JPH0735987A - Z-axis fine adjusting mechanism - Google Patents

Z-axis fine adjusting mechanism

Info

Publication number
JPH0735987A
JPH0735987A JP20034093A JP20034093A JPH0735987A JP H0735987 A JPH0735987 A JP H0735987A JP 20034093 A JP20034093 A JP 20034093A JP 20034093 A JP20034093 A JP 20034093A JP H0735987 A JPH0735987 A JP H0735987A
Authority
JP
Japan
Prior art keywords
hinge
stage
stroke
block
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20034093A
Other languages
Japanese (ja)
Inventor
Hidekazu Kikuchi
秀和 菊地
Nobuhiko Sato
信彦 佐藤
Kan Tominaga
完 臣永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP20034093A priority Critical patent/JPH0735987A/en
Publication of JPH0735987A publication Critical patent/JPH0735987A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thin and inexpensive fine adjusting Z stage by converting the displacement of an actuator from a rotary motion to linear motion by a mechanism having an elastic hinge. CONSTITUTION:The one side of a hinge block 4 1s fixed to a piezoelectric actuator 8, and the other side of the hinge block 4 is fixed on a base 1. A lever 5 is linked with the hinge block 4 so as to interpose the block 4, and also linked with a stage 2 and the base 1. Stroke from the actuator 8 extended in a horizontal direction with a reference block 3 as reference is transmitted to the hinge plate 4, and the hinge plate 4 is rotated with an elastic hinge supporting point 24 as a supporting point. The lever 5 is rotated with an elastic hinge supporting point 26 as a supporting point by rotational force transmitted from the hinge plate 4. The rotational force is converted into the stroke in an up-and-down direction (Z-axis direction) on the center side of the stage 2. The stroke of displacement is enlarged in the ratio of a distance between the supporting points 23 and 24 to a distance between the supporting points 25 and 26.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、顕微鏡を用いた微小寸
法測定装置のステージ機構部に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stage mechanism section of a microscopic dimension measuring apparatus using a microscope.

【0002】[0002]

【従来の技術】半導体や磁気ヘッド等のエレクトロニク
スデバイスの形状、寸法測定装置には、精密に位置決め
を行い、分解能が高く、ストロークが100μm程度の
オートフォーカス顕微鏡用の微動Z軸の駆動機構が必要
である。このようなZ軸の微動機構は、一般にX、Yス
テージや回転ステージと組み合わせて使用される。その
従来のZ軸微動機構の例を図6及び図7によって説明す
る。図6は従来のZ微動機構の平面図、図7は図6のD
−D断面図であり、ベース9に基準ブロック12が固定
され、なおかつ、3ケ所の弾性ヒンジを持つテコ状のヒ
ンジプレート11が前記基準ブロック12に固定され、
それが図6、図7に示すようにベース9上に3ケ所12
0°ピッチで配置、固定されている。支柱16はベース
9に固定され、アクチュエータプレート15を固定して
いる。アクチュエータベース13はスペーサ14を間に
してヒンジプレート11の一端に連結されている。引張
バネ10は圧電アクチュエータ18に予圧を加えバック
ラッシュが生じないようにする為に取付けられている。
圧電アクチュエータ18は、Z軸上にすなわち垂直にス
テージ27の中心部に配置固定されており、圧電アクチ
ュエータ18に電圧を印加すると、圧電アクチュエータ
18は、上部が固定されている為、下方すなわち圧電ア
クチュエータベース13を押し下げる方向に伸びる。こ
の時、弾性ヒンジ支点19を支点としてヒンジプレート
11が回転運動を行う。弾性ヒンジ20は、下方へ移動
する直線運動を回転運動に、又、弾性ヒンジ21は回転
運動を上方への直線運動にそれぞれ、バックラッシュが
なく、摩擦や磨耗がないように変換する。圧電アクチュ
エータ18のストロークは、弾性ヒンジ支点19から、
弾性ヒンジ20までの距離と弾性ヒンジ21までの距離
の倍数分すなわちテコ比(4:1)の関係で、約4倍に
拡大して上方に変換される。又、ヒンジプレート11
は、幅が広く3ケ120°ピッチで配置されている為、
上下方向には、高精度の真直案内精度が得られる。
2. Description of the Related Art A device for measuring the shape and size of electronic devices such as semiconductors and magnetic heads requires a fine-movement Z-axis drive mechanism for an autofocus microscope, which performs positioning with high precision and has a high resolution and a stroke of about 100 μm. Is. Such a Z-axis fine movement mechanism is generally used in combination with an X, Y stage or a rotary stage. An example of the conventional Z-axis fine movement mechanism will be described with reference to FIGS. 6 and 7. FIG. 6 is a plan view of a conventional Z fine movement mechanism, and FIG. 7 is D of FIG.
FIG. 6D is a cross-sectional view showing a reference block 12 fixed to the base 9, and a lever-like hinge plate 11 having three elastic hinges fixed to the reference block 12;
As shown in FIGS. 6 and 7, there are 3 places 12 on the base 9.
It is arranged and fixed at 0 ° pitch. The column 16 is fixed to the base 9, and the actuator plate 15 is fixed. The actuator base 13 is connected to one end of the hinge plate 11 with a spacer 14 in between. The tension spring 10 is attached in order to apply a preload to the piezoelectric actuator 18 and prevent backlash.
The piezoelectric actuator 18 is arranged and fixed on the Z-axis, that is, vertically at the center of the stage 27. When a voltage is applied to the piezoelectric actuator 18, the piezoelectric actuator 18 has its upper part fixed, so that it is lower, that is, the piezoelectric actuator 18. It extends in the direction of pushing down the base 13. At this time, the hinge plate 11 performs a rotational movement with the elastic hinge fulcrum 19 as a fulcrum. The elastic hinge 20 converts a downward moving linear motion into a rotary motion, and the elastic hinge 21 converts a rotational motion into an upward linear motion without backlash, friction and wear. The stroke of the piezoelectric actuator 18 starts from the elastic hinge fulcrum 19,
Due to the relationship of a multiple of the distance to the elastic hinge 20 and the distance to the elastic hinge 21, that is, the lever ratio (4: 1), the magnification is expanded to about 4 times and converted upward. Also, the hinge plate 11
Has a wide width and is arranged at three 120 ° pitches.
In the up-down direction, high precision straight guidance accuracy can be obtained.

【0003】[0003]

【発明が解決しようとする課題】前述の従来技術では、
アクチュエータが垂直方向に配置されている為、ステー
ジ自身の高さが大きいということと、部品点数が多く価
格が高いという欠点がある。本発明は、これらの欠点を
除去し、薄型で低価格、かつ、従来ステージの精度とほ
ぼ同等レベルにすることを目的とする。
In the above-mentioned prior art,
Since the actuators are arranged vertically, the height of the stage itself is large, and the number of parts is large and the cost is high. It is an object of the present invention to eliminate these drawbacks, to make the device thin, low-priced, and to the same level as the accuracy of conventional stages.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の目的を
達成する為、アクチュエータをステージと平行に配置
し、このアクチュエータの変位を前記ステージのZ軸方
向に変換し、ストロークを得る構造とした。又、高真直
度精度を得る為に、対角線上に対称配置した4ケ所の平
行板バネ状幅広ブロックでテーブルとベースを連結して
真直運動を規制する機構とした。
In order to achieve the above object, the present invention has a structure in which an actuator is arranged in parallel with a stage and the displacement of the actuator is converted in the Z-axis direction of the stage to obtain a stroke. did. In addition, in order to obtain high straightness accuracy, a mechanism is adopted in which the table and the base are connected by four parallel leaf spring wide blocks symmetrically arranged on a diagonal line to restrict the straight movement.

【0005】[0005]

【作用】本発明の動作について説明すると、アクチュエ
ータの変位は、弾性ヒンジを有する機構により、回転運
動から直線運動へと変換され、Z軸、すなわち、対角線
に対称配置した4ケ所平行板バネの作用により、高い真
直度で垂直方向のストロークを得ることができる。従っ
て薄型で部品点数の少ない低価格な微動Zステージを得
ることができる。
The operation of the present invention will be described. The displacement of the actuator is converted from the rotational movement to the linear movement by the mechanism having the elastic hinge, and the action of the four parallel leaf springs symmetrically arranged on the Z axis, that is, the diagonal line. This makes it possible to obtain a vertical stroke with high straightness. Therefore, it is possible to obtain a low-priced fine movement Z stage which is thin and has a small number of parts.

【0006】[0006]

【実施例】以下本発明の一実施例を図1、図2、図3、
図4及び図5によって説明する。図1は、本発明の一実
施例の平面図、図2は図1のA−A断面図、図3は図1
のB−B断面図、図4は図1のC−C断面図、図5は図
1のE−E断面図である。1はベース、2はステージ、
3は圧電アクチュエータの変位基準となる基準ブロッ
ク、4はヒンジブロックで一方は圧電アクチュエータ
に、もう一方はベース1に固定されており、3ケ所の弾
性ヒンジを形成している。5は回転運動を上下の直線運
動に変換する為のテコとなっており、ヒンジブロック4
をはさみ込む構造でヒンジブロック4と連結されてい
て、又、ステージ2とベース1とも連結されている。6
a、6b、6c及び6dは、テコ5からの直線運動をベ
ース1に対して高精度すなわち、高真直案内精度かつ高
垂直精度にする為に、対角線上に4ケ対称配置してテー
ブルとベースを連結している。又、4ケ所の弾性ヒンジ
を有することにより、平行板バネ状構造となっており、
上下方向には、小さい力で作用することが出来、又、幅
広である為、水平方向の剛性も確保している。7a及び
7bは圧電アクチュエータに予圧を加え、ストロークに
バックラッシュをなくする為のもので、対称配置して、
基準ブロック3とヒンジプレート4とを引っ張ってい
る。基準ブロック3を基準として水平方向に伸びた圧電
アクチュエータ8からのストロークは、ヒンジプレート
4に伝わり弾性ヒンジ支点24を支点として回転する。
なお、弾性ヒンジ23は効率良くストロークを伝える為
に、形成されている。ヒンジテコ5はヒンジプレート4
と連結されている為、ヒンジプレート4から伝えられた
回転力により弾性ヒンジ支点26を支点として回転し、
ステージの中心側で上下方向のストロークに変換され
る。弾性ヒンジ25は、効率良く上下方向にストローク
が得られるように形成されている。又、この時にヒンジ
テコ5に発生する水平方向のずれは弾性ヒンジ25によ
り吸収される。変位のストロークは、弾性ヒンジ支点2
3と24の距離対25と26の距離の比で拡大される。
ここで、弾性ヒンジを有するヒンジプレート4、ヒンジ
テコ5、ガイドブロック6は剛性の高い材料が適してお
り、例えば炭素鋼等が優れている。このような材料によ
り、ヒンジ部の厚みは0.5mm程度に形成することが
できる。又、アクチュエータ8としては圧電素子が優れ
ており、この実施例においては、圧電アクチュエータ8
の長さを36mmとした場合、その変位は、印加電圧0
V〜100Vで30μmの変位が発生し、テコ5できま
る拡大比を4対1にした場合、Z軸発生ストロークは1
20μmであった。更に、印加電圧の制御により、少な
くとも0.01μmステップでの変位が可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
This will be described with reference to FIGS. 4 and 5. 1 is a plan view of an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG.
5 is a sectional view taken along line BB of FIG. 4, FIG. 4 is a sectional view taken along line CC of FIG. 1, and FIG. 5 is a sectional view taken along line EE of FIG. 1 is the base, 2 is the stage,
Reference numeral 3 is a reference block serving as a displacement reference of the piezoelectric actuator, and 4 is a hinge block, one of which is fixed to the piezoelectric actuator and the other of which is fixed to the base 1 to form three elastic hinges. Reference numeral 5 is a lever for converting the rotational movement into a vertical linear movement.
It is connected to the hinge block 4 with a structure of sandwiching, and also connected to the stage 2 and the base 1. 6
a, 6b, 6c and 6d are arranged symmetrically on the diagonal line in order to make the linear motion from the lever 5 highly accurate with respect to the base 1, that is, high straight guide accuracy and high vertical accuracy. Are connected. Also, by having four elastic hinges, it has a parallel leaf spring structure.
It can act with a small force in the vertical direction, and since it is wide, it also secures horizontal rigidity. 7a and 7b are for applying preload to the piezoelectric actuator to eliminate backlash in the stroke. Arranged symmetrically,
The reference block 3 and the hinge plate 4 are pulled. A stroke from the piezoelectric actuator 8 extending in the horizontal direction with reference to the reference block 3 is transmitted to the hinge plate 4 and rotates about the elastic hinge fulcrum 24.
The elastic hinge 23 is formed in order to transmit the stroke efficiently. Hinge lever 5 is hinge plate 4
Since it is connected to the hinge plate 4, it is rotated about the elastic hinge fulcrum 26 by the rotational force transmitted from the hinge plate 4,
Converted to vertical strokes on the center side of the stage. The elastic hinge 25 is formed so that a vertical stroke can be efficiently obtained. Further, the horizontal displacement generated in the hinge lever 5 at this time is absorbed by the elastic hinge 25. The displacement stroke is the elastic hinge fulcrum 2
It is enlarged by the ratio of the distance of 3 and 24 to the distance of 25 and 26.
Here, a material having high rigidity is suitable for the hinge plate 4, the hinge lever 5, and the guide block 6 each having an elastic hinge, for example, carbon steel is excellent. With such a material, the hinge portion can be formed to have a thickness of about 0.5 mm. A piezoelectric element is excellent as the actuator 8, and in this embodiment, the piezoelectric actuator 8 is used.
When the length is 36 mm, the displacement is 0
When a displacement of 30 μm occurs at V to 100 V and the expansion ratio that can be leveraged 5 is set to 4: 1, the Z-axis generation stroke is 1
It was 20 μm. Furthermore, by controlling the applied voltage, displacement in at least 0.01 μm steps is possible.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、従
来機構部の高さの約1/3の高さでステージ機構部を製
作することができるとともに、部品点数が約半分となる
為、低価格を実現することができる。
As described above, according to the present invention, the stage mechanism portion can be manufactured with a height of about 1/3 of the height of the conventional mechanism portion, and the number of parts is reduced to about half. Therefore, low price can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の平面図。FIG. 1 is a plan view of an embodiment of the present invention.

【図2】本発明の一実施例の断面図。FIG. 2 is a sectional view of an embodiment of the present invention.

【図3】本発明の一実施例の断面図。FIG. 3 is a sectional view of an embodiment of the present invention.

【図4】本発明の一実施例の断面図。FIG. 4 is a sectional view of an embodiment of the present invention.

【図5】本発明の一実施例の断面図。FIG. 5 is a sectional view of an embodiment of the present invention.

【図6】従来例の平面図。FIG. 6 is a plan view of a conventional example.

【図7】従来例の断面図。FIG. 7 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 ベース 2 ステージ 3 基準ブロック 4 ヒンジブロック 5 テコ 6 ガイドブロック 7、7′ 引っ張りバネ 8 アクチュエータ 22、23、24、25、26 弾性ヒンジ 1 Base 2 Stage 3 Reference Block 4 Hinge Block 5 Lever 6 Guide Block 7, 7'Tension Spring 8 Actuator 22, 23, 24, 25, 26 Elastic Hinge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ベースに固定した基準ブロックと、3ケ
所の弾性ヒンジを用い、圧電アクチュエータの直線運動
を回転運動に変換し、かつ圧電アクチュエータのストロ
ークを拡大して、上部のステージのZ軸方向の運動に変
換するテコ機能を持つヒンジブロックと前記圧電アクチ
ュエータに設けた予圧バネと、前記ステージの対角線上
に対称配置した4ケ所の平行板バネ状幅広ブロックで前
記ステージと前記ベースを連結して真直運動を規制する
機構を有するZ軸微動機構。
1. A reference block fixed to a base and three elastic hinges are used to convert a linear motion of a piezoelectric actuator into a rotary motion and to expand a stroke of the piezoelectric actuator, thereby increasing a Z-axis direction of an upper stage. The stage and the base are connected by a hinge block having a lever function for converting into a motion of the stage, a preload spring provided on the piezoelectric actuator, and four parallel leaf spring wide blocks symmetrically arranged on the diagonal line of the stage. A Z-axis fine movement mechanism having a mechanism for restricting straight movement.
JP20034093A 1993-07-20 1993-07-20 Z-axis fine adjusting mechanism Pending JPH0735987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20034093A JPH0735987A (en) 1993-07-20 1993-07-20 Z-axis fine adjusting mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20034093A JPH0735987A (en) 1993-07-20 1993-07-20 Z-axis fine adjusting mechanism

Publications (1)

Publication Number Publication Date
JPH0735987A true JPH0735987A (en) 1995-02-07

Family

ID=16422666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20034093A Pending JPH0735987A (en) 1993-07-20 1993-07-20 Z-axis fine adjusting mechanism

Country Status (1)

Country Link
JP (1) JPH0735987A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046021A1 (en) * 2005-10-17 2007-04-26 Koninklijke Philips Electronics N.V. In-plane manipulator
WO2019180278A1 (en) * 2018-03-23 2019-09-26 Ge Healthcare Bio-Sciences Corp. Microscope stage and stage movement mechanism
US10831113B1 (en) 2019-04-24 2020-11-10 Nuflare Technology, Inc. Stage mechanism and table height position adjustment method
CN113394066A (en) * 2021-05-25 2021-09-14 中科晶源微电子技术(北京)有限公司 Longitudinal motion platform and electron beam detection equipment with same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046021A1 (en) * 2005-10-17 2007-04-26 Koninklijke Philips Electronics N.V. In-plane manipulator
JP2009511977A (en) * 2005-10-17 2009-03-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ In-plane manipulator
WO2019180278A1 (en) * 2018-03-23 2019-09-26 Ge Healthcare Bio-Sciences Corp. Microscope stage and stage movement mechanism
CN112055828A (en) * 2018-03-23 2020-12-08 环球生命科技咨询美国有限责任公司 Microscope stage and stage moving mechanism
US10831113B1 (en) 2019-04-24 2020-11-10 Nuflare Technology, Inc. Stage mechanism and table height position adjustment method
CN113394066A (en) * 2021-05-25 2021-09-14 中科晶源微电子技术(北京)有限公司 Longitudinal motion platform and electron beam detection equipment with same

Similar Documents

Publication Publication Date Title
US5563465A (en) Actuator
US4520570A (en) Piezoelectric x-y-positioner
JP2601834B2 (en) Table equipment
US6346710B1 (en) Stage apparatus including displacement amplifying mechanism
US7301257B2 (en) Motion actuator
CN104467525B (en) Preload adjustable formula inertia stick-slip drives across yardstick precisely locating platform
US8495761B2 (en) Planar positioning device and inspection device provided with the same
US7117724B1 (en) Flexure-beam actuator and stage for micro- and nano-positioning
KR20060016118A (en) Scanning probe microscope using a surface drive actuator to position the scanning probe tip
CN110065926B (en) Two-degree-of-freedom scott-russell flexible micro-nano positioning platform
CN110336485B (en) Piezoelectric impact driven two-dimensional parallel cross-scale precision positioning platform
JPH0735987A (en) Z-axis fine adjusting mechanism
US7855491B2 (en) Prestress-adjustable piezoelectric gripping device
JPS63244205A (en) Positioning device
EP0530822A2 (en) Guide device for vibration driven motor
JPH06138396A (en) Fine movement mechanism
JPH10186198A (en) Parallel and straight fine adjustment device and fine moving device of lens barrel using the same
JPS61159349A (en) Minute distance moving device
JP2000009867A (en) Stage moving device
CN201185090Y (en) Micron order platform fine adjustment mechanism and work platform for producing hard disk elastic arm
CN115954043A (en) Asymmetric differential micro-nano linear motion platform and working method
CN110716254A (en) Grating ruling machine indexing system macro-positioning actuating mechanism adopting ultrasonic antifriction technology
JP3981660B2 (en) Vertical / horizontal moving swivel
JP2562592B2 (en) One-way moving device in the same plane
CN116954038B (en) Movable connecting assembly and macro-micro combined vertical positioning device