8% by weight), and these wire rods are manufactured by Tanaka Kikinzoku Kogyo. Pad 6
The welding condition (parallel gap welding) is that the welding voltage is 5 V and the welding current is applied for 11 ms. Further, gold paste is used as the material of the protective film 27, and 70
Baked at 0 ° C.

【0024】センサの使用条件は、温度変化が1周期3
0秒で内、高温域が10秒,低温域が20秒で、高温域
での最高温度は約400℃,低温域での最終温度はほぼ
室温である。またセンサの出力は、例えば低温域の終了
直前にサンプリングし、このヒートサイクルを1年間繰
り返して加えた。リード20の接続強度は、図6のよう
にセンサ本体2をピン22に接続した後、センサ本体2
を治具で上向きに引っ張り、リード20が外れる際の強
度で表現する。リード20が外れる位置は、大部分パッ
ド6とリード20との接続部である。なお図6におい
て、32はベースである。
The use condition of the sensor is that the temperature change is 3 per cycle.
Within 0 seconds, the high temperature range is 10 seconds and the low temperature range is 20 seconds. The maximum temperature in the high temperature range is about 400 ° C. and the final temperature in the low temperature range is about room temperature. The output of the sensor was sampled, for example, immediately before the end of the low temperature range, and this heat cycle was repeatedly applied for one year. The connection strength of the lead 20 is determined by connecting the sensor main body 2 to the pin 22 as shown in FIG.
Is expressed by the strength when the lead 20 is detached by pulling upward with a jig. Most of the positions where the leads 20 come off are the connecting portions between the pads 6 and the leads 20. In FIG. 6, reference numeral 32 is a base.

【0025】図7に、リード20の種類による消費電力
(1周期での平均消費電力)の変化を示す。Pt線から
Pt−W線へと消費電力は減少し、Pt−W線やAPM
線,特にPt−W線が好ましい。
FIG. 7 shows changes in power consumption (average power consumption in one cycle) depending on the type of the lead 20. The power consumption decreases from Pt line to Pt-W line, and Pt-W line and APM
Lines, especially Pt-W lines are preferred.

【0026】図8に、温度サイクルに対するパッド6の
耐久性と、リード20の接続強度を示す。パッド6の耐
久性は、前記の30秒周期で400℃付近と室温付近と
の間の熱サイクルへの耐久性を回数で示す。この値はセ
ンサ5個の平均で、単味のAuパッドでは平均値が66
20回でパッド6が基板4から剥離した。これはセンサ
の使用時間としては55時間に過ぎない。一方、Ptパ
ッドやAu−Pt合金パッド(最初からAu−Ptの合
金として膜厚7μmに成膜したものと、白金7μm厚上
に金7μm厚を積層し、合金化させたものの2種類)
は、いずれも1年間の耐久テストに耐え、パッド剥離は
1つも生じなかった。1年間の耐久テストは、温度変化
のサイクル数として105万回である。
FIG. 8 shows the durability of the pad 6 against the temperature cycle and the connection strength of the lead 20. The durability of the pad 6 indicates the number of times the durability against the heat cycle between around 400 ° C. and around room temperature in the above 30 second cycle. This value is the average of 5 sensors, and the average value is 66 for a plain Au pad.
The pad 6 was peeled from the substrate 4 after 20 times. This is only 55 hours of using the sensor. On the other hand, Pt pads and Au-Pt alloy pads (two types: an Au-Pt alloy having a film thickness of 7 µm from the beginning, and a platinum layer having a thickness of 7 µm and a gold layer having a thickness of 7 µm).
All underwent a one-year durability test and no pad peeling occurred. The one-year durability test has a temperature change cycle number of 1.05 million times.

【0027】パッド6の種類を変えて、Pt−W線やA
PM線の接続強度(4本のリードの合計強度)を求める
と、Ptパッドでは保護膜27無しで約10g,保護膜
27を設けた場合でも約40gであった。これに対して
金パッドや金−白金の合金パッドでは、保護膜無しで2
0g程度,保護膜付きで80g程度の接続強度が得られ
た。このことは白金パッドはリードとの接続強度が不足
し、金−白金の合金パッド6を用いることにより、基板
4との付着力が優れ、かつリード20との接続強度が増
すことを示している。また図8から明らかなように、P
t−W線はAPM線よりも、パッド6への接続強度が高
い。発明者は、白金−金以外に、Rh−金,Pd−金等
の2層のパッドを成膜した。いずれも金が上層で、Rh
やPdが下層で、膜厚は上層,下層とも7μmである。
そしてこれらの場合のいずれでも、金とRhやPdとの
合金化が生じ、Pt−W線に対して20g程度(保護膜
27無し)の接続強度が得られた。
By changing the type of the pad 6, a Pt-W line or an A
The PM wire connection strength (total strength of the four leads) was about 10 g without the protective film 27 for the Pt pad, and about 40 g with the protective film 27. On the other hand, with gold pads and gold-platinum alloy pads, 2
A connection strength of about 0 g and about 80 g with a protective film was obtained. This indicates that the platinum pad lacks the connection strength with the lead, and by using the gold-platinum alloy pad 6, the adhesion with the substrate 4 is excellent and the connection strength with the lead 20 is increased. . Moreover, as is clear from FIG.
The t-W line has a higher connection strength to the pad 6 than the APM line. The inventor has formed a two-layer pad of Rh-gold, Pd-gold, etc. in addition to platinum-gold. Gold is the upper layer, Rh
And Pd are lower layers, and the film thickness is 7 μm for both upper and lower layers.
In any of these cases, alloying of gold with Rh or Pd occurred, and a connection strength of about 20 g (without protective film 27) was obtained for the Pt-W wire.

【0028】これらのことから明らかなように、 1) Pt−W,APM等の貴金属合金線を用いてガスセ
ンサの消費電力を減少させ, 2) 金合金のパッドを用いることにより、温度変化に対
するガスセンサの耐久性を向上させ、しかもパッドへの
リードの接続強度を高く保つことができる。 3) またリードの接続強度をさらに高めるには、パラレ
ルギャップ溶接や超音波熱圧着等でリード20をパッド
6に接続した後、保護膜27で被覆することが好まし
い。そして保護膜27に好ましい材質は、低温焼成が可
能で、金属酸化物半導体膜12へのダメージがなく、パ
ッド6やリード20と容易に結合できる、金である。
As is clear from the above, 1) the power consumption of the gas sensor is reduced by using a noble metal alloy wire such as Pt-W, APM, etc., and 2) by using the gold alloy pad, the gas sensor with respect to the temperature change. It is possible to improve the durability of the pad and to keep the connection strength of the lead to the pad high. 3) In order to further increase the connection strength of the leads, it is preferable to connect the leads 20 to the pads 6 by parallel gap welding, ultrasonic thermocompression bonding, or the like, and then cover with the protective film 27. The preferred material for the protective film 27 is gold, which can be baked at a low temperature, does not damage the metal oxide semiconductor film 12, and can be easily bonded to the pad 6 or the lead 20.

【0029】[0029]

【溶断】図9〜図12に溶断工程の詳細を示す。図9,
図10に、リード20の溶断部30を示す。図10に示
すように、溶断部30ははリード20を他の方法で切断
したものとは形状が異なり、溶断部30は丸みを帯びる
のが特徴である。例えば図10の36は刃物でリード2
0の先端をカットした際の形状を示し、38はリード2
0の先端を引っ張り引きちぎった際の形状を示す。
[Fusing] FIGS. 9 to 12 show details of the fusing process. Figure 9,
FIG. 10 shows the fusing part 30 of the lead 20. As shown in FIG. 10, the fusing part 30 has a different shape from that obtained by cutting the lead 20 by another method, and the fusing part 30 is characterized by being rounded. For example, reference numeral 36 in FIG.
0 shows the shape when the tip is cut, and 38 is the lead 2
The shape when the tip of 0 is pulled apart and shown is shown.

【0030】図11に溶断工程を示すと、例えばパラレ
ルギャップ溶接でリード20をパッド6に溶接した後
に、一対の電極40,40を配置し溶断電流iを加え
る。パッド6a,6c等の間では、リード20は基板4
から浮き、仮にヒータ膜8に接触しても、ヒータ膜8の
表面はオーバーコートガラスで絶縁されているため、溶
断電流はリード20内を流れ、この発熱でリード20が
溶断する。
FIG. 11 shows the fusing step. After the lead 20 is welded to the pad 6 by parallel gap welding, for example, a pair of electrodes 40, 40 is arranged and a fusing current i is applied. Between the pads 6a, 6c, etc., the leads 20 are connected to the substrate 4
Even if the heater film 8 comes out of contact with the heater film 8 and comes into contact with the heater film 8, the surface of the heater film 8 is insulated by the overcoat glass. Therefore, the fusing current flows in the lead 20, and the heat generation causes the lead 20 to melt.

【0031】図12に実施例での、リード20の接続方
法を示す。図12の1)は金属の枠体50にリード20を
溶接等で取り付けた状態を示し、次いで適当な治具を用
いて枠体50に対し、センサ本体2を位置決めする。こ
の状態を図12の2)に示す。次いで、例えばパラレルギ
ャップ溶接により、リード20をパッド6a〜6dに溶
接する。この後リード20を溶断する(図12の3))。
この後、金ペーストを塗布して枠体50毎加熱し、保護
膜27を形成する。次いでガスセンサのベース32を位
置決めし、ピン22にリード20を溶接する。電極パッ
ド6への溶接と同時にリード20を切断することは一般
に困難であるが、ピン22への溶接と同時にリード20
を切断することは可能で、好ましくはピン22への溶接
と同時にリード20をカットする(図12の4))。この
ようにすればベース32は枠体50から独立し、ピン2
2へのセンサ本体2の取付が完成する。図12の4)か
ら明らかなように、4本のリード線はほぼ90度ずつ向
きが変化し、4つのパッド6からなる4角形の対角線に
実質的に平行(対角線からの角のずれは±15度以下)
である。この結果、センサ本体2は図12でのX方向,
Y方向のいずれの向きの力にも耐え、センサ本体2の取
付強度が増す。
FIG. 12 shows a method of connecting the leads 20 in the embodiment. 12) shows a state in which the leads 20 are attached to the metal frame 50 by welding or the like, and then the sensor main body 2 is positioned with respect to the frame 50 using an appropriate jig. This state is shown in 2) of FIG. Next, the lead 20 is welded to the pads 6a to 6d by parallel gap welding, for example. After this, the lead 20 is melted (3 in FIG. 12)).
After that, a gold paste is applied and the entire frame 50 is heated to form the protective film 27. Then, the base 32 of the gas sensor is positioned and the lead 20 is welded to the pin 22. It is generally difficult to cut the lead 20 at the same time as welding to the electrode pad 6, but at the same time as welding to the pin 22, the lead 20 is cut.
Can be cut, and preferably the lead 20 is cut simultaneously with welding to the pin 22 (4 in FIG. 12). In this way, the base 32 is independent of the frame 50, and the pins 2
The mounting of the sensor body 2 to the 2 is completed. As is clear from 4) of FIG. 12, the orientations of the four lead wires are changed by approximately 90 degrees, and the lead wires are substantially parallel to the diagonal line of the quadrangle formed by the four pads 6 (the deviation of the angle from the diagonal line is ± 15 degrees or less)
Is. As a result, the sensor main body 2 moves in the X direction in FIG.
Withstanding the force in any of the Y directions, the mounting strength of the sensor body 2 increases.

【0032】図13に参考例のガスセンサを示す。図に
おいて70は新たなセンサ本体、72はリードフレーム
で、74はそのリードである。リードフレーム72には
例えばSUS316や鉄−クロム−アルミニウム等の卑
金属合金を用い、例えばリード74は断面が20〜50
μm角程度とする。センサ本体70では基板4の裏面に
一対の金属酸化物半導体膜76,78を配置し、例えば
ヒータ膜8に近い金属酸化物半導体膜76をメタン検出
用の金属酸化物半導体膜とし、ヒータ膜8から遠い金属
酸化物半導体膜78を一酸化炭素検出用の金属酸化物半
導体膜とする。またパッド6bはスルーホール16を介
して基板4の表裏に接続し、金属酸化物半導体膜76,
78に対する共通パッドとして用いる。
FIG . 13 shows a gas sensor of the reference example . In the figure, 70 is a new sensor body, 72 is a lead frame, and 74 is its lead. For the lead frame 72, a base metal alloy such as SUS316 or iron-chromium-aluminum is used. For example, the lead 74 has a cross section of 20 to 50.
It is about μm square. In the sensor body 70, a pair of metal oxide semiconductor films 76 and 78 are arranged on the back surface of the substrate 4, and for example, the metal oxide semiconductor film 76 close to the heater film 8 is used as a metal oxide semiconductor film for methane detection. The metal oxide semiconductor film 78 far from is a metal oxide semiconductor film for carbon monoxide detection. The pads 6b are connected to the front and back of the substrate 4 through the through holes 16, and the metal oxide semiconductor film 76,
Used as a common pad for 78.

【0033】図13の参考例は、リードとして卑金属の
角状リード74を用い、センサ本体70に一対の金属酸
化物半導体膜76,78を設けた他は、図1のガスセン
サと類似である。例えばパッド6はいずれも金合金パッ
ドで、基板4との付着力が高く、かつリード74との接
続強度も高い。そしてこの参考例でも、リードフレーム
72に対してセンサ本体70を位置決めし、4箇所でリ
ード74を電極パッド6a〜6dに溶接し、不要部を溶
断して除去する。この後リード74をピン22に溶接
し、同時にリード74を切断する。
The reference example of FIG. 13 is similar to the gas sensor of FIG. 1 except that a base metal rectangular lead 74 is used as a lead and a pair of metal oxide semiconductor films 76 and 78 are provided on the sensor body 70. For example, each of the pads 6 is a gold alloy pad, which has high adhesion to the substrate 4 and high connection strength with the leads 74. Also in this reference example, the sensor body 70 is positioned with respect to the lead frame 72, the leads 74 are welded to the electrode pads 6a to 6d at four locations, and unnecessary portions are melted and removed. After that, the lead 74 is welded to the pin 22, and the lead 74 is cut at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のガスセンサの要部平面図FIG. 1 is a plan view of a main part of a gas sensor according to an embodiment.

【図2】 実施例ガスセンサの要部底面図FIG. 2 is a bottom view of a main part of the example gas sensor.

【図3】 スルーホールの部分を変形したガスセン
サの要部底面図
FIG. 3 is a bottom view of a main part of a gas sensor in which a through hole is deformed.

【図4】 実施例のガスセンサでのパッドとリード
との接続部を示す要部断面図
FIG. 4 is a cross-sectional view of a main part showing a connecting portion between a pad and a lead in the gas sensor of the embodiment.

【図5】 実施例のガスセンサでの、パッドの合金
化を示す特性図
FIG. 5 is a characteristic diagram showing pad alloying in the gas sensor of the example.

【図6】 実施例のガスセンサの要部側面図FIG. 6 is a side view of a main part of the gas sensor according to the embodiment.

【図7】 実施例のガスセンサでの、リードの種類
と消費電力との関係を示す特性図
FIG. 7 is a characteristic diagram showing a relationship between lead types and power consumption in the gas sensor of the example.

【図8】 実施例のガスセンサでの、厚膜電極パッ
ドの種類と、パッドの耐久性及びリードの接続強度との
関係を示す特性図
FIG. 8 is a characteristic diagram showing the relationship between the type of thick film electrode pad and the durability of the pad and the connection strength of the leads in the gas sensor of the example.

【図9】 実施例のガスセンサでの溶断部を示す要
部断面図
FIG. 9 is a cross-sectional view of essential parts showing a fusing part in the gas sensor of the embodiment.

【図10】 実施例のガスセンサでのリードの溶断部
の平面図
FIG. 10 is a plan view of a fused portion of a lead in the gas sensor of the embodiment.

【図11】 実施例でのリードの溶断工程を示す図FIG. 11 is a diagram showing a lead fusing process in the example.

【図12】 実施例でのガスセンサへのリードの接続
工程を示す図
FIG. 12 is a diagram showing a process of connecting leads to the gas sensor in the example.

【図13】 参考例でのガスセンサの製造工程を示す
FIG. 13 is a diagram showing a gas sensor manufacturing process in a reference example.

【符号の説明】[Explanation of symbols]

2,3 センサ本体 4 耐熱絶縁基板 6 電極パッド 5,7 主面 8 ヒータ膜 10 ヒータ電極 12 金属酸化物半導体膜 14 電極 16 スルーホール 20 リード 22 ピン 24 下層 26 上層 27 保護膜 28 溶接部 30 溶断部 32 ベース 40 溶接電極 50 枠体 60 ベース 70 センサ本体 72 リードフレーム 74 リード 76,78 金属酸化物半導体膜 2,3 sensor body 4 Heat-resistant insulating substrate 6 electrode pads 5,7 Main surface 8 heater film 10 heater electrode 12 Metal oxide semiconductor film 14 electrodes 16 through holes 20 leads 22 pin 24 Lower 26 Upper layer 27 Protective film 28 Weld 30 Fusing part 32 base 40 welding electrode 50 frame 60 base 70 Sensor body 72 Lead frame 74 lead 76,78 Metal oxide semiconductor film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−174674(JP,A) 特開 平4−268447(JP,A) 特開 平6−242043(JP,A) 特開 昭60−253859(JP,A) 特開 昭64−18053(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/12 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-6-174674 (JP, A) JP-A-4-268447 (JP, A) JP-A-6-242043 (JP, A) JP-A-60- 253859 (JP, A) JP 64-18053 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 27/12

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 耐熱絶縁基板に、ガスにより抵抗値が変
化する金属酸化物半導体膜とヒータ膜と複数の厚膜電極
パッドとを設けて、該複数の厚膜電極パッドに前記金属
酸化物半導体膜と前記ヒータ膜,及びリードを接続した
ガスセンサにおいて、 前記複数の厚膜電極パッドがAu−Pt,Au−Pd,
Au−Rhのいずれかの合金からなり、かつ前記リード
がPt−W,Au−Pd−Mo,Pt−ZrO 2 ,Pt
−Pdのいずれかからなり、さらにリードと厚膜電極パ
ッドとの接続部を厚膜で被覆し、さらに前記厚膜電極パ
ッドを、基板の1主面上に4個設けて4角形の4頂点上
に配置し、かつ各厚膜電極パッド毎に前記リードを各1
本接続し、さらに各リードが、そのリードを接続した厚
膜電極パッドを通る前記4角形の対角線に実質的に平行
となるように配置したことを特徴とするガスセンサ。
1. A heat-resistant insulating substrate is provided with a metal oxide semiconductor film whose resistance value changes by gas, a heater film, and a plurality of thick film electrode pads, and the metal oxide semiconductor is provided on the plurality of thick film electrode pads. In a gas sensor in which a film is connected to the heater film and leads, the plurality of thick film electrode pads are Au-Pt, Au-Pd,
The lead made of any alloy of Au-Rh and
There Pt-W, Au-Pd- Mo, Pt-ZrO 2, Pt
-Pd, either lead or thick film electrode
The connection with the pad is covered with a thick film, and the thick film electrode pad
Four pads are provided on one main surface of the substrate, and the four vertices of the quadrangle
And one lead for each thick film electrode pad.
The thickness of the main connection and the size of each lead connected
Substantially parallel to the diagonal of the quadrangle passing through the membrane electrode pad
A gas sensor characterized by being arranged so that
【請求項2】 前記複数の厚膜電極パッドがAu−Pt
合金からなることを特徴とする、請求項1のガスセン
サ。
2. The thick film electrode pads are Au—Pt.
The gas sensor according to claim 1, wherein the gas sensor is made of an alloy.
【請求項3】 前記ガスセンサが、前記ヒータ膜の消費
電力を周期的に変化させて、前記金属酸化物半導体膜の
温度を周期的に変化させるようにした、一酸化炭素検出
用のガスセンサであることを特徴とする、請求項1また
は2に記載のガスセンサ。
3. The gas sensor for detecting carbon monoxide, wherein the power consumption of the heater film is periodically changed to periodically change the temperature of the metal oxide semiconductor film. The gas sensor according to claim 1, wherein the gas sensor is a gas sensor.
【請求項4】 前記リードの前記厚膜電極パッド上での
端部が溶断されていることを特徴とする、請求項1〜3
のいずれかに記載のガスセンサ。
4. The end of the lead on the thick film electrode pad is blown off.
The gas sensor according to any one of 1.
【請求項5】 耐熱絶縁基板に、ガスにより抵抗値が変
化する金属酸化物半導体膜とヒータ膜と複数の厚膜電極
パッドとを設けて、該複数の厚膜電極パッドに前記金属
酸化物半導体膜と前記ヒータ膜,及びリードを接続した
ガスセンサの製造方法において、 Au−Pt,Au−Pd,Au−Rhのいずれかの合金
からなる厚膜電極パッドを絶縁基板上に成膜する工程
と、 枠にPt−W,Au−Pd−Mo,Pt−ZrO 2 ,P
t−Pdのいずれかか らリードを十字状に張った状態
で、前記厚膜電極パッドにリードを取り付けて、前記厚
膜電極パッドと前記リードとの接続部を、厚膜で被覆す
るようにしたことを特徴とする、ガスセンサの製造方
法。
5. The resistance value of the heat-resistant insulating substrate is changed by gas.
Metal oxide semiconductor film, heater film, and multiple thick film electrodes
A pad and the thick metal electrode pads are provided with the metal
The oxide semiconductor film was connected to the heater film and the lead
In the method of manufacturing a gas sensor, an alloy of Au-Pt, Au-Pd, or Au-Rh is used.
Of forming thick film electrode pad consisting of
If, Pt-W in a frame, Au-Pd-Mo, Pt -ZrO 2, P
taut either or et al lead of t-Pd in a cross shape
Then, attach a lead to the thick film electrode pad,
Cover the connection between the membrane electrode pad and the lead with a thick film.
Gas sensor manufacturing method characterized in that
Law.
JP03261596A 1995-06-19 1996-01-26 Gas sensor and manufacturing method thereof Expired - Fee Related JP3408910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03261596A JP3408910B2 (en) 1995-06-19 1996-01-26 Gas sensor and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-176620 1995-06-19
JP17662095 1995-06-19
JP03261596A JP3408910B2 (en) 1995-06-19 1996-01-26 Gas sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0968512A JPH0968512A (en) 1997-03-11
JP3408910B2 true JP3408910B2 (en) 2003-05-19

Family

ID=26371201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03261596A Expired - Fee Related JP3408910B2 (en) 1995-06-19 1996-01-26 Gas sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3408910B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071391A (en) 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
JP4462864B2 (en) * 2003-07-18 2010-05-12 フィガロ技研株式会社 Manufacturing method of gas sensor
CN101031795B (en) * 2004-01-27 2014-11-05 H2Scan公司 Method and apparatus for thermal isolation of a gas sensor
JP6821384B2 (en) * 2016-10-17 2021-01-27 Koa株式会社 Platinum temperature sensor element
JP2019178951A (en) * 2018-03-30 2019-10-17 日本特殊陶業株式会社 Sensor
JP2021043061A (en) * 2019-09-11 2021-03-18 東京窯業株式会社 Method for using solid electrolyte sensor and solid electrolyte sensor

Also Published As

Publication number Publication date
JPH0968512A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
KR100426939B1 (en) Gas sensor
JP3408910B2 (en) Gas sensor and manufacturing method thereof
US5493897A (en) Gas sensor
JP2559875B2 (en) Resistor element
JP3826036B2 (en) Temperature measuring device and method for connecting connection wires of temperature measuring device
JPH1140403A (en) Temp. sensor element
JP3387274B2 (en) Humidity and gas detecting element and method of manufacturing the same
JP3408872B2 (en) Gas sensor and manufacturing method thereof
JPH10208906A (en) Temperature sensor
JP2002189011A (en) Gas sensor and its manufacturing method
JPH0287030A (en) Platinum temperature sensor
JP4229544B2 (en) Gas sensor and manufacturing method thereof
JPH05340909A (en) Bonding pad
JP2000311732A (en) Lead wire connecting structure for thin-film-shaped metal body
JP6502588B2 (en) Device equipped with temperature sensor and temperature sensor
JP2002340832A (en) Semiconductor device, manufacturing method for semiconductor device, gas sensor and manufacturing method for gas sensor
JP3145225B2 (en) Resistor element for thermal flow meter
JPH07229777A (en) Resistor element
JPH05121201A (en) Resistor element
JP2019132803A (en) Gas sensor
JPS58127135A (en) Consumed type immersed thermocouple
JP2003161719A (en) Detecting element
KR100960849B1 (en) Production method of gas sensor
JP2001264278A (en) Manufacturing method for gas sensor
JPH0823540B2 (en) Semiconductor gas sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees