JPH073431A - Production of thin ferroelectric film - Google Patents

Production of thin ferroelectric film

Info

Publication number
JPH073431A
JPH073431A JP17362693A JP17362693A JPH073431A JP H073431 A JPH073431 A JP H073431A JP 17362693 A JP17362693 A JP 17362693A JP 17362693 A JP17362693 A JP 17362693A JP H073431 A JPH073431 A JP H073431A
Authority
JP
Japan
Prior art keywords
thin film
layer
ferroelectric
pzt
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17362693A
Other languages
Japanese (ja)
Other versions
JP3381969B2 (en
Inventor
Keiji Ishibashi
啓次 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP17362693A priority Critical patent/JP3381969B2/en
Publication of JPH073431A publication Critical patent/JPH073431A/en
Application granted granted Critical
Publication of JP3381969B2 publication Critical patent/JP3381969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide excellent ferroelectric characteristics minimal in leakage electric current by forming an undercoat layer at a temp. not lower than the crystallization temp. of a ferroelectric substance and then forming a PZT thin film or a PLZT thin film on the same. CONSTITUTION:An SiO2 layer 24 is formed on an Si wafer 22, and, after heating them up to 650 deg.C, a Ti layer and a Pt layer are successively deposited to 30nm and 300nm thicknesses, respectively, by a sputtering method, by which a Pt-Ti alloy layer 26 is formed. By this treatment, the dense Pt-Ti alloy layer free from intergranular spacing is obtained. Subsequently, a PZT thin film 28 of 1000nm thickness is formed on the above layer at 650 deg.C substrate temp. by a sputtering method. This PZT thin film 28 becomes a dense film excellent in adhesion among crystalline grains, reflecting the crystallinity of the Pt-Ti alloy layer 26 as undercoat layer, and the leakage electric current can be reduced as compared with the method by the prior art.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強誘電体薄膜を作製する
方法に関し、特にPb1(ZrxTi1-x)O3あるいは
(Pb1-yLay)(ZrxTi1-x)O3で表される強誘
電体(以下、前者をPZT、後者をPLZTと略す。)
の薄膜を作製する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ferroelectric thin film, and more particularly to Pb 1 (Zr x Ti 1-x ) O 3 or (Pb 1-y La y ) (Zr x Ti 1-x ). A ferroelectric represented by O 3 (hereinafter, the former is abbreviated as PZT and the latter is abbreviated as PLZT).
The present invention relates to a method for producing a thin film.

【0002】[0002]

【従来の技術】半導体素子の一種であるDRAMでは高
集積化が進み、1セル当りの最小蓄積電荷量を30fF
程度に維持することが求められているが、このような小
さな容量にするには、信頼性の高いSiO2膜を薄くし
ていくだけではもはや対応できなくなっている。また、
トレンチ形やスタック形などの立体構造のキャパシタが
試みられているが、このようにすると形状が非常に複雑
になって加工が難しくなる。そこで、高誘電率を有する
誘電体の研究が盛んになってきており、特にPZT及び
PLZTは、その高誘電率と高残留分極ゆえに、不揮発
性メモリ用のキャパシタの材質として注目されている。
2. Description of the Related Art In a DRAM, which is a kind of semiconductor device, the degree of integration has been increased, and the minimum accumulated charge amount per cell is 30 fF.
Although it is required to maintain the capacity to such an extent, it is no longer possible to achieve such a small capacity simply by thinning the highly reliable SiO 2 film. Also,
A three-dimensional capacitor such as a trench type or a stack type has been attempted, but this makes the shape extremely complicated and difficult to process. Therefore, research on a dielectric having a high dielectric constant has been actively conducted, and in particular, PZT and PLZT are attracting attention as a material for a capacitor for a nonvolatile memory because of their high dielectric constant and high remanent polarization.

【0003】Si半導体のメモリ用キャパシタとしてこ
れらの強誘電体薄膜を用いる場合、下部電極としては酸
化物に対して安定なPtが用いられ、このPtは、デバ
イス形成のプロセスを考慮して、SiO2上に形成され
るのが一般的である。しかし、PtはSiO2との密着
性が悪くて剥離してしまうため、Pt層とSiO2の間
にバインダとしてTi層が形成される。従来、これらの
Pt層及びTi層は蒸着法あるいはスパッタリング法で
低温成膜により形成される。またPZT及びPLZTの
堆積方法としては、一般に、ゾル・ゲル法、スパッタリ
ング法及びMOCVD法が用いられる。
When these ferroelectric thin films are used as Si semiconductor memory capacitors, Pt, which is stable to oxide, is used as the lower electrode, and this Pt is SiO in consideration of the device forming process. It is generally formed on two . However, since Pt has poor adhesion to SiO 2 and peels off, a Ti layer is formed as a binder between the Pt layer and SiO 2 . Conventionally, these Pt layer and Ti layer are formed by low temperature film formation by vapor deposition or sputtering. Further, as a method of depositing PZT and PLZT, a sol-gel method, a sputtering method and a MOCVD method are generally used.

【0004】ゾル・ゲル法では、原料を基板に塗布した
後、前記強誘電体の結晶化温度(PZT、PLZTのど
ちらも実質的に600℃程度)以上に基板を加熱するこ
とにより強誘電体薄膜を形成している。
In the sol-gel method, the ferroelectric material is applied by heating the substrate to a temperature above the crystallization temperature of the ferroelectric material (both PZT and PLZT are substantially 600 ° C.) after coating the material on the substrate. Forming a thin film.

【0005】スパッタリング法では二つの方法がある。
第1の方法は、低い基板温度で強誘電体薄膜を成膜し、
その後、強誘電体の結晶化温度以上で熱処理を行なって
強誘電体薄膜を作製するものである。第2の方法は、基
板を強誘電体の結晶化温度以上にあらかじめ加熱して、
成膜と同時に膜を結晶化させて強誘電体薄膜を形成する
ものである。
There are two sputtering methods.
The first method is to form a ferroelectric thin film at a low substrate temperature,
After that, heat treatment is performed at a temperature equal to or higher than the crystallization temperature of the ferroelectric to produce a ferroelectric thin film. The second method is to preheat the substrate above the crystallization temperature of the ferroelectric substance,
At the same time as the film formation, the film is crystallized to form a ferroelectric thin film.

【0006】MOCVD法では、基板を強誘電体の結晶
化温度以上に加熱してから原料ガスを供給し、成膜と同
時に膜を結晶化させることにより強誘電体薄膜を形成し
ている。
In the MOCVD method, a ferroelectric thin film is formed by heating a substrate to a crystallization temperature of a ferroelectric substance or higher and then supplying a source gas to crystallize the film simultaneously with film formation.

【0007】[0007]

【発明が解決しようとする課題】ところで、強誘電体を
作製する際の下部電極であるPt層と、SiO2とPt
層とのバインダであるTi層とは、一般に、SiO2
に低温で形成されている。そして、この上に強誘電体の
薄膜を作製する場合には、上述のいずれの従来方法にお
いても、どこかの段階で強誘電体の結晶化温度以上に基
板を加熱する必要がある。その結果、下地のPt層とT
i層は合金化し、結晶粒が形成される。
By the way, a Pt layer, which is a lower electrode when manufacturing a ferroelectric, and SiO 2 and Pt.
The Ti layer, which is a binder for the layer, is generally formed on SiO 2 at a low temperature. When a ferroelectric thin film is formed on this, it is necessary to heat the substrate above the crystallization temperature of the ferroelectric at some stage in any of the conventional methods described above. As a result, the underlying Pt layer and T
The i layer is alloyed and crystal grains are formed.

【0008】図3はPZT薄膜を形成する前の基板の断
面の模式図である。Siウェーハ10の上にSiO2
12が形成されており、その上にTi層14とPt層1
6が順に積層されている。このTi層14とPt層16
は低温で形成されていて、表面は平滑であるが膜の密度
は低い。
FIG. 3 is a schematic view of a cross section of the substrate before forming the PZT thin film. A SiO 2 layer 12 is formed on a Si wafer 10, and a Ti layer 14 and a Pt layer 1 are formed on the SiO 2 layer 12.
6 are sequentially stacked. This Ti layer 14 and Pt layer 16
Is formed at a low temperature, the surface is smooth, but the density of the film is low.

【0009】図4(A)は図3に示す基板上にPZT薄
膜を堆積した後の断面を示す模式図であり、図4(B)
はその表面の模式図である。PZT薄膜を形成するには
いずれかの段階で基板を結晶化温度以上に加熱すること
になるが、これにより、下地のTi層とPt層が合金化
してPt−Ti合金層18ができ、また、加熱によって
この合金層18の密度が高くなる。その結果、Pt−T
i合金層18の結晶粒間に隙間ができてしまう。このよ
うな下地上にPZT薄膜20を形成すると、下地のPt
−Ti合金層18の影響を受けて、結晶粒間の密着性の
悪いPZT薄膜となってしまう。このようなPZT薄膜
20ではリ−ク電流が多く、良好な強誘電特性が得られ
ないといった問題点があった。
FIG. 4A is a schematic view showing a cross section after the PZT thin film is deposited on the substrate shown in FIG. 3, and FIG.
Is a schematic view of the surface. In order to form the PZT thin film, the substrate is heated to the crystallization temperature or higher at any stage, but by this, the underlying Ti layer and the Pt layer are alloyed to form the Pt—Ti alloy layer 18, and The density of the alloy layer 18 is increased by heating. As a result, Pt-T
A gap is formed between the crystal grains of the i alloy layer 18. When the PZT thin film 20 is formed on such an underlayer, the underlying Pt
Due to the influence of the —Ti alloy layer 18, a PZT thin film having poor adhesion between crystal grains ends up being formed. Such a PZT thin film 20 has a problem that a large leak current cannot be obtained and good ferroelectric characteristics cannot be obtained.

【0010】以上のような問題点はPLZT薄膜を作製
する場合にも全く同様である。
The above-mentioned problems are exactly the same when manufacturing a PLZT thin film.

【0011】[0011]

【発明の目的】本発明の目的は、リ−ク電流の少ない良
好な強誘電体特性を有する強誘電体薄膜、特にPZT薄
膜またはPLZT薄膜、を作製できる方法を提供するこ
とにある。
OBJECT OF THE INVENTION It is an object of the present invention to provide a method for producing a ferroelectric thin film, especially a PZT thin film or a PLZT thin film, which has good ferroelectric properties with a small leak current.

【0012】[0012]

【課題を解決するための手段】本発明の強誘電体薄膜作
製方法は、強誘電体の結晶化温度以上で下地層を形成す
るものである。より具体的には、SiO2上にTiとP
tの薄膜を順に積層して、その上にPZTまたはPLZ
T強誘電体薄膜を作製する場合に、強誘電体の結晶化温
度以上でTiとPtの薄膜をSiO2上に堆積するもの
である。結晶化温度以上の好ましい温度範囲は600〜
700℃である。
According to the method of manufacturing a ferroelectric thin film of the present invention, an underlayer is formed at a crystallization temperature of the ferroelectric or higher. More specifically, Ti and P are deposited on SiO 2.
t thin films are sequentially stacked, and PZT or PLZ is formed on top of them.
When a T ferroelectric thin film is produced, a thin film of Ti and Pt is deposited on SiO 2 at a crystallization temperature of the ferroelectric or higher. The preferred temperature range above the crystallization temperature is 600-
It is 700 ° C.

【0013】[0013]

【作用】本発明では、下地層を強誘電体の結晶化温度以
上で形成してあるので、強誘電体を作製するときに基板
を結晶化温度以上に加熱しても、下地層の結晶粒間に隙
間が生じることがなく、良好な特性の強誘電体薄膜を作
製できる。これを、より具体的な構成で説明すると、下
部電極となるPt層と、SiO2とPt層とのバインダ
となるTi層とについて、これらを、PZTまたはPL
ZT薄膜の結晶化温度以上で堆積することにより、PZ
TまたはPLZT薄膜を形成する以前の段階で、SiO
2上に、結晶粒間に隙間のない緻密なPt−Ti合金層
を形成することができる。したがって、PZTまたはP
LZT薄膜を形成するためにその結晶化温度以上に基板
を加熱しても、Pt−Ti合金層の結晶粒間に隙間が生
じない。その結果、その上に形成されるPZTまたはP
LZT薄膜も、結晶粒間の密着性の良好な緻密な膜とな
り、リ−ク電流の少ない良好な強誘電特性が得られる。
In the present invention, since the underlayer is formed at the crystallization temperature of the ferroelectric substance or higher, even if the substrate is heated to the crystallization temperature or higher when the ferroelectric substance is manufactured, the crystal grains of the underlayer are formed. It is possible to produce a ferroelectric thin film having good characteristics without a gap between them. This will be described with a more specific configuration. For the Pt layer that will be the lower electrode and the Ti layer that will be the binder for the SiO 2 and Pt layers, these will be described as PZT or PL.
By depositing above the crystallization temperature of the ZT thin film, PZ
Before forming the T or PLZT thin film,
A dense Pt-Ti alloy layer having no gap between crystal grains can be formed on the second layer. Therefore, PZT or P
Even if the substrate is heated above the crystallization temperature to form the LZT thin film, no gap is generated between the crystal grains of the Pt—Ti alloy layer. As a result, PZT or P formed on it
The LZT thin film also becomes a dense film with good adhesion between crystal grains, and good ferroelectric characteristics with a small leak current can be obtained.

【0014】[0014]

【実施例】図1(A)は、本発明の一実施例において、
PZT薄膜を形成する以前の基板の断面を示す模式図で
あり、図1(B)はその表面の模式図である。まず、S
iウェーハ22上にSiO2層24を形成し、これらを
650℃に加熱してから、Ti層を厚さ30nm、Pt
層を厚さ300nmだけ、スパッタリング法により順に
堆積した。その結果、厚さが約330nmのPt−Ti
合金層26が形成された。すなわち、PZT薄膜を形成
する以前の段階で、SiO2層24上に、結晶粒間に隙
間のない緻密なPt−Ti合金層26が得られた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A shows an embodiment of the present invention.
FIG. 1B is a schematic diagram showing a cross section of the substrate before forming the PZT thin film, and FIG. 1B is a schematic diagram of the surface thereof. First, S
A SiO 2 layer 24 is formed on the i-wafer 22, these are heated to 650 ° C., and then a Ti layer is formed to a thickness of 30 nm and Pt.
The layers were sequentially deposited by sputtering, with a thickness of 300 nm. As a result, Pt-Ti with a thickness of about 330 nm
The alloy layer 26 was formed. That is, in the stage before the PZT thin film was formed, the dense Pt—Ti alloy layer 26 having no gap between crystal grains was obtained on the SiO 2 layer 24.

【0015】図2(A)は図1に示した基板上にPZT
薄膜を堆積した状態の断面を示す模式図であり、図2
(B)はその表面の模式図である。上述のようにして形
成されたPt−Ti層26上に、スパッタリング法によ
り基板温度650℃で厚さ1000nmのPZT薄膜2
8を作製した。図2(A)に示すように、PZT薄膜2
8は、下地のPt−Ti合金層26の結晶性を反映し
て、結晶粒間の密着性の良好な緻密な膜となる。
FIG. 2A shows the PZT on the substrate shown in FIG.
2 is a schematic diagram showing a cross section of a state in which a thin film is deposited, and FIG.
(B) is a schematic view of the surface. On the Pt—Ti layer 26 formed as described above, a PZT thin film 2 having a thickness of 1000 nm was formed at a substrate temperature of 650 ° C. by a sputtering method.
8 was produced. As shown in FIG. 2A, the PZT thin film 2
No. 8 reflects the crystallinity of the underlying Pt—Ti alloy layer 26 and becomes a dense film with good adhesion between crystal grains.

【0016】次に、従来方法との比較結果を示す。従来
方法では、スパッタリング法によりTi層とPt層を特
に基板加熱をしないで形成し、その後、基板を650℃
に加熱して、スパッタリング法により1000nmのP
ZT薄膜を形成した。また、本発明の実施例の方法で
は、図1及び図2で説明したような方法でPZT薄膜を
作製した。両者のPZT薄膜について300kV/cm
の電界を印加したときのリーク電流を測定したしたとこ
ろ、従来方法によるPZT薄膜ではリーク電流が10-7
A/cm2オーダーであったが、本発明の実施例では1
-8A/cm2オーダーとなり、リーク電流が1桁少な
くなった。
Next, the result of comparison with the conventional method is shown. In the conventional method, a Ti layer and a Pt layer are formed by a sputtering method without heating the substrate, and then the substrate is heated to 650 ° C.
To 1000 nm P by heating to
A ZT thin film was formed. Further, in the method of the example of the present invention, the PZT thin film was manufactured by the method described with reference to FIGS. 300 kV / cm for both PZT thin films
When the leak current when an electric field of 10 is applied was measured, it was found that the leak current of the conventional PZT thin film was 10 −7.
Although it was on the order of A / cm 2 , it was 1 in the embodiment of the present invention.
It was on the order of 0 -8 A / cm 2 , and the leak current was reduced by one digit.

【0017】本発明は上述の実施例に限定されず次のよ
うな変更が可能である。 (1)本発明は、PLZT薄膜の作製についても、上述
のPZT薄膜の作製と全く同様に実施できて、同様な効
果が得られる。
The present invention is not limited to the above-mentioned embodiment, but the following modifications are possible. (1) The present invention can be applied to the production of a PLZT thin film in exactly the same manner as the production of the above-described PZT thin film, and the same effect can be obtained.

【0018】(2)上述の実施例では、Ti層及びPt
層の膜厚が各々30nm及び300nmであったが、こ
れらの膜厚は、強誘電体薄膜の下部電極として機能でき
れば、これ以外の値でもよい。ただし、Pt層に対する
Ti層の膜厚が厚くなりすぎると、Pt−Ti合金層と
強誘電体薄膜との界面反応が問題となってくるため、T
i層は薄いほうがよい。
(2) In the above embodiment, the Ti layer and Pt are
The film thicknesses of the layers were 30 nm and 300 nm, respectively, but these film thicknesses may have other values as long as they can function as the lower electrode of the ferroelectric thin film. However, if the thickness of the Ti layer with respect to the Pt layer becomes too thick, the interface reaction between the Pt-Ti alloy layer and the ferroelectric thin film becomes a problem, so T
The i-layer should be thin.

【0019】(3)上述の実施例ではTi層とPt層の
形成温度及びPZT薄膜の形成温度はいずれも650℃
であったが、この温度は、PZTまたはPLZT強誘電
体相の結晶化温度以上であれば、これ以外の値であって
もよい。ただし、Pt−Ti合金層と強誘電体薄膜との
界面反応を抑制するためには、PZTまたはPLZT強
誘電体薄膜を形成するときの温度は、結晶化温度以上
で、かつ、できるだけ低温にするのが好ましい。また、
Pbの欠損を抑制するためにも、PZTまたはPLZT
強誘電体薄膜を形成するときの温度はあまり高温にしな
い方がよい。
(3) In the above embodiment, the formation temperature of the Ti layer and Pt layer and the formation temperature of the PZT thin film are both 650 ° C.
However, this temperature may be any other value as long as it is equal to or higher than the crystallization temperature of the PZT or PLZT ferroelectric phase. However, in order to suppress the interfacial reaction between the Pt-Ti alloy layer and the ferroelectric thin film, the temperature at which the PZT or PLZT ferroelectric thin film is formed should be equal to or higher than the crystallization temperature and as low as possible. Is preferred. Also,
In order to suppress the loss of Pb, PZT or PLZT
The temperature when forming the ferroelectric thin film should not be too high.

【0020】(4)上述の実施例ではTi層、Pt層及
びPZT薄膜の作製はいずれもスパッタリング法で行な
ったが、Ti層及びPt層の形成は蒸着法でもよく、ま
たPZTまたはPLZT強誘電体薄膜の形成もスパッタ
リング法以外の方法でもよい。
(4) In the above embodiments, the Ti layer, the Pt layer and the PZT thin film were all formed by the sputtering method, but the Ti layer and the Pt layer may be formed by the vapor deposition method, and the PZT or PLZT ferroelectric layer may be formed. The body thin film may be formed by a method other than the sputtering method.

【0021】(5)上述のTiの代わりにTiNを、P
tの代わりにRuO2を使用することもできる。
(5) Instead of Ti described above, TiN is added to P
It is also possible to use RuO 2 instead of t.

【0022】[0022]

【発明の効果】本発明によれば、下地層を強誘電体の結
晶化温度以上で形成してあるので、強誘電体を作製する
ときに基板を結晶化温度以上に加熱しても、下地層の結
晶粒間に隙間が生じることがなく、良好な特性の強誘電
体薄膜を作製できる。より具体的には、下地となるPt
層とTi層とをPZTまたはPLZT薄膜の結晶化温度
以上で堆積することにより、PZTまたはPLZT薄膜
を形成する以前の段階で、SiO2上に、結晶粒間に隙
間のない緻密なPt−Ti合金層を形成することができ
る。したがって、以後、PZTまたはPLZT薄膜を形
成する段階でその結晶化温度以上に基板を加熱しても、
Pt−Ti合金層の結晶粒間に隙間が生じることがな
い。その結果、その上に形成されるPZTまたはPLZ
T薄膜も、結晶粒間の密着性が良好な緻密な膜となり、
リ−ク電流の少ない良好な強誘電特性が得られる。
According to the present invention, since the underlayer is formed at the crystallization temperature of the ferroelectric substance or more, even if the substrate is heated to the crystallization temperature or more when manufacturing the ferroelectric substance, It is possible to produce a ferroelectric thin film having good characteristics without forming a gap between crystal grains of the formation. More specifically, Pt as the base
By depositing the PZT or PLZT thin film at a temperature equal to or higher than the crystallization temperature of the PZT or PLZT thin film, a Pt-Ti dense Pt-Ti layer having no gaps between crystal grains is formed on SiO 2 before the PZT or PLZT thin film is formed. An alloy layer can be formed. Therefore, even if the substrate is heated above its crystallization temperature at the stage of forming the PZT or PLZT thin film,
No gap is formed between the crystal grains of the Pt-Ti alloy layer. As a result, PZT or PLZ formed on it
The T thin film also becomes a dense film with good adhesion between crystal grains,
Good ferroelectric characteristics with less leak current can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例において、PZT薄膜を形成
する以前の基板の断面とその表面を示す模式図である。
FIG. 1 is a schematic view showing a cross section and a surface of a substrate before forming a PZT thin film in one embodiment of the present invention.

【図2】図1に示した基板上にPZT薄膜を堆積した状
態の断面とその表面を示す模式図である。
FIG. 2 is a schematic diagram showing a cross section and a surface of a PZT thin film deposited on the substrate shown in FIG.

【図3】従来方法において、PZT薄膜を形成する前の
基板の断面を示す模式図である。
FIG. 3 is a schematic view showing a cross section of a substrate before forming a PZT thin film in a conventional method.

【図4】図3に示す基板上にPZT薄膜を堆積した状態
の断面とその表面を示す模式図である。
FIG. 4 is a schematic view showing a cross section and a surface of a PZT thin film deposited on the substrate shown in FIG.

【符号の説明】[Explanation of symbols]

22…Siウェーハ 24…SiO2層 26…Pt−Ti合金層 28…PZT薄膜22 ... Si wafer 24 ... SiO 2 layer 26 ... Pt-Ti alloy layer 28 ... PZT thin film

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月23日[Submission date] July 23, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】半導体素子の一種であるDRAMでは高
集積化が進み、メモリ機能の信頼性のため1セル当りの
最小蓄積電荷量を30fF程度に維持することが求めら
れているが、信頼性の高いSiO2膜を薄くしていくだ
けではもはや対応できなくなっている。また、トレンチ
形やスタック形などの立体構造のキャパシタが試みられ
ているが、このようにすると形状が非常に複雑になって
加工が難しくなる。そこで、高誘電率を有する誘電体の
研究が盛んになってきており、特にPZT及びPLZT
は、その高誘電率と高残留分極ゆえに、不揮発性メモリ
用のキャパシタの材質として注目されている。
In the DRAM is a type of semiconductor element proceeds is highly integrated, but it is required to maintain a minimum amount of stored charge per cell for reliability of memory function to about 30 fF, trust It can no longer be dealt with simply by thinning the highly resistant SiO 2 film. In addition, a three-dimensional capacitor such as a trench type or a stack type has been tried, but if this is done, the shape becomes very complicated and processing becomes difficult. Therefore, research on dielectrics having a high dielectric constant has been actively conducted, and particularly PZT and PLZT are being researched.
Due to its high dielectric constant and high remanent polarization, it has attracted attention as a material for capacitors for nonvolatile memories.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 19/00 321 4232−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01B 19/00 321 4232-5G

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板に下地層を形成し、その上に強誘電
体の薄膜を作製する方法において、前記強誘電体の結晶
化温度以上で前記下地層を形成することを特徴とする強
誘電体薄膜作製方法。
1. A method of forming an underlayer on a substrate and forming a ferroelectric thin film thereon, wherein the underlayer is formed at a crystallization temperature of the ferroelectric or higher. Body thin film manufacturing method.
【請求項2】 SiO2上にTiとPtの薄膜を順に積
層して、その上に一般式 【化1】Pb1(ZrxTi1-x)O3、 1>x>0 または 【化2】(Pb1-yLay)(ZrxTi1-x)O3、 1
>x>0、 1>y>0 で表される強誘電体の薄膜を作製する方法において、 前記強誘電体の結晶化温度以上でTiとPtの薄膜をS
iO2上に堆積することを特徴とする強誘電体薄膜作製
方法。
2. A thin film of Ti and Pt is sequentially laminated on SiO 2 , and a general formula: Pb 1 (Zr x Ti 1-x ) O 3 , 1>x> 0 or 2) (Pb 1-y La y ) (Zr x Ti 1-x ) O 3 , 1,
>X> 0, 1>y> 0, a thin film of Ti and Pt is formed at a temperature equal to or higher than the crystallization temperature of the ferroelectric.
A method for producing a ferroelectric thin film, which comprises depositing it on iO 2 .
【請求項3】 600〜700℃の温度範囲内でTiと
Ptの薄膜をSiO2上に堆積することを特徴とする請
求項2記載の強誘電体薄膜作製方法。
3. The method for producing a ferroelectric thin film according to claim 2 , wherein a thin film of Ti and Pt is deposited on SiO 2 within a temperature range of 600 to 700 ° C.
JP17362693A 1993-06-22 1993-06-22 Ferroelectric thin film fabrication method Expired - Fee Related JP3381969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17362693A JP3381969B2 (en) 1993-06-22 1993-06-22 Ferroelectric thin film fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17362693A JP3381969B2 (en) 1993-06-22 1993-06-22 Ferroelectric thin film fabrication method

Publications (2)

Publication Number Publication Date
JPH073431A true JPH073431A (en) 1995-01-06
JP3381969B2 JP3381969B2 (en) 2003-03-04

Family

ID=15964104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17362693A Expired - Fee Related JP3381969B2 (en) 1993-06-22 1993-06-22 Ferroelectric thin film fabrication method

Country Status (1)

Country Link
JP (1) JP3381969B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238934B1 (en) 1998-12-30 2001-05-29 Hyundai Electronics Industries Co., Ltd. Method for fabricating ferroelectric capacitor with improved interface surface characteristic
US6610402B2 (en) 1996-08-22 2003-08-26 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
JP2004146749A (en) * 2002-08-30 2004-05-20 Tokyo Inst Of Technol Electronic device and its manufacturing method
US7033001B2 (en) 2001-12-18 2006-04-25 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, manufacturing method thereof, and ink jet type recording apparatus
JP2007184623A (en) * 2007-01-22 2007-07-19 Rohm Co Ltd Dielectric capacitor
US8227893B2 (en) 2004-06-23 2012-07-24 Nec Corporation Semiconductor device with capacitor element
JPWO2015064341A1 (en) * 2013-10-29 2017-03-09 コニカミノルタ株式会社 Piezoelectric element, inkjet head, inkjet printer, and method of manufacturing piezoelectric element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610402B2 (en) 1996-08-22 2003-08-26 Clemson University Research Foundation Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles
US6238934B1 (en) 1998-12-30 2001-05-29 Hyundai Electronics Industries Co., Ltd. Method for fabricating ferroelectric capacitor with improved interface surface characteristic
US7033001B2 (en) 2001-12-18 2006-04-25 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, manufacturing method thereof, and ink jet type recording apparatus
US7478558B2 (en) 2001-12-18 2009-01-20 Panasonic Corporation Piezoelectric element, ink jet head, angular velocity sensor, method for manufacturing the same, and ink jet recording apparatus
JP2004146749A (en) * 2002-08-30 2004-05-20 Tokyo Inst Of Technol Electronic device and its manufacturing method
US8227893B2 (en) 2004-06-23 2012-07-24 Nec Corporation Semiconductor device with capacitor element
JP2007184623A (en) * 2007-01-22 2007-07-19 Rohm Co Ltd Dielectric capacitor
JPWO2015064341A1 (en) * 2013-10-29 2017-03-09 コニカミノルタ株式会社 Piezoelectric element, inkjet head, inkjet printer, and method of manufacturing piezoelectric element

Also Published As

Publication number Publication date
JP3381969B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
US6288420B1 (en) Composite iridium-metal-oxygen barrier structure with refractory metal companion barrier
JPH0855967A (en) Manufacture of ferroelectric thin film capacitor
US5293075A (en) Semiconductor device with PZT/PLZT film and lead-containing electrode
TW439292B (en) Method for forming a ferroelectric capacitor with low dielectric loss
JPH0625841A (en) Formation of ferroelectric substance film
JP2002170938A (en) Semiconductor device and manufacturing method thereof
JP3381969B2 (en) Ferroelectric thin film fabrication method
JP2703206B2 (en) Ferroelectric capacitor and method of manufacturing the same
JPH10321809A (en) Semiconductor storage element manufacturing method
JP2000196035A (en) Manufacture of capacitor of memory device
JP2000208440A (en) Forming method of platinum film for capacitor electrode of semiconductor device
JPH1056140A (en) Ferroelectric memory element and manufacturing method
JP3294214B2 (en) Thin film capacitors
JPH09260516A (en) Substrate covered with ferroelectric thin film and capacitor structure device using the same
KR100265846B1 (en) A method for fabricating ferroelectric capacitor in semiconductor device
JP3545850B2 (en) Ferroelectric thin film element
KR100247474B1 (en) Method for forming pzt ferroelectric capacitor
JP2658819B2 (en) Thin film capacitors
JP4315676B2 (en) Semiconductor memory device and manufacturing method thereof
KR100490174B1 (en) PRO conductive interfacial layer for improvement of ferroelectric properties of PZT thin films for use memory capacity and preparing method thereof
JPH1012833A (en) Ferroelectric film covered base and its usage
JP3332014B2 (en) Method for manufacturing semiconductor memory device
JP2002118236A (en) Semiconductor device and its manufacturing method
JP3018985B2 (en) Method of forming dielectric thin film
JPH09246082A (en) Capacitance element and method of manufacturing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091220

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees