JPH10186198A - Parallel and straight fine adjustment device and fine moving device of lens barrel using the same - Google Patents

Parallel and straight fine adjustment device and fine moving device of lens barrel using the same

Info

Publication number
JPH10186198A
JPH10186198A JP34517696A JP34517696A JPH10186198A JP H10186198 A JPH10186198 A JP H10186198A JP 34517696 A JP34517696 A JP 34517696A JP 34517696 A JP34517696 A JP 34517696A JP H10186198 A JPH10186198 A JP H10186198A
Authority
JP
Japan
Prior art keywords
parallel
lens barrel
springs
parallel springs
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34517696A
Other languages
Japanese (ja)
Inventor
Shigeru Suzuki
繁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP34517696A priority Critical patent/JPH10186198A/en
Publication of JPH10186198A publication Critical patent/JPH10186198A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports

Abstract

PROBLEM TO BE SOLVED: To provide a parallel and straight fine adjustment device which is excellent in parallelism and straightness with respect to movement, whose structure is simple and which is produced at low cost. SOLUTION: An internal lens barrel 5 is connected to the ends of three pairs of parallel springs 7a1-7b1, 7a2-(7b2), 7a3-7b3 having the same shape and made of the same material, and a lens barrel 1 is connected to the other ends of three pairs of parallel springs. Then, the parallel springs are attached in a state where they have no deflection, and arranged on a plane perpendicular to the optical axis of the lens of the lens barrel 5 so that synthetic force obtained by synthesizing force generated respectively in the parallel springs when the lens barrel 5 is moved may be zero. When the bottom part of the lens barrel 5 is pressed by a lever member 4 by operating a micrometer 3, the lens barrel 5 rises. However, at such a time, the same tensile force is exerted on the respective parallel springs and the synthetic force thereof becomes zero, then the lens barrel 5 is moved straight and in parallel with the optical axis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、露光機等の光学装
置、各種精密加工機、各種精密測定器等に使用されるば
ねガイドを用いた平行・真直微動装置およびこれを用い
たレンズ鏡筒の微小移動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a parallel / straight fine movement device using a spring guide used for an optical device such as an exposure machine, various precision processing machines, various precision measuring devices and the like, and a lens barrel using the same. A small moving device.

【0002】[0002]

【従来の技術】露光機等の光学装置、各種精密加工機、
各種精密測定器等においては、レンズやワーク、被加工
物、被測定物を高精度で位置決めすることが要求され
る。このような要求を満たす移動機構には各種あるが、
ばねガイドが幅広く使用されている。ばねガイドは、摺
動や転がりによる摩擦抵抗がないため、バックラッシュ
なしに作動し、精度と再現性が非常によいとともに、シ
ンプルな構造でメインテナンスが楽な上、製作コストが
かからないといった長所がある。
2. Description of the Related Art Optical devices such as exposure machines, various precision processing machines,
2. Description of the Related Art In various precision measuring instruments, it is required to position a lens, a work, a workpiece, and a workpiece with high accuracy. There are various types of moving mechanisms that satisfy such requirements,
Spring guides are widely used. The spring guide operates without backlash because it has no frictional resistance due to sliding or rolling, and has the advantages of extremely high accuracy and reproducibility, simple maintenance, easy maintenance, and low manufacturing costs. .

【0003】上記のようなばねガイドを用いた移動機構
として、従来から次のものが知られている。 平行ばねを用いた移動機構(その1) 図5は平行ばねを用いた移動機構の一例を示す図であ
り、10は基台、11は移動体であり、移動体11は基
台10に固定された平行な2枚の板ばねb1,b2で取
り付けられている。同図において、移動体11を同図矢
印方向に移動させると、板ばねb1,b2は、同図Aに
示す状態から同図Bに示すように撓み、移動体11は基
台10に対して平行に移動する。
[0003] As a moving mechanism using the above-described spring guide, the following is conventionally known. Moving mechanism using parallel spring (No. 1) FIG. 5 is a view showing an example of a moving mechanism using a parallel spring, where 10 is a base, 11 is a moving body, and the moving body 11 is fixed to the base 10. It is attached by two parallel leaf springs b1 and b2. In this figure, when the moving body 11 is moved in the direction of the arrow shown in the figure, the leaf springs b1 and b2 bend from the state shown in FIG. Move in parallel.

【0004】上記移動機構は、移動体11を上記のよう
に平行移動させることができるが、移動体11が下方に
移動したとき、同図に示すように移動体11はΔLだけ
基台10側に移動する。すなわち、上記移動機構は、平
行動は得られても真直動を得ることはできず、移動体1
1の変位Iに対して、その2乗に比例した横変位(Δ
L)が発生する。このため、上記機構は高精度な平行・
真直移動のためのガイドとしては適さない。
The moving mechanism can move the moving body 11 in parallel as described above, but when the moving body 11 moves downward, as shown in FIG. Go to That is, the above-mentioned moving mechanism cannot obtain the straight movement even though the parallel movement is obtained.
For a displacement I of 1, a lateral displacement (Δ
L) occurs. For this reason, the above mechanism is highly accurate
It is not suitable as a guide for straight travel.

【0005】 平行ばねを用いた移動機構(その2) 上記移動体11の横変位をキャンセルすることができる
移動機構として、同形状・同材質の4枚の板ばねを用い
た図6に示す機構が知られている。同図において、基台
10には2枚の平行な板ばねb1,b3の一端が固定さ
れ、板ばねb1,b3の他端には中間移動体12に取り
付けられている。さらに、中間移動体12には2枚の平
行な板ばねb2,b4の一端が固定され、その他端が移
動体11に取り付けられている。
Moving Mechanism Using Parallel Springs (Part 2) As a moving mechanism capable of canceling the lateral displacement of the moving body 11, a mechanism shown in FIG. 6 using four leaf springs of the same shape and the same material is used. It has been known. In FIG. 1, one end of two parallel leaf springs b1 and b3 is fixed to the base 10, and the other end of the leaf springs b1 and b3 is attached to the intermediate moving body 12. Further, one end of two parallel leaf springs b2 and b4 is fixed to the intermediate moving body 12, and the other end is attached to the moving body 11.

【0006】同図において、移動体11を同図の矢印方
向に移動させると、平行ばねb2,b4が撓み、移動体
11は同図の左方向にΔL移動しようとする。一方、中
間移動体12と基台10の間に設けられた板ばねb1,
b3も同量だけ撓み、中間移動体12は同図の右方向に
ΔLだけ移動しようとする。結局、上記左右方向の移動
が相殺され、理論的には移動体11は基台10に平行に
移動する。この機構であれば、理論的には平行・真直動
が成立し、移動範囲を広くすることができるが、実際に
は、移動体に加わる振動等による力によって、板ばねb
1〜b4に自然の曲げ以外の、引っ張り、圧縮、傾斜、
ねじれ等の力が加わり、板ばねb1〜b4は複雑に撓
み、移動体11は必ずしも平行・真直動しない。
In the figure, when the moving body 11 is moved in the direction of the arrow in the figure, the parallel springs b2 and b4 bend, and the moving body 11 tries to move ΔL to the left in the figure. On the other hand, a leaf spring b1, provided between the intermediate moving body 12 and the base 10,
b3 also bends by the same amount, and the intermediate moving body 12 attempts to move by ΔL to the right in FIG. Eventually, the movement in the left-right direction is canceled out, and theoretically the moving body 11 moves parallel to the base 10. With this mechanism, parallel / straight motion is theoretically established, and the movement range can be widened. However, in actuality, the leaf spring b
1 to b4 other than natural bending, tension, compression, inclination,
When a force such as torsion is applied, the leaf springs b1 to b4 bend in a complicated manner, and the moving body 11 does not necessarily move in parallel or straight.

【0007】 1対の板ばねを用いた移動機構 上記した平行ばねを用いずに精度のよい平行・真直動を
実現する方法として、図7に示す方法が知られている。
同図に示すように、移動体11の両側に一対の板ばねb
1,b2を取り付け、該板ばねb1,b2の他端を基台
10に取り付けられた板ばね支持体13に固定する。そ
して、移動体11と基台10の間の少なくとも3か所に
くさび等の駆動体を設け、移動体11に対し、同図矢印
方向に駆動力を与える。上記機構では、3か所に設けら
れた駆動体の各駆動力を移動体平面に対して垂直にかつ
等しくすれば、移動体11を平行・真直動させることが
できる。
A moving mechanism using a pair of leaf springs A method shown in FIG. 7 is known as a method for realizing accurate parallel / straight movement without using the above-mentioned parallel springs.
As shown in the figure, a pair of leaf springs b
The other ends of the leaf springs b1 and b2 are fixed to a leaf spring support 13 attached to the base 10. Then, a driving body such as a wedge is provided at at least three places between the moving body 11 and the base 10, and a driving force is applied to the moving body 11 in the direction of the arrow in FIG. In the above-described mechanism, the moving body 11 can be moved in parallel and straight if the driving forces of the driving bodies provided at three locations are made perpendicular and equal to the plane of the moving body.

【0008】上記した装置においては、2枚の板ばねb
1,b2が1平面内にある場合の板ばねb1,b2内部
の引っ張り力を0とすると、移動体11の移動によって
板ばねb1,b2はわずかに伸び、内部に引っ張り力が
生ずる。このような装置では、移動体11が板ばねb
1,b2の弾性限度内で移動するように構成する必要が
ある。上記構成とすれば、高精度で移動体11の平行・
真直動を実現することができるが、上記3か所に設けら
れた駆動体の各駆動力を移動体平面に対して垂直にかつ
等しくしなければならず、これをくさび等で実現する場
合には、高い加工精度、組み立て精度が要求される。
In the above-described device, two leaf springs b
Assuming that the tension inside the leaf springs b1 and b2 when the planes 1 and b2 are in one plane is 0, the leaf springs b1 and b2 are slightly extended by the movement of the moving body 11, and a tension is generated inside. In such an apparatus, the moving body 11 is
It is necessary to be configured to move within the elastic limit of 1, b2. With the above configuration, the moving body 11 can be parallelized with high accuracy.
Although straight motion can be realized, each driving force of the driving bodies provided at the above three places must be perpendicular and equal to the plane of the moving body, and when this is realized by a wedge or the like, Requires high processing accuracy and assembly accuracy.

【0009】[0009]

【発明が解決しようとする課題】以上のように、上記
の移動機構は、移動体を平行に移動させることができる
が、真直動を得ることができず、また、の移動機構
は、理論的には平行かつ真直動が可能であるが、実際に
は移動体に加わる振動等による力によって、板ばねが複
雑に撓むため、必ずしも平行・真直動を得ることができ
ない。さらに、上記の移動機構を用いれば、比較的高
い精度で平行・真直動を得ることができるが、移動体を
駆動する駆動機構が複雑となり、加工・組み立てに高い
精度が要求されるといった問題がある。
As described above, the above-described moving mechanism can move the moving body in parallel, but cannot obtain straight movement, and the moving mechanism is theoretically impossible. Can move in parallel and straight, but in reality, the leaf spring is flexed complicatedly by the force of vibration or the like applied to the moving body, so that parallel / straight movement cannot always be obtained. Further, if the above moving mechanism is used, parallel / straight motion can be obtained with relatively high accuracy. However, the driving mechanism for driving the moving body becomes complicated, and high accuracy is required for machining and assembly. is there.

【0010】本発明は上記した従来技術の問題点を考慮
してなされたものであって、その第1の目的は、移動に
対して平行度、真直度が良く、またバックラッシュがな
く再現性がよく、さらに、構造が簡単で安価に製造する
ことができる平行・真直微動装置を提供することであ
る。本発明の第2の目的は、レンズ(もしくはレンズ
群)を平行かつ真直度良く、また、バックラッシュがな
く再現性がよく微動させることができ、構造が簡単で安
価に製造することができるレンズ鏡筒の微小移動装置を
提供することである。
The present invention has been made in consideration of the above-mentioned problems of the prior art, and a first object of the present invention is to provide good parallelism and straightness with respect to movement, no backlash, and high reproducibility. Another object of the present invention is to provide a parallel / straight fine movement device which has a simple structure and can be manufactured at low cost. A second object of the present invention is to provide a lens (or lens group) that can be finely moved in parallel and with good straightness, has good reproducibility without backlash, has a simple structure, and can be manufactured at low cost. An object of the present invention is to provide a micro-movement device for a lens barrel.

【0011】[0011]

【課題を解決するための手段】上記課題を本発明におい
ては、次のようにして解決する。 (1)同一形状で同一の材質からなる3組以上の平行ば
ねと、上記3組以上の各平行ばねの一端が接続された移
動部材と、上記3組以上の各平行ばねの他端が接続され
た固定部材とから平行・真直微動装置を構成し、上記各
平行ばねを、各々たわみのない状態で上記移動部材と固
定部材間に取り付け、上記移動部材の移動方向と垂直な
平面上であって、移動部材が移動したときに上記平行ば
ねに各々生じる力の合成力が0となるように配置する。 (2)上記(1)において、上記平行ばねを、各平行ば
ねの曲げ方向の中心軸の交点が上記移動部材の特定の移
動軸上にあり、各中心軸が互いになす角度が等くなるよ
うに配置する。
Means for Solving the Problems The above-mentioned problems are solved in the present invention as follows. (1) Three or more sets of parallel springs made of the same material with the same shape, a moving member to which one end of each of the three or more sets of parallel springs is connected, and another end of each of the three or more sets of parallel springs connected A parallel / straight fine movement device is constructed from the fixed member thus mounted, and each of the parallel springs is mounted between the moving member and the fixed member without bending, and is positioned on a plane perpendicular to the moving direction of the moving member. The parallel springs are arranged such that the resultant force of the respective forces generated when the moving member moves is zero. (2) In the above (1), the parallel springs are arranged such that the intersection of the center axes of the respective parallel springs in the bending direction is on a specific movement axis of the moving member, and the angles formed by the respective center axes are equal. To place.

【0012】(3)同一形状で同一の材質からなる3組
以上の平行ばねと、上記3組以上の平行ばねの一端が接
続された鏡筒と、上記鏡筒内に配置され、上記3組以上
の平行ばねの他端が接続された内部鏡筒と、上記内部鏡
筒内に配置されたレンズと、上記内部鏡筒を上記レンズ
の光軸方向に移動させるための駆動力を発生する駆動手
段とからレンズ鏡筒の微小移動装置を構成し、上記各平
行ばねを、各々たわみのない状態で上記鏡筒と内部鏡筒
間に取り付け、上記内部鏡筒のレンズの光軸と垂直な平
面上であって、内部鏡筒が移動したときに上記平行ばね
に各々生じる力の合成力が0となるように配置する。
(3) Three or more sets of parallel springs of the same shape and made of the same material, a lens barrel to which one end of the three or more sets of parallel springs are connected, and the three sets of parallel springs arranged in the lens barrel. An inner barrel to which the other end of the parallel spring is connected, a lens disposed in the inner barrel, and a drive for generating a driving force for moving the inner barrel in the optical axis direction of the lens. A micro-moving device for the lens barrel from the means, and each of the parallel springs is mounted between the barrel and the inner barrel in a state without bending, and a plane perpendicular to the optical axis of the lens of the inner barrel. It is arranged on the upper side so that the resultant force of the forces generated in the parallel springs when the inner lens barrel moves is zero.

【0013】本発明の請求項1,2の発明においては、
上記(1)(2)のように構成したので、移動部材を移
動させたとき、各平行ばねに同一の引っ張り力が加わり
その合成力が0となり、移動体を平行かつ真直動させる
ことができる。本発明の請求項3の発明においては、上
記(3)のように構成したので、内部鏡筒を駆動手段に
より移動させたとき、上記と同様、各平行ばねに同一の
引っ張り力が加わりその合成力が0となり、内部鏡筒を
光軸に平行にかつ真直動させることができる。
According to the first and second aspects of the present invention,
With the configuration as described in (1) and (2) above, when the moving member is moved, the same tensile force is applied to each parallel spring and the combined force becomes zero, so that the moving body can be moved in parallel and straight. . According to the third aspect of the present invention, since the inner barrel is moved by the driving means, the same tensile force is applied to the parallel springs as in the above case when the inner barrel is moved by the driving means. The force becomes zero, and the inner lens barrel can be moved straight and parallel to the optical axis.

【0014】[0014]

【発明の実施の形態】図1は本発明を、半導体製造用投
影露光装置等に使用されるレンズ鏡筒の微小移動装置に
適用した実施例を示す図であり、同図(a)は平面図、
同図(b)は(a)におけるA方向の断面図である。同
図において、1は鏡筒、5は内部鏡筒であり、内部鏡筒
5の内部にはレンズ群2が取り付けられており、内部鏡
筒5を鏡筒1に対して同図(b)の上下方向に微小に移
動させることにより、例えば投影倍率等を調整する。内
部鏡筒5と鏡筒1の内部凸部6との間には、同一形状、
同一材質の板ばね7a1〜7a3、7b1〜7b3が6
枚固定されており、板ばね7a1と7b1、板ばね7a
2と7b2、板ばね7a3と7b3で平行ばねを構成し
ている。これらの平行ばね7a1,7b1、7a2,7
b2、7a3,7b3は、それぞれの曲げ方向の中心軸
が、レンズ群2の光軸のまわりに等間隔(この場合は1
20°)になるように配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a view showing an embodiment in which the present invention is applied to a micro-moving device for a lens barrel used in a projection exposure apparatus for semiconductor manufacturing and the like, and FIG. Figure,
FIG. 2B is a cross-sectional view in the direction A in FIG. In FIG. 1, reference numeral 1 denotes a lens barrel, 5 denotes an internal lens barrel, and a lens group 2 is mounted inside the internal lens barrel 5. For example, the projection magnification and the like are adjusted by slightly moving in the vertical direction. The same shape, between the inner barrel 5 and the inner convex portion 6 of the barrel 1,
6 leaf springs 7a1-7a3, 7b1-7b3 of the same material
The leaf springs 7a1 and 7b1, the leaf spring 7a
2 and 7b2 and the leaf springs 7a3 and 7b3 constitute a parallel spring. These parallel springs 7a1, 7b1, 7a2, 7
In b2, 7a3, and 7b3, the center axes of the respective bending directions are equally spaced around the optical axis of the lens group 2 (in this case, 1).
20 °).

【0015】3はマイクロメータ、4はてこ部材であ
り、てこ部材4は取り付け部材8に軸支されており、そ
の軸を中心として回動する。また、てこ部材4のP1点
はマイクロメータ3の可動部3aに接し、P2点は内部
鏡筒5の底部に接している。このため、マイクロメータ
3を可動部3aが突出する方向に回転させると、てこ部
材4のP1点が押されて、てこ部材4が回動し、てこ部
材4のP2点が内部鏡筒5の底部を押して内部鏡筒5を
押し上げる。ここで、鏡筒1と内部鏡筒5間に平行ばね
7a1と7b1のみが接続されている場合には、内部鏡
筒5が上方に押し上げられると、前記図5に示したよう
に内部鏡筒5はΔLだけ鏡筒1側に移動しようとする
が、実際には鏡筒1と内部鏡筒5間に平行ばね7a2と
7b2、7a3と7b3が設けられているので、内部鏡
筒5は上記のような移動ができず、各平行ばね7a1〜
7b3には図1(a)に示す力fが働く。
Reference numeral 3 denotes a micrometer, and reference numeral 4 denotes a lever member. The lever member 4 is supported by a mounting member 8 and rotates about its axis. Further, the point P1 of the lever member 4 is in contact with the movable portion 3a of the micrometer 3, and the point P2 is in contact with the bottom of the inner lens barrel 5. Therefore, when the micrometer 3 is rotated in the direction in which the movable portion 3a projects, the point P1 of the lever member 4 is pushed, the lever member 4 rotates, and the point P2 of the lever member 4 The bottom is pushed to push up the inner lens barrel 5. Here, when only the parallel springs 7a1 and 7b1 are connected between the lens barrel 1 and the internal lens barrel 5, when the internal lens barrel 5 is pushed upward, as shown in FIG. 5 attempts to move toward the lens barrel 1 by ΔL. However, since the parallel springs 7a2 and 7b2 and 7a3 and 7b3 are provided between the lens barrel 1 and the internal lens barrel 5, the internal lens barrel 5 is Cannot be moved as shown in FIG.
A force f shown in FIG. 1A acts on 7b3.

【0016】各平行ばね7a1と7b1、7a2と7b
2、7a3と7b3は同一形状、同一材質の板ばねから
構成されており、また、各平行ばねは図1(a)に示す
ように等間隔(120°間隔)で配置されているので、
その合成力は平衡を保つ。すなわち、各平行ばね7a1
と7b1、7a2と7b2、7a3と7b3に生じる力
をベクトルとみたとき、合成したベクトルは0となって
釣り合う。そして、各平行ばねに等しい張力が加わって
わずかに伸び、内部鏡筒5は光軸に対して平行に真直動
する。
Each parallel spring 7a1 and 7b1, 7a2 and 7b
2, 7a3 and 7b3 are made of leaf springs of the same shape and the same material, and the parallel springs are arranged at equal intervals (120 ° intervals) as shown in FIG.
Its combined power balances. That is, each parallel spring 7a1
When the forces generated at 7b1 and 7a2, 7b2 and 7a3 and 7b3 are regarded as vectors, the combined vector becomes 0 and is balanced. Then, an equal tension is applied to each parallel spring to slightly expand it, and the inner lens barrel 5 moves straight and parallel to the optical axis.

【0017】なお、内部鏡筒5に加わる外力は、光軸が
重力方向の場合は、光軸上の内部鏡筒5の自重と、内部
鏡筒5への駆動点との位置によってモーメントがかか
り、平行ばね7a1〜7b3には種々の撓みが合成した
力がかかる。しかしながら、各平行ばねの各板ばねはそ
れぞれ1平面上にあるため、一方が伸びようとすれば、
他方には縮む力で反発するので、内部鏡筒5の平行度が
くずれることはない。また、一つの平行ばねにねじれ力
が加わっても、他の平行ばねにより支えられる。
When the optical axis is in the direction of gravity, a moment is applied to the external force applied to the inner lens barrel 5 depending on the weight of the inner lens barrel 5 on the optical axis and the position of the driving point to the inner lens barrel 5. The combined forces of various flexures are applied to the parallel springs 7a1 to 7b3. However, since each leaf spring of each parallel spring is on one plane, if one tries to extend,
The other side is repelled by the contracting force, so that the parallelism of the inner lens barrel 5 is not lost. Even if a torsional force is applied to one parallel spring, it is supported by another parallel spring.

【0018】上記構成の微小移動装置における真直度を
調べるため、図2に示す平行ばねを用いて、図1の装置
を組み立て内部鏡筒5の真直度を調べた。なお、上記実
験に使用した板ばねの材質はSKS−CSPH、板ばね
の厚さは0.3mmtであり、また、図2に示すように
板ばねの幅26mm、板ばねの間隔140mm、板ばね
の変形部の長さ40mmの平行ばねを図1に示すように
120°間隔で配置した。上記構成において、内部鏡筒
5を光軸方向に±0.5mm移動させたところ、内部鏡
筒5は真直度0.5μm以下で移動し、必要な精度を確
保できることが確認できた。以上のように、本実施例に
おいては、鏡筒1と内部鏡筒5間に同一形状・同一材質
の平行ばね7a1〜7b3を等間隔に配置したので、内
部鏡筒5を光軸に対して平行に真直動させることができ
る。また、平行ばねを用いているので、バックラッシュ
を生じることがなく、再現性よく内部鏡筒5を微動させ
ることができる。
In order to check the straightness of the micro-movement device having the above-described structure, the device shown in FIG. 1 was assembled using the parallel spring shown in FIG. 2 and the straightness of the inner lens barrel 5 was checked. The material of the leaf spring used in the above experiment was SKS-CSPH, the thickness of the leaf spring was 0.3 mmt, and as shown in FIG. 2, the width of the leaf spring was 26 mm, the interval between the leaf springs was 140 mm, The parallel springs having a length of 40 mm were formed at intervals of 120 ° as shown in FIG. In the above configuration, when the inner lens barrel 5 was moved by ± 0.5 mm in the optical axis direction, it was confirmed that the inner lens barrel 5 moved with a straightness of 0.5 μm or less, and required accuracy could be secured. As described above, in this embodiment, since the parallel springs 7a1 to 7b3 of the same shape and the same material are arranged at equal intervals between the lens barrel 1 and the inner lens barrel 5, the inner lens barrel 5 is moved with respect to the optical axis. It can be moved straight and parallel. Further, since the parallel spring is used, the inner barrel 5 can be finely moved with good reproducibility without causing backlash.

【0019】上記実施例では、3組の平行ばねを120
°間隔に配置した場合を示したが、平行ばねの数、配置
は上記実施例に限定されるものではなく、平行ばねに働
く力のベクトルの和が0になるように、3組以上の平行
ばねを配置すれば同様の効果を得ることができる。ま
た、上記実施例では、各平行ばねの曲げ方向の幅の中心
軸を光軸に向けるように構成したが、各平行ばねの中心
軸が向かう方向はかならずしも光軸である必要はなく、
移動体の移動方向に平行な軸であればよい。図3、図4
は平行ばねのその他の配置例を示す図である。図3
(a)(b)は4組の平行ばねを特定の軸の回りに対称
に配置した場合を示し、その時の平行ばねに働く力のベ
クトルの方向はそれぞれ同図(c)(d)に示すように
なる。
In the above embodiment, three sets of parallel springs
Although the case where the parallel springs are arranged is shown, the number and arrangement of the parallel springs are not limited to the above embodiment, and three or more parallel springs are set so that the sum of the force vectors acting on the parallel springs becomes zero. A similar effect can be obtained by disposing a spring. Further, in the above embodiment, the central axis of the width in the bending direction of each parallel spring is configured to be directed to the optical axis, but the direction in which the central axis of each parallel spring is directed does not necessarily need to be the optical axis.
Any axis may be used as long as the axis is parallel to the moving direction of the moving body. 3 and 4
FIG. 7 is a view showing another example of arrangement of parallel springs. FIG.
(A) and (b) show the case where four sets of parallel springs are symmetrically arranged around a specific axis, and the directions of the force vectors acting on the parallel springs at that time are shown in FIGS. Become like

【0020】また、上記特定の軸が複数であってもよ
く、移動体内の特定の軸にかかる平行ばねの引っ張り力
の合成力が、全体として0になるように構成すれば、上
記と同様な効果を得ることができる。すなわち、図4
(a)(b)に示すように6組もしくは4組の平行ばね
を用い、それらの引っ張り力の合成力が同図(c)
(d)に示すように全体として0になるように構成すれ
ばよい。なお、上記図3、図4に示すように、平行ばね
を3組以上にすれば、全体として変形に耐える力は増加
し、剛性は平行ばねの数を増やせば増やす程高くなる。
ただし、平行ばねの数を増やしすぎると、その精度を保
持するのが難しくなるので、平行ばねの数はn=3が加
工・組み立て上最適である。
Further, the specific axis may be plural, and if the combined force of the tensile force of the parallel springs applied to the specific axis in the moving body is made to be zero as a whole, the same as the above is obtained. The effect can be obtained. That is, FIG.
(A) As shown in (b), six or four sets of parallel springs are used, and the combined force of their tensile forces is shown in FIG.
What is necessary is just to comprise so that it may become 0 as a whole as shown to (d). As shown in FIGS. 3 and 4, when three or more sets of parallel springs are used, the force withstanding deformation as a whole increases, and the rigidity increases as the number of parallel springs increases.
However, if the number of parallel springs is excessively increased, it becomes difficult to maintain the accuracy. Therefore, the number of parallel springs is optimally n = 3 in terms of machining and assembly.

【0021】[0021]

【発明の効果】以上説明したように、本発明において
は、同一形状で同一の材質からなる3組以上の平行ばね
と、上記3組の各平行ばねの一端が接続された移動部材
と、上記3組以上の各平行ばねの他端が接続された固定
部材とから平行・真直微動装置を構成し、上記各平行ば
ねを、各々たわみのない状態で上記移動部材と固定部材
間に取り付け、上記移動部材の移動方向と垂直な平面上
であって、移動部材が移動したときに上記平行ばねに各
々生じる力の合成力が0となるように配置したので、以
下の効果を得ることができる。 (1)平行度が高く、バックラッシュがなく、再現性よ
く移動体を微動させることが可能となる。また、真直度
がよく、剛性の高い移動を実現することができる。
As described above, in the present invention, three or more sets of parallel springs of the same shape and made of the same material, a moving member to which one end of each of the three sets of parallel springs is connected, A parallel / straight fine movement device is constituted by a fixed member to which the other end of each of the three or more parallel springs is connected, and each of the parallel springs is attached between the moving member and the fixed member without bending, respectively. Since the components are arranged on a plane perpendicular to the moving direction of the moving member so that the resultant force of the forces generated in the parallel springs when the moving member moves becomes zero, the following effects can be obtained. (1) The parallelism is high, there is no backlash, and the moving body can be finely moved with good reproducibility. In addition, it is possible to realize a movement with good straightness and high rigidity.

【0022】(2)3組以上の平行ばねにより移動部材
を平行かつ真直動させることができるので、移動体を移
動させるための駆動手段として簡単な機構を用いること
ができ、装置の製造コストを低減化することができ、ま
た保守性を向上させることができる。 (3)上記微動装置をレンズ鏡筒の微動装置に適用する
ことにより、レンズを光軸に沿って平行にかつ真直動さ
せることができ、投影倍率等を精度よく調整することが
できる。また、レンズを移動させるための駆動機構も、
てこ等の簡単な機構を用いることができ、製造コストを
低減化することができ、保守性を向上させることができ
る。
(2) Since the moving member can be moved in parallel and straight by three or more sets of parallel springs, a simple mechanism can be used as a driving means for moving the moving body, and the manufacturing cost of the apparatus can be reduced. It is possible to reduce the size and improve the maintainability. (3) By applying the fine movement device to a fine movement device of a lens barrel, the lens can be moved straight and parallel along the optical axis, and the projection magnification and the like can be adjusted with high precision. Also, the drive mechanism for moving the lens is
A simple mechanism such as a lever can be used, the manufacturing cost can be reduced, and the maintainability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のレンズ鏡筒の微動装置の構成
を示す図である。
FIG. 1 is a diagram illustrating a configuration of a fine movement device of a lens barrel according to an embodiment of the present invention.

【図2】本発明の実施例の微動機構の真直度を調べるた
めに用いた平行ばねの構成を示す図である。
FIG. 2 is a diagram showing a configuration of a parallel spring used for checking the straightness of the fine movement mechanism according to the embodiment of the present invention.

【図3】本発明の実施例の微動装置の他の構成例を示す
図である。
FIG. 3 is a diagram showing another configuration example of the fine movement device according to the embodiment of the present invention.

【図4】本発明の実施例の微動装置の他の構成例を示す
図である。
FIG. 4 is a diagram showing another configuration example of the fine movement device according to the embodiment of the present invention.

【図5】平行ばねを用いた移動機構の一例を示す図であ
る。
FIG. 5 is a diagram illustrating an example of a moving mechanism using a parallel spring.

【図6】移動体の横変位をキャンセルできる平行ばねを
用いた移動機構の一例を示す図である。
FIG. 6 is a diagram showing an example of a moving mechanism using a parallel spring capable of canceling a lateral displacement of a moving body.

【図7】一対の板ばねを用いた移動機構の一例を示す図
である。
FIG. 7 is a diagram illustrating an example of a moving mechanism using a pair of leaf springs.

【符号の説明】[Explanation of symbols]

1 鏡筒 2 レンズ群 3 マイクロメータ 4 てこ部材 5 内部鏡筒 6 の内部凸部 7a1,7b1 平行ばね 7a2,7b2 平行ばね 7a3,7b3 平行ばね 8 取り付け部材 DESCRIPTION OF SYMBOLS 1 Lens barrel 2 Lens group 3 Micrometer 4 Lever member 5 Internal convex part of internal barrel 6 7a1, 7b1 Parallel spring 7a2, 7b2 Parallel spring 7a3, 7b3 Parallel spring 8 Mounting member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 同一形状で同一の材質からなる3組以上
の平行ばねと、 上記3組以上の各平行ばねの一端が接続された移動部材
と、 上記3組以上の各平行ばねの他端が接続された固定部材
とから構成され、 上記各平行ばねは各々たわみのない状態で取り付けら
れ、各平行ばねは、上記移動部材の移動方向と垂直な平
面上であって、移動部材が移動したときに上記平行ばね
に各々生じる力の合成力が0となるように配置されてい
ることを特徴とする平行・真直微動装置。
1. Three or more sets of parallel springs having the same shape and made of the same material, a moving member to which one end of each of the three or more sets of parallel springs is connected, and the other end of each of the three or more sets of parallel springs The parallel springs are respectively mounted without bending, and the parallel springs are on a plane perpendicular to the moving direction of the moving member, and the moving member has moved. A parallel / straight fine movement device characterized by being arranged such that the resultant force of the forces generated in each of the parallel springs sometimes becomes zero.
【請求項2】 上記平行ばねは、各平行ばねの曲げ方向
の中心軸の交点が上記移動部材の特定の移動軸上にあ
り、各中心軸が互いになす角度が等しいことを特徴とす
る請求項1の平行・真直微動装置。
2. The parallel spring according to claim 1, wherein the intersection of the central axes in the bending direction of the parallel springs is on a specific moving axis of the moving member, and the angles formed by the central axes are equal. 1 parallel / straight fine movement device.
【請求項3】 同一形状で同一の材質からなる3組以上
の平行ばねと、 上記3組以上の平行ばねの一端が接続された鏡筒と、 上記鏡筒内に配置され、上記3組以上の平行ばねの他端
が接続された内部鏡筒と、 上記内部鏡筒内に配置されたレンズと、 上記内部鏡筒を上記レンズの光軸方向に移動させるため
の駆動力を発生する駆動手段とから構成され、 上記各平行ばねは、各々たわみのない状態で上記鏡筒と
内部鏡筒間に取り付けられ、上記内部鏡筒のレンズの光
軸と垂直な平面上であって、内部鏡筒が移動したときに
上記平行ばねに各々生じる力の合成力が0となるように
配置されていることを特徴とするレンズ鏡筒の微小移動
装置。
3. At least three sets of parallel springs of the same shape and made of the same material; a lens barrel to which one end of the three or more sets of parallel springs is connected; An inner barrel to which the other end of the parallel spring is connected, a lens disposed in the inner barrel, and driving means for generating a driving force for moving the inner barrel in the optical axis direction of the lens. Wherein each of the parallel springs is attached between the barrel and the inner barrel in a state without bending, and is on a plane perpendicular to the optical axis of the lens of the inner barrel, and the inner barrel is Wherein the combined force of the forces generated by the parallel springs when the lens is moved is zero.
JP34517696A 1996-12-25 1996-12-25 Parallel and straight fine adjustment device and fine moving device of lens barrel using the same Pending JPH10186198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34517696A JPH10186198A (en) 1996-12-25 1996-12-25 Parallel and straight fine adjustment device and fine moving device of lens barrel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34517696A JPH10186198A (en) 1996-12-25 1996-12-25 Parallel and straight fine adjustment device and fine moving device of lens barrel using the same

Publications (1)

Publication Number Publication Date
JPH10186198A true JPH10186198A (en) 1998-07-14

Family

ID=18374813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34517696A Pending JPH10186198A (en) 1996-12-25 1996-12-25 Parallel and straight fine adjustment device and fine moving device of lens barrel using the same

Country Status (1)

Country Link
JP (1) JPH10186198A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1031996A2 (en) * 1999-02-27 2000-08-30 Carl Zeiss Adjustable assembly
WO2001081970A3 (en) * 2000-04-25 2002-07-25 Silicon Valley Group Apparatus, system, and method for precision positioning and alignment of a lens in an optical system
EP1310829A1 (en) * 2001-11-07 2003-05-14 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6734949B2 (en) 2001-11-07 2004-05-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005064382A1 (en) * 2003-12-25 2005-07-14 Nikon Corporation Apparatus for holding optical element, barrel, exposure apparatus, and device producing method
DE102010008756A1 (en) * 2010-02-17 2011-06-30 Carl Zeiss Laser Optics GmbH, 73447 Optical arrangement for use in optical systems for correction of aberrations, has optical element and holder at which optical element is fixed, where optical element is fixed at holder by flexible bearing
JP2011145688A (en) * 2000-03-30 2011-07-28 Canon Inc Supporting structure of optical element, exposure apparatus using the same, and manufacturing method of semiconductor device
CN105071200A (en) * 2015-09-24 2015-11-18 江苏卓远激光科技有限公司 Movable installation structure of laser lens mounting base
WO2019102957A1 (en) * 2017-11-24 2019-05-31 株式会社ブイ・テクノロジー Attachment structure for optical device, and exposure device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1031996A2 (en) * 1999-02-27 2000-08-30 Carl Zeiss Adjustable assembly
EP1031996A3 (en) * 1999-02-27 2001-03-28 Carl Zeiss Adjustable assembly
JP2011145688A (en) * 2000-03-30 2011-07-28 Canon Inc Supporting structure of optical element, exposure apparatus using the same, and manufacturing method of semiconductor device
WO2001081970A3 (en) * 2000-04-25 2002-07-25 Silicon Valley Group Apparatus, system, and method for precision positioning and alignment of a lens in an optical system
KR100767833B1 (en) * 2001-11-07 2007-10-17 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Device Manufacturing Method
US6734949B2 (en) 2001-11-07 2004-05-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1310829A1 (en) * 2001-11-07 2003-05-14 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005064382A1 (en) * 2003-12-25 2005-07-14 Nikon Corporation Apparatus for holding optical element, barrel, exposure apparatus, and device producing method
JPWO2005064382A1 (en) * 2003-12-25 2007-12-20 株式会社ニコン Optical element holding device, lens barrel, exposure apparatus, and device manufacturing method
US7697222B2 (en) 2003-12-25 2010-04-13 Nikon Corporation Apparatus for holding optical element, barrel, exposure apparatus, and device producing method
DE102010008756A1 (en) * 2010-02-17 2011-06-30 Carl Zeiss Laser Optics GmbH, 73447 Optical arrangement for use in optical systems for correction of aberrations, has optical element and holder at which optical element is fixed, where optical element is fixed at holder by flexible bearing
CN105071200A (en) * 2015-09-24 2015-11-18 江苏卓远激光科技有限公司 Movable installation structure of laser lens mounting base
WO2019102957A1 (en) * 2017-11-24 2019-05-31 株式会社ブイ・テクノロジー Attachment structure for optical device, and exposure device
KR20200088270A (en) * 2017-11-24 2020-07-22 브이 테크놀로지 씨오. 엘티디 Optical device attachment structure and exposure device

Similar Documents

Publication Publication Date Title
US4262974A (en) Linear bearing apparatus
US6467762B1 (en) Positioning mechanism
KR20020077332A (en) Flexure assembly for a scanner
KR100568206B1 (en) Stage apparatus
JPH10186198A (en) Parallel and straight fine adjustment device and fine moving device of lens barrel using the same
Yong et al. High speed single-and dual-stage vertical positioners
US8957567B2 (en) Mechanical design of deformation compensated flexural pivots structured for linear nanopositioning stages
US20190181777A1 (en) Vibration wave motor and driving apparatus using vibration wave motor
KR100396021B1 (en) Ultra-precision moving apparatus
US9879974B2 (en) Linear-motion stage
JP2002022867A (en) X-y stage
US10663040B2 (en) Method and precision nanopositioning apparatus with compact vertical and horizontal linear nanopositioning flexure stages for implementing enhanced nanopositioning performance
US7249535B2 (en) Two-dimensional displacement apparatus
JPH0232602B2 (en)
JPH0646246B2 (en) Fine movement mechanism
KR100597442B1 (en) Parallel type two axes linear guide mechanism for ultra fine positioning
JP3721969B2 (en) Stage equipment
JP2614662B2 (en) Fine movement mechanism
JPH04348834A (en) Micromovement x-y table
JP2773781B2 (en) Precision fine movement stage device
JPH0652302B2 (en) Linear motion stage
KR100507840B1 (en) Dual servo xy stage using leaf spring guide
JPH0753329B2 (en) Positioning device
JPH077833U (en) Linear movement device
JPH0569263A (en) Reciprocating table