JP2009209379A - Water electrolysis apparatus - Google Patents

Water electrolysis apparatus Download PDF

Info

Publication number
JP2009209379A
JP2009209379A JP2008050308A JP2008050308A JP2009209379A JP 2009209379 A JP2009209379 A JP 2009209379A JP 2008050308 A JP2008050308 A JP 2008050308A JP 2008050308 A JP2008050308 A JP 2008050308A JP 2009209379 A JP2009209379 A JP 2009209379A
Authority
JP
Japan
Prior art keywords
water electrolysis
catalyst layer
electrode catalyst
platinum
electrolysis apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008050308A
Other languages
Japanese (ja)
Other versions
JP5072652B2 (en
Inventor
Shigeru Tsurumaki
茂 弦巻
Akihiro Sakanishi
彰博 坂西
Kenichiro Kosaka
健一郎 小阪
Yasutaka Uraka
靖崇 浦下
Hideaki Hashimoto
秀昭 橋本
Yasushi Mori
康 森
Yoshinori Kobayashi
由則 小林
Yutaka Hirayama
裕 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008050308A priority Critical patent/JP5072652B2/en
Publication of JP2009209379A publication Critical patent/JP2009209379A/en
Application granted granted Critical
Publication of JP5072652B2 publication Critical patent/JP5072652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water electrolysis apparatus which can reduce its cost and improve water electrolysis performance. <P>SOLUTION: The first water electrolysis apparatus 10A includes a water electrolysis cell 15A which includes: a polymer solid electrolyte membrane 11; a hydrogen pole catalyst layer 12A and an oxygen pole catalyst layer 13A on both sides of the polymer solid electrolyte membrane 11; and power feeders 14A for feeding an electric power to the hydrogen pole catalyst layer 12A and the oxygen pole catalyst layer 13A, which are respectively arranged on the outside of the hydrogen pole catalyst layer 12A and the oxygen pole catalyst layer 13A. A cell stack is structured by stacking a plurality of water electrolysis cells 15A while sandwiching each cell with a plurality of separator plates 16 and 16. The hydrogen pole catalyst layer 12A is made by mixing a Pt-carrying carbon catalyst 17 which carries Pt particles thereon with Pt-black particles 19. Thereby, the water electrolysis apparatus can reduce the amount of the Pt-black particles 19 used in the hydrogen pole catalyst layer 12A, and has also a water electrolysis performance equal to or more excellent than a conventional one. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気化学的な反応を利用して水を電気分解する水電解装置に関する。   The present invention relates to a water electrolysis apparatus that electrolyzes water using an electrochemical reaction.

水電解セルは、電気化学的な反応を利用して水を電気分解し、水素や酸素等を発生させるものである。例えば、電解質として高分子電解質膜を使用する水電解装置は、高分子固体電解質膜、触媒電極(水素極触媒、酸素極触媒)、触媒電極に電流を流すための給電体、それらを収めたセパレータを備えている。   The water electrolysis cell uses an electrochemical reaction to electrolyze water to generate hydrogen, oxygen, and the like. For example, a water electrolysis apparatus that uses a polymer electrolyte membrane as an electrolyte includes a polymer solid electrolyte membrane, a catalyst electrode (hydrogen electrode catalyst, oxygen electrode catalyst), a power feeder for flowing current through the catalyst electrode, and a separator that contains them It has.

例えば、従来の水電解装置の一例を図14に示す。図14に示すように、従来の水電解装置100は、水電解セル101が導電性のセパレータ板102で挟まれて構成されており、水電解セル101は、高分子固体電解質膜103と、その両側に設けられた水素極触媒層104と酸素極触媒層105と、各々の触媒層の外側に配置してなる給電体106とから構成されている。図中、符号107はゴムパッキンである。また、複数の水電解セル101を、セパレータ板102を介して積層したセルスタック構造とすることができる。   For example, an example of a conventional water electrolysis apparatus is shown in FIG. As shown in FIG. 14, a conventional water electrolysis apparatus 100 is configured by sandwiching a water electrolysis cell 101 with a conductive separator plate 102. The water electrolysis cell 101 includes a polymer solid electrolyte membrane 103 and its It comprises a hydrogen electrode catalyst layer 104 and an oxygen electrode catalyst layer 105 provided on both sides, and a power feeding body 106 arranged outside each catalyst layer. In the figure, reference numeral 107 denotes a rubber packing. In addition, a cell stack structure in which a plurality of water electrolysis cells 101 are stacked via separator plates 102 can be formed.

また、水素極触媒層104には白金(Pt)ブラック粒子110を、酸素極触媒層105にはPtブラック粒子110と酸化イリジウム(IrO2)粒子111を、セパレータ板102にはチタン(Ti)が各々用いられている。これは、水電解電位が高く、さらにセル構成として強酸性の高分子固体電解質膜103を使用するため、安価な汎用金属が使用できず、Ptなどのように貴金属メッキ及び貴金属触媒しか使用できないためである。 Further, platinum (Pt) black particles 110 are formed on the hydrogen electrode catalyst layer 104, Pt black particles 110 and iridium oxide (IrO 2 ) particles 111 are formed on the oxygen electrode catalyst layer 105, and titanium (Ti) is formed on the separator plate 102. Each is used. This is because the water electrolysis potential is high and the strongly solid polymer electrolyte membrane 103 is used as the cell structure, so that inexpensive general-purpose metals cannot be used, and only noble metal plating and noble metal catalysts such as Pt can be used. It is.

また、給電体106にはPtめっきを施したチタン製のメッシュが用いられている。これは、酸素極側にカーボンを使用すると、高電位では酸素と反応して炭酸ガスとなり腐食されるからである。また、カーボンは1.2V以上で酸化分解するため酸素雰囲気では使用できず、給電体106としてカーボンを用いることはできないためである。   Further, a titanium mesh subjected to Pt plating is used for the power supply body 106. This is because when carbon is used on the oxygen electrode side, it reacts with oxygen at a high potential to become carbon dioxide gas and is corroded. Further, since carbon is oxidized and decomposed at 1.2 V or higher, it cannot be used in an oxygen atmosphere, and carbon cannot be used as the power supply body 106.

酸素極触媒層105を有するアノード側に水を供給し、給電体106に電圧をかけることで、下記式(1)のように、アノード側で、水が分解され、酸素が発生し、水素イオンが高分子固体電解質膜103中を移動する。
2O → 2H+2e+1/2O2↑ …(1)
By supplying water to the anode side having the oxygen electrode catalyst layer 105 and applying a voltage to the power feeding body 106, water is decomposed on the anode side to generate oxygen and hydrogen ions as shown in the following formula (1). Moves through the polymer solid electrolyte membrane 103.
H 2 O → 2H + + 2e + 1 / 2O 2 ↑ (1)

そして、水素極触媒層104を有するカソード側で、下記式(2)のように、高分子固体電解質膜103中を移動してきた水素イオンが電子を受け取り水素が発生する。
2H+2e → H2↑ …(2)
Then, on the cathode side having the hydrogen electrode catalyst layer 104, hydrogen ions that have moved through the solid polymer electrolyte membrane 103 receive electrons as shown in the following formula (2) to generate hydrogen.
2H + + 2e → H 2 ↑ (2)

このように、従来の水電解装置100は、水を電気分解することで水素を発生させるようにしている(特許文献1、特許文献2、参照)。   As described above, the conventional water electrolysis apparatus 100 generates hydrogen by electrolyzing water (see Patent Document 1 and Patent Document 2).

特開2005−298938号公報Japanese Patent Laid-Open No. 2005-289838 特開平08−269761号公報JP 08-269761 A

しかしながら、従来の水電解装置100では、触媒としてPtブラック粒子110を用い、給電体106としてPtメッキしたチタン製のメッシュをして使用しているため、Ptの使用量が多く、水電解セル101のコストが高い、という問題ある。   However, in the conventional water electrolysis apparatus 100, the Pt black particles 110 are used as the catalyst and the Pt-plated titanium mesh is used as the power supply body 106, so that the amount of Pt used is large and the water electrolysis cell 101 is used. There is a problem that the cost is high.

本発明は、前記問題に鑑み、コスト低減を図ると共に、水電解性能を向上させることが可能な水電解装置を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a water electrolysis device capable of reducing costs and improving water electrolysis performance.

上述した課題を解決するための本発明の第1の発明は、高分子固体電解質膜の両面に水素極触媒層と酸素極触媒層とを有すると共に、前記水素極触媒層及び前記酸素極触媒層に給電させる給電体を前記水素極触媒層及び前記酸素極触媒層の外側に各々配してなる水電解セルを備えた水電解装置において、前記水素極触媒層が、白金粒子を担持した白金担持カーボン触媒を含むものであることを特徴とする水電解装置にある。   The first invention of the present invention for solving the above-mentioned problems includes a hydrogen electrode catalyst layer and an oxygen electrode catalyst layer on both sides of a polymer solid electrolyte membrane, and the hydrogen electrode catalyst layer and the oxygen electrode catalyst layer. In a water electrolysis apparatus provided with a water electrolysis cell in which a power feeding body for feeding power is arranged outside the hydrogen electrode catalyst layer and the oxygen electrode catalyst layer, the hydrogen electrode catalyst layer carries platinum particles carrying platinum particles. A water electrolysis apparatus comprising a carbon catalyst.

第2の発明は、第1の発明において、前記水素極触媒層が、前記白金担持カーボン触媒と白金ブラック粒子とを混合したものであることを特徴とする水電解装置にある。   A second invention is the water electrolysis apparatus according to the first invention, wherein the hydrogen electrode catalyst layer is a mixture of the platinum-supported carbon catalyst and platinum black particles.

第3の発明は、第1又は2の発明において、前記酸素極触媒層が、白金ブラック粒子と酸化イリジウム粒子とを混合したもの、又は前記酸化イリジウム粒子のみからなるものであることを特徴とする水電解装置にある。   A third invention is characterized in that, in the first or second invention, the oxygen electrode catalyst layer is a mixture of platinum black particles and iridium oxide particles, or consists of only the iridium oxide particles. It is in a water electrolysis device.

第4の発明は、第1乃至3の何れか一つの発明において、前記給電体が、表面に白金めっきしたチタンメッシュ、白金メッキ層を有するフォトエッチングチタンメッシュ、白金蒸着した白金蒸着層を有するフォトエッチングチタンメッシュの何れか一つであることを特徴とする水電解装置にある。   According to a fourth invention, in any one of the first to third inventions, the power feeding body includes a titanium mesh plated with platinum, a photoetched titanium mesh having a platinum plated layer, and a platinum deposited layer deposited with platinum. The water electrolysis apparatus is any one of etching titanium meshes.

第5の発明は、第3又は4の発明において、前記酸化イリジウム粒子が、比表面積が50m2/g以上の高比表面積酸化イリジウム粒子であることを特徴とする水電解装置にある。 A fifth invention is the water electrolysis apparatus according to the third or fourth invention, wherein the iridium oxide particles are high specific surface area iridium oxide particles having a specific surface area of 50 m 2 / g or more.

第6の発明は、第1乃至5のいずれか一つの発明において、前記水電解セルを複数のセパレータ板で挟みつつ複数積層してセルスタックを構成してなることを特徴とする水電解装置にある。   A sixth invention is a water electrolysis apparatus according to any one of the first to fifth inventions, wherein a plurality of the water electrolysis cells are sandwiched between a plurality of separator plates to form a cell stack. is there.

本発明によれば、高分子固体電解質膜の片側に設けた水素極触媒層が、白金粒子を担持した白金担持カーボン触媒を含むものであるため、白金(Pt)ブラック粒子の使用量を減少させてもカーボン担体表面にPt粒子を担持することでPtの比表面積を増大させることができる。このため、Pt表面での反応面積が少量でもPtブラック粒子のみを用いた場合と同等の水電解反応が可能となり、コスト低減を図ると共に、水電解性能を向上させることができる。   According to the present invention, since the hydrogen electrode catalyst layer provided on one side of the polymer solid electrolyte membrane contains a platinum-supported carbon catalyst supporting platinum particles, the amount of platinum (Pt) black particles used can be reduced. The Pt specific surface area can be increased by supporting Pt particles on the surface of the carbon support. For this reason, even if the reaction area on the Pt surface is small, a water electrolysis reaction equivalent to the case where only Pt black particles are used is possible, and the cost can be reduced and the water electrolysis performance can be improved.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

[第一の実施の形態]
本発明による第一の実施の形態に係る水電解装置について、図面を参照して説明する。
図1は、本発明による第一の実施の形態に係る水電解装置の構成を簡略に示す概略図である。
図1に示すように、本実施の形態に係る第一の水電解装置10Aは、高分子固体電解質膜11と、その両面に水素極触媒層12Aと酸素極触媒層13Aとを有すると共に、水素極触媒層12A及び酸素極触媒層13Aに給電させる給電体14Aを水素極触媒層12A及び酸素極触媒層13Aの外側に各々配してなる水電解セル15Aと、該水電解セル15Aを複数のセパレータ板16、16で挟みつつ複数積層してセルスタックを構成してなる水電解装置において、水素極触媒層12Aが、白金(Pt)粒子を担持した白金(Pt)担持カーボン触媒17を含むものである。なお、本実施の形態では、単セル構造を用いて説明する。
また、図中、符号18は、ゴムパッキンを図示する。
[First embodiment]
A water electrolysis apparatus according to a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram schematically showing the configuration of the water electrolysis apparatus according to the first embodiment of the present invention.
As shown in FIG. 1, a first water electrolysis apparatus 10A according to the present embodiment includes a polymer solid electrolyte membrane 11, a hydrogen electrode catalyst layer 12A and an oxygen electrode catalyst layer 13A on both sides thereof, A water electrolysis cell 15A in which a power feeding body 14A for feeding power to the electrode catalyst layer 12A and the oxygen electrode catalyst layer 13A is disposed outside the hydrogen electrode catalyst layer 12A and the oxygen electrode catalyst layer 13A, respectively, and a plurality of the water electrolysis cells 15A are provided. In a water electrolysis apparatus in which a cell stack is formed by stacking a plurality of layers while being sandwiched between separator plates 16 and 16, the hydrogen electrode catalyst layer 12A includes a platinum (Pt) -supported carbon catalyst 17 supporting platinum (Pt) particles. . Note that this embodiment mode is described using a single cell structure.
Moreover, in the figure, the code | symbol 18 illustrates a rubber packing.

ここで、本発明で水素極触媒層12Aは、白金(Pt)ブラック粒子19とPt担持カーボン触媒17とを混合してなるものである。水素極触媒層12Aは、Ptブラック粒子19及びPt担持カーボン触媒17を高分子電解質溶液21と撥水化剤22とから溶液に分散させ、このPtブラック粒子19とPt担持カーボン触媒17とを含有する溶液を塗布して形成されたものである。   Here, in the present invention, the hydrogen electrode catalyst layer 12 </ b> A is a mixture of platinum (Pt) black particles 19 and a Pt-supported carbon catalyst 17. The hydrogen electrode catalyst layer 12A contains Pt black particles 19 and a Pt-supported carbon catalyst 17 in which the Pt black particles 19 and the Pt-supported carbon catalyst 17 are dispersed in a solution from the polymer electrolyte solution 21 and the water repellent agent 22. It is formed by applying a solution to be applied.

また、本実施の形態においては、水素極触媒層12Aとして、Ptブラック粒子19とPt担持カーボン触媒17とを混合したものを用いているが、Ptブラック粒子19を加えずPt担持カーボン触媒17のみを用いるようにしてもよい。   In the present embodiment, a mixture of Pt black particles 19 and Pt-supported carbon catalyst 17 is used as hydrogen electrode catalyst layer 12A. However, only Pt-supported carbon catalyst 17 is added without adding Pt black particles 19. May be used.

また、酸素極触媒層13Aは、白金(Pt)ブラック粒子19と酸化イリジウム(IrO2)粒子20とを混合してなるものである。酸素極触媒層13Aは、Ptブラック粒子19と酸化イリジウム(IrO2)粒子20を高分子電解質溶液21と撥水化剤22とに分散させた溶液を用いて給電体14Aと接する面にメッキを行い、形成されたものである。また、本実施の形態においては、酸素極触媒層13Aとして、Ptブラック粒子19とIrO2粒子20とを混合したものを用いているが、Ptブラック粒子19を加えずIrO2粒子20のみを用いるようにしてもよい。 The oxygen electrode catalyst layer 13 </ b > A is a mixture of platinum (Pt) black particles 19 and iridium oxide (IrO 2 ) particles 20. The oxygen electrode catalyst layer 13A is plated on the surface in contact with the power feeder 14A using a solution in which Pt black particles 19 and iridium oxide (IrO 2 ) particles 20 are dispersed in a polymer electrolyte solution 21 and a water repellent agent 22. Done and formed. In the present embodiment, a mixture of Pt black particles 19 and IrO 2 particles 20 is used as the oxygen electrode catalyst layer 13A. However, only the IrO 2 particles 20 are used without adding the Pt black particles 19. You may do it.

給電体14Aは、材質としてチタン(Ti)が使用され、表面にPtめっきしたチタンメッシュが用いられる。給電体14Aとしてはこれに限定されるものではなく、例えばチタン金属繊維のウェブ焼結体からなる布であって、この布繊維間に多数の空隙を有するものなどを用いてもよい。   The power feeding body 14A is made of titanium (Ti) as a material, and a titanium mesh whose surface is Pt plated is used. The power supply body 14A is not limited to this, and for example, a cloth made of a sintered titanium metal fiber web having a large number of voids between the cloth fibers may be used.

高分子固体電解質膜11としては、例えば、スルホン酸基を持つフッ素樹脂系陽イオン交換膜、例えば「NAFION(登録商標)」 N-112,N-115,N-117,NE-1110(商品名:デュポン社製)等を用いることができる。その他フッ素樹脂系陽イオン交換膜としては、旭化成ケミカルズ株式会社製のフッ素系陽イオン交換膜(商品名:アシプレックス−F(AciplexF))及び旭硝子株式会社製のフッ素系陽イオン交換膜(商品名:フレミオン)を用いることができる。高分子固体電解質膜11としては、特にこれに限定されるものではない。   Examples of the polymer solid electrolyte membrane 11 include a fluororesin cation exchange membrane having a sulfonic acid group, such as “NAFION (registered trademark)” N-112, N-115, N-117, NE-1110 (trade name). : Manufactured by DuPont) or the like. Other fluororesin-based cation exchange membranes include fluorine-based cation exchange membranes (trade name: Aciplex-F (Aciplex F)) manufactured by Asahi Kasei Chemicals Co., Ltd. and fluorine-based cation exchange membranes (trade name) manufactured by Asahi Glass Co., Ltd. : Flemion) can be used. The polymer solid electrolyte membrane 11 is not particularly limited to this.

本実施の形態に係る第一の水電解装置10Aにおいては、酸素極触媒層13Aを有するアノード側に水を供給し、給電体14Aに電圧をかけると、アノード側で水が分解され、酸素が発生し、水素イオンが高分子電解質膜11中を移動する(下記式(1)、参照)。
2O → 2H +2e + 1/2O2↑ …(1)
In the first water electrolysis apparatus 10A according to the present embodiment, when water is supplied to the anode side having the oxygen electrode catalyst layer 13A and voltage is applied to the power feeder 14A, the water is decomposed on the anode side, and oxygen is As a result, hydrogen ions move in the polymer electrolyte membrane 11 (see the following formula (1)).
H 2 O → 2H + + 2e + ½O 2 ↑ (1)

そして、水素極触媒層12Aを有するカソード側で、高分子固体電解質膜11中を移動してきた水素イオンが電子を受け取り水素が発生する(下記式(2)、参照)。
2H+2e → H2↑ …(2)
Then, on the cathode side having the hydrogen electrode catalyst layer 12A, hydrogen ions that have moved through the polymer solid electrolyte membrane 11 receive electrons and generate hydrogen (see the following formula (2)).
2H + + 2e → H 2 ↑ (2)

本実施の形態に係る第一の水電解装置10Aにおいては、水素極触媒層12AにPtブラック粒子19とPt担持カーボン触媒17とを混合してなるものを用いているため、水素極触媒層12Aで使用されているPtブラック粒子19の使用量を減らすことができると共に、図14に示すような従来の水電解装置100と同等かそれ以上の水電解性能を有することができる。   In the first water electrolysis apparatus 10A according to the present embodiment, since the hydrogen electrode catalyst layer 12A is made by mixing the Pt black particles 19 and the Pt-supported carbon catalyst 17, the hydrogen electrode catalyst layer 12A. The amount of Pt black particles 19 used in the above can be reduced, and water electrolysis performance equivalent to or higher than that of the conventional water electrolysis apparatus 100 as shown in FIG. 14 can be obtained.

これは、図14に示すような従来の水電解装置100の水素極触媒層104で用いられるPtブラック粒子110は粒径が数十μm程度で比表面積は数m2/g以下であるのに対し、Pt担持カーボン触媒17のカーボン担体表面に担持したPt粒子の比表面積は100m2/g以上に相当するためである。 This is because the Pt black particles 110 used in the hydrogen electrode catalyst layer 104 of the conventional water electrolysis apparatus 100 as shown in FIG. 14 have a particle size of about several tens of μm and a specific surface area of several m 2 / g or less. On the other hand, the specific surface area of the Pt particles supported on the carbon support surface of the Pt-supported carbon catalyst 17 corresponds to 100 m 2 / g or more.

このため、Pt担持カーボン触媒17と白金(Pt)ブラックの合計Pt使用重量が少量でも水素極触媒層12Aは、図14に示すような従来の水電解装置100のようにPtブラック粒子110のみからなる触媒層の場合と同等の反応面積を有し、従来と同等の水電解反応を可能とすることができる。   For this reason, even if the total Pt use weight of the Pt-supported carbon catalyst 17 and platinum (Pt) black is small, the hydrogen electrode catalyst layer 12A is formed only from the Pt black particles 110 as in the conventional water electrolysis apparatus 100 as shown in FIG. It has a reaction area equivalent to that of the resulting catalyst layer, and can make a water electrolysis reaction equivalent to the conventional one.

このように、本実施の形態に係る第一の水電解装置10Aによれば、水素極触媒層12Aが、Ptブラック粒子19とPt担持カーボン触媒17とを混合してなるものであるため、触媒層でのPtブラック粒子19の使用量を従来より減少させてもPt担持カーボン触媒17のカーボン担体表面に担持したPt粒子の比表面積は増大しているため、Pt使用重量が少量でも触媒層にPtブラック粒子19のみを用いた場合と同等の水電解反応が可能となり、コスト低減を図ると共に、水電解性能を向上させることができる。   Thus, according to the first water electrolysis apparatus 10A according to the present embodiment, the hydrogen electrode catalyst layer 12A is formed by mixing the Pt black particles 19 and the Pt-supported carbon catalyst 17, so that the catalyst Even if the amount of Pt black particles 19 used in the layer is decreased, the specific surface area of the Pt particles supported on the carbon support surface of the Pt-supported carbon catalyst 17 is increased. A water electrolysis reaction equivalent to the case where only the Pt black particles 19 are used is possible, so that the cost can be reduced and the water electrolysis performance can be improved.

また、本実施の形態においては、セパレータ板16を水電解セル15Aの両側に一組設けるようにしているが、セパレータ板16を介して水電解セル15Aを少なくとも二つ以上積層させるようにしてもよい。   In the present embodiment, a pair of separator plates 16 is provided on both sides of the water electrolysis cell 15A. However, at least two water electrolysis cells 15A may be stacked via the separator plate 16. Good.

[第二の実施の形態]
本発明による第二の実施の形態に係る水電解装置について、図2を参照して説明する。
図2は、本発明による第二の実施の形態に係る水電解装置の構成を簡略に示す概念図である。
図2に示すように、本実施の形態に係る第二の水電解装置10Bは、図1に示す第一の実施の形態に係る第一の水電解装置10Aの構成と同様であるため、同一部材には同一の符号を付して重複した説明は省略する。
[Second Embodiment]
A water electrolysis apparatus according to a second embodiment of the present invention will be described with reference to FIG.
FIG. 2 is a conceptual diagram schematically showing the configuration of the water electrolysis apparatus according to the second embodiment of the present invention.
As shown in FIG. 2, the second water electrolysis apparatus 10B according to the present embodiment is the same as the configuration of the first water electrolysis apparatus 10A according to the first embodiment shown in FIG. The same reference numerals are given to the members, and duplicate descriptions are omitted.

図2に示すように、本実施の形態に係る第二の水電解装置10Bは、前記図1に示した第一の実施の形態に係る第一の水電解装置10Aの給電体14Aに代えて表面にPtめっきしたPtメッキ層23を有するフォトエッチングチタンメッシュ24を用いたものである。   As shown in FIG. 2, the second water electrolysis apparatus 10B according to the present embodiment is replaced with a power feeder 14A of the first water electrolysis apparatus 10A according to the first embodiment shown in FIG. A photoetching titanium mesh 24 having a Pt plating layer 23 plated with Pt on the surface is used.

即ち、本実施の形態に係る第二の水電解装置10Bの水電解セル15Bは、給電体14Aに代えて表面にPtメッキ層23を有するフォトエッチングチタンメッシュ24からなる給電体14Bを有するものである。   That is, the water electrolysis cell 15B of the second water electrolysis apparatus 10B according to the present embodiment has a power feeding body 14B made of a photoetched titanium mesh 24 having a Pt plating layer 23 on the surface in place of the power feeding body 14A. is there.

表面にPtメッキ層23を有するフォトエッチングチタンメッシュ24からなる給電体14Bを用いることで、水素極触媒層12A、酸素極触媒層13Aの各々の触媒層のPtブラック粒子19の添加量を大幅に低減しても図14に示すような従来の水電解装置100と同等の水電解性能を得ることができる。   By using a power supply 14B made of a photoetching titanium mesh 24 having a Pt plating layer 23 on the surface, the amount of Pt black particles 19 added to each of the catalyst layers of the hydrogen electrode catalyst layer 12A and the oxygen electrode catalyst layer 13A is greatly increased. Even if it reduces, the water electrolysis performance equivalent to the conventional water electrolysis apparatus 100 as shown in FIG. 14 can be obtained.

これは、水素極触媒層12A、酸素極触媒層13Aの内部の電子伝導性を確保するため、Ptを添加していたが、給電体14Bの表面にフラットなPtメッキ層23を形成しているため、水素極触媒層12A、酸素極触媒層13Aの触媒表面のPtメッキ層23との接触面積が増大し、電子伝導性を確保することができるためである。   This is because Pt is added to ensure the electron conductivity inside the hydrogen electrode catalyst layer 12A and the oxygen electrode catalyst layer 13A, but a flat Pt plating layer 23 is formed on the surface of the power supply 14B. Therefore, the contact area between the catalyst surface of the hydrogen electrode catalyst layer 12A and the oxygen electrode catalyst layer 13A with the Pt plating layer 23 is increased, and electron conductivity can be ensured.

また、Ptメッキ層23の膜厚としては、例えば1μm〜3μm程度が好ましく、実用的には2μm程度が好ましい。コスト的には膜厚が薄ければ薄いほど白金使用量が少なくなりコスト的に有利となるが、一般的なメッキ法では1μm以下の厚さではピンホール(メッキされていない部分)が発生しやすくなるためである。   Further, the thickness of the Pt plating layer 23 is preferably, for example, about 1 μm to 3 μm, and practically about 2 μm. In terms of cost, the thinner the film thickness, the lower the amount of platinum used, which is advantageous in terms of cost. However, in general plating methods, pinholes (unplated parts) occur at thicknesses of 1 μm or less. This is because it becomes easier.

また、図3、4は、本実施の形態に係る水電解装置の他の構成を簡略に示す概念図である。図3に示すように、本実施の形態に係る第二の水電解装置10Cは、Ptブラック粒子19とPt担持カーボン触媒17とを混合してなる水素極触媒層12Aに代えて、Ptブラック粒子19を添加せず、Pt担持カーボン触媒17のみからなる水素極触媒層12Bを有する水電解セル15Cを用いるようにしてもよい。   3 and 4 are conceptual diagrams simply showing other configurations of the water electrolysis apparatus according to the present embodiment. As shown in FIG. 3, the second water electrolysis apparatus 10C according to the present embodiment replaces the hydrogen electrode catalyst layer 12A formed by mixing the Pt black particles 19 and the Pt-supported carbon catalyst 17 with Pt black particles. A water electrolysis cell 15C having a hydrogen electrode catalyst layer 12B made of only the Pt-supported carbon catalyst 17 without adding 19 may be used.

また、図4に示すように、本実施の形態に係る第二の水電解装置10Dは、Ptブラック粒子19とIrO2粒子20とを混合してなる酸素極触媒層13Aに代えて、Ptブラック粒子19を添加せず、IrO2粒子20のみからなる酸素極触媒層13Bを有する水電解セル15Cを用いるようにしてもよい。 Further, as shown in FIG. 4, the second water electrolysis apparatus 10D according to the present embodiment replaces the oxygen electrode catalyst layer 13A formed by mixing Pt black particles 19 and IrO 2 particles 20 with Pt black. without the addition of particles 19, it may be used water electrolysis cell 15C having an oxygen electrode catalyst layer 13B composed of only IrO 2 particles 20.

Ptブラック粒子19を添加せず、Pt担持カーボン触媒17のみからなる水素極触媒層12Bや、Ptブラック粒子19を添加せず、IrO2粒子20のみからなる酸素極触媒層13Bを用いても、表面にPtメッキ層23を有するフォトエッチングチタンメッシュ24からなる給電体14Bを設けることで、触媒層の触媒表面のPtメッキ層23との接触面積が増大し、電子伝導性を確保することができる。このため、Ptブラック粒子19を添加しなくても図14に示すような従来の水電解装置100と同等の水電解性能を得ることができる。 Even if the hydrogen electrode catalyst layer 12B made only of the Pt-supported carbon catalyst 17 without adding the Pt black particles 19 or the oxygen electrode catalyst layer 13B made only of the IrO 2 particles 20 without adding the Pt black particles 19, By providing the power supply body 14B made of the photoetching titanium mesh 24 having the Pt plating layer 23 on the surface, the contact area of the catalyst surface with the Pt plating layer 23 on the catalyst surface can be increased, and the electron conductivity can be ensured. . Therefore, water electrolysis performance equivalent to that of the conventional water electrolysis apparatus 100 as shown in FIG. 14 can be obtained without adding the Pt black particles 19.

このように、本実施の形態に係る第二の水電解装置10B〜Dによれば、表面にPtメッキ層23を有するフォトエッチングチタンメッシュ24からなる給電体14Bを有することで、水電解セル15Bの単位面積当たりのPt使用量を大幅に低減することができると共に、Pt使用量を減らしても従来と同等の水電解反応を可能とすることができる。   Thus, according to 2nd water electrolysis apparatus 10B-D which concerns on this Embodiment, by having the electric power feeding body 14B which consists of the photoetching titanium mesh 24 which has the Pt plating layer 23 on the surface, water electrolysis cell 15B The amount of Pt used per unit area can be significantly reduced, and even if the amount of Pt used is reduced, a water electrolysis reaction equivalent to the conventional one can be made possible.

[第三の実施の形態]
本発明による第三の実施の形態に係る水電解装置について、図5を参照して説明する。
図5は、本発明による第三の実施の形態に係る水電解装置の構成を簡略に示す概念図である。
図5に示すように、本実施の形態に係る第三の水電解装置10Eは、図3に示す第二の実施の形態に係る第二の水電解装置10Cの構成と同様であるため、同一部材には同一の符号を付して重複した説明は省略する。
[Third embodiment]
A water electrolysis apparatus according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 5 is a conceptual diagram schematically showing the configuration of the water electrolysis apparatus according to the third embodiment of the present invention.
As shown in FIG. 5, the third water electrolysis apparatus 10E according to the present embodiment is the same as the configuration of the second water electrolysis apparatus 10C according to the second embodiment shown in FIG. The same reference numerals are given to the members, and duplicate descriptions are omitted.

図5に示すように、本実施の形態に係る第三の水電解装置10Eは、前記図3に示した第二の実施の形態に係る第二の水電解装置10CのIrO2粒子20を比表面積が50m2/g以上の高比表面積酸化イリジウム(IrO2)粒子25とするものである。 As shown in FIG. 5, the third water electrolysis apparatus 10E according to the present embodiment compares the IrO 2 particles 20 of the second water electrolysis apparatus 10C according to the second embodiment shown in FIG. High specific surface area iridium oxide (IrO 2 ) particles 25 having a surface area of 50 m 2 / g or more are obtained.

即ち、本実施の形態に係る第三の水電解装置10Eの水電解セル15Eは、IrO2粒子20に代えて比表面積が50m2/g以上の高比表面積IrO2粒子25からなるものである。 That is, the water electrolysis cell 15E of the third water electrolysis apparatus 10E according to the present embodiment is composed of high specific surface area IrO 2 particles 25 having a specific surface area of 50 m 2 / g or more instead of the IrO 2 particles 20. .

酸素極触媒層13Cに比表面積が50m2/g以上の高比表面積IrO2粒子25を用いることで、IrO2粒子20よりもナノレベルに微細化し、比表面積を増大させることができるため、触媒反応面積を増大させ、図14に示すような従来の水電解装置100よりも水電解性能を大幅に向上させることができる。 Since the high specific surface area IrO 2 particles 25 having a specific surface area of 50 m 2 / g or more are used for the oxygen electrode catalyst layer 13C, the oxygen electrode catalyst layer 13C can be made finer to the nano level than the IrO 2 particles 20 and the specific surface area can be increased. The reaction area can be increased, and the water electrolysis performance can be significantly improved as compared with the conventional water electrolysis apparatus 100 as shown in FIG.

これは、IrO2粒子20は、例えば2A/cm2の電流密度では水電解効率を80%以上に達成することは困難であったのに対し、高比表面積IrO2粒子25は、IrO2粒子20を微粒化し比表面積を例えば50m2/g以上に増大し、触媒反応面積を増大させているため、単位面積あたりの電流値が増加しても水電解性能の低下を防ぐことができるからである。 This is because the IrO 2 particles 20 were difficult to achieve a water electrolysis efficiency of 80% or more at a current density of 2 A / cm 2 , for example, whereas the high specific surface area IrO 2 particles 25 were IrO 2 particles Since 20 is atomized and the specific surface area is increased to, for example, 50 m 2 / g or more, and the catalytic reaction area is increased, it is possible to prevent the water electrolysis performance from being deteriorated even if the current value per unit area increases. is there.

また、図6、7は、本実施の形態に係る水電解装置の他の構成を簡略に示す概念図である。図6に示す本実施の形態に係る第三の水電解装置10Fのように、Ptブラック粒子19を添加せず、高比表面積IrO2粒子25のみからなる酸素極触媒層13Dを有する水電解セル15Fを用いるようにしてもよい。また、図7に示す本実施の形態に係る第三の水電解装置10Gのように、図1に示す第一の実施の形態に係る第一の水電解装置10AのIrO2粒子20に代えて高比表面積IrO2粒子25を用いた酸素極触媒層13Eを有する水電解セル15Gを用いるようにしてもよい。また、Ptブラック粒子19を添加していない高比表面積IrO2粒子25のみからなる酸素極触媒層13Dを用いてもよい。 6 and 7 are conceptual diagrams simply showing another configuration of the water electrolysis apparatus according to the present embodiment. As in the third water electrolysis apparatus 10F according to the present embodiment shown in FIG. 6, the water electrolysis cell having the oxygen electrode catalyst layer 13D made of only the high specific surface area IrO 2 particles 25 without adding the Pt black particles 19 15F may be used. Also, as in the third water electrolysis device 10G according to this embodiment shown in FIG. 7, in place of the IrO 2 particles 20 of the first water-electrolysis apparatus 10A according to the first embodiment shown in FIG. 1 A water electrolysis cell 15G having an oxygen electrode catalyst layer 13E using high specific surface area IrO 2 particles 25 may be used. Alternatively, an oxygen electrode catalyst layer 13D made of only the high specific surface area IrO 2 particles 25 to which the Pt black particles 19 are not added may be used.

また、本実施の形態に係る第三の水電解装置10E〜10Gにおいて、Ptブラック粒子19を各々の触媒層に添加したものを触媒層として用いるようにしてもよい。   In addition, in the third water electrolysis apparatuses 10E to 10G according to the present embodiment, those obtained by adding the Pt black particles 19 to each catalyst layer may be used as the catalyst layers.

このように、本実施の形態に係る第三の水電解装置10E〜Gによれば、酸素極触媒層13C、13Dに比表面積が50m2/g以上(より好ましくは60m2/g以上)の高比表面積IrO2粒子25を用いることで、IrO2粒子20よりもナノレベルに微細化し、比表面積を増大し、触媒反応面積を増大させることができるため、単位面積あたりの電流値を増加させても水電解性能の低下を防ぎ、水電解性能を向上させることができる。
[第四の実施の形態]
Thus, according to the third water electrolysis apparatuses 10E to 10G according to the present embodiment, the oxygen electrode catalyst layers 13C and 13D have a specific surface area of 50 m 2 / g or more (more preferably 60 m 2 / g or more). By using the high specific surface area IrO 2 particles 25, the IrO 2 particles 20 can be made finer to the nano level, the specific surface area can be increased, and the catalytic reaction area can be increased. Therefore, the current value per unit area is increased. However, it is possible to prevent deterioration of the water electrolysis performance and improve the water electrolysis performance.
[Fourth embodiment]

本発明による第四の実施の形態に係る水電解装置について、図8を参照して説明する。
図8は、本発明による第四の実施の形態に係る水電解装置の構成を簡略に示す概念図である。
図8に示すように、本実施の形態に係る第四の水電解装置10Hは、図5に示す第三の実施の形態に係る第三の水電解装置10Eの構成と同様であるため、同一部材には同一の符号を付して重複した説明は省略する。
A water electrolysis apparatus according to a fourth embodiment of the present invention will be described with reference to FIG.
FIG. 8 is a conceptual diagram schematically showing the configuration of the water electrolysis apparatus according to the fourth embodiment of the present invention.
As shown in FIG. 8, the fourth water electrolysis apparatus 10H according to the present embodiment is the same as the configuration of the third water electrolysis apparatus 10E according to the third embodiment shown in FIG. The same reference numerals are given to the members, and duplicate descriptions are omitted.

図8に示すように、本実施の形態に係る第四の水電解装置10Hは、前記図5に示した第三の実施の形態に係る第三の水電解装置10Eの給電体14Bに代えて表面にPt蒸着したPt蒸着層26を有するフォトエッチングチタンメッシュ24からなる給電体14Cを用いたものである。   As shown in FIG. 8, the fourth water electrolysis apparatus 10H according to the present embodiment is replaced with a power feeder 14B of the third water electrolysis apparatus 10E according to the third embodiment shown in FIG. A power supply 14C made of a photoetching titanium mesh 24 having a Pt vapor deposition layer 26 on which Pt is vapor deposited is used.

即ち、本実施の形態に係る第四の水電解装置10Hの水電解セル15Hは、表面にPt蒸着層26を有するフォトエッチングチタンメッシュ24からなる給電体14Cを有するものである。   That is, the water electrolysis cell 15H of the fourth water electrolysis apparatus 10H according to the present embodiment has a power feeding body 14C made of a photoetched titanium mesh 24 having a Pt vapor deposition layer 26 on the surface.

表面にPt蒸着層26を有するフォトエッチングチタンメッシュ24からなる給電体14Cを用いることで、図2〜図4に示す第二の実施の形態に係る第二の水電解装置10B〜10D、図5〜図7に示す第三の実施の形態に係る第三の水電解装置10E〜10Gのように、フォトエッチングチタンメッシュ24の表面にPtメッキ層23を用いるより、Ptメッキ層23を有するフォトエッチングチタンメッシュ24からなる給電体14Bと同様、触媒層の触媒表面とPt蒸着層26との接触面積が増大し、電子伝導性を確保することができる。このため、水電解セル15の単位面積当たりのPt使用量を大幅に低減することができると共に、Pt粒子量を減らしても図14に示すような従来の水電解装置100と同等の水電解性能を得ることができる。   By using a power supply 14C made of a photoetched titanium mesh 24 having a Pt vapor deposition layer 26 on the surface, the second water electrolysis apparatuses 10B to 10D according to the second embodiment shown in FIGS. ~ Photoetching having a Pt plating layer 23 rather than using a Pt plating layer 23 on the surface of the photoetching titanium mesh 24 as in the third water electrolysis devices 10E to 10G according to the third embodiment shown in Fig. 7. Similar to the power supply body 14B made of the titanium mesh 24, the contact area between the catalyst surface of the catalyst layer and the Pt vapor deposition layer 26 is increased, and the electron conductivity can be ensured. Therefore, the amount of Pt used per unit area of the water electrolysis cell 15 can be greatly reduced, and even when the amount of Pt particles is reduced, the water electrolysis performance equivalent to that of the conventional water electrolysis apparatus 100 as shown in FIG. Can be obtained.

また、Pt蒸着層26の膜厚としては、0.1μm〜0.5μm程度が好ましく、実用的には0.2μm程度が好ましい。これは、コスト的には膜厚が薄ければ薄いほど白金使用量が少なくなりコスト的に有利となるが、蒸着法では0.1μm以下の厚さではピンホール(メッキされていない部分)が発生しやすくなるためである。   Further, the thickness of the Pt vapor deposition layer 26 is preferably about 0.1 μm to 0.5 μm, and practically about 0.2 μm. In terms of cost, the thinner the film thickness, the lower the amount of platinum used, which is advantageous in terms of cost. However, in the vapor deposition method, a pinhole (unplated portion) is present at a thickness of 0.1 μm or less. This is because it tends to occur.

また、図9は、本実施の形態に係る水電解装置の他の構成を簡略に示す概念図である。図9に示す本実施の形態に係る第四の水電解装置10Iのように、Ptブラック粒子19を添加せず、高比表面積IrO2粒子25のみからなる酸素極触媒層13Dを有する水電解セル15Iを用いるようにしてもよい。 FIG. 9 is a conceptual diagram schematically showing another configuration of the water electrolysis apparatus according to the present embodiment. Like the fourth water electrolysis apparatus 10I according to the present embodiment shown in FIG. 9, the water electrolysis cell having the oxygen electrode catalyst layer 13D made of only the high specific surface area IrO 2 particles 25 without adding the Pt black particles 19 15I may be used.

よって、図8、9に示す本実施の形態に係る第四の水電解装置10H、10Iによれば、表面にPt蒸着層26を有するフォトエッチングチタンメッシュ24からなる給電体14Cを有することで、水電解セル15の単位面積当たりのPt使用量を大幅に低減することができると共に、Pt使用量を減らしても従来と同等の水電解反応を可能とすることができる。   Therefore, according to the fourth water electrolysis apparatuses 10H and 10I according to the present embodiment shown in FIGS. 8 and 9, by having the power supply body 14C made of the photoetched titanium mesh 24 having the Pt vapor deposition layer 26 on the surface, The amount of Pt used per unit area of the water electrolysis cell 15 can be significantly reduced, and even if the amount of Pt used is reduced, a water electrolysis reaction equivalent to the conventional one can be made possible.

以下、本発明の効果を示す実施例について説明するが、本発明はこれに限定されるものではない。   Examples illustrating the effects of the present invention will be described below, but the present invention is not limited thereto.

本実施の形態に係る水電解装置の水電解セルの水電解性能(エネルギー効率)について検証する。   The water electrolysis performance (energy efficiency) of the water electrolysis cell of the water electrolysis apparatus according to the present embodiment will be verified.

[水電解セルの作成方法] [How to make a water electrolysis cell]

まず、本実施例において用いられる水電解セルの作成方法について説明する。
触媒、高分子電解質溶液、撥水化材(結着材)をエタノール溶液に分散させた水素極用スラリーと酸素極用スラリーをそれぞれ作成し、過熱吸引台にセットした高分子電解質膜(商品名:ナフィオン膜)にスプレー塗布法で片面づつ均一に所定量塗布した。そして、両面に触媒層を塗布したセルを約80℃で所定時間乾燥した後、所定温度、所定圧力で約1分間ホットプレスし、均一なセルを得た。その後、セルを約100℃で所定時間煮沸洗浄することで、水電解セルを得た。
First, a method for producing a water electrolysis cell used in this example will be described.
A polymer electrolyte membrane (trade name) prepared on a superheated suction stand by preparing a slurry for a hydrogen electrode and a slurry for an oxygen electrode in which a catalyst, a polymer electrolyte solution, and a water repellent material (binder) are dispersed in an ethanol solution : Nafion film) was uniformly applied by a spray coating method on each side. The cell with the catalyst layer coated on both sides was dried at about 80 ° C. for a predetermined time, and then hot pressed at a predetermined temperature and a predetermined pressure for about 1 minute to obtain a uniform cell. Thereafter, the cell was boiled and washed at about 100 ° C. for a predetermined time to obtain a water electrolysis cell.

実施例1において用いられる水電解セルの作成方法について具体的に説明する。
白金ブラック1.5g、白金担持カーボン(白金66.8wt%カーボン担持触媒)0.5g、撥水化剤としてPTFE粉末0.37gを秤量し、約100ccのガラス容器に入れた。そして、5wt%ナフィオン溶液15.8ml(デュポン社製)、エタノール68mlを加え、超音波分散を5分間行い、水素極触媒層用のスプレー塗布用スラリーとした。
また、白金ブラック3.0g、酸化イリジウム3.7g、撥水化剤としてPTFE粉末0.48gを秤量し、約100ccのガラス容器に入れ、次に5wt%ナフィオン溶液25.2ml、エタノール90mlを加え、超音波分散を5分間行い、酸素極触媒用のスプレー塗布用スラリーとした。
そして、所定サイズに切り出したナフィオン膜を多孔質板プレートの吸引式過熱台に設置し、プレート表面温度を80℃に保持しながら、自動スプレー塗布装置を用いて、酸素極側、負極側の順に上記のようにして作成したスラリーを各々スプレー塗布し、触媒層を成型した。
また、ナフィオン膜両面に触媒層を塗布した水電解セルは、80℃、1時間乾燥後、約30℃の恒温槽で保管し、重量が恒量となること(重量が変化しないこと)を確認してから使用した。
そして、作成した上記水電解セルを約2mm厚のPTFE板で挟みこみ、更に両側を厚さ1mmのステンレス板で挟みこんで、面圧10kgf/cm2の圧力でプレスし、160℃まで昇温後、1分間保持してホットプレスを行った。その後、作成した水電解セルをイオン交換水中、室温で約8時間以上浸漬後、約100℃まで煮沸し、約1時間保持し、冷却することで洗浄処理を行った。
A method for producing a water electrolysis cell used in Example 1 will be specifically described.
1.5 g of platinum black, 0.5 g of platinum-supported carbon (platinum 66.8 wt% carbon-supported catalyst), and 0.37 g of PTFE powder as a water repellent were weighed and placed in an approximately 100 cc glass container. Then, 15.8 ml of 5 wt% Nafion solution (manufactured by DuPont) and 68 ml of ethanol were added, and ultrasonic dispersion was performed for 5 minutes to obtain a slurry for spray coating for the hydrogen electrode catalyst layer.
Also, 3.0 g of platinum black, 3.7 g of iridium oxide, and 0.48 g of PTFE powder as a water repellent agent are weighed and placed in an approximately 100 cc glass container, and then 25.2 ml of 5 wt% Nafion solution and 90 ml of ethanol are added. Then, ultrasonic dispersion was performed for 5 minutes to obtain a slurry for spray coating for the oxygen electrode catalyst.
Then, the Nafion membrane cut out to a predetermined size is placed on the suction type superheater of the porous plate plate, and while maintaining the plate surface temperature at 80 ° C., using the automatic spray coating device, the oxygen electrode side and the negative electrode side are sequentially ordered Each of the slurries prepared as described above was applied by spraying to form a catalyst layer.
Also, the water electrolysis cell with the catalyst layer applied on both sides of the Nafion membrane is dried at 80 ° C for 1 hour and then stored in a constant temperature bath at about 30 ° C to confirm that the weight is constant (the weight does not change). Used after.
Then, the prepared water electrolysis cell is sandwiched between PTFE plates having a thickness of about 2 mm, both sides are sandwiched between stainless plates having a thickness of 1 mm, and pressed at a surface pressure of 10 kgf / cm 2 , and the temperature is increased to 160 ° C. Thereafter, it was held for 1 minute and hot pressed. Thereafter, the prepared water electrolysis cell was immersed in ion-exchanged water at room temperature for about 8 hours or more, then boiled to about 100 ° C., held for about 1 hour, and cooled to perform a washing treatment.

比較例1、2及び実施例2〜実施例11において用いられる水電解セルの作成方法についても、上記実施例1と同様の方法でスラリーを各々作成し、同様にスプレー塗布法により水電解セルを作成した。   Regarding the methods for preparing the water electrolysis cells used in Comparative Examples 1 and 2 and Examples 2 to 11, slurries were prepared in the same manner as in Example 1, and the water electrolysis cells were similarly formed by spray coating. Created.

以上、前記のようにして作成された水電解セルの水素極触媒層と酸素極触媒層での材料の種類と各々の使用量をまとめた結果を下記表1に示す。   Table 1 below shows the results of summarizing the types of materials and the amounts used in the hydrogen electrode catalyst layer and the oxygen electrode catalyst layer of the water electrolysis cell prepared as described above.

Figure 2009209379
Figure 2009209379

また、前記のようにして作成された水電解セルの水素極触媒層と給電体との水素極白金使用量、酸素極触媒層と給電体との酸素極白金使用量、酸化イリジウム比表面積、給電体の種類をまとめた結果を下記表2に示す。   Also, the amount of hydrogen electrode platinum used between the hydrogen electrode catalyst layer and the power feeder of the water electrolysis cell prepared as described above, the amount of oxygen electrode platinum used between the oxygen electrode catalyst layer and the power feeder, the iridium oxide specific surface area, the power supply The results of summarizing the body types are shown in Table 2 below.

Figure 2009209379
Figure 2009209379

[実施例1〜実施例4及び比較例1の水電解性能(エネルギー効率)の検証]
本発明の第一の実施の形態に係る水電解装置と第三の実施の形態に係る水電解装置の水電解セルを用いた実施例1〜実施例4と図14に示すような従来の水電解装置100の水電解セル101を用いた比較例1について、電解性能(エネルギー効率)を検証した。
[Verification of water electrolysis performance (energy efficiency) of Examples 1 to 4 and Comparative Example 1]
Example 1 to Example 4 using the water electrolysis cell according to the first embodiment of the present invention and the water electrolysis cell of the water electrolysis device according to the third embodiment, and conventional water as shown in FIG. Electrolytic performance (energy efficiency) was verified for Comparative Example 1 using the water electrolysis cell 101 of the electrolysis apparatus 100.

[水電解セルの評価方法]
水電解セルの評価方法について説明する。水電解セルに給電体としてPtメッキしたチタンメッシュを両極側から挟み、水電解セルとした。その後、純水を供給し、所定電流を流した時の電圧と発生ガス量及び不純物濃度を測定し、電流効率と電圧効率から電解性能(エネルギー効率)を求めた。
[Evaluation method of water electrolysis cell]
A method for evaluating the water electrolysis cell will be described. A titanium mesh plated with Pt as a power feeding body was sandwiched from both electrode sides to form a water electrolysis cell. Thereafter, pure water was supplied, and the voltage, amount of generated gas, and impurity concentration when a predetermined current was passed were measured, and electrolysis performance (energy efficiency) was determined from the current efficiency and voltage efficiency.

本発明の第一の実施の形態と第三の実施の形態に係る水電解装置の水電解セルに用いる実施例1〜実施例4と図14に示すような従来の水電解装置100の水電解セルに用いる比較例1について、電解性能(エネルギー効率)を上記表2に示す。   Example 1 to Example 4 used in the water electrolysis cell of the water electrolysis apparatus according to the first embodiment and the third embodiment of the present invention, and water electrolysis of a conventional water electrolysis apparatus 100 as shown in FIG. Table 2 shows the electrolytic performance (energy efficiency) of Comparative Example 1 used in the cell.

[実施例1〜実施例4及び比較例1の水電解性能(エネルギー効率)]
図10は、水素極触媒層の合計白金担持量とエネルギー効率との関係を示した図である。表2、図10に示すように、本発明の第一の実施の形態に係る水電解装置と第三の実施の形態に係る水電解装置の水電解セルを用いた実施例1〜実施例4の水素極触媒層の合計白金担持量が、図14に示すような従来の水電解装置100を用いた比較例1の水素極触媒層104の合計白金担持量よりも少ないにも関わらず、本発明の第一の実施の形態に係る水電解装置と第三の実施の形態に係る水電解装置の水電解セルを用いた実施例1〜実施例4の方が図14に示すような従来の水電解装置100を用いた比較例1よりも電解性能(エネルギー効率)が高いか同等であった。
[Water electrolysis performance (energy efficiency) of Examples 1 to 4 and Comparative Example 1]
FIG. 10 is a graph showing the relationship between the total platinum loading of the hydrogen electrode catalyst layer and the energy efficiency. As shown in Table 2 and FIG. 10, Examples 1 to 4 using water electrolysis cells of the water electrolysis apparatus according to the first embodiment of the present invention and the water electrolysis apparatus according to the third embodiment. Although the total amount of platinum supported by the hydrogen electrode catalyst layer of this example is smaller than the total amount of platinum supported by the hydrogen electrode catalyst layer 104 of Comparative Example 1 using the conventional water electrolysis apparatus 100 as shown in FIG. Example 1 to Example 4 using the water electrolysis cell of the water electrolysis apparatus according to the first embodiment of the invention and the water electrolysis apparatus according to the third embodiment are more conventional as shown in FIG. The electrolytic performance (energy efficiency) was higher or equivalent to that of Comparative Example 1 using the water electrolysis apparatus 100.

よって、水素極触媒層にPtブラック粒子とPt担持カーボン触媒とを混合してなるものを用いると共に、酸素極触媒層に高比表面積酸化イリジウム粒子を用いることで、従来より水素極触媒層でのPtブラック粒子の使用量を減少させても、従来と同等かそれ以上の水電解性能を有することが確認できた。   Therefore, by using a mixture of Pt black particles and a Pt-supported carbon catalyst for the hydrogen electrode catalyst layer, and using iridium oxide particles having a high specific surface area for the oxygen electrode catalyst layer, Even when the amount of Pt black particles used was reduced, it was confirmed that the water electrolysis performance was equal to or higher than that of the conventional one.

[実施例5〜実施例8の水電解性能(エネルギー効率)]
本発明の第二の実施の形態と第三の実施の形態に係る水電解装置を用いた実施例5〜実施例8の水電解性能について説明する。
本発明の第二の実施の形態と第三の実施の形態に係る水電解装置の水電解セルを用いた実施例5〜実施例8の水素極触媒層の水素極白金使用量、酸素極触媒層の酸素極白金使用量、水素極触媒層と酸素極触媒層との合計白金担持量を合わせた両極合計白金担持量、給電体の種類、水電解セルの電解性能(エネルギー効率)を上記表2に示す。
[Water electrolysis performance (energy efficiency) of Examples 5 to 8]
The water electrolysis performance of Examples 5 to 8 using the water electrolysis apparatus according to the second embodiment and the third embodiment of the present invention will be described.
Hydrogen electrode platinum usage amount of oxygen electrode catalyst layer, oxygen electrode catalyst of Example 5 to Example 8 using water electrolysis cell of water electrolysis apparatus according to second embodiment and third embodiment of present invention Table above shows the amount of oxygen electrode platinum used in the layer, the total amount of platinum supported by the total amount of platinum supported by the hydrogen electrode catalyst layer and the oxygen electrode catalyst layer, the type of power supply, and the electrolysis performance (energy efficiency) of the water electrolysis cell It is shown in 2.

図11は、水電解装置の両電極合計白金担持量とエネルギー効率との関係を示した図である。表2、図11に示すように、本発明の第二の実施の形態に係る水電解装置と第三の実施の形態に係る水電解装置の水電解セルを用いた実施例5〜実施例8の両極合計白金担持量が、本発明の第一の実施の形態に係る水電解装置と第三の実施の形態に係る水電解装置の水電解セルを用いた実施例1〜実施例4の両極合計白金担持量よりも少ないにも関わらず、水電解セルの電解性能(エネルギー効率)がほぼ同等であった。   FIG. 11 is a diagram showing the relationship between the total platinum carrying amount of both electrodes of the water electrolysis apparatus and the energy efficiency. As shown in Table 2 and FIG. 11, Examples 5 to 8 using water electrolysis cells of the water electrolysis device according to the second embodiment of the present invention and the water electrolysis device according to the third embodiment. The bipolar electrode of Examples 1 to 4 using the water electrolysis cell of the water electrolysis apparatus according to the first embodiment of the present invention and the water electrolysis apparatus according to the third embodiment of the present invention. Despite being less than the total platinum loading, the electrolysis performance (energy efficiency) of the water electrolysis cell was almost the same.

また、図14に示すような従来の水電解装置100の水電解セルを用いた比較例1と比較しても、実施例5〜実施例8の両極合計白金担持量の方が、比較例1の両極合計白金担持量よりも少ないにも関わらず、実施例5〜実施例8の方が図14に示すような従来の水電解装置100を用いた比較例1と電解性能(エネルギー効率)がほぼ同等であった。   Moreover, even if compared with the comparative example 1 using the water electrolysis cell of the conventional water electrolysis apparatus 100 as shown in FIG. Despite being less than the total amount of platinum supported on both electrodes, Examples 5 to 8 have an electrolytic performance (energy efficiency) of Comparative Example 1 using the conventional water electrolysis apparatus 100 as shown in FIG. It was almost the same.

よって、表面にPtメッキ層を有するフォトエッチングチタンメッシュからなる給電体を使用し、水素極触媒層にPt担持カーボン触媒のみを用いると共に、酸素極触媒層に高比表面積IrO2粒子を用いることで、水素極触媒層にPtブラック粒子を添加しなくても従来とほぼ同等の水電解性能を得ることができる。 Therefore, by using a power feeder made of a photoetched titanium mesh having a Pt plating layer on the surface, using only a Pt-supported carbon catalyst for the hydrogen electrode catalyst layer, and using high specific surface area IrO 2 particles for the oxygen electrode catalyst layer. Even if no Pt black particles are added to the hydrogen electrode catalyst layer, water electrolysis performance equivalent to the conventional one can be obtained.

[高比表面積IrO2粒子の比表面積の水電解性能(エネルギー効率)への影響]
異なる比表面積を有する高比表面積IrO2粒子を用いた水電解セルの水電解性能について説明する。
実施例5、6は、比表面積が約60m2/gの高比表面積IrO2粒子を用い、実施例7、8は、比表面積が約112m2/gの高比表面積IrO2粒子を用いたものである。
また、比較例2は比表面積が約1.0m2/gのIrO2粒子を水素極触媒層に用いたものである。
[Effect of specific surface area of high specific surface area IrO 2 particles on water electrolysis performance (energy efficiency)]
The water electrolysis performance of the water electrolysis cell using the high specific surface area IrO 2 particles having different specific surface areas will be described.
Examples 5 and 6, with a high specific surface area IrO 2 particles having a specific surface area of about 60 m 2 / g, Example 7 and 8, a specific surface area using a high specific surface area IrO 2 particles of about 112m 2 / g Is.
In Comparative Example 2, IrO 2 particles having a specific surface area of about 1.0 m 2 / g were used for the hydrogen electrode catalyst layer.

実施例5、6のIrO2粒子の比表面積を上記表2に示す。
また、比表面積が約1.0m2/gのIrO2粒子を水素極触媒層に用いた水電解装置の比較例2の水電解セルの水素極触媒層と給電体との水素極白金使用量、酸素極触媒層と給電体との酸素極白金使用量、IrO2粒子の比表面積、給電体の種類、水電解セルの電解性能(エネルギー効率)を上記表2に示す。
The specific surface areas of the IrO 2 particles of Examples 5 and 6 are shown in Table 2 above.
Also, the amount of platinum used in the hydrogen electrode catalyst layer of the water electrolysis cell of Comparative Example 2 of the water electrolysis apparatus using IrO 2 particles having a specific surface area of about 1.0 m 2 / g as the hydrogen electrode catalyst layer and the power feeder Table 2 shows the amount of platinum used for the oxygen electrode in the oxygen electrode catalyst layer and the power feeder, the specific surface area of IrO 2 particles, the type of the power feeder, and the electrolysis performance (energy efficiency) of the water electrolysis cell.

図12は、酸化イリジウム粒子の比表面積とエネルギー効率との関係を示した図である。表2、図12に示すように、高比表面積IrO2粒子を水素極触媒層に用いた実施例5〜実施例8の方が、比表面積が約1.0m2/gのIrO2粒子からなる水素極触媒層を用いた比較例2に比べ水電解性能を大幅に向上させることができた。 FIG. 12 is a diagram showing the relationship between the specific surface area of iridium oxide particles and energy efficiency. As shown in Table 2 and FIG. 12, Examples 5 to 8 using high specific surface area IrO 2 particles in the hydrogen electrode catalyst layer were more effective than IrO 2 particles having a specific surface area of about 1.0 m 2 / g. Compared to Comparative Example 2 using the hydrogen electrode catalyst layer, the water electrolysis performance could be greatly improved.

よって、酸素極触媒層に高比表面積のIrO2粒子を用い、従来から用いられているIrO2粒子よりもナノレベルに微細化することで、従来よりも水電解性能を大幅に向上させることができる。 Therefore, by using IrO 2 particles with a high specific surface area for the oxygen electrode catalyst layer and making them finer to the nano level than the conventionally used IrO 2 particles, the water electrolysis performance can be greatly improved than before. it can.

[実施例9〜実施例11の水電解性能(エネルギー効率)]
本発明の第四の実施の形態に係る水電解装置を用いた実施例9〜実施例11の水電解性能について説明する。
本発明の第四の実施の形態に係る水電解装置の水電解セルを用いた実施例9〜実施例11の水素極触媒層の合計白金担持量、給電体白金メッキ使用量、酸素極触媒層の合計白金担持量、給電体白金メッキ使用量、両極合計白金担持量、両極合計白金使用量、給電体の種類、水電解セルの電解性能(エネルギー効率)を表2に示す。
両極合計白金使用量は、両極合計白金担持量と両電極の合計白金担持量とを合計したものである。
[Water electrolysis performance (energy efficiency) of Examples 9 to 11]
The water electrolysis performance of Examples 9 to 11 using the water electrolysis apparatus according to the fourth embodiment of the present invention will be described.
Example 9 to Example 11 using the water electrolysis cell of the water electrolysis apparatus according to the fourth embodiment of the present invention, the total amount of platinum supported on the hydrogen electrode catalyst layer, the amount of power supply platinum plating used, the oxygen electrode catalyst layer Table 2 shows the total platinum loading amount, the power supply platinum plating usage amount, the bipolar electrode total platinum loading amount, the bipolar electrode total platinum usage amount, the type of the power feeding body, and the electrolysis performance (energy efficiency) of the water electrolysis cell.
The total amount of platinum used for both electrodes is the sum of the total amount of platinum supported by both electrodes and the total amount of platinum supported by both electrodes.

図13は、水電解装置の両電極合計白金使用量とエネルギー効率との関係を示した図である。表2、図13に示すように、本発明の第四の実施の形態に係る水電解装置の水電解セルを用いた実施例9〜実施例11の両極合計白金使用量の方が、図5に示す第三の実施の形態に係る第三の水電解装置10Eを用いた実施例7、8の両極合計白金使用量よりも大幅に少ないにも関わらず、水電解セルの電解性能(エネルギー効率)がほぼ同等であった。   FIG. 13 is a diagram showing the relationship between the total platinum usage of both electrodes of the water electrolysis apparatus and the energy efficiency. As shown in Table 2 and FIG. 13, the total amount of platinum used in Examples 9 to 11 using the water electrolysis cell of the water electrolysis apparatus according to the fourth embodiment of the present invention is the same as in FIG. 5. The electrolysis performance (energy efficiency) of the water electrolysis cell was significantly smaller than the total amount of platinum used in Examples 7 and 8 using the third water electrolysis apparatus 10E according to the third embodiment shown in FIG. ) Was almost equivalent.

また、図14に示すような従来の水電解装置100の水電解セルを用いた比較例1と比較しても、実施例9〜実施例11の両極合計白金使用量の方が、図14に示すような従来の水電解装置100を用いた比較例1、2の両極合計白金使用量よりも大幅に少ないにも関わらず、水電解セルの電解性能(エネルギー効率)がほぼ同様かそれ以上であった。   Moreover, even if compared with the comparative example 1 using the water electrolysis cell of the conventional water electrolysis apparatus 100 as shown in FIG. 14, the direction of the total amount of platinum used in Examples 9 to 11 is greater in FIG. The electrolysis performance (energy efficiency) of the water electrolysis cell is substantially the same or higher in spite of being significantly smaller than the total amount of platinum used in Comparative Examples 1 and 2 using the conventional water electrolysis apparatus 100 as shown. there were.

よって、表面にPt蒸着層を有するフォトエッチングチタンメッシュからなる給電体を使用し、水素極触媒層にPt担持カーボン触媒のみを用いると共に、酸素極触媒層に高比表面積IrO2粒子を用いることで、水電解セルの単位面積当たりのPt使用量を大幅に低減することができると共に、触媒層にPtブラック粒子を添加しなくても従来とほぼ同等の水電解性能を得ることができる。 Therefore, by using a power feeder made of a photoetching titanium mesh having a Pt vapor deposition layer on the surface, using only a Pt-supported carbon catalyst for the hydrogen electrode catalyst layer, and using high specific surface area IrO 2 particles for the oxygen electrode catalyst layer. In addition, the amount of Pt used per unit area of the water electrolysis cell can be greatly reduced, and water electrolysis performance substantially equivalent to that of the prior art can be obtained without adding Pt black particles to the catalyst layer.

以上のように、本発明に係る水電解装置は、水電解セルでのPt使用量を減少させつつ従来と同様の水電解反応が可能であり、コスト低減を図りつつ水電解性能を向上させることができるため、水を電気分解して水素を発生させる水電解装置に用いるのに適している。   As described above, the water electrolysis apparatus according to the present invention can perform the same water electrolysis reaction as before while reducing the amount of Pt used in the water electrolysis cell, and improve the water electrolysis performance while reducing the cost. Therefore, it is suitable for use in a water electrolysis apparatus that electrolyzes water to generate hydrogen.

本発明による第一の実施の形態に係る水電解装置の構成を簡略に示す概略図である。It is the schematic which shows simply the structure of the water electrolysis apparatus which concerns on 1st embodiment by this invention. 本発明による第二の実施の形態に係る水電解装置の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the structure of the water electrolysis apparatus which concerns on 2nd embodiment by this invention. 本発明による第二の実施の形態に係る水電解装置の他の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the other structure of the water electrolysis apparatus which concerns on 2nd embodiment by this invention. 本発明による第二の実施の形態に係る水電解装置の他の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the other structure of the water electrolysis apparatus which concerns on 2nd embodiment by this invention. 本発明による第三の実施の形態に係る水電解装置の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the structure of the water electrolysis apparatus which concerns on 3rd embodiment by this invention. 本発明による第三の実施の形態に係る水電解装置の他の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the other structure of the water electrolysis apparatus which concerns on 3rd embodiment by this invention. 本発明による第三の実施の形態に係る水電解装置の他の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the other structure of the water electrolysis apparatus which concerns on 3rd embodiment by this invention. 本発明による第四の実施の形態に係る水電解装置の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the structure of the water electrolysis apparatus which concerns on 4th embodiment by this invention. 本発明による第四の実施の形態に係る水電解装置の他の構成を簡略に示す概念図である。It is a conceptual diagram which shows simply the other structure of the water electrolysis apparatus which concerns on 4th embodiment by this invention. 水素極触媒層の合計白金担持量とエネルギー効率との関係を示した図である。It is the figure which showed the relationship between the total amount of platinum carrying | support of a hydrogen-electrode catalyst layer, and energy efficiency. 水電解装置の両電極合計白金担持量とエネルギー効率との関係を示した図である。It is the figure which showed the relationship between both electrode total platinum carrying | support amount of a water electrolysis apparatus, and energy efficiency. 酸化イリジウム粒子の比表面積とエネルギー効率との関係を示した図である。It is the figure which showed the relationship between the specific surface area of iridium oxide particle | grains, and energy efficiency. 水電解装置の両電極合計白金使用量とエネルギー効率との関係を示した図である。It is the figure which showed the relationship between both electrode total platinum usage-amount of a water electrolysis apparatus, and energy efficiency. 従来の水電解装置の一例を示す図である。It is a figure which shows an example of the conventional water electrolysis apparatus.

符号の説明Explanation of symbols

10A 第一の水電解装置
10B〜10D 第二の水電解装置
10E〜10G 第三の水電解装置
10H、10I 第四の水電解装置
11 高分子固体電解質膜
12A、12B 水素極触媒層
13A〜13C 酸素極触媒層
14A〜14C 給電体
15A〜15I 水電解セル
16 セパレータ板
17 Pt担持カーボン触媒
18 ゴムパッキン
19 Ptブラック粒子
20 酸化イリジウム(IrO2)粒子
21 高分子電解質溶液
22 撥水化剤
23 Ptメッキ層
24 フォトエッチングチタンメッシュ
25 高比表面積酸化イリジウム(IrO2)粒子
26 Pt蒸着層
10A First water electrolysis device 10B to 10D Second water electrolysis device 10E to 10G Third water electrolysis device 10H, 10I Fourth water electrolysis device 11 Polymer solid electrolyte membrane 12A, 12B Hydrogen electrode catalyst layer 13A to 13C Oxygen electrode catalyst layer 14A-14C Power supply 15A-15I Water electrolysis cell 16 Separator plate 17 Pt-supported carbon catalyst 18 Rubber packing 19 Pt black particles 20 Iridium oxide (IrO 2 ) particles 21 Polymer electrolyte solution 22 Water repellent 23 Pt Plating layer 24 Photoetching titanium mesh 25 High specific surface area iridium oxide (IrO 2 ) particles 26 Pt vapor deposition layer

Claims (6)

高分子固体電解質膜の両面に水素極触媒層と酸素極触媒層とを有すると共に、前記水素極触媒層及び前記酸素極触媒層に給電させる給電体を前記水素極触媒層及び前記酸素極触媒層の外側に各々配してなる水電解セルを備えた水電解装置において、
前記水素極触媒層が、白金粒子を担持した白金担持カーボン触媒を含むものであることを特徴とする水電解装置。
The hydrogen electrode catalyst layer and the oxygen electrode catalyst layer are provided with a hydrogen electrode catalyst layer and an oxygen electrode catalyst layer on both sides of the polymer solid electrolyte membrane, and a power feeding body for supplying power to the hydrogen electrode catalyst layer and the oxygen electrode catalyst layer. In a water electrolysis apparatus provided with water electrolysis cells each arranged on the outside of
A water electrolysis apparatus, wherein the hydrogen electrode catalyst layer includes a platinum-supported carbon catalyst supporting platinum particles.
請求項1において、
前記水素極触媒層が、前記白金担持カーボン触媒と白金ブラック粒子とを混合したものであることを特徴とする水電解装置。
In claim 1,
The water electrolysis apparatus, wherein the hydrogen electrode catalyst layer is a mixture of the platinum-supported carbon catalyst and platinum black particles.
請求項1又は2において、
前記酸素極触媒層が、白金ブラック粒子と酸化イリジウム粒子とを混合したもの、又は前記酸化イリジウム粒子のみからなるものであることを特徴とする水電解装置。
In claim 1 or 2,
The water electrolysis apparatus, wherein the oxygen electrode catalyst layer is composed of a mixture of platinum black particles and iridium oxide particles, or composed of only the iridium oxide particles.
請求項1乃至3の何れか一つにおいて、
前記給電体が、表面に白金めっきしたチタンメッシュ、白金メッキ層を有するフォトエッチングチタンメッシュ、白金蒸着した白金蒸着層を有するフォトエッチングチタンメッシュの何れか一つであることを特徴とする水電解装置。
In any one of Claims 1 thru | or 3,
The water feeder is any one of a titanium mesh plated with platinum, a photo-etched titanium mesh having a platinum-plated layer, and a photo-etched titanium mesh having a platinum-deposited platinum layer on the surface. .
請求項3又は4において、
前記酸化イリジウム粒子が、比表面積が50m2/g以上の高比表面積酸化イリジウム粒子であることを特徴とする水電解装置。
In claim 3 or 4,
A water electrolysis apparatus, wherein the iridium oxide particles are high specific surface area iridium oxide particles having a specific surface area of 50 m 2 / g or more.
請求項1乃至5のいずれか一つにおいて、
前記水電解セルを複数のセパレータ板で挟みつつ複数積層してセルスタックを構成してなることを特徴とする水電解装置。
In any one of Claims 1 thru | or 5,
A water electrolysis apparatus comprising a plurality of stacked water electrolysis cells sandwiched between a plurality of separator plates to constitute a cell stack.
JP2008050308A 2008-02-29 2008-02-29 Water electrolysis equipment Active JP5072652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050308A JP5072652B2 (en) 2008-02-29 2008-02-29 Water electrolysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050308A JP5072652B2 (en) 2008-02-29 2008-02-29 Water electrolysis equipment

Publications (2)

Publication Number Publication Date
JP2009209379A true JP2009209379A (en) 2009-09-17
JP5072652B2 JP5072652B2 (en) 2012-11-14

Family

ID=41182822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050308A Active JP5072652B2 (en) 2008-02-29 2008-02-29 Water electrolysis equipment

Country Status (1)

Country Link
JP (1) JP5072652B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001980A (en) * 2011-06-20 2013-01-07 Mitsubishi Electric Corp Solid polymer electrolyte membrane-catalyst metal composite electrode and method for manufacturing the same
JP2016160462A (en) * 2015-02-27 2016-09-05 株式会社Ihi Water electrolysis apparatus
US9777382B2 (en) 2015-06-03 2017-10-03 Kabushiki Kaisha Toshiba Electrochemical cell, oxygen reduction device using the cell and refrigerator using the oxygen reduction device
JP2018111874A (en) * 2017-01-13 2018-07-19 カイゲンファーマ株式会社 Electrode for electrolysis
JP2019507249A (en) * 2016-02-23 2019-03-14 エイチ2ウィン エス.エー. Hydrogen gas generator
CN115084605A (en) * 2022-06-14 2022-09-20 氢辉能源(深圳)有限公司 Catalyst slurry for water electrolyzer and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720279B (en) * 2014-12-01 2018-09-21 中国科学院大连化学物理研究所 Application of the hydrophilic water transmission board in SPE water electrolysis

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734276A (en) * 1993-07-22 1995-02-03 Furukawa Co Ltd Water electrolyzer
JPH10102273A (en) * 1996-09-27 1998-04-21 Japan Energy Corp Water electrolytic cell
JPH10270056A (en) * 1997-03-27 1998-10-09 Mitsubishi Electric Corp Anode electrode catalyst for solid polymer fuel cell
JPH119941A (en) * 1997-06-23 1999-01-19 Mitsubishi Electric Corp Humidity adjusting method
JPH11302887A (en) * 1998-04-17 1999-11-02 Optec Dd Melco Laboratory:Kk Ozone water production device
JP2001303285A (en) * 2000-04-28 2001-10-31 Shinko Pantec Co Ltd Solid electrolytic membrane and method for manufacturing solid electrolytic membrane
JP2004084028A (en) * 2002-08-28 2004-03-18 Japan Organo Co Ltd Bipolar electrolytic cell
JP2004149848A (en) * 2002-10-30 2004-05-27 Japan Storage Battery Co Ltd Catalyst for electrolysis type ozone-generating anode, and electrolysis type ozone-generating device
JP2006291329A (en) * 2005-04-14 2006-10-26 Daido Metal Co Ltd Solid polymer membrane type water electrolyzer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734276A (en) * 1993-07-22 1995-02-03 Furukawa Co Ltd Water electrolyzer
JPH10102273A (en) * 1996-09-27 1998-04-21 Japan Energy Corp Water electrolytic cell
JPH10270056A (en) * 1997-03-27 1998-10-09 Mitsubishi Electric Corp Anode electrode catalyst for solid polymer fuel cell
JPH119941A (en) * 1997-06-23 1999-01-19 Mitsubishi Electric Corp Humidity adjusting method
JPH11302887A (en) * 1998-04-17 1999-11-02 Optec Dd Melco Laboratory:Kk Ozone water production device
JP2001303285A (en) * 2000-04-28 2001-10-31 Shinko Pantec Co Ltd Solid electrolytic membrane and method for manufacturing solid electrolytic membrane
JP2004084028A (en) * 2002-08-28 2004-03-18 Japan Organo Co Ltd Bipolar electrolytic cell
JP2004149848A (en) * 2002-10-30 2004-05-27 Japan Storage Battery Co Ltd Catalyst for electrolysis type ozone-generating anode, and electrolysis type ozone-generating device
JP2006291329A (en) * 2005-04-14 2006-10-26 Daido Metal Co Ltd Solid polymer membrane type water electrolyzer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001980A (en) * 2011-06-20 2013-01-07 Mitsubishi Electric Corp Solid polymer electrolyte membrane-catalyst metal composite electrode and method for manufacturing the same
JP2016160462A (en) * 2015-02-27 2016-09-05 株式会社Ihi Water electrolysis apparatus
US9777382B2 (en) 2015-06-03 2017-10-03 Kabushiki Kaisha Toshiba Electrochemical cell, oxygen reduction device using the cell and refrigerator using the oxygen reduction device
JP2019507249A (en) * 2016-02-23 2019-03-14 エイチ2ウィン エス.エー. Hydrogen gas generator
JP2018111874A (en) * 2017-01-13 2018-07-19 カイゲンファーマ株式会社 Electrode for electrolysis
CN115084605A (en) * 2022-06-14 2022-09-20 氢辉能源(深圳)有限公司 Catalyst slurry for water electrolyzer and preparation method thereof

Also Published As

Publication number Publication date
JP5072652B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP6096129B2 (en) Electrochemical reduction apparatus and method for producing hydrogenated aromatic hydrocarbon compound
US20060099482A1 (en) Fuel cell electrode
JP5072652B2 (en) Water electrolysis equipment
JP2016514346A (en) Barrier layer for preventing corrosion in electrochemical devices
WO2015146944A1 (en) Device for manufacturing organic hydride
JP6086873B2 (en) Electrochemical reduction apparatus and method for producing hydrogenated aromatic hydrocarbon compound
JP6454642B2 (en) Electrochemical reduction device
WO2018037774A1 (en) Cathode, electrolysis cell for producing organic hydride, and organic hydride production method
Lim et al. Polymer electrolyte membrane unitized regenerative fuel cells: Operational considerations for achieving high round trip efficiency at low catalyst loading
Zappia et al. High-current density alkaline electrolyzers: The role of Nafion binder content in the catalyst coatings and techno-economic analysis
Baumann et al. Membrane Electrode Assemblies for Water Electrolysis using WO3‐Supported IrxRu1‐xO2 Catalysts
JP6998797B2 (en) Organic hydride manufacturing equipment, organic hydride manufacturing method and energy transportation method
JP6113715B2 (en) Electrochemical reduction apparatus and method for producing hydrogenated product of aromatic hydrocarbon compound or nitrogen-containing heterocyclic aromatic compound
Yasutake et al. Ru-core Ir-shell electrocatalysts deposited on a surface-modified Ti-based porous transport layer for polymer electrolyte membrane water electrolysis
WO2018216356A1 (en) Organic hydride production device
Sambandam et al. Platinum-carbon black-titanium dioxide nanocomposite electrocatalysts for fuel cell applications
JP2020094282A (en) Electrode for water electrolysis and production method thereof
JP6373851B2 (en) Electrochemical reduction device
JP5045911B2 (en) Manufacturing method of membrane electrode assembly
JP5484120B2 (en) Gas diffusion electrode, gas diffusion electrode manufacturing method, fuel cell and salt electrolysis cell
WO2021084935A1 (en) Catalyst-supporting porous substrate for electrolysis, electrode for electrolysis, gas diffusion layer, stack cell for electrolysis, and cell module for electrolysis
KR20240035414A (en) oxygen generation reaction catalyst
JP2023128449A (en) Cathode, membrane electrode assembly and organic hydride production device
Qin et al. Integrated ultra-low PtIr catalyst coated membrane toward efficient proton exchange membrane water electrolyzers
JP6373850B2 (en) Electrochemical reduction apparatus and method for producing hydrogenated aromatic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R151 Written notification of patent or utility model registration

Ref document number: 5072652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250