JPH0734276A - Water electrolyzer - Google Patents

Water electrolyzer

Info

Publication number
JPH0734276A
JPH0734276A JP5181384A JP18138493A JPH0734276A JP H0734276 A JPH0734276 A JP H0734276A JP 5181384 A JP5181384 A JP 5181384A JP 18138493 A JP18138493 A JP 18138493A JP H0734276 A JPH0734276 A JP H0734276A
Authority
JP
Japan
Prior art keywords
water
polymer electrolyte
solid polymer
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5181384A
Other languages
Japanese (ja)
Inventor
Masakatsu Asano
正勝 浅野
Kazutomi Yamamoto
一富 山本
Masao Yamaguchi
正夫 山口
Saburo Ishiguro
三郎 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP5181384A priority Critical patent/JPH0734276A/en
Publication of JPH0734276A publication Critical patent/JPH0734276A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve an electrolytic efficiency and to increase an energy saving effect. CONSTITUTION:In the electrolyzer E in which porous electrodes are brought into contact with both sides a solid high polymer electrolyte diaphragm 1 as an anode 2 and a cathode 5 respectively and the water system allowing water to flow to the anode 2 and the cathode 5 respectively is provided, the solid high polymer electrolyte 3 equal to or similar to the solid high polymer electrolyte diaphragm 1 is applied on the anode 2 and the cathode 5 at prescribed intervals. In this way, the contact points of the electrodes 2 and 5 with the solid high polymer electrolyte 3 are formed in three-dimentional over the whole electrodes to improve the contact of passing water with the contact points of the electrodes and the solid high polymer electrolytes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オゾン水、過酸化水
素、活性酸素、無酸素水、水素ガス、酸素ガスの製造、
廃水浄化、赤水防止等に利用される固体高分子電解質を
用いた水電解装置に関する。
The present invention relates to the production of ozone water, hydrogen peroxide, active oxygen, oxygen-free water, hydrogen gas, oxygen gas,
The present invention relates to a water electrolysis device using a solid polymer electrolyte used for wastewater purification, red water prevention, and the like.

【0002】[0002]

【従来の技術】オゾン水、酸素水、水素ガス、酸素ガス
等の製造に利用される、固体高分子電解質を用いた水電
解装置は、従来多孔性電極に触媒層を被覆し固体高分子
電解質隔膜に圧着していた(特公昭61−43436号
参照)。
2. Description of the Related Art A water electrolysis apparatus using a solid polymer electrolyte, which is used in the production of ozone water, oxygen water, hydrogen gas, oxygen gas, etc., is a conventional solid polymer electrolyte prepared by coating a catalyst layer on a porous electrode. It was pressure-bonded to the diaphragm (see Japanese Examined Patent Publication No. 61-43436).

【0003】[0003]

【発明が解決しようとする課題】この水電解装置では、
OH- が陽極で放電してOHとなり、H+ が固体高分子
電解質隔膜を通り陰極で放電して水素原子となる。これ
には、多孔性電極と固体高分子電解質隔膜の接点に水が
供給されることが必要である。ところが、従来の水電解
装置では、多孔性電極と固体高分子電解質隔膜の接点が
形成されるのは、固体高分子電解質隔膜の表面のみであ
って、そこへ水を供給するには多孔性電極は40〜70
%の空孔率が必要である。よって、多孔性電極と固体高
分子電解質隔膜の接触する部分は、計算上30〜60%
となるが、水の浸入できない多孔性電極と固体高分子電
解質隔膜の密着部分は電解に関与できない。従って、通
水はその接点の一部にしか接触できないため、高い電解
効率が得られなかった。そこで、電解効率を上げるため
に、通水の加圧、加温や触媒の工夫が行われてきたが満
足できる効果は得られていない。
In this water electrolysis device,
OH is discharged at the anode to become OH, and H + passes through the solid polymer electrolyte membrane and is discharged at the cathode to become hydrogen atoms. This requires that water be supplied to the contact points between the porous electrode and the solid polymer electrolyte membrane. However, in the conventional water electrolysis apparatus, the contact between the porous electrode and the solid polymer electrolyte membrane is formed only on the surface of the solid polymer electrolyte membrane, and the porous electrode is used to supply water to the contact. Is 40-70
% Porosity is required. Therefore, the contact area between the porous electrode and the solid polymer electrolyte membrane is calculated to be 30 to 60%.
However, the intimate contact portion between the porous electrode and the solid polymer electrolyte membrane where water cannot penetrate cannot participate in electrolysis. Therefore, high efficiency of electrolysis could not be obtained because the water flow could contact only a part of the contact. Therefore, in order to increase the electrolysis efficiency, pressurization of water flow, heating, and devising of the catalyst have been carried out, but no satisfactory effect has been obtained.

【0004】この発明は、従来、固体高分子電解質隔膜
の表面のみであった多孔性電極と固体高分子電解質との
接点を、多孔性電極全体に立体的に形成し、多孔性電極
と固体高分子電解質の接点への通水の接触を増加させる
ことにより、電解効率の高い水電解装置を提供すること
を目的とする。
According to the present invention, the contact between the porous electrode and the solid polymer electrolyte, which has been conventionally only on the surface of the solid polymer electrolyte membrane, is three-dimensionally formed over the entire porous electrode, so that the porous electrode and the solid polymer electrolyte are solidly contacted with each other. An object of the present invention is to provide a water electrolysis device having high electrolysis efficiency by increasing the contact of water flow to the contacts of the molecular electrolyte.

【0005】[0005]

【課題を解決するための手段】本発明は、固体高分子電
解質隔膜の両側に陽極及び陰極としてそれぞれ多孔性電
極を接触させ、前記陽極及び陰極の多孔性電極にそれぞ
れ通水する水系を備えた水電解装置において、少なくと
も一方の多孔性電極に、固体高分子電解質隔膜と同等又
は類似の固体高分子電解質を所定間隔でコーティングす
ることにより、上記課題を解決している。
The present invention comprises a water system in which porous electrodes as an anode and a cathode are brought into contact with both sides of a solid polymer electrolyte membrane, and water is passed through the porous electrodes of the anode and the cathode, respectively. In the water electrolysis device, at least one of the porous electrodes is coated with a solid polymer electrolyte that is equivalent or similar to the solid polymer electrolyte membrane at predetermined intervals to solve the above problem.

【0006】固体高分子電解質隔膜の表面に触媒層を置
き、その外側に多孔性電極を圧着する場合には、触媒層
と多孔性電極とに固体高分子電解質をコーティングす
る。多孔性電極は、多孔性カーボン、カーボン織布、カ
ーボン不織布、チタン,ステンレス,タンタル,ニオブ
等の金属のパンチング加工材、ラス加工材、不織布加工
材、ポーラス粉末冶金材、ガラス,セラミックス,石
英,木綿,羊毛,人造繊維等の織布,不織布,発泡体の
導電処理材、又は、前記各材料に白金族金属をメッキ若
しくは焼付けした材料などで構成する。
When the catalyst layer is placed on the surface of the solid polymer electrolyte membrane and the porous electrode is pressure-bonded to the outside thereof, the catalyst layer and the porous electrode are coated with the solid polymer electrolyte. Porous electrodes include porous carbon, carbon woven cloth, carbon non-woven cloth, metal punching material such as titanium, stainless steel, tantalum, niobium, lath processing material, non-woven material processing material, porous powder metallurgy material, glass, ceramics, quartz, It is made of woven or non-woven fabric such as cotton, wool or artificial fiber, a conductive treatment material of foam, or a material obtained by plating or baking each of the above materials with a platinum group metal.

【0007】ガラス,セラミックス,石英等の導電処理
は、ITO、錫─鉛系、錫アンチモン系、亜鉛系等の方
法があるが、木綿,羊毛,人造繊維等は加熱処理ができ
ないので、導電処理はゾル─ゲル法を用い低温で行う
か、蒸着等で導電性を付与する。なお、陽極材料として
は、発生機の酸素が出るので、炭素や酸化されやすい金
属は使用できず、白金族金属やチタン、ジルコニウム、
タンタル,ニオブ等の金属や、ITOをコートしたガラ
ス,セラミックスが使用される。
Conductive treatments for glass, ceramics, quartz, etc. include ITO, tin-lead type, tin antimony type, zinc type, etc., but since cotton, wool, artificial fibers, etc. cannot be heat-treated, conductive treatment is applied. Is performed at a low temperature by using the sol-gel method, or conductivity is imparted by vapor deposition or the like. As the anode material, oxygen from the generator is emitted, so carbon and metals that are easily oxidized cannot be used, and platinum group metals, titanium, zirconium,
Metals such as tantalum and niobium, ITO coated glass and ceramics are used.

【0008】多孔性電極に固体高分子電解質をコーティ
ングする際は、固体高分子電解質をイナートリキッドC
5 10O、パーフロロデカリンC1018、ジメチルスル
ホキシド(CH3 2 SOなどに溶解し、多孔性電極に
その溶液を所定間隔でストライプ状、格子状、渦巻状、
斑点状に塗付する。塗付した固体高分子電解質は急速に
乾燥させ、ピンホールや亀裂を多数形成すると、多孔性
電極と固体高分子電解質と水との接点が増加し、電解効
率向上に有効である。
When coating the solid polymer electrolyte on the porous electrode, the solid polymer electrolyte is applied to the inner liquid C.
It is dissolved in 5 F 10 O, perfluorodecalin C 10 F 18 , dimethyl sulfoxide (CH 3 ) 2 SO, etc., and the solution is stripe-shaped, grid-shaped, spiral-shaped, at predetermined intervals on a porous electrode.
Apply in spots. When the applied solid polymer electrolyte is rapidly dried to form a large number of pinholes and cracks, the number of contact points between the porous electrode, the solid polymer electrolyte and water increases, which is effective for improving the electrolysis efficiency.

【0009】コーティングする固体高分子電解質の厚さ
は、0.1〜50μmの範囲である。これは、0.1μ
mより薄いと膜が途切れる恐れがあり、50μmより厚
いと活性点が失われるからであり、一般的には、1〜1
0μmのものが多く用いられる。
The thickness of the solid polymer electrolyte to be coated is in the range of 0.1 to 50 μm. This is 0.1μ
This is because if the thickness is less than m, the membrane may be interrupted, and if it is thicker than 50 μm, the active sites are lost.
The one of 0 μm is often used.

【0010】[0010]

【作用】水電解装置の陽極及び陰極の多孔性電極を電源
に接続し、それぞれの水系に通水すると水が電解され、
陽極ではOH- が放電してOHとなる。H+ は固体高分
子電解質隔膜を通り陰極で放電して水素原子となる。従
って、陽極では2OH→H2 O+Oの反応によって原子
状の酸素が発生し、陰極では原子状の水素が発生する。
[Function] When the anode and cathode porous electrodes of the water electrolysis device are connected to a power source and water is passed through the respective water systems, water is electrolyzed,
At the anode, OH - is discharged and becomes OH. H + passes through the solid polymer electrolyte membrane and is discharged at the cathode to become hydrogen atoms. Therefore, atomic oxygen is generated by the reaction of 2OH → H 2 O + O at the anode, and atomic hydrogen is generated at the cathode.

【0011】この反応は、多孔性電極と固体高分子電解
質隔膜の接点に水が供給されることにより行われる。本
発明の水電解装置では、多孔性電極と固体高分子電解質
との接点が、固体高分子電解質隔膜の表面のみでなく、
多孔性電極全体に立体的に形成されているので、多孔性
電極と固体高分子電解質隔膜の接点への通水の接触が増
加し、電解効率が高くなる。
This reaction is carried out by supplying water to the contact point between the porous electrode and the solid polymer electrolyte membrane. In the water electrolysis apparatus of the present invention, the contact between the porous electrode and the solid polymer electrolyte is not only the surface of the solid polymer electrolyte membrane,
Since it is formed three-dimensionally over the entire porous electrode, the contact of water passage to the contact point between the porous electrode and the solid polymer electrolyte membrane increases, and the electrolysis efficiency increases.

【0012】[0012]

【実施例】【Example】

(実施例1)図1は本発明の実施例である水電解装置の
構成を示す縦断面図、図2は図1の一部を拡大して示す
説明図、図3は陽極の正面図である。この水電解装置E
は、ケーシング13の中央に設けられた固体高分子電解
質隔膜1の両側に陽極2及び陰極5が接触するよう配置
され、その外側に陽極給電体8と陰極給電体9とが取付
けられている。ケーシング13の下部陽極側には陽極水
入口10、陰極側には陰極水入口11、ケーシング13
の上部陽極側には陽極水出口14、陰極側には陰極水出
口15を備えており、陽極2及び陰極5にそれぞれ通水
する水系が形成されている。
(Embodiment 1) FIG. 1 is a longitudinal sectional view showing the configuration of a water electrolysis apparatus according to an embodiment of the present invention, FIG. 2 is an explanatory view showing a part of FIG. 1 in an enlarged manner, and FIG. 3 is a front view of an anode. is there. This water electrolysis device E
Is arranged such that the anode 2 and the cathode 5 are in contact with each other on both sides of the solid polymer electrolyte membrane 1 provided in the center of the casing 13, and the anode power feeder 8 and the cathode power feeder 9 are attached to the outside thereof. Anode water inlet 10 on the lower anode side of the casing 13, cathode water inlet 11 on the cathode side, casing 13
An anode water outlet 14 is provided on the upper anode side, and a cathode water outlet 15 is provided on the cathode side to form a water system for passing water to the anode 2 and the cathode 5, respectively.

【0013】固体高分子電解質隔膜1には、デュポン製
ナフィオン117の0.2mmを用いた。陽極2は、多数
の孔12が形成されたチタンのラス加工材に白金イリジ
ウム酸化膜を焼付け、その表面に固体高分子電解質3と
して、ナフィオンをジメチルスルホキシドに溶解した溶
液を数mm間隔でストライプ状に1〜5μmコーティング
したものを、孔12の位置が互い違いになるように2枚
重ね合わせ、通水を良くするよう構成している。コーテ
ィングした固体高分子電解質3は加熱、真空加熱等を急
速に行う急速乾燥でピンホール4やひび割れを多数形成
し陽極2と固体高分子電解質3と水との接点即ち電解の
活性点を増加させている。
As the solid polymer electrolyte membrane 1, 0.2 mm of Nafion 117 manufactured by DuPont was used. The anode 2 is formed by baking a platinum iridium oxide film on a titanium lath processed material having a large number of holes 12 formed thereon, and as a solid polymer electrolyte 3, a solution in which Nafion is dissolved in dimethylsulfoxide is striped at intervals of several mm. Two 1 to 5 μm coatings are stacked so that the positions of the holes 12 are staggered so as to improve water passage. The coated solid polymer electrolyte 3 is rapidly dried by rapid heating, vacuum heating, etc. to form a large number of pinholes 4 and cracks to increase the contact points between the anode 2, the solid polymer electrolyte 3 and water, that is, the active points of electrolysis. ing.

【0014】陰極5はカーボン不織布に触媒として白金
黒を用い、固体高分子電解質3として上記ナフィオン溶
液を数mm間隔でストライプ状に1〜5μmコーティング
している。コーティングした固体高分子電解質3は急速
に乾燥させてピンホール4を多数形成している。陽極2
及び陰極5を電源6に接続し、それぞれの水系に通水す
ると、陽極2は正に帯電しているので、陽極水入口10
から流入した水は電解されOH- が放電してOHとな
る。同時に発生したH+ は、コーティングした固体高分
子電解質3の部分から固体高分子電解質隔膜1を通り、
陰極5で放電して水素原子となり、陰極水入口11から
流入した水に溶解するか、水素ガスとして出てくる。
For the cathode 5, platinum black is used as a catalyst on a carbon non-woven fabric, and the Nafion solution as the solid polymer electrolyte 3 is coated in stripes at intervals of several mm to 1 to 5 μm. The coated solid polymer electrolyte 3 is rapidly dried to form many pinholes 4. Anode 2
When the cathode 5 and the cathode 5 are connected to the power source 6 and water is passed through the respective water systems, the anode 2 is positively charged, so the anode water inlet 10
The water flowing in from is electrolyzed and OH is discharged to become OH. H + generated at the same time passes through the solid polymer electrolyte membrane 1 from the coated solid polymer electrolyte 3 portion,
Discharged at the cathode 5 to become hydrogen atoms, which are either dissolved in water flowing in through the cathode water inlet 11 or come out as hydrogen gas.

【0015】固体高分子電解質3は陽イオン交換樹脂で
あり、電子は通さないがH+ は通す。従って、陽極反応
が行われるのは、陽極2の固体高分子電解質3と水との
接点即ち電解の活性点である。陰極反応は、陰極5の固
体高分子電解質3と水との接点が中心であるが、水素原
子は薄い固体高分子電解質膜を通過し易いので、陰極5
が固体高分子電解質3で覆われている所でもH+ が放電
して水素原子となる。この水電解装置Eでは、陽極2、
陰極5の固体高分子電解質3と水との接点が、固体高分
子電解質隔膜1の表面のみでなく、両極全体に立体的に
形成されているので、陽極反応、陰極反応共全体で立体
的に進み、内部抵抗が下がり低電圧で反応が進むため、
電解効率が高く低コストで水電解を行うことができる。
The solid polymer electrolyte 3 is a cation exchange resin and does not allow electrons to pass but allows H + to pass. Therefore, the anodic reaction takes place at the contact point between the solid polymer electrolyte 3 of the anode 2 and water, that is, the active point of electrolysis. In the cathode reaction, the contact point between the solid polymer electrolyte 3 of the cathode 5 and water is the center, but since hydrogen atoms easily pass through the thin solid polymer electrolyte membrane, the cathode 5
Even where is covered with the solid polymer electrolyte 3, H + is discharged and becomes a hydrogen atom. In this water electrolysis device E, the anode 2,
Since the contact point between the solid polymer electrolyte 3 of the cathode 5 and water is three-dimensionally formed not only on the surface of the solid polymer electrolyte membrane 1 but also on both electrodes, the anode reaction and the cathode reaction are three-dimensionally formed. As the internal resistance decreases and the reaction proceeds at low voltage,
Water electrolysis can be performed at high cost with high electrolysis efficiency.

【0016】電極の有効面積100cm2 の水電解装置で
陽極水入口10と陰極水入口11に、水温19°Cの水
道水をそれぞれ150l/h供給して電解を行った場合
の電流電圧曲線を図4上Aに示す。図4上Bは、電極の
組合せが本実施例と同一で固体高分子電解質3をコーテ
ィングしない場合の電流電圧曲線である。この図から明
らかなように、等しい電流値を得るのに、AはBより電
圧で約0.2V低く電解効率が高い。
A current-voltage curve when electrolysis is performed by supplying 150 l / h of tap water having a water temperature of 19 ° C. to the anode water inlet 10 and the cathode water inlet 11 in a water electrolysis apparatus having an effective electrode area of 100 cm 2 respectively It is shown in FIG. 4B is a current-voltage curve in the case where the combination of electrodes is the same as that of this example and the solid polymer electrolyte 3 is not coated. As is clear from this figure, in order to obtain an equal current value, A has a voltage lower than that of B by about 0.2 V and a higher electrolysis efficiency.

【0017】(実施例2)陽極としてステンレス不織布
に白金メッキし、更に酸化イリジウムを焼付けた後、ナ
フィオン溶液を数mm間隔の格子状に5〜10μmコーテ
ィングしたものを用い、陰極はカーボン不織布に触媒と
して白金黒を塗付し、ナフィオン溶液を斑点状に1〜5
μm噴霧コーティングしたものを用いた。
(Example 2) A stainless non-woven fabric was platinum-plated as an anode, and after baking iridium oxide, a Nafion solution was coated in a grid pattern of 5 to 10 μm at intervals of several mm. Apply platinum black as a coating, and apply Nafion solution to spots 1-5
What was spray coated was used.

【0018】電極の有効面積25cm2 の水電解装置で、
陽極水と陰極水に水温19°Cの水道水をそれぞれ40
l/h供給して電解を行った場合の電流電圧曲線を図5
上Aに示す。図5上Bは、電極の組合せが本実施例と同
一で固体高分子電解質をコーティングしない場合の電流
電圧曲線である。なお、触媒の使用による陰極水の脱酸
素電流効率は96%であった。
In a water electrolysis device having an effective area of 25 cm 2 of electrodes,
Tap water with a water temperature of 19 ° C for each of the anode water and the cathode water is 40
Fig. 5 shows the current-voltage curve when electrolysis is performed by supplying l / h.
Shown in A above. FIG. 5B is a current-voltage curve in the case where the combination of electrodes is the same as that of this example and the solid polymer electrolyte is not coated. The deoxidation current efficiency of the cathode water due to the use of the catalyst was 96%.

【0019】(実施例3)陽極として直径30mm、厚さ
3mmのセラミック不織布にITOコーティングし、更に
触媒として酸化ルテニウムを塗付した後、ナフィオン溶
液を数mm間隔で渦巻状に2〜10μmコーティングした
ものを用い、陰極は直径30mm、厚さ2mmのステンレス
不織布に白金メッキを施し、更にナフィオン溶液を数mm
間隔で渦巻状に2〜10μmコーティングしたものを用
いた。
Example 3 A ceramic non-woven fabric having a diameter of 30 mm and a thickness of 3 mm was coated with ITO as an anode, ruthenium oxide was coated as a catalyst, and then Nafion solution was spirally coated at a distance of several mm for 2 to 10 μm. A stainless steel nonwoven fabric with a diameter of 30 mm and a thickness of 2 mm is plated with platinum and the Nafion solution is used for several mm.
A spirally coated 2 to 10 [mu] m coating was used.

【0020】電極の有効面積7cm2 の水電解装置で、陽
極水と陰極水に水温19°Cの水道水をそれぞれ10l
/h供給して電解を行った場合の電流電圧曲線を図6上
Aに示す。図6上Bは、電極の組合せが本実施例と同一
で固体高分子電解質をコーティングしない場合の電流電
圧曲線である。
In a water electrolyzer with an effective electrode area of 7 cm 2 , 10 liters of tap water each having a water temperature of 19 ° C. was used as anode water and cathode water.
A current-voltage curve in the case of supplying / h for electrolysis is shown in FIG. 6B is a current-voltage curve in the case where the combination of electrodes is the same as that of this example and the solid polymer electrolyte is not coated.

【0021】[0021]

【発明の効果】以上説明したように、本発明の水電解装
置は、多孔性電極と固体高分子電解質との接点を、多孔
性電極全体に立体的に形成し、多孔性電極と固体高分子
電解質隔膜の接点への通水の接触を増加させることによ
り、電解効率を向上することができ、これをオゾン水、
過酸化水素、活性酸素、無酸素水、水素ガス、酸素ガス
の製造、廃水浄化、赤水防止等に利用すると高い効率で
電解が行われるため、省エネルギー効果が大きい。
As described above, in the water electrolysis apparatus of the present invention, the contact points between the porous electrode and the solid polymer electrolyte are three-dimensionally formed over the entire porous electrode, and the porous electrode and the solid polymer electrolyte are formed. By increasing the contact of water flow to the contacts of the electrolyte membrane, it is possible to improve the electrolysis efficiency.
When used for production of hydrogen peroxide, active oxygen, oxygen-free water, hydrogen gas, oxygen gas, purification of waste water, prevention of red water, etc., electrolysis is carried out with high efficiency, resulting in great energy saving effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例である水電解装置の構成を示す
縦断面図である。
FIG. 1 is a vertical cross-sectional view showing the configuration of a water electrolysis apparatus that is an embodiment of the present invention.

【図2】図1の一部を拡大して示す説明図である。FIG. 2 is an explanatory diagram showing a part of FIG. 1 in an enlarged manner.

【図3】陽極の正面図である。FIG. 3 is a front view of an anode.

【図4】実施例1の水電解装置の電流電圧曲線図であ
る。
FIG. 4 is a current-voltage curve diagram of the water electrolysis apparatus of Example 1.

【図5】実施例2の水電解装置の電流電圧曲線図であ
る。
5 is a current-voltage curve diagram of the water electrolysis apparatus of Example 2. FIG.

【図6】実施例3の水電解装置の電流電圧曲線図であ
る。
FIG. 6 is a current-voltage curve diagram of the water electrolysis apparatus of Example 3.

【符号の説明】[Explanation of symbols]

1 固体高分子電解質隔膜 2 陽極 3 固体高分子電解質 4 ピンホール 5 陰極 6 電源 10 陽極水入口 11 陰極水入口 12 孔 13 ケーシング 14 陽極水出口 15 陰極水出口 E 水電解装置 1 Solid Polymer Electrolyte Membrane 2 Anode 3 Solid Polymer Electrolyte 4 Pinhole 5 Cathode 6 Power Supply 10 Anode Water Inlet 11 Cathode Water Inlet 12 Hole 13 Casing 14 Anode Water Outlet 15 Cathode Water Outlet E Water Electrolysis Device

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年7月15日[Submission date] July 15, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 水電解装置Title of the invention Water electrolysis device

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オゾン水、過酸化水
素、活性酸素、無酸素水、水素ガス、酸素ガスの製造、
廃水浄化、赤水防止等に利用される固体高分子電解質を
用いた水電解装置に関する。
The present invention relates to the production of ozone water, hydrogen peroxide, active oxygen, oxygen-free water, hydrogen gas, oxygen gas,
The present invention relates to a water electrolysis device using a solid polymer electrolyte used for wastewater purification, red water prevention, and the like.

【0002】[0002]

【従来の技術】オゾン水、酸素水、水素ガス、酸素ガス
等の製造に利用される、固体高分子電解質を用いた水電
解装置は、従来多孔性電極に触媒層を被覆し固体高分子
電解質隔膜に圧着していた(特公昭61−43436号
参照)。
2. Description of the Related Art A water electrolysis apparatus using a solid polymer electrolyte, which is used in the production of ozone water, oxygen water, hydrogen gas, oxygen gas, etc., is a conventional solid polymer electrolyte prepared by coating a catalyst layer on a porous electrode. It was pressure-bonded to the diaphragm (see Japanese Examined Patent Publication No. 61-43436).

【0003】[0003]

【発明が解決しようとする課題】この水電解装置では、
OH- が陽極で放電して酸素またはオゾンとなり、H+
が固体高分子電解質隔膜を通り陰極で電子を受け取り
素原子となる。これには、多孔性電極と固体高分子電解
質隔膜の接点に水が供給されることが必要である。とこ
ろが、従来の水電解装置では、多孔性電極と固体高分子
電解質隔膜の接点が形成されるのは、固体高分子電解質
隔膜の表面のみであって、そこへ水を供給するには多孔
性電極は40〜70%の空孔率が必要である。よって、
多孔性電極と固体高分子電解質隔膜の接触する部分は、
計算上30〜60%となるが、水の侵入できない多孔性
電極と固体高分子電解質隔膜の密着部分は電解に関与
できない。従って、通水はその接点の一部にしか接触で
きないため、高い電解効率が得られなかった。そこで、
電解効率を上げるために、通水の加圧、加温や触媒の工
夫が行われてきたが満足できる効果は得られていない。
In this water electrolysis device,
OH - is discharged at the anode to become oxygen or ozone , and H +
Through the solid polymer electrolyte membrane to receive electrons at the cathode and become hydrogen atoms. This requires that water be supplied to the contact points between the porous electrode and the solid polymer electrolyte membrane. However, in the conventional water electrolysis apparatus, the contact between the porous electrode and the solid polymer electrolyte membrane is formed only on the surface of the solid polymer electrolyte membrane, and the porous electrode is used to supply water to the contact. Requires a porosity of 40 to 70%. Therefore,
The contact area between the porous electrode and the solid polymer electrolyte membrane is
Although calculated to be 30 to 60%, the contact portion of the porous electrode and the solid polymer electrolyte membrane which cannot penetrate water cannot participate in electrolysis. Therefore, high efficiency of electrolysis could not be obtained because the water flow could contact only a part of the contact. Therefore,
In order to increase electrolysis efficiency, pressurization of water flow, heating, and devising of catalyst have been carried out, but satisfactory effects have not been obtained.

【0004】この発明は、従来、固体高分子電解質隔膜
の表面のみであった多孔性電極と固体高分子電解質との
接点を、多孔性電極全体に立体的に形成し、多孔性電極
と固体高分子電解質の接点への通水の接触を増加させる
ことにより、電解効率の高い水電解装置を提供すること
を目的とする。
According to the present invention, the contact between the porous electrode and the solid polymer electrolyte, which has been conventionally only on the surface of the solid polymer electrolyte membrane, is three-dimensionally formed over the entire porous electrode, so that the porous electrode and the solid polymer electrolyte are solidly contacted with each other. An object of the present invention is to provide a water electrolysis device having high electrolysis efficiency by increasing the contact of water flow to the contacts of the molecular electrolyte.

【0005】[0005]

【課題を解決するための手段】本発明は、固体高分子電
解質隔膜の両側に陽極及び陰極としてそれぞれ多孔性電
極を接触させ、前記陽極及び陰極の多孔性電極にそれぞ
れ通水する水系を備えた水電解装置において、少なくと
も一方の多孔性電極に、固体高分子電解質隔膜と同等又
は類似の固体高分子電解質を所定間隔でコーティングす
ることにより、上記課題を解決している。
The present invention comprises a water system in which porous electrodes as an anode and a cathode are brought into contact with both sides of a solid polymer electrolyte membrane, and water is passed through the porous electrodes of the anode and the cathode, respectively. In the water electrolysis device, at least one of the porous electrodes is coated with a solid polymer electrolyte that is equivalent or similar to the solid polymer electrolyte membrane at predetermined intervals to solve the above problem.

【0006】固体高分子電解質隔膜の表面に触媒層を置
き、その外側に多孔性電極を圧着する場合には、触媒層
と多孔性電極とに固体高分子電解質をコーティングす
る。多孔性電極は、多孔性カーボン、カーボン織布、カ
ーボン不織布、チタン,ステンレス,タンタル,ニオブ
等の金属のパンチング加工材、ラス加工材、不織布加工
材、ポーラス粉末冶金材、ガラス,セラミックス,石
英,木綿,羊毛,人造繊維等の織布,不織布,発泡体の
導電処理材、又は、前記各材料に白金族金属をメッキ若
しくは焼付けした材料などで構成する。
When the catalyst layer is placed on the surface of the solid polymer electrolyte membrane and the porous electrode is pressure-bonded to the outside thereof, the catalyst layer and the porous electrode are coated with the solid polymer electrolyte. Porous electrodes include porous carbon, carbon woven cloth, carbon non-woven cloth, metal punching material such as titanium, stainless steel, tantalum, niobium, lath processing material, non-woven material processing material, porous powder metallurgy material, glass, ceramics, quartz, It is made of woven or non-woven fabric such as cotton, wool or artificial fiber, a conductive treatment material of foam, or a material obtained by plating or baking each of the above materials with a platinum group metal.

【0007】電処理は、ITO、錫─鉛系、錫アンチ
モン系、亜鉛系材料をゾル─ゲル法もしくは、蒸着法で
成膜する事で行なわれる。なお、陽極材料としては、発
生機の酸素が出るので、炭素や酸化されやすい金属は使
用できず、白金族金属やチタン、ジルコニウム、タンタ
ル,ニオブ等の金属や、ITOをコートしたガラス,セ
ラミックスが使用される。
The conductive treatment is performed by a sol-gel method or a vapor deposition method using ITO, tin-lead type, tin antimony type and zinc type materials.
It is performed by forming a film . As the anode material, oxygen from the generator is emitted, so carbon and metals that are easily oxidized cannot be used. Platinum group metals, metals such as titanium, zirconium, tantalum and niobium, ITO coated glass and ceramics can be used. used.

【0008】多孔性電極に固体高分子電解質をコーティ
ングする際は、固体高分子電解質をイナートリキッドC
5 10O、パーフロロデカリンC1018、ジメチルスル
ホキシド(CH3 2 SOなどに溶解し、多孔性電極に
その溶液を所定間隔でストライプ状、格子状、渦巻状、
斑点状に塗付する。塗付した固体高分子電解質は急速に
乾燥させ、ピンホールや亀裂を多数形成すると、多孔性
電極と固体高分子電解質と水との接点が増加し、電解効
率向上に有効である。
When coating the solid polymer electrolyte on the porous electrode, the solid polymer electrolyte is applied to the inner liquid C.
It is dissolved in 5 F 10 O, perfluorodecalin C 10 F 18 , dimethyl sulfoxide (CH 3 ) 2 SO, etc., and the solution is stripe-shaped, grid-shaped, spiral-shaped, at predetermined intervals on a porous electrode.
Apply in spots. When the applied solid polymer electrolyte is rapidly dried to form a large number of pinholes and cracks, the number of contact points between the porous electrode, the solid polymer electrolyte and water increases, which is effective for improving the electrolysis efficiency.

【0009】コーティングする固体高分子電解質の厚さ
は、0.1〜50μmの範囲である。これは、0.1μ
mより薄いと膜が途切れる恐れがあり、50μmより厚
いと活性点が失われるからであり、一般的には、1〜1
0μmのものが多く用いられる。
The thickness of the solid polymer electrolyte to be coated is in the range of 0.1 to 50 μm. This is 0.1μ
This is because if the thickness is less than m, the membrane may be interrupted, and if it is thicker than 50 μm, the active sites are lost.
The one of 0 μm is often used.

【0010】[0010]

【作用】水電解装置の陽極及び陰極の多孔性電極を電源
に接続し、それぞれの水系に通水すると水が電解され、
陽極ではOH- が放電して酸素またはオゾンとなる。H
+ は固体高分子電解質隔膜を通り陰極で放電して水素原
子となる。従って、陽極では2OH- →O+H2 O+2
- の反応によって原子状の酸素が発生し、陰極では原
子状の水素が発生する。
[Function] Power source for the porous electrodes of the anode and cathode of the water electrolysis device
, And water is electrolyzed by passing water through each water system,
OH at the anode-Is dischargedOxygen or ozoneBecomes H
+Is discharged through the solid polymer electrolyte membrane at the cathode and
Become a child. Therefore, at the anode 2OH - → O + H 2 O + 2
e - Atomic oxygen is generated by the reaction of
Childlike hydrogen is generated.

【0011】この反応は、多孔性電極と固体高分子電解
質隔膜の接点に水が供給されることにより行われる。本
発明の水電解装置では、多孔性電極と固体高分子電解質
との接点が、固体高分子電解質隔膜の表面のみでなく、
多孔性電極全体に立体的に形成されているので、多孔性
電極と固体高分子電解質隔膜の接点への通水の接触が増
加し、電解効率が高くなる。
This reaction is carried out by supplying water to the contact point between the porous electrode and the solid polymer electrolyte membrane. In the water electrolysis apparatus of the present invention, the contact between the porous electrode and the solid polymer electrolyte is not only the surface of the solid polymer electrolyte membrane,
Since it is formed three-dimensionally over the entire porous electrode, the contact of water passage to the contact point between the porous electrode and the solid polymer electrolyte membrane increases, and the electrolysis efficiency increases.

【0012】[0012]

【実施例】 (実施例1)図1は本発明の実施例である水電解装置の
構成を示す縦断面図、図2は図1の一部を拡大して示す
説明図、図3は陽極の正面図である。この水電解装置E
は、ケーシング13の中央に設けられた固体高分子電解
質隔膜1の両側に陽極2及び陰極5が接触するよう配置
され、その外側に陽極給電体8と陰極給電体9とが取付
けられている。ケーシング13の下部陽極側には陽極水
入口10、陰極側には陰極水入口11、ケーシング13
の上部陽極側には陽極水出口14、陰極側には陰極水出
口15を備えており、陽極2及び陰極5にそれぞれ通水
する水系が形成されている。
EXAMPLES Example 1 FIG. 1 is a vertical cross-sectional view showing the structure of a water electrolysis apparatus according to an example of the present invention, FIG. 2 is an explanatory view showing an enlarged part of FIG. 1, and FIG. 3 is an anode. FIG. This water electrolysis device E
Is arranged such that the anode 2 and the cathode 5 are in contact with each other on both sides of the solid polymer electrolyte membrane 1 provided in the center of the casing 13, and the anode power feeder 8 and the cathode power feeder 9 are attached to the outside thereof. Anode water inlet 10 on the lower anode side of the casing 13, cathode water inlet 11 on the cathode side, casing 13
An anode water outlet 14 is provided on the upper anode side, and a cathode water outlet 15 is provided on the cathode side to form a water system for passing water to the anode 2 and the cathode 5, respectively.

【0013】固体高分子電解質隔膜1には、デュポン製
ナフィオン117の0.2mmを用いた。陽極2は、多数
の孔12が形成されたチタンのラス加工材に白金イリジ
ウム酸化膜を焼付け、その表面に固体高分子電解質3と
して、ナフィオンをジメチルスルホキシドに溶解した溶
液を数mm間隔でストライプ状に1〜5μmコーティング
したものを、孔12の位置が互い違いになるように2枚
重ね合わせ、通水を良くするよう構成している。コーテ
ィングした固体高分子電解質3は加熱、真空加熱等を急
速に行う急速乾燥でピンホール4やひび割れを多数形成
し陽極2と固体高分子電解質3と水との接点即ち電解の
活性点を増加させている。
As the solid polymer electrolyte membrane 1, 0.2 mm of Nafion 117 manufactured by DuPont was used. The anode 2 is formed by baking a platinum iridium oxide film on a titanium lath processed material having a large number of holes 12 formed thereon, and as a solid polymer electrolyte 3, a solution in which Nafion is dissolved in dimethylsulfoxide is striped at intervals of several mm. Two 1 to 5 μm coatings are stacked so that the positions of the holes 12 are staggered so as to improve water passage. The coated solid polymer electrolyte 3 is rapidly dried by rapid heating, vacuum heating, etc. to form a large number of pinholes 4 and cracks to increase the contact points between the anode 2, the solid polymer electrolyte 3 and water, that is, the active points of electrolysis. ing.

【0014】陰極5はカーボン不織布に触媒として白金
黒を用い、固体高分子電解質3として上記ナフィオン溶
液を数mm間隔でストライプ状に1〜5μmコーティング
している。コーティングした固体高分子電解質3は急速
に乾燥させてピンホール4を多数形成している。陽極2
及び陰極5を電源6に接続し、それぞれの水系に通水す
ると、陽極2は正に帯電しているので、陽極水入口10
から流入した水は電解されOH- が放電してOHとな
る。同時に発生したH+ は、コーティングした固体高分
子電解質3の部分から固体高分子電解質隔膜1を通り、
陰極5で電子を受けとり水素原子となり、陰極水入口1
1から流入した水に溶解するか、水素ガスとして出てく
る。
For the cathode 5, platinum black is used as a catalyst on a carbon non-woven fabric, and the Nafion solution as the solid polymer electrolyte 3 is coated in stripes at intervals of several mm to 1 to 5 μm. The coated solid polymer electrolyte 3 is rapidly dried to form many pinholes 4. Anode 2
When the cathode 5 and the cathode 5 are connected to the power source 6 and water is passed through the respective water systems, the anode 2 is positively charged, so the anode water inlet 10
The water flowing in from is electrolyzed and OH is discharged to become OH. H + generated at the same time passes through the solid polymer electrolyte membrane 1 from the coated solid polymer electrolyte 3 portion,
The cathode 5 receives electrons and becomes hydrogen atoms, and the cathode water inlet 1
It dissolves in water flowing in from 1 or comes out as hydrogen gas.

【0015】固体高分子電解質3は陽イオン交換樹脂で
あり、電子は通さないがH+ は通す。従って、陽極反応
が行われるのは、陽極2の固体高分子電解質3と水との
接点即ち電解の活性点である。陰極反応は、陰極5の固
体高分子電解質3と水との接点が中心であるが、水素原
子は薄い固体高分子電解質膜を通過し易いので、陰極5
が固体高分子電解質3で覆われている所でもH+ 電子
を受け取って水素原子となる。この水電解装置Eでは、
陽極2、陰極5の固体高分子電解質3と水との接点が、
固体高分子電解質隔膜1の表面のみでなく、両極全体に
立体的に形成されているので、陽極反応、陰極反応共全
体で立体的に進み、内部抵抗が下がり低電圧で反応が進
むため、電解効率が高く低コストで水電解を行うことが
できる。なお、陰極ではH+ が電子を受けとりH原子と
なるので水は特に介在しなくても良い。又ナフィオン膜
は水素原子は通すので陰極がナフィオン膜で覆われても
電解反応は継続する。
The solid polymer electrolyte 3 is a cation exchange resin and does not allow electrons to pass but allows H + to pass. Therefore, the anodic reaction takes place at the contact point between the solid polymer electrolyte 3 of the anode 2 and water, that is, the active point of electrolysis. In the cathode reaction, the contact point between the solid polymer electrolyte 3 of the cathode 5 and water is the center, but since hydrogen atoms easily pass through the thin solid polymer electrolyte membrane, the cathode 5
Where H + is an electron even when is covered with solid polymer electrolyte 3
To become a hydrogen atom. In this water electrolysis device E,
The contact points between the solid polymer electrolyte 3 of the anode 2 and the cathode 5 and water are
Since not only the surface of the solid polymer electrolyte membrane 1 but also the both electrodes are three-dimensionally formed, both the anodic reaction and the cathodic reaction progress three-dimensionally, the internal resistance decreases, and the reaction proceeds at a low voltage. Water electrolysis can be performed with high efficiency and at low cost. At the cathode, H + receives electrons and becomes H atoms.
Therefore, it is not necessary to interpose water. Nafion membrane
Hydrogen passes through, so even if the cathode is covered with a Nafion film
The electrolytic reaction continues.

【0016】電極の有効面積100cm2 の水電解装置で
陽極水入口10と陰極水入口11に、水温19°Cの水
道水をそれぞれ150l/h供給して電解を行った場合
の電流電圧曲線を図4上Aに示す。図4上Bは、電極の
組合せが本実施例と同一で固体高分子電解質3をコーテ
ィングしない場合の電流電圧曲線である。この図から明
らかなように、等しい電流値を得るのに、AはBより電
圧で約0.2V低く電解効率が高い。
A current-voltage curve when electrolysis is performed by supplying 150 l / h of tap water having a water temperature of 19 ° C. to the anode water inlet 10 and the cathode water inlet 11 in a water electrolysis apparatus having an effective electrode area of 100 cm 2 respectively It is shown in FIG. 4B is a current-voltage curve in the case where the combination of electrodes is the same as that of this example and the solid polymer electrolyte 3 is not coated. As is clear from this figure, in order to obtain an equal current value, A has a voltage lower than that of B by about 0.2 V and a higher electrolysis efficiency.

【0017】(実施例2)陽極としてステンレス不織布
に白金メッキし、更に酸化イリジウムを焼付けた後、ナ
フィオン溶液を数mm間隔の格子状に5〜10μmコーテ
ィングしたものを用い、陰極はカーボン不織布に触媒と
して白金黒を塗付し、ナフィオン溶液を斑点状に1〜5
μm噴霧コーティングしたものを用いた。
(Example 2) A stainless non-woven fabric was platinum-plated as an anode, and after baking iridium oxide, a Nafion solution was coated in a grid pattern of 5 to 10 μm at intervals of several mm. Apply platinum black as a coating, and apply Nafion solution to spots 1-5
What was spray coated was used.

【0018】電極の有効面積25cm2 の水電解装置で、
陽極水と陰極水に水温19°Cの水道水をそれぞれ40
l/h供給して電解を行った場合の電流電圧曲線を図5
上Aに示す。図5上Bは、電極の組合せが本実施例と同
一で固体高分子電解質をコーティングしない場合の電流
電圧曲線である。なお、触媒の使用を含め陰極水の脱酸
素電流効率は96%であった。
In a water electrolysis device having an effective area of 25 cm 2 of electrodes,
Tap water with a water temperature of 19 ° C for each of the anode water and the cathode water is 40
Fig. 5 shows the current-voltage curve when electrolysis is performed by supplying l / h.
Shown in A above. FIG. 5B is a current-voltage curve in the case where the combination of electrodes is the same as that of this example and the solid polymer electrolyte is not coated. The deoxidation current efficiency of the cathode water including the use of the catalyst was 96%.

【0019】(実施例3)陽極として直径30mm、厚さ
3mmのセラミック不織布にITOコーティングし、更に
触媒として酸化ルテニウムを塗付した後、ナフィオン溶
液を数mm間隔で渦巻状に2〜10μmコーティングした
ものを用い、陰極は直径30mm、厚さ2mmのステンレス
不織布に白金メッキを施し、更にナフィオン溶液を数mm
間隔で渦巻状に2〜10μmコーティングしたものを用
いた。
Example 3 A ceramic non-woven fabric having a diameter of 30 mm and a thickness of 3 mm was coated with ITO as an anode, ruthenium oxide was coated as a catalyst, and then Nafion solution was spirally coated at a distance of several mm for 2 to 10 μm. A stainless steel nonwoven fabric with a diameter of 30 mm and a thickness of 2 mm is plated with platinum and the Nafion solution is used for several mm.
A spirally coated 2 to 10 [mu] m coating was used.

【0020】電極の有効面積7cm2 の水電解装置で、陽
極水と陰極水に水温19°Cの水道水をそれぞれ10l
/h供給して電解を行った場合の電流電圧曲線を図6上
Aに示す。図6上Bは、電極の組合せが本実施例と同一
で固体高分子電解質をコーティングしない場合の電流電
圧曲線である。
In a water electrolyzer with an effective electrode area of 7 cm 2 , 10 liters of tap water each having a water temperature of 19 ° C. was used as anode water and cathode water.
A current-voltage curve in the case of supplying / h for electrolysis is shown in FIG. 6B is a current-voltage curve in the case where the combination of electrodes is the same as that of this example and the solid polymer electrolyte is not coated.

【0021】[0021]

【発明の効果】以上説明したように、本発明の水電解装
置は、多孔性電極と固体高分子電解質との接点を、多孔
性電極全体に立体的に形成し、多孔性電極と固体高分子
電解質隔膜の接点への通水の接触を増加させることによ
り、電解効率を向上することができ、これをオゾン水、
過酸化水素、活性酸素、無酸素水、水素ガス、酸素ガス
の製造、廃水浄化、赤水防止等に利用すると高い効率で
電解が行われるため、省エネルギー効果が大きい。
As described above, in the water electrolysis apparatus of the present invention, the contact points between the porous electrode and the solid polymer electrolyte are three-dimensionally formed over the entire porous electrode, and the porous electrode and the solid polymer electrolyte are formed. By increasing the contact of water flow to the contacts of the electrolyte membrane, it is possible to improve the electrolysis efficiency.
When used for production of hydrogen peroxide, active oxygen, oxygen-free water, hydrogen gas, oxygen gas, purification of waste water, prevention of red water, etc., electrolysis is carried out with high efficiency, resulting in great energy saving effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例である水電解装置の構成を示す
縦断面図である。
FIG. 1 is a vertical cross-sectional view showing the configuration of a water electrolysis apparatus that is an embodiment of the present invention.

【図2】図1の一部を拡大して示す説明図である。FIG. 2 is an explanatory diagram showing a part of FIG. 1 in an enlarged manner.

【図3】陽極の正面図である。FIG. 3 is a front view of an anode.

【図4】実施例1の水電解装置の電流電圧曲線図であ
る。
FIG. 4 is a current-voltage curve diagram of the water electrolysis apparatus of Example 1.

【図5】実施例2の水電解装置の電流電圧曲線図であ
る。
5 is a current-voltage curve diagram of the water electrolysis apparatus of Example 2. FIG.

【図6】実施例3の水電解装置の電流電圧曲線図であ
る。
FIG. 6 is a current-voltage curve diagram of the water electrolysis apparatus of Example 3.

【符号の説明】 1 固体高分子電解質隔膜 2 陽極 3 固体高分子電解質 4 ピンホール 5 陰極 6 電源 10 陽極水入口 11 陰極水入口 12 孔 13 ケーシング 14 陽極水出口 15 陰極水出口 E 水電解装置[Explanation of symbols] 1 solid polymer electrolyte membrane 2 anode 3 solid polymer electrolyte 4 pinhole 5 cathode 6 power supply 10 anode water inlet 11 cathode water inlet 12 hole 13 casing 14 anode water outlet 15 cathode water outlet E water electrolysis device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質隔膜の両側に、陽極及
び陰極としてそれぞれ多孔性電極を接触させ、前記陽極
及び陰極の多孔性電極にそれぞれ通水する水系を備えた
水電解装置であって、少なくとも一方の多孔性電極に、
前記固体高分子電解質隔膜と同等又は類似の固体高分子
電解質を所定間隔でコーティングしたことを特徴とする
水電解装置。
1. A water electrolysis apparatus comprising a water system in which porous electrodes as an anode and a cathode are respectively brought into contact with both sides of a solid polymer electrolyte membrane, and water is passed through the porous electrodes of the anode and the cathode, respectively. At least one porous electrode,
A water electrolysis device, characterized in that a solid polymer electrolyte equivalent to or similar to the solid polymer electrolyte membrane is coated at predetermined intervals.
【請求項2】 多孔性電極が、多孔性カーボン、カーボ
ン織布、カーボン不織布、チタン,ステンレス,タンタ
ル,ニオブ等の金属のパンチング加工材、ラス加工材、
不織布加工材、ポーラス粉末冶金材、ガラス,セラミッ
クス,石英,木綿,羊毛,人造繊維等の織布,不織布,
発泡体の導電処理材、又は、前記各材料に白金族金属を
メッキ若しくは焼付けした材料を含む、請求項1記載の
水電解装置。
2. The porous electrode comprises porous carbon, carbon woven cloth, carbon nonwoven cloth, metal punching material such as titanium, stainless steel, tantalum, niobium, lath processing material,
Non-woven fabric processing material, porous powder metallurgy material, glass, ceramics, quartz, cotton, wool, woven fabric such as artificial fiber, non-woven fabric,
The water electrolysis apparatus according to claim 1, comprising a conductive treatment material of a foam, or a material obtained by plating or baking a platinum group metal on each material.
【請求項3】 多孔性電極にコーティングされた固体高
分子電解質に、ピンホールや亀裂を多数形成したことを
特徴とする請求項1又は請求項2記載の水電解装置。
3. The water electrolysis apparatus according to claim 1, wherein a large number of pinholes and cracks are formed in the solid polymer electrolyte coated on the porous electrode.
JP5181384A 1993-07-22 1993-07-22 Water electrolyzer Pending JPH0734276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5181384A JPH0734276A (en) 1993-07-22 1993-07-22 Water electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5181384A JPH0734276A (en) 1993-07-22 1993-07-22 Water electrolyzer

Publications (1)

Publication Number Publication Date
JPH0734276A true JPH0734276A (en) 1995-02-03

Family

ID=16099795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5181384A Pending JPH0734276A (en) 1993-07-22 1993-07-22 Water electrolyzer

Country Status (1)

Country Link
JP (1) JPH0734276A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209379A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Water electrolysis apparatus
JP2009538267A (en) * 2006-05-25 2009-11-05 ユーオーピー エルエルシー In situ generation of hydrogen peroxide
JP2011246800A (en) * 2010-04-30 2011-12-08 Aquaecos Ltd Membrane-electrode assembly, electrolytic cell using the same, apparatus and method for producing ozone water, disinfection method, and method for treating waste water or waste fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538267A (en) * 2006-05-25 2009-11-05 ユーオーピー エルエルシー In situ generation of hydrogen peroxide
JP2009209379A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Water electrolysis apparatus
JP2011246800A (en) * 2010-04-30 2011-12-08 Aquaecos Ltd Membrane-electrode assembly, electrolytic cell using the same, apparatus and method for producing ozone water, disinfection method, and method for treating waste water or waste fluid

Similar Documents

Publication Publication Date Title
US4312720A (en) Electrolytic cell and process for electrolytic oxidation
TW513824B (en) Bipolar plate for fuel cells
JPH11104648A (en) Seawater electrolyzing apparatus
US4213833A (en) Electrolytic oxidation in a cell having a separator support
JPH0125836B2 (en)
US5536379A (en) Gas diffusion electrode
CN108140845A (en) Metal porous body, fuel cell and the method for manufacturing metal porous body
US7211177B2 (en) Electrode for electrolysis in acidic media
JPH07106349B2 (en) Electrolyzer
EP0560740A1 (en) Apparatus and process for electrolytic ozone generation
KR101214824B1 (en) Improved COD abatement process for electrochemical oxidation
US4749452A (en) Multi-layer electrode membrane-assembly and electrolysis process using same
Nishimura et al. Solid polymer electrolyte CO2 reduction
JPH0734276A (en) Water electrolyzer
JP2926272B2 (en) Target electrode for corrosion prevention of electrochemical tank
FI68669C (en) FOERFARANDE FOER ELEKTROLYSERING AV EN VATTENLOESNING AV EN ALALIMETALLKLORID OCH ANOD HAERFOER
JP4519950B2 (en) Electrode-electrolyte-unit manufacturing method by catalyst electrolyte deposition
KR101071636B1 (en) Electrolysis vessel and apparatus for generating electrolyzed water
AU2019385031B2 (en) Hydrogen production method
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JPS5848686A (en) Cation exchange membrane for electrolyzing aqueous solution of alkali chloride
JP3408462B2 (en) Method for protecting gas diffusion cathode in alkaline chloride electrolytic cell
JPH11106976A (en) Electrolytic water-producing device
US6165333A (en) Cathode assembly and method of reactivation
KR102648323B1 (en) Pt-Ru-Ti catalyst electrode for ballast water electrolysis

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020402