JPH0734153A - Molybdenum sintered compact material and molybdenum material - Google Patents

Molybdenum sintered compact material and molybdenum material

Info

Publication number
JPH0734153A
JPH0734153A JP17869193A JP17869193A JPH0734153A JP H0734153 A JPH0734153 A JP H0734153A JP 17869193 A JP17869193 A JP 17869193A JP 17869193 A JP17869193 A JP 17869193A JP H0734153 A JPH0734153 A JP H0734153A
Authority
JP
Japan
Prior art keywords
molybdenum
sintered body
body material
sintered compact
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17869193A
Other languages
Japanese (ja)
Inventor
Mitsuru Tsuchiya
満 土屋
Katsutsugu Takebe
克嗣 武部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP17869193A priority Critical patent/JPH0734153A/en
Publication of JPH0734153A publication Critical patent/JPH0734153A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a molybdenum sintered compact material, which is cold- workable and from which a molybdenum material having high dimensional precision can be obtained and further the product having improved reliability and strength can be manufactured at a comparatively low cast and in good yield, can be applied for the electronic component field where heretofore any product is not applied, and also to provide a molybdenum material. CONSTITUTION:The molybdenum sintered compact material consists of 0.003 to 0.7wt.% carbon and the balance substantially molybdenum and comprises Mo particles having <= 25mum average particle size and also has 9.55 to 10.15 specific gravity, at least 900MPa strength and toughness of at least 0.8mm deflection. The molybdenum material, which is obtained by working this molybdenum sintered compact material into final shape with the cold-working, has at least 9.6 specific gravity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,電子部品等に用いられ
る高融点金属材料であるモリブデン材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molybdenum material which is a refractory metal material used for electronic parts and the like.

【0002】[0002]

【従来の技術】一般に,金属モリブデン(Mo)又はモ
リブデン(Mo)を主体とする合金(以下,双方ともに
単にMo材と呼ぶ)からなるモリブデン部材の製造法と
しては,以下に示すような2つの方法が知られている。
2. Description of the Related Art Generally, there are two methods for producing a molybdenum member made of metal molybdenum (Mo) or an alloy containing molybdenum (Mo) as a main component (hereinafter, both are simply referred to as Mo material). The method is known.

【0003】その第1の方法としては,通常の粉末冶金
法で製造されたMo焼結体素材を熱間及び冷間で圧延あ
るいはスエージ加工及び線引き等を行い,板や棒に加工
し,切断又は熱間や温間で打ち抜きや絞り等の加工を施
して,所望の形状を得る方法である。
As a first method thereof, a Mo sintered body material produced by an ordinary powder metallurgy method is hot or cold rolled or swaged and drawn to be processed into a plate or a bar and then cut. Alternatively, it is a method of obtaining a desired shape by performing punching, drawing or the like hot or warm.

【0004】その第2の方法としては,製品形状になる
ように作られた金型に粉末を充填して圧縮成形を行い,
焼結して所望の形状のMo材を得る方法である。
The second method is to fill a die made into a product shape with powder and perform compression molding.
This is a method of sintering to obtain a Mo material having a desired shape.

【0005】[0005]

【発明が解決しようとする課題】ところで,前述の第1
の方法は,高比重の製品が得られるものの製造工程が比
較的複雑なため,コストが高くなるという欠点がある。
The above-mentioned first problem
Although the method of (1) can obtain a product with a high specific gravity, it has a drawback that the manufacturing process is relatively complicated, resulting in high cost.

【0006】一方,第2の方法は,焼結の際に発生する
歪等のため,寸法精度がそれほど良くなく,所望の精度
を得ることが難しい。そのため,所望する寸法精度を得
るためには,このMo焼結体素材に更に加工を施す必要
がある。
On the other hand, in the second method, the dimensional accuracy is not so good due to the strain generated during sintering, and it is difficult to obtain the desired accuracy. Therefore, in order to obtain the desired dimensional accuracy, it is necessary to further process this Mo sintered body material.

【0007】従来,Mo焼結体素材の加工方法として
は,加工時の割れや,クラックを防ぐために,焼結体素
材や,加工する治具を加熱する方法が提案されている
(特公平4−51927号公報参照)。
Conventionally, as a method for processing a Mo sintered body material, there has been proposed a method of heating a sintered body material and a jig to be processed in order to prevent cracks during processing and cracks (Japanese Patent Publication No. 4). -51927 gazette).

【0008】しかしながら,Mo焼結体素材の加熱温度
は,素材の大小により,通常200℃〜1000℃に加
熱されるが,材料を加熱する事は,大変であり,また,
加熱温度が500〜600℃になると,表面に酸化物が
発生し,表面の状態が悪くなる。
However, the heating temperature of the Mo sintered body material is usually 200 to 1000 ° C. depending on the size of the material, but it is difficult to heat the material, and
When the heating temperature is 500 to 600 ° C., oxides are generated on the surface and the surface condition deteriorates.

【0009】また,Mo焼結体に靱性を持たせることに
ついては,材料表面に炭素を蒸着後,均一焼鈍させるこ
とにより,向上させる方法が提案されているが(特公昭
56−8100号公報参照),この方法であると,大き
な焼結体については,内部までその影響が及ばない。
Regarding the toughness of the Mo sintered body, there has been proposed a method for improving the toughness by vapor-depositing carbon on the surface of the material and then uniformly annealing it (see Japanese Patent Publication No. 56-8100). ), This method does not affect the inside of a large sintered body.

【0010】そこで,本発明の技術的課題は,Mo焼結
体素材を加熱することにより,靱性を持たせて加工する
のではなく,Mo焼結体自体が強靱性を有するものと
し,冷間加工で最終形状まで,加工できるようにしたM
o焼結体素材及びMo材を提供することにある。
Therefore, the technical problem of the present invention is not to process the Mo sintered body material by heating it so that it has toughness, but the Mo sintered body itself has toughness. M that can be processed to the final shape
o To provide a sintered body material and a Mo material.

【0011】[0011]

【課題を解決するための手段】本発明者らは,大きな焼
結体でも,充分に強靱性を有するように,焼結体の密
度,平均粒子径,含有炭素量をコントロールすることに
より,強靱性を有するMo焼結体素材が得られることを
見い出して,本発明を完成したものである。
[Means for Solving the Problems] The inventors of the present invention have toughened by controlling the density, average particle size, and carbon content of the sintered body so that even a large sintered body has sufficient toughness. The present invention has been completed by discovering that a Mo sintered body material having properties can be obtained.

【0012】本発明によれば,0.003wt%〜0.
7wt%の炭素と残部が実質的にモリブデンからなるこ
とを特徴とするモリブデン焼結体素材が得られる。
According to the present invention, 0.003 wt% to 0.
A molybdenum sintered body material is obtained which is characterized in that 7 wt% of carbon and the balance substantially consist of molybdenum.

【0013】本発明によれば,前記モリブデン焼結体素
材において,平均粒子径が25μm以下のMo粒子によ
って形成され,9.55〜10.15の比重を有し,抗
折力が少なくとも900MPa,及び撓み量が少なくと
も0.8mmの強靭性を有することを特徴とするモリブ
デン焼結体素材が得られる。
According to the present invention, the molybdenum sintered body material is formed of Mo particles having an average particle size of 25 μm or less, has a specific gravity of 9.55 to 10.15, and a transverse rupture strength of at least 900 MPa, And a molybdenum sintered body material having a toughness with a bending amount of at least 0.8 mm.

【0014】本発明によれば,前記モリブデン焼結体素
材を冷間加工によって最終形状まで加工したモリブデン
加工材からなることを特徴とするモリブデン材が得られ
る。
According to the present invention, there is obtained a molybdenum material characterized by comprising a molybdenum processed material obtained by processing the molybdenum sintered body material to a final shape by cold working.

【0015】本発明によれば,前記モリブデン材におい
て,少なくとも9.6の比重を有することを特徴とす
る。
According to the present invention, the molybdenum material has a specific gravity of at least 9.6.

【0016】ここで,本発明において,冷間加工とは材
料や加工治具を加熱しないで加工することで,熱間加工
や温間加工とは材料や加工治具を加熱して加工すること
を意味し,熱間と温間の違いは,加熱温度の違いで,そ
の境界部は,200℃とした。
Here, in the present invention, cold working means working without heating the material or working jig, and hot working or warm working means working by heating the material or working jig. The difference between hot and warm is the difference in heating temperature, and the boundary was 200 ° C.

【0017】[0017]

【実施例】以下,本発明に実施例について,図面を参照
して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】(実施例1)Mo粉に炭素源として,Mo
2 Cを炭素が1.0wt%以下となるように添加したも
のをテスト粉として,そのテスト粉を294MPaで所
定形状にプレスし,1700℃で4時間,水素中で加熱
し,外径11.9mmで厚み3.0mmの円板状のMo
焼結体素材を得た。このMo焼結体素材を内径12mm
の金型に入れ,加熱なしに,サイジングテストした。こ
の時のMo焼結体素材の特性と,サイジングテストにお
けるクラック発生率を下表1に示す。
(Example 1) Mo powder was used as a carbon source.
The test powder was prepared by adding 2 C so that the carbon content was 1.0 wt% or less. The test powder was pressed into a predetermined shape at 294 MPa and heated in hydrogen at 1700 ° C. for 4 hours to give an outer diameter of 11. Disc-shaped Mo with a thickness of 9 mm and a thickness of 3.0 mm
A sintered body material was obtained. This Mo sintered body material has an inner diameter of 12 mm
The sample was put into a mold and subjected to a sizing test without heating. The properties of the Mo sintered body material at this time and the crack occurrence rate in the sizing test are shown in Table 1 below.

【0019】[0019]

【表1】 [Table 1]

【0020】炭素含有量が0.001wt%未満(N
o.1)もしくは0.8wt%以上(No.5)の比較
例に係るものは,サイジングテストにおいて,クラック
発生率が,それぞれ1及び0.8と比較的高かったが,
炭素含有量が0.003〜0.6wt%(No.2〜N
o.4)の本発明の実施例は,クラック発生率が0〜
0.4と小さかった。
Carbon content less than 0.001 wt% (N
o. 1) or 0.8 wt% or more (No. 5) of the comparative example had a relatively high crack occurrence rate of 1 and 0.8 in the sizing test,
Carbon content is 0.003 to 0.6 wt% (No. 2 to N
o. In the embodiment of the present invention 4), the crack occurrence rate is 0 to
It was as small as 0.4.

【0021】(実施例2)実施例1で用いた粉を用い,
実施例1と同様の条件で抗折(曲げ)試験用のMo焼結
体素材を作り,超硬工具協会規格(CIS 026−1
983)に基づき,サンプル厚み3.10〜3.20m
m,幅7.10〜7.20mmに研磨し,曲げの強さの
測定を行った。ここで,曲げ試験は,図1(a)及び
(b)で示す方法によって,曲げの強さを測定した。即
ち,図1(a)で示すように,支持台10中において,
試験片1を支点2,3で2点支持するとともに,荷重P
を支点4及び治具5を介して加圧する。また,図1
(b)で示すように,荷重Pを印加した試験片は折れ曲
がり,その支点4の位置から撓み量Sが計算される。
尚,測定時に図1(b)のように,試験片1が治具5に
接触したものについては,撓み量は接触した時点での撓
み量を,又接触する直前の荷重を破断値として計算し
た。この時のMo焼結体素材の特性と曲げ試験結果を下
表2に示す。
(Example 2) Using the powder used in Example 1,
Under the same conditions as in Example 1, a Mo sintered body material for bending (bending) test was made, and the cemented carbide tool standard (CIS 026-1) was used.
983), sample thickness 3.10 to 3.20 m
m, width 7.10 to 7.20 mm, and the bending strength was measured. Here, in the bending test, the bending strength was measured by the method shown in FIGS. 1 (a) and 1 (b). That is, as shown in FIG. 1A, in the support base 10,
The test piece 1 is supported at two points with fulcrums 2 and 3, and the load P
Is pressed through the fulcrum 4 and the jig 5. In addition,
As shown in (b), the test piece to which the load P is applied is bent, and the bending amount S is calculated from the position of the fulcrum 4.
In addition, as shown in FIG. 1 (b) at the time of measurement, when the test piece 1 is in contact with the jig 5, the flexure amount is calculated as the flexure amount at the time of contact, or the load immediately before contact is taken as the fracture value. did. The properties of the Mo sintered body material and the bending test results at this time are shown in Table 2 below.

【0022】[0022]

【表2】 [Table 2]

【0023】上記表2で示すように,比較例に係るMo
焼結体素材試料(No.1及びNo.5)では,本発明
の実施例に係るMo焼結体素材試料(No.2〜No.
4)よりも,撓み量Sが小さい。
As shown in Table 2 above, the Mo according to the comparative example
In the sintered body material samples (No. 1 and No. 5), the Mo sintered body material samples (No. 2 to No.
The deflection amount S is smaller than that in 4).

【0024】(実施例3)実施例1で用いたNo.3の
粉を用い,実施例1と同様の条件で,外径9.8mm,
厚さ4.9mmの円柱状のMo焼結体素材11aを作っ
た。図2(A)で示すように,このMo焼結体を内径1
2mmの金型12に入れ,加熱なしで,パンチ13,1
4で加圧し,図2(B)で示すように外形12mm,厚
さ3.17mmの円板11bとした。その後,図2
(C)で示すように,金型のパンチ14を中央部に0.
5mmの段差のあるパンチ15に変え,図2(D)で示
すように,再度加圧し,コイニングテストした。
(Example 3) No. 1 used in Example 1 was used. 3 powder, under the same conditions as in Example 1, outer diameter 9.8 mm,
A columnar Mo sintered body material 11a having a thickness of 4.9 mm was prepared. As shown in FIG. 2 (A), this Mo sintered body has an inner diameter of 1
Put in 2mm die 12 and punch without punching 1,1
Then, pressure was applied at 4 to form a disk 11b having an outer diameter of 12 mm and a thickness of 3.17 mm as shown in FIG. 2 (B). Then, Figure 2
As shown in (C), the punch 14 of the die is set to 0.
A punch 15 having a step of 5 mm was used, and as shown in FIG. 2D, pressure was applied again, and a coining test was performed.

【0025】このテストにおいて,Mo材11cにクラ
ックや割れの発生はなかった。また,そのときの比重を
下表3に示す。
In this test, the Mo material 11c was not cracked or broken. The specific gravity at that time is shown in Table 3 below.

【0026】[0026]

【表3】 [Table 3]

【0027】上記表3で示すように,段差をつけない加
圧の場合においては,Mo材の密度は上昇した。一方,
段差をつけた加圧の場合においては,密度に変化は生じ
なかった。
As shown in Table 3 above, the density of the Mo material increased when pressure was applied without steps. on the other hand,
The density did not change when pressure was applied with steps.

【0028】(実施例4)実施例1で用いたNo.3の
粉を用い,実施例1と同様の条件で,外径69mm,厚
さ3.5mmの大型円板を作り,このMo焼結体素材を
内径70mmの金型に入れ,加熱なしで型鍛造した。そ
の前後の円板の特性を下表4に示す。このときにMo材
にクラックや割れの発生はなかった。
(Example 4) No. used in Example 1 Using the powder of No. 3, under the same conditions as in Example 1, a large disk having an outer diameter of 69 mm and a thickness of 3.5 mm was made, and this Mo sintered body material was put into a die having an inner diameter of 70 mm and the die was heated. Forged The characteristics of the disk before and after that are shown in Table 4 below. At this time, the Mo material was not cracked or broken.

【0029】[0029]

【表4】 [Table 4]

【0030】上記表4で示すように,密度が上昇し,反
りが矯正され,表面の粗さも改善されている。
As shown in Table 4, the density is increased, the warp is corrected, and the surface roughness is improved.

【0031】以上述べたように,本発明の実施例に係る
Mo焼結体素材を用いることで,冷間加工だけで最終形
状まで加工が行えた。この時の加工では,厚み減少率で
35%もの加工ができ,Mo焼結体素材より密度も高く
なり,空隙も減少し,強度も高くなった。
As described above, by using the Mo sintered body material according to the embodiment of the present invention, the final shape can be processed only by cold working. In the processing at this time, the thickness reduction rate was as high as 35%, the density was higher than the Mo sintered body material, the voids were reduced, and the strength was also increased.

【0032】[0032]

【発明の効果】以上,説明したように,本発明によれ
ば,モリブデン焼結体素材に高靱性を持たせることによ
り,サイジングやコイニング等の加工時に加熱しなくて
も,クラックや割れの発生を防止でき,冷間で加工でき
るモリブデン焼結体素材を提供することができる。
As described above, according to the present invention, by providing the molybdenum sintered body material with high toughness, cracks and cracks are generated without heating during processing such as sizing and coining. Therefore, it is possible to provide a molybdenum sintered body material that can be prevented from being processed and can be cold worked.

【0033】また,本発明によれば,前記モリブデン焼
結体素材より寸法精度の高いモリブデン材が得られ,信
頼性,及び強度の向上と,比較的安価にかつ歩留まり良
く製品が得られる。そのため,焼結品では,今までに適
用されなかった電子部品の構成部分にも適用が可能にな
った。
Further, according to the present invention, a molybdenum material having a higher dimensional accuracy than the molybdenum sintered body material can be obtained, and reliability and strength can be improved, and a product can be obtained at a relatively low cost and a high yield. As a result, it has become possible to apply it to the components of electronic components that were not previously applied to sintered products.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)及び(b)は曲げ試験方法を示す図であ
る。
FIG. 1A and FIG. 1B are views showing a bending test method.

【図2】(A),(B),(C),及び(D)は,本発
明の実施例に係るMo焼結体素材の加工方法を順に示す
図である。
2 (A), (B), (C), and (D) are diagrams sequentially showing a method for processing a Mo sintered body material according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 試験片 2,3,4 支点 5 治具 10 支持台 11a 焼結体素材 11b,11c 加工後のモリブデン材 12 金型 13,14,15 パンチ 1 Test piece 2, 3, 4 Support point 5 Jig 10 Support stand 11a Sintered body material 11b, 11c Molybdenum material after processing 12 Mold 13, 14, 15 Punch

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 0.003wt%〜0.7wt%の炭素
と残部が実質的にモリブデンからなり,前記炭素は内部
に分布していることを特徴とするモリブデン焼結体素
材。
1. A material for a molybdenum sintered body, wherein 0.003 wt% to 0.7 wt% of carbon and the balance substantially consist of molybdenum, and the carbon is distributed inside.
【請求項2】 請求項1記載のモリブデン焼結体素材に
おいて,平均粒子径が25μm以下のMo粒子によって
形成され,9.55〜10.15の比重を有し,抗折力
が少なくとも900MPa,及び撓み量が少なくとも
0.8mmの強靭性を有することを特徴とするモリブデ
ン焼結体素材。
2. The molybdenum sintered body material according to claim 1, wherein the molybdenum sintered body material is formed of Mo particles having an average particle diameter of 25 μm or less, has a specific gravity of 9.55 to 10.15, and a transverse rupture strength of at least 900 MPa, And a material for a molybdenum sintered body, which has a toughness of which a bending amount is at least 0.8 mm.
【請求項3】 請求項1のモリブデン焼結体素材を冷間
加工によって最終形状まで加工したモリブデン加工材か
らなることを特徴とするモリブデン材。
3. A molybdenum material, which comprises a molybdenum processed material obtained by processing the molybdenum sintered body material according to claim 1 to a final shape by cold working.
【請求項4】 請求項3記載のモリブデン材において,
少なくとも9.6の比重を有することを特徴とするモリ
ブデン材。
4. The molybdenum material according to claim 3,
A molybdenum material having a specific gravity of at least 9.6.
JP17869193A 1993-07-20 1993-07-20 Molybdenum sintered compact material and molybdenum material Pending JPH0734153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17869193A JPH0734153A (en) 1993-07-20 1993-07-20 Molybdenum sintered compact material and molybdenum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17869193A JPH0734153A (en) 1993-07-20 1993-07-20 Molybdenum sintered compact material and molybdenum material

Publications (1)

Publication Number Publication Date
JPH0734153A true JPH0734153A (en) 1995-02-03

Family

ID=16052868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17869193A Pending JPH0734153A (en) 1993-07-20 1993-07-20 Molybdenum sintered compact material and molybdenum material

Country Status (1)

Country Link
JP (1) JPH0734153A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151534A (en) * 1985-12-26 1987-07-06 Toshiba Corp Molybdenum sintered compact and its production
JPS6342302A (en) * 1986-08-08 1988-02-23 Tokyo Tungsten Co Ltd Molybdenum sintered body and its production
JPH01156449A (en) * 1987-12-11 1989-06-20 Tokyo Tungsten Co Ltd Molybdenum sintered compact and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151534A (en) * 1985-12-26 1987-07-06 Toshiba Corp Molybdenum sintered compact and its production
JPS6342302A (en) * 1986-08-08 1988-02-23 Tokyo Tungsten Co Ltd Molybdenum sintered body and its production
JPH01156449A (en) * 1987-12-11 1989-06-20 Tokyo Tungsten Co Ltd Molybdenum sintered compact and its production

Similar Documents

Publication Publication Date Title
RU2066253C1 (en) Method of making turbine blades
JP5847196B2 (en) Tungsten sintered alloy
JP2004124151A (en) Heat treatment method for aluminum alloy
CN105579168B (en) The manufacturing method and liquid-phase sintering aluminium alloy part of liquid-phase sintering aluminium alloy part
JP3052240B2 (en) Rotating anode for X-ray tube and method for producing the same
US3785038A (en) Process of working a sintered powder metal compact
CN104611673A (en) Manufacture method of molybdenum alloy target material
JP2009270141A (en) METHOD FOR PRODUCING Ti-Al BASED ALLOY TARGET MATERIAL
JPH0734153A (en) Molybdenum sintered compact material and molybdenum material
JP2775810B2 (en) Cemented carbide with composite area
TW201504450A (en) Method of making molybdenum alloy target
JPH105892A (en) Progressive feed press die used for manufacturing ultra-fine lead parts, and work used for manufacturing the lead parts
JP2017095808A (en) Manufacturing method of liquid phase sintered aluminum alloy member and liquid phase sintered aluminum alloy member
JPH0718306A (en) Manufacture of scroll member
JP3491864B2 (en) Metal sizing method
JPS62208527A (en) Manufacture of end cap for magnetron
JPS63171847A (en) Molybdenum crucible and its production
CN114087301B (en) Estimation method and estimation system for technological parameters in process of preparing brake disc through hot press shaping
RU2708194C1 (en) Method of making article from h65nvft alloy
JP2007520635A (en) Sheet material infiltration of powder metal parts
JPH07179909A (en) Method for forging powder
JP2000017307A (en) Production of sintered member
JP4175823B2 (en) Manufacturing method of special steel for molds
JPS62107006A (en) Sintered hard alloy member for plastic working and its manufacture
JPH05345903A (en) Mo sintered body and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970826