JP2017095808A - Manufacturing method of liquid phase sintered aluminum alloy member and liquid phase sintered aluminum alloy member - Google Patents

Manufacturing method of liquid phase sintered aluminum alloy member and liquid phase sintered aluminum alloy member Download PDF

Info

Publication number
JP2017095808A
JP2017095808A JP2017008747A JP2017008747A JP2017095808A JP 2017095808 A JP2017095808 A JP 2017095808A JP 2017008747 A JP2017008747 A JP 2017008747A JP 2017008747 A JP2017008747 A JP 2017008747A JP 2017095808 A JP2017095808 A JP 2017095808A
Authority
JP
Japan
Prior art keywords
aluminum alloy
liquid phase
alloy member
phase sintered
sintered aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017008747A
Other languages
Japanese (ja)
Other versions
JP6380864B2 (en
Inventor
理恵 鈴木
Rie Suzuki
理恵 鈴木
慎一郎 重住
Shinichiro Shigesumi
慎一郎 重住
鍛冶 俊彦
Toshihiko Kaji
俊彦 鍛冶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2017008747A priority Critical patent/JP6380864B2/en
Publication of JP2017095808A publication Critical patent/JP2017095808A/en
Application granted granted Critical
Publication of JP6380864B2 publication Critical patent/JP6380864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a liquid phase sintered aluminum alloy member capable of effectively providing the liquid phase sintered aluminum alloy member having high strength and excellent in dimensional accuracy and the liquid phase sintered aluminum alloy member with high density.SOLUTION: There is provided a manufacturing method of a liquid phase sintered aluminum alloy member having a molding process for molding a raw material powder containing an aluminum alloy powder containing at least one kind of element selected from Si, Mg, Cu and Zn and the balance Al with inevitable impurities, a sintering process for conducting liquid phase sintering on the molded body to obtain a sintered body, a softening process for heating the sintered body and then conducting water hardening to obtain a softened material and a correction process for conducting sizing on the softened material to obtain a corrected material and an aging process for conducting a heat treatment on the corrected material to obtain an aged material with a deposition deposited.SELECTED DRAWING: Figure 1

Description

本発明は、種々の機械部品などに適した液相焼結アルミニウム合金部材の製造方法、及び液相焼結アルミニウム合金部材に関する。特に、高強度であり、かつ寸法精度に優れる液相焼結アルミニウム合金部材を効率的に得られる液相焼結アルミニウム合金部材の製造方法に関する。   The present invention relates to a method for producing a liquid phase sintered aluminum alloy member suitable for various machine parts and the like, and a liquid phase sintered aluminum alloy member. In particular, the present invention relates to a method for producing a liquid phase sintered aluminum alloy member that can efficiently obtain a liquid phase sintered aluminum alloy member having high strength and excellent dimensional accuracy.

自動車、OA機器、家庭用電気製品といった種々の分野の機械部品に、焼結部材が利用されている。焼結部材は、強度や耐摩耗性といった機械的特性に優れる上、最終製品形状に近いものが製造できるため、複雑な三次元形状の製品の素材に適している。   Sintered members are used for machine parts in various fields such as automobiles, office automation equipment, and household electrical appliances. Sintered members are excellent in mechanical properties such as strength and wear resistance, and can be manufactured in a shape close to the final product shape, and thus are suitable for materials of products having a complicated three-dimensional shape.

機械部品の軽量化に伴い、より軽量の素材による焼結部材が求められており、アルミニウム合金を用いた材料が提案されている。例えば、特許文献1には、アルミニウム合金に硬質粒子を添加して、強度と耐摩耗性の両立を狙いとした液相焼結アルミニウム合金が開示されている。この液相焼結アルミニウム合金は、アルミニウム合金粉末と硬質粒子とを混合した混合粉末を成形して成形体とし、この成形体に液相焼結を施して焼結体とし、さらに焼結体にサイジング及び熱処理を施して得られる。   Along with the reduction in weight of machine parts, sintered members made of lighter materials have been demanded, and materials using aluminum alloys have been proposed. For example, Patent Document 1 discloses a liquid-phase sintered aluminum alloy that aims to achieve both strength and wear resistance by adding hard particles to an aluminum alloy. This liquid phase sintered aluminum alloy is formed by forming a mixed powder obtained by mixing aluminum alloy powder and hard particles into a compact, and subjecting this compact to liquid phase sintering to form a sintered body. Obtained by sizing and heat treatment.

特開2009−242883号公報JP 2009-242883 A

しかし、上記の技術では、液相焼結アルミニウム合金の焼結体に対し、先にサイジングを、後で熱処理を行っており、焼結体については寸法精度に関して、その製造方法については生産性の向上に関して更なる改善の余地がある。   However, in the above technique, the sintered body of the liquid phase sintered aluminum alloy is first sized and then heat treated, and the sintered body is dimensional accuracy and the manufacturing method is productivity. There is room for further improvement.

本発明は上記事情に鑑みてなされたもので、本発明の目的の一つは、高強度であり、かつ寸法精度に優れる液相焼結アルミニウム合金部材を効率的に得られる液相焼結アルミニウム合金部材の製造方法を提供することにある。また、本発明の別の目的は、高強度であり、かつ寸法精度に優れる液相焼結アルミニウム合金部材を提供することにある。   The present invention has been made in view of the above circumstances, and one of the objects of the present invention is a liquid phase sintered aluminum which can efficiently obtain a liquid phase sintered aluminum alloy member having high strength and excellent dimensional accuracy. It is providing the manufacturing method of an alloy member. Another object of the present invention is to provide a liquid phase sintered aluminum alloy member having high strength and excellent dimensional accuracy.

本発明の液相焼結アルミニウム合金部材の製造方法は、以下の工程を備える。
(A)Si,Mg,Cu及びZnから選択される少なくとも1種の元素を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金粉末を含む原料粉末を成形して成形体とする成形工程。
(B)前記成形体に液相焼結を施して焼結体とする焼結工程。
(C)前記焼結体に熱処理を施して軟化材とする軟化工程。
(D)前記軟化材にサイジングを施して矯正材とする矯正工程。
(E)前記矯正材に熱処理を施して析出物が析出された時効材とする時効工程。
The manufacturing method of the liquid phase sintered aluminum alloy member of the present invention includes the following steps.
(A) A molding step of molding a raw material powder containing an aluminum alloy powder containing at least one element selected from Si, Mg, Cu and Zn, the balance being Al and inevitable impurities, to form a compact.
(B) A sintering step in which the compact is subjected to liquid phase sintering to form a sintered body.
(C) The softening process which heat-processes to the said sintered compact and makes it a softening material.
(D) A straightening step of sizing the softening material to obtain a straightening material.
(E) An aging process in which the orthodontic material is heat treated to obtain an aging material in which precipitates are deposited.

本発明の液相焼結アルミニウム合金部材は、Si,Mg,Cu及びZnから選択される少なくとも1種の元素を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金を含む液相焼結アルミニウム合金部材であって、相対密度が98%以上、引張強さが200MPa以上である。   The liquid phase sintered aluminum alloy member of the present invention contains at least one element selected from Si, Mg, Cu and Zn, and the liquid phase sintered aluminum containing an aluminum alloy composed of Al and inevitable impurities as the balance. An alloy member having a relative density of 98% or more and a tensile strength of 200 MPa or more.

本発明の液相焼結アルミニウム合金部材の製造方法は、高密度・高強度であり、かつ寸法精度に優れる液相焼結アルミニウム合金部材を生産性よく製造することができる。   The method for producing a liquid phase sintered aluminum alloy member of the present invention can produce a liquid phase sintered aluminum alloy member having high density and high strength and excellent dimensional accuracy with high productivity.

本発明の液相焼結アルミニウム合金部材は、高密度・高強度であり、かつ寸法精度に優れる。   The liquid phase sintered aluminum alloy member of the present invention has high density and high strength, and is excellent in dimensional accuracy.

実施形態に係る液相焼結アルミニウム合金部材の製造方法において、各工程における合金の伸びと硬さとを示すグラフである。It is a graph which shows the elongation and hardness of the alloy in each process in the manufacturing method of the liquid phase sintering aluminum alloy member which concerns on embodiment. 実施形態に係る液相焼結アルミニウム合金部材の製造方法において、軟化工程での熱処理温度と硬さ及び電気伝導度とを示すグラフである。It is a graph which shows the heat processing temperature in a softening process, hardness, and electrical conductivity in the manufacturing method of the liquid phase sintered aluminum alloy member which concerns on embodiment. 実施形態に係る液相焼結アルミニウム合金部材の製造方法において、軟化工程後の合金の硬さ推移を示すグラフである。It is a graph which shows the hardness transition of the alloy after a softening process in the manufacturing method of the liquid phase sintered aluminum alloy member which concerns on embodiment. 試験例における試料の直角度の測定方法を説明する説明図である。It is explanatory drawing explaining the measuring method of the squareness of the sample in a test example.

[本発明の実施形態の説明]
本発明者らは、焼結体の寸法精度の高精度化を検討するのに際し、寸法精度に大きな影響を及ぼす事項として、サイジング前の液相焼結体に着目した。液相焼結体は、原料粉末を成形して成形体とし、その成形体を液相焼結することで得られる。一般に、液相焼結体は、原料粉末間の空孔が液相により縮小され、固相焼結の焼結体に比べて空孔が少なく高密度であり、高強度である。一方で、この焼結体は、焼結時の急激な緻密化による寸法収縮が大きく、大きな歪が生じて矯正量の大きな寸法矯正が必要とされることが多い。
[Description of Embodiment of the Present Invention]
The present inventors paid attention to the liquid-phase sintered body before sizing as a matter that greatly affects the dimensional accuracy when examining the increase in the dimensional accuracy of the sintered body. The liquid phase sintered body is obtained by molding raw material powder to form a molded body, and liquid phase sintering the molded body. In general, a liquid-phase sintered body has a high density and a high strength because the pores between the raw material powders are reduced by the liquid phase, and there are fewer holes than a solid-phase sintered sintered body. On the other hand, this sintered body has a large dimensional shrinkage due to rapid densification during sintering, and a large distortion is often generated, and a dimensional correction with a large correction amount is often required.

このような液相焼結体にサイジングを行う際、サイジング代(塑性加工に伴う寸法矯正量)が大きければ焼結体が割れ易く、歩留りの低下を招く。これは、高密度で高強度の液相焼結体に対して大きなサイジング代を採れば、焼結体がサイジング用の金型に沿い難いため、焼結体に過度の応力が作用して割れが生じることがあるからである。例えば、円柱や円筒の液相焼結体の場合、側面と直交する方向に歪みが生じ、その歪みに対するサイジング代の大きさは、側面の全長の0.5%以上と大きい。   When sizing such a liquid-phase sintered body, if the sizing allowance (the amount of dimensional correction associated with plastic working) is large, the sintered body is likely to be broken, resulting in a decrease in yield. This is because if a large sizing allowance is applied to a high-density, high-strength liquid-phase sintered body, it is difficult for the sintered body to follow the sizing mold. This is because there may occur. For example, in the case of a cylindrical or cylindrical liquid phase sintered body, distortion occurs in a direction perpendicular to the side surface, and the size of the sizing allowance for the distortion is as large as 0.5% or more of the total length of the side surface.

そこで、本発明者らは、液相焼結体をサイジングする際に、その焼結体の塑性変形性を向上させることをさらに検討した。その結果、液相焼結体を熱処理により軟化させてからサイジングを施せば、サイジング代が大きな場合であっても焼結体の割れを低減でき、高い寸法精度の液相焼結部材を歩留り良く得られるとの知見を得て本発明を完成するに至った。以下、本発明の実施形態の内容を列記して説明する。   Therefore, the present inventors further studied to improve the plastic deformability of the sintered body when sizing the liquid phase sintered body. As a result, if the liquid phase sintered body is softened by heat treatment and then sized, cracking of the sintered body can be reduced even when the sizing allowance is large, and a liquid phase sintered member with high dimensional accuracy can be obtained with high yield. Obtaining the knowledge that it can be obtained, the present invention has been completed. The contents of the embodiments of the present invention will be listed and described below.

(1)実施形態の液相焼結アルミニウム合金部材の製造方法は、以下の工程を備える。
(A)Si,Mg,Cu及びZnから選択される少なくとも1種の元素を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金粉末を含む原料粉末を成形して成形体とする成形工程。
(B)前記成形体に液相焼結を施して焼結体とする焼結工程。
(C)前記焼結体に熱処理を施して軟化材とする軟化工程。
(D)前記軟化材にサイジングを施して矯正材とする矯正工程。
(E)前記矯正材に熱処理を施して析出物が析出された時効材とする時効工程。
(1) The manufacturing method of the liquid phase sintering aluminum alloy member of embodiment comprises the following processes.
(A) A molding step of molding a raw material powder containing an aluminum alloy powder containing at least one element selected from Si, Mg, Cu and Zn, the balance being Al and inevitable impurities, to form a compact.
(B) A sintering step in which the compact is subjected to liquid phase sintering to form a sintered body.
(C) The softening process which heat-processes to the said sintered compact and makes it a softening material.
(D) A straightening step of sizing the softening material to obtain a straightening material.
(E) An aging process in which the orthodontic material is heat treated to obtain an aging material in which precipitates are deposited.

上記した実施形態の液相焼結アルミニウム合金部材の製造方法によれば、液相焼結を施していることで、原料粉末間の空孔が液相により縮小され、固相焼結の焼結体に比べて空孔が少なく高密度であり、高強度の焼結体が得られる。この焼結体に熱処理を施して軟化材としてからサイジングすることで、軟化材は伸びが向上して柔らかいため、サイジング時に割れの発生を抑制し、歩留りを向上できる。また、サイジング時に軟化材が金型に沿い易いため、寸法精度に優れる液相焼結アルミニウム合金部材を効率よく製造することができる。   According to the method for producing a liquid phase sintered aluminum alloy member of the above-described embodiment, by performing liquid phase sintering, the voids between the raw material powders are reduced by the liquid phase, and solid phase sintering is performed. Compared to the body, there are fewer holes and the density is high, and a sintered body with high strength can be obtained. By applying heat treatment to the sintered body and then sizing the softened material, the softened material is improved in elongation and soft, so that the generation of cracks during sizing can be suppressed and the yield can be improved. In addition, since the softening material can easily follow the mold during sizing, a liquid phase sintered aluminum alloy member having excellent dimensional accuracy can be efficiently manufactured.

(2)実施形態の液相焼結アルミニウム合金部材の製造方法としては、前記軟化工程は、前記軟化材の伸びが2%以上となる温度で行うことが挙げられる。   (2) As a manufacturing method of the liquid phase sintered aluminum alloy member of the embodiment, the softening step may be performed at a temperature at which the elongation of the softening material is 2% or more.

軟化材の伸びが2%以上であることで、サイジング時に割れの発生がより生じ難い。また、軟化材が柔らかい程より金型に沿い易いため、寸法精度を向上し易い。   When the softening material has an elongation of 2% or more, cracks are less likely to occur during sizing. In addition, the softer the softening material, the easier it is to follow the mold, and thus the dimensional accuracy is easily improved.

(3)実施形態の液相焼結アルミニウム合金部材の製造方法としては、前記軟化工程は、455℃以上520℃以下の温度で行うことが挙げられる。   (3) As a manufacturing method of the liquid phase sintered aluminum alloy member of embodiment, performing the said softening process at the temperature of 455 degreeC or more and 520 degrees C or less is mentioned.

軟化工程における熱処理温度を上記範囲とすることで、軟化材の伸びを2%以上とし易い。熱処理温度が455℃以上であることで、サイジング時に割れが生じ難い塑性加工性を有する軟化材を形成し易い。熱処理温度が520℃以下であることで、それ以上に加熱しなくてもサイジング時に要する伸びを十分に得られ、不必要な加熱を省略できる。   By setting the heat treatment temperature in the softening step within the above range, the elongation of the softening material is easily set to 2% or more. When the heat treatment temperature is 455 ° C. or higher, it is easy to form a softening material having plastic workability that hardly causes cracks during sizing. When the heat treatment temperature is 520 ° C. or lower, sufficient elongation can be obtained during sizing without any further heating, and unnecessary heating can be omitted.

(4)実施形態の液相焼結アルミニウム合金部材の製造方法としては、前記軟化工程は、溶体化処理を行うことが挙げられる。   (4) As a manufacturing method of the liquid phase sintering aluminum alloy member of embodiment, the said softening process includes performing a solution treatment.

溶体化処理を行うことで、アルミニウム合金中に添加元素を十分に固溶させることができる。   By performing the solution treatment, the additive element can be sufficiently dissolved in the aluminum alloy.

(5)実施形態の液相焼結アルミニウム合金部材の製造方法としては、前記矯正工程は、前記軟化材の硬さHRBが50以下で行うことが挙げられる。   (5) As a manufacturing method of the liquid phase sintering aluminum alloy member of embodiment, it is mentioned that the said correction process performs the hardness HRB of the said softening material 50 or less.

軟化工程において熱処理を施して軟化材の伸びを向上しても、その状態のまま放置すると、自然時効によって硬さが上昇すると共に伸びが低下する。そこで、軟化材の硬さHRBが50以下で行うことで、軟化材は柔らかく、割れの発生を抑制し易く、寸法精度に優れる液相焼結アルミニウム合金部材を歩留りよく製造し易い。   Even if heat treatment is performed in the softening step to improve the elongation of the softening material, if left in that state, the hardness increases and the elongation decreases due to natural aging. Therefore, when the softening material has a hardness HRB of 50 or less, the softening material is soft, it is easy to suppress the occurrence of cracks, and it is easy to produce a liquid phase sintered aluminum alloy member excellent in dimensional accuracy with a high yield.

(6)実施形態の液相焼結アルミニウム合金部材の製造方法としては、前記アルミニウム合金粉末が、Al−Si−Mg−Cu系合金粉末であることが挙げられる。   (6) As a manufacturing method of the liquid phase sintering aluminum alloy member of embodiment, it is mentioned that the said aluminum alloy powder is an Al-Si-Mg-Cu type alloy powder.

Al−Si−Mg−Cu系合金の液相焼結体は、耐摩耗性に優れる。しかし、Al−Si−Mg−Cu系合金は、伸びが小さいため、サイジング時に割れが発生したり、寸法精度の悪い部材となり易い。そこで、上述した実施形態の液相焼結アルミニウム合金部材の製造方法を用いることで、寸法精度の高いAl−Si−Mg−Cu系合金の液相焼結体を効率的に製造できる。   A liquid phase sintered body of an Al—Si—Mg—Cu alloy is excellent in wear resistance. However, since the Al—Si—Mg—Cu-based alloy has a small elongation, it tends to crack during sizing or become a member with poor dimensional accuracy. Then, the liquid phase sintered body of an Al-Si-Mg-Cu type-alloy with high dimensional accuracy can be efficiently manufactured by using the manufacturing method of the liquid phase sintered aluminum alloy member of embodiment mentioned above.

(7)実施形態の液相焼結アルミニウム合金部材として、上記(1)〜(6)のいずれか1つの実施形態の液相焼結アルミニウム合金部材の製造方法によって製造されたものを提案する。   (7) As the liquid phase sintered aluminum alloy member according to the embodiment, one manufactured by the method for producing a liquid phase sintered aluminum alloy member according to any one of the above (1) to (6) is proposed.

実施形態の液相焼結アルミニウム合金部材は、液相焼結が施されていることで、高密度であり、高強度である。また、軟化材をサイジングしており、寸法精度に優れる。かつ、実施形態の液相焼結アルミニウム合金部材は、実施形態の液相焼結アルミニウム合金部材の製造方法によって容易に製造できることから、生産性に優れる。   The liquid phase sintered aluminum alloy member of the embodiment has high density and high strength because liquid phase sintering is performed. In addition, the softening material is sized and the dimensional accuracy is excellent. And since the liquid phase sintered aluminum alloy member of embodiment can be easily manufactured with the manufacturing method of the liquid phase sintered aluminum alloy member of embodiment, it is excellent in productivity.

(8)実施形態の液相焼結アルミニウム合金部材は、Si,Mg,Cu及びZnから選択される少なくとも1種の元素を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金を含む液相焼結アルミニウム合金部材であって、相対密度が98%以上、引張強さが200MPa以上である。   (8) The liquid phase sintered aluminum alloy member of the embodiment contains at least one element selected from Si, Mg, Cu, and Zn, and the liquid phase contains an aluminum alloy that consists of Al and inevitable impurities. The sintered aluminum alloy member has a relative density of 98% or more and a tensile strength of 200 MPa or more.

上記した実施形態の液相焼結アルミニウム合金部材によれば、相対密度が98%以上と高密度であり、引張強さが200MPa以上と高強度である。   According to the liquid phase sintered aluminum alloy member of the above-described embodiment, the relative density is as high as 98% or higher, and the tensile strength is as high as 200 MPa or higher.

(9)実施形態の液相焼結アルミニウム合金部材としては、面粗度Rzが6以下であることが挙げられる。   (9) As a liquid phase sintering aluminum alloy member of embodiment, it is mentioned that surface roughness Rz is 6 or less.

面粗度Rzが6以下であるということは、焼結体のサイジング時に金型に沿って液相焼結アルミニウム合金部材が製造されたということであって、寸法精度に優れる。   The surface roughness Rz of 6 or less means that a liquid phase sintered aluminum alloy member was manufactured along the mold during sizing of the sintered body, and is excellent in dimensional accuracy.

(10)実施形態の液相焼結アルミニウム合金部材としては、直角度が全長の0.1%以下であることが挙げられる。   (10) As a liquid phase sintering aluminum alloy member of embodiment, it is mentioned that a squareness is 0.1% or less of full length.

液相焼結アルミニウム合金部材が、部材を構成する外周面のうち二面を繋ぐ角部を有する場合、その直角度が全長の0.1%以下、即ちほぼ直角であることで、寸法精度に優れる。   When the liquid phase sintered aluminum alloy member has a corner portion that connects two surfaces of the outer peripheral surface constituting the member, the perpendicularity is 0.1% or less of the total length, that is, substantially right angle, so that the dimensional accuracy is improved. Excellent.

(11)実施形態の液相焼結アルミニウム合金部材としては、前記アルミニウム合金が、Al−Si−Mg−Cu系合金であることが挙げられる。   (11) As a liquid phase sintering aluminum alloy member of embodiment, it is mentioned that the said aluminum alloy is an Al-Si-Mg-Cu type alloy.

Al−Si−Mg−Cu系合金の液相焼結体であることで、耐摩耗性にも優れる。   By being a liquid phase sintered body of an Al—Si—Mg—Cu alloy, it is excellent in wear resistance.

(12)実施形態の液相焼結アルミニウム合金部材としては、さらに、非金属無機材料からなり、前記アルミニウム合金からなる母相中に分散される硬質粒子を含むことが挙げられる。   (12) The liquid phase sintered aluminum alloy member of the embodiment further includes hard particles made of a nonmetallic inorganic material and dispersed in a matrix phase made of the aluminum alloy.

アルミニウム合金からなる母材に硬質粒子を分散することで、母材単独の場合と比較して、耐摩耗性を向上できる。   By dispersing hard particles in a base material made of an aluminum alloy, wear resistance can be improved as compared to the case of the base material alone.

[本発明の実施形態の詳細]
本発明の実施形態の詳細を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。例えば、後述する試験例について原料粉末の組成、焼結工程・軟化工程・時効工程の各温度・時間などを適宜変更することができる。
[Details of the embodiment of the present invention]
Details of the embodiment of the present invention will be described below. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to the claim are included. For example, the composition of the raw material powder, the temperature and time of the sintering process, the softening process, and the aging process can be appropriately changed for the test examples described later.

<液相焼結アルミニウム合金部材の製造方法>
実施形態の液相焼結アルミニウム合金部材の製造方法は、以下の準備工程、成形工程、焼結工程、軟化工程、矯正工程、時効工程を備える。
<Method for producing liquid phase sintered aluminum alloy member>
The manufacturing method of the liquid phase sintered aluminum alloy member of the embodiment includes the following preparation process, forming process, sintering process, softening process, straightening process, and aging process.

〔準備工程〕
原料粉末として、アルミニウム合金粉末を準備する。さらに、必要に応じて、複数の硬質粒子を混合して混合粉末とすることもできる。
[Preparation process]
Aluminum alloy powder is prepared as a raw material powder. Furthermore, if necessary, a plurality of hard particles can be mixed to form a mixed powder.

(アルミニウム合金粉末)
アルミニウム合金粉末は、Si,Mg,Cu及びZnから選択される少なくとも1種の元素を含有し、残部がAl及び不可避的不純物のアルミニウム合金からなる。アルミニウム合金としては、Al−Si−Mg−Cu系合金、Al−Zn−Mg−Cu系合金、Al−Si系合金、Al−Cu系合金、Al−Mg系合金、Al−Cu−Si系合金などが挙げられる。
(Aluminum alloy powder)
The aluminum alloy powder contains at least one element selected from Si, Mg, Cu and Zn, and the balance is made of an aluminum alloy of Al and inevitable impurities. As the aluminum alloy, Al-Si-Mg-Cu alloy, Al-Zn-Mg-Cu alloy, Al-Si alloy, Al-Cu alloy, Al-Mg alloy, Al-Cu-Si alloy Etc.

Al−Si−Mg−Cu系合金は耐摩耗性に優れて好ましい。Al−Si−Mg−Cu系合金の具体的組成としては、Siを6質量%以上18質量%以下、Mgを0.2質量%以上1.0質量%以下、Cuを1.2質量%以上3.0質量%以下含有し、残部がAl及び不可避的不純物からなるものが挙げられる。特に、Siは8質量%以上15質量%以下含有されることが好ましい。   Al-Si-Mg-Cu alloys are preferred because of their excellent wear resistance. As a specific composition of the Al—Si—Mg—Cu-based alloy, Si is 6 mass% or more and 18 mass% or less, Mg is 0.2 mass% or more and 1.0 mass% or less, and Cu is 1.2 mass% or more. Examples include those containing 3.0% by mass or less and the balance being Al and inevitable impurities. In particular, Si is preferably contained in an amount of 8% by mass to 15% by mass.

Al−Zn−Mg−Cu系合金は強度に優れて好ましい。Al−Zn−Mg−Cu系合金の具体的組成としては、Znを5.1質量%以上6.5質量%以下、Mgを2.0質量%以上3.0質量%以下、Cuを1.2質量%以上2.0質量%以下、Snを0.1質量%以上0.3質量%以下含有し、残部がAl及び不可避的不純物からなるもの、その他、JIS規格の7075,7010といった公知の組成が挙げられる。   An Al—Zn—Mg—Cu alloy is preferable because of its excellent strength. As a specific composition of the Al—Zn—Mg—Cu-based alloy, Zn is 5.1% by mass to 6.5% by mass, Mg is 2.0% by mass to 3.0% by mass, and Cu is 1.% by mass. 2 mass% or more and 2.0 mass% or less, Sn containing 0.1 mass% or more and 0.3 mass% or less, and the remainder consisting of Al and inevitable impurities, and other well-known JIS standard 7075 and 7010 Composition.

原料粉末として、上述したアルミニウム合金と同様な組成のアルミニウム合金粉末を用いてもよいし、添加元素の濃度が高い高添加アルミニウム合金粉末と、実質的に添加元素を含有しない高純度アルミニウム粉末とを混合した複合粉末を用いてもよい。柔らかい高純度アルミニウム粉末を含有すると、成形性に優れる。高純度アルミニウム粉末の量や高添加アルミニウム合金粉末における添加元素の濃度は適宜選択することができる。この複合粉末を用いた場合、後述する焼結工程において、高添加アルミニウム合金粉末の添加元素の一部が高純度アルミニウム粉末に拡散して、所望の組成となる。   As the raw material powder, an aluminum alloy powder having the same composition as the above-described aluminum alloy may be used, or a high-added aluminum alloy powder having a high concentration of the additive element and a high-purity aluminum powder substantially not containing the additive element. A mixed composite powder may be used. When a soft high-purity aluminum powder is contained, the moldability is excellent. The amount of the high-purity aluminum powder and the concentration of the additive element in the high-added aluminum alloy powder can be appropriately selected. When this composite powder is used, a part of the additive elements of the high-added aluminum alloy powder diffuses into the high-purity aluminum powder in the sintering step described later, and a desired composition is obtained.

アルミニウム合金粉末の平均粒径は、45μm以上350μm以下程度が好ましい。この原料粉末の平均粒径は、アルミニウム合金部材中の平均粒径と実質的に同一とみなすことができる。平均粒径が45μm以上であることで、取り扱い易く、ハンドリング性に優れて好ましい。一方、350μm以下であることで、成形し易く好ましい。   The average particle size of the aluminum alloy powder is preferably about 45 μm to 350 μm. The average particle diameter of the raw material powder can be regarded as substantially the same as the average particle diameter in the aluminum alloy member. An average particle size of 45 μm or more is preferable because it is easy to handle and has excellent handling properties. On the other hand, it is preferably 350 μm or less because it is easy to mold.

原料のアルミニウム合金粉末の粒度分布は、例えば、マイクロトラック法(レーザー回折・散乱法)で計測する。液相焼結アルミニウム合金部材中のアルミニウム合金粒子の平均粒径、最大径は以下のように測定する。液相焼結アルミニウム合金部材の任意の断面を光学顕微鏡(100〜400倍)で観察し、この観察像を画像処理して、この断面中に存在する全てのアルミニウム合金粒子の面積を測定する。各面積の円相当径を演算し、この円相当径を各粒子の直径とし、当該断面における最大の直径をこの断面の最大径とする。n=10個の断面について最大径を求め、10個の最大径の平均をアルミニウム合金粒子の最大径とする。また、一つの断面における全ての粒子の直径の平均をとり、n=10個の断面について平均を求め、10個の直径の平均を更に平均したものをアルミニウム合金粒子の平均粒径とする。   The particle size distribution of the raw aluminum alloy powder is measured by, for example, a microtrack method (laser diffraction / scattering method). The average particle diameter and the maximum diameter of the aluminum alloy particles in the liquid phase sintered aluminum alloy member are measured as follows. An arbitrary cross section of the liquid phase sintered aluminum alloy member is observed with an optical microscope (100 to 400 times), and this observation image is image-processed to measure the area of all aluminum alloy particles present in the cross section. The equivalent circle diameter of each area is calculated, the equivalent circle diameter is defined as the diameter of each particle, and the maximum diameter in the cross section is defined as the maximum diameter of the cross section. The maximum diameter is determined for n = 10 cross sections, and the average of the 10 maximum diameters is defined as the maximum diameter of the aluminum alloy particles. Moreover, the average of the diameters of all the particles in one cross section is taken, the average is obtained for n = 10 cross sections, and the average of the 10 diameters is further averaged to be the average particle diameter of the aluminum alloy particles.

(硬質粒子)
硬質粒子は、非金属無機材料とする。非金属無機材料には、セラミックス、金属間化合物、ダイヤモンドなどが挙げられる。特に、化合物の非金属無機材料が好適に利用できる。より具体的な材質は、Si単体の他、アルミナ(Al)、ムライト(アルミナと酸化ケイ素との化合物)、SiC、AlN、BNなどの化合物が挙げられる。中でも、アルミナを用いると金属相との反応性がよく、耐摩耗性に優れる部材が得られ、ムライトを用いると相手攻撃性の低い部材が得られる。これら各種の硬質粒子は、単一種であっても良いし、複数種を混合して液相焼結アルミニウム合金部材に含まれていても良い。液相焼結アルミニウム合金部材中の硬質粒子の組成(単体元素、化合物元素及び含有量)は、例えば、走査型電子顕微鏡―エネルギー分散型X線分光法、X線回折、化学分析などを利用することで測定できる。
(Hard particles)
The hard particles are non-metallic inorganic materials. Nonmetallic inorganic materials include ceramics, intermetallic compounds, diamond, and the like. In particular, non-metallic inorganic materials of compounds can be suitably used. More specific materials include compounds such as alumina (Al 2 O 3 ), mullite (a compound of alumina and silicon oxide), SiC, AlN, and BN in addition to Si alone. Among them, when alumina is used, a member having good reactivity with the metal phase and excellent wear resistance can be obtained, and when mullite is used, a member having low opponent attack can be obtained. These various hard particles may be of a single type, or may be mixed in a plurality of types and contained in a liquid phase sintered aluminum alloy member. The composition of the hard particles in the liquid phase sintered aluminum alloy member (single element, compound element and content) uses, for example, scanning electron microscope-energy dispersive X-ray spectroscopy, X-ray diffraction, chemical analysis, etc. Can be measured.

液相焼結アルミニウム合金部材に占める硬質粒子の含有量(複数種の硬質粒子を含有する場合、合計含有量)は、0.5質量%以上10質量%以下が好ましい。0.5質量%以上であると、他の焼結部材と同程度又はそれ以上の耐摩耗性が得られ易く、さらには実用上十分な強度、硬さを有することができる。より好ましい下限値は1質量%以上である。硬質粒子の含有量は多いほど、耐摩耗性や硬さが向上する。但し、10質量%を超えると、強度が低下したり、例えば摺動部材とした場合に相手材の摩耗や損傷が激しくなったりする、すなわち相手攻撃性が高くなる。より好ましい上限値は5.0質量%以下、特に3.0質量%以下である。   The content of hard particles in the liquid phase sintered aluminum alloy member (when multiple kinds of hard particles are contained, the total content) is preferably 0.5% by mass or more and 10% by mass or less. When it is 0.5% by mass or more, it is easy to obtain wear resistance comparable to or higher than that of other sintered members, and furthermore, it can have practically sufficient strength and hardness. A more preferable lower limit is 1% by mass or more. As the hard particle content increases, the wear resistance and hardness improve. However, if it exceeds 10% by mass, the strength is reduced, or when the sliding member is used, for example, the wear or damage of the counterpart material becomes severe, that is, the opponent attack property becomes high. A more preferable upper limit value is 5.0% by mass or less, particularly 3.0% by mass or less.

液相焼結アルミニウム合金部材の硬さは、硬質粒子の硬さが高いほど、又は硬質粒子の含有量が多いほど高くなる傾向にある。   The hardness of the liquid phase sintered aluminum alloy member tends to increase as the hardness of the hard particles increases or as the content of the hard particles increases.

硬質粒子の平均粒径は、小さい方が耐摩耗性に優れる傾向にある。硬質粒子の平均粒径が大き過ぎると、小さい粒子と同じ耐摩耗性を確保するために硬質粒子の含有量が多くなり、その結果、例えば摺動部材とした場合に相手攻撃性が大きくなる。具体的な大きさは、アルミナ粒子の場合、平均粒径は10μm以下が好ましく、1μm以上6μm以下がより好ましい。上記範囲を満たす大きさのアルミナ粒子を上記特定の範囲で含有する場合、合金部材の焼結性を高める効果がある。ムライトの場合、平均粒径は20μm以下が好ましく、1μm以上15μm以下がより好ましい。また、硬質粒子の平均粒径が大き過ぎると、例えば摺動部材とした場合、相手材との摺接時に硬質粒子が脱落すると、相手材との間に介在された状態で摺動されることで、相手攻撃性を悪化させる。よって、硬質粒子の最大径は30μm以下であることが好ましく、4μm以上30μm以下がより好ましい。   The smaller the average particle size of the hard particles, the better the wear resistance. If the average particle size of the hard particles is too large, the hard particle content increases in order to ensure the same wear resistance as that of the small particles. In the case of alumina particles, the specific particle size is preferably 10 μm or less, more preferably 1 μm or more and 6 μm or less. When the alumina particles having a size satisfying the above range are contained in the specific range, there is an effect of improving the sinterability of the alloy member. In the case of mullite, the average particle size is preferably 20 μm or less, more preferably 1 μm or more and 15 μm or less. Also, if the average particle size of the hard particles is too large, for example, when a sliding member is used, if the hard particles fall off during sliding contact with the counterpart material, the hard particles will slide in an intervening state with the counterpart material. This will worsen the opponent's aggression. Therefore, the maximum diameter of the hard particles is preferably 30 μm or less, more preferably 4 μm or more and 30 μm or less.

原料に用いる硬質粒子の粒度分布は、例えば、マイクロトラック法(レーザー回折・散乱法)で計測する。液相焼結アルミニウム合金部材中の硬質粒子の平均粒径、最大径は、上記アルミニウム合金粒子の平均粒径、最大径の測定方法と同様である。   The particle size distribution of the hard particles used as the raw material is measured by, for example, a microtrack method (laser diffraction / scattering method). The average particle diameter and maximum diameter of the hard particles in the liquid phase sintered aluminum alloy member are the same as the method for measuring the average particle diameter and maximum diameter of the aluminum alloy particles.

硬質粒子の形状は、シャープエッジをもたないこと、言い換えれば可能な限り球形に近い方が好ましい。例えば、アスペクト比が1.0以上3.0以下であることが好ましい。球形に近い硬質粒子又は角が角張っていない硬質粒子を用いることで、細長い粒子などを用いる場合に比べて相手攻撃性を低減できる。   The shape of the hard particles preferably has no sharp edge, in other words, is as close to a sphere as possible. For example, the aspect ratio is preferably 1.0 or more and 3.0 or less. By using hard particles close to a sphere or hard particles whose corners are not square, opponent attack can be reduced as compared to the case of using elongated particles.

硬質粒子は、アルミニウム合金の母材中に実質的にそのまま残存する。従って、合金中の硬質粒子の含有量や大きさが所望の量や大きさとなるように、原料となる硬質粒子の量や大きさを調整する。   The hard particles substantially remain in the aluminum alloy base material. Therefore, the amount and size of the hard particles used as a raw material are adjusted so that the content and size of the hard particles in the alloy have a desired amount and size.

〔成形工程〕
準備した原料粉末を金型に充填して成形する。例えば、冷間金型成形などの冷間の加圧成形が利用できる。成形圧力としては、2ton/cm以上10ton/cm以下が挙げられる。この金型のキャビティの形状を調整することで、複雑形状の成形体を得ることもできる。
[Molding process]
The prepared raw material powder is filled into a mold and molded. For example, cold pressure forming such as cold mold forming can be used. Examples of the molding pressure include 2 ton / cm 2 or more and 10 ton / cm 2 or less. By adjusting the shape of the cavity of the mold, it is possible to obtain a molded body having a complicated shape.

〔焼結工程〕
得られた成形体の焼結は、液相出現温度で行えばよく、公知の条件を利用できる。代表的な焼結条件は、窒素やアルゴンといった不活性雰囲気で、温度:540℃以上620℃以下、時間:0(規定温度到達と同時に降温開始)以上60分以下が挙げられる。焼結温度は、例えば、Al−Si−Mg−Cu系合金の場合、540℃以上560℃以下、Al−Zn−Mg−Cu系合金の場合、580℃以上620℃以下が挙げられる。
[Sintering process]
Sintering of the obtained molded body may be performed at the liquid phase appearance temperature, and known conditions can be used. Typical sintering conditions include an inert atmosphere such as nitrogen or argon, temperature: 540 ° C. or more and 620 ° C. or less, time: 0 (start of temperature decrease when reaching specified temperature) or more and 60 minutes or less. Examples of the sintering temperature include 540 ° C. or more and 560 ° C. or less in the case of an Al—Si—Mg—Cu alloy, and 580 ° C. or more and 620 ° C. or less in the case of an Al—Zn—Mg—Cu alloy.

原料粉末として、高添加アルミニウム合金粉末と高純度アルミニウム粉末とを混合した複合粉末を用いた場合、この焼結工程により、高添加アルミニウム合金粉末の添加元素の一部が高純度アルミニウム粉末に拡散する。例えば、Al−Si系合金の場合、原料粉末として、Siを6質量%以上含有する高Siアルミニウム合金粉末と、実質的にSiを含有しない高純度アルミニウム粉末とを混合する複合粉末とすると、Siの含有量が6質量%以上である高Siアルミニウム合金相と、Siの含有量が2質量%以下である低Siアルミニウム合金相とを有する二相構造のアルミニウム合金となる。   When a composite powder obtained by mixing high-added aluminum alloy powder and high-purity aluminum powder is used as a raw material powder, a part of the additive elements of the high-added aluminum alloy powder diffuses into the high-purity aluminum powder by this sintering process. . For example, in the case of an Al—Si based alloy, if the raw material powder is a composite powder in which a high Si aluminum alloy powder containing 6 mass% or more of Si and a high purity aluminum powder substantially not containing Si are mixed, This is an aluminum alloy having a two-phase structure having a high Si aluminum alloy phase having a Si content of 6% by mass or more and a low Si aluminum alloy phase having a Si content of 2% by mass or less.

〔軟化工程〕
得られた焼結体に熱処理を施して、伸びを向上させた軟化材とする。図1に、Al−14Si−2.5Cu−0.5Mg(単位:質量%)の組成のAl−Si−Mg−Cu系合金粉末(平均粒径70μm)に2μmのアルミナ粉末を1質量%混合した混合粉末を用いて成形・液相焼結した焼結体に軟化工程・時効工程を施した際の伸びと硬さとを示す。軟化工程は、495℃×1時間の加熱後水焼入れ(Water Quench:WQ)を施し、時効工程は、175℃×8時間の熱処理(時効処理)を施した。図1のグラフに示すように、焼結体に熱処理(ここでは溶体化に相当)を施すと、硬さ(ロックウェル硬さ)の低下に伴い、1.0%程度であった伸び(破断伸び)が、3.3%程度まで向上することがわかる。その後、時効処理を施すと、析出強化によって硬さが向上すると共に伸びが低下することがわかる。伸びが向上した状態の軟化材に、後述する矯正工程におけるサイジングを施すと、サイジング時に金型に軟化材が沿い易く、割れの発生を抑制することができ、寸法精度に優れる部材を効率よく製造できると考えられる。軟化材の伸び(破断伸び)は、2%以上が好ましい。さらに好ましくは3%以上である。
[Softening process]
The obtained sintered body is heat-treated to obtain a softening material with improved elongation. In FIG. 1, 1% by mass of 2 μm alumina powder is mixed with Al—Si—Mg—Cu based alloy powder (average particle size 70 μm) having a composition of Al-14Si-2.5Cu-0.5Mg (unit: mass%). The elongation and hardness when the sintered body formed and liquid phase sintered using the mixed powder is subjected to a softening step and an aging step are shown. In the softening step, water quenching (Water Quench: WQ) was applied at 495 ° C. for 1 hour, and in the aging step, heat treatment (aging treatment) at 175 ° C. for 8 hours was performed. As shown in the graph of FIG. 1, when the sintered body was subjected to a heat treatment (here, equivalent to solution treatment), the elongation (breakage) was about 1.0% as the hardness (Rockwell hardness) decreased. It can be seen that (elongation) is improved to about 3.3%. Thereafter, when an aging treatment is performed, it is understood that the hardness is improved and the elongation is reduced by precipitation strengthening. If sizing in the straightening process described below is applied to the softened material with improved elongation, the softened material can easily follow the mold during sizing, cracking can be suppressed, and members with excellent dimensional accuracy can be produced efficiently. It is considered possible. The elongation (breaking elongation) of the softening material is preferably 2% or more. More preferably, it is 3% or more.

図2に、焼結体に施す熱処理温度と熱処理後に常温まで冷却した焼結体(軟化材)の硬さHRB及び電気伝導度IACS%とを示す。図2の上グラフは、図1と同様のAl−14Si−2.5Cu−0.5Mgの組成のAl−Si−Cu−Mg系合金粉末(平均粒径70μm)に2μmのアルミナ粉末を1質量%混合して成形・液相焼結した焼結体を用いた結果である。図2の下グラフは、Al−5.5Zn−1.5Cu−2.5Mgの組成のAl−Zn−Cu−Mg系合金粉末(平均粒径70μm)に2μmのアルミナ粉末を1質量%混合して成形・液相焼結した焼結体を用いた結果である。図2の両グラフに示すように、硬さ(ロックウェル硬さ)は、熱処理温度の上昇に伴い高くなる傾向にあるが、温度上昇の途中で硬さがほぼ一定となる領域が存在する。この温度が一定となる領域ではアルミニウム合金中に添加元素が完全固溶している状態である。さらに温度が上昇すると液相となり、これが急冷されると硬さが上昇してしまう。よって、硬さがほぼ一定となる温度領域で熱処理を施すことで、伸びを向上できる。このような熱処理温度は、Al−Si−Cu−Mg系合金の場合、480℃以上520℃以下が好ましく、さらに480℃以上510℃以下、特に486℃以上496℃以下がより好ましい。また、Al−Zn−Cu−Mg系合金の場合、460℃以上500℃以下が好ましく、さらに470℃以上490℃以下、特に465℃以上495℃以下がより好ましい。この熱処理温度で軟化された軟化材は、伸びが2%以上となり易い。一方、電気伝導度は、熱処理温度の上昇に伴い低くなり、熱処理温度が低過ぎると高くなる傾向にある。これは、熱処理温度が高いとより多くのCuやZnなどが固溶されるからである。電気伝導度が低いと、CuやZnなどが固溶しているため塑性加工性に優れ、サイジング時に軟化材が金型に沿い易い。よって、電気伝導度がより低い温度領域で熱処理を施すことが好ましい。軟化に必要な保持時間は、軟化材が十分に固溶体になる時間が必要であり、おおむね0.5時間以上2時間以下であり、より好ましい時間は、1時間以上1.2時間以下である。   FIG. 2 shows the heat treatment temperature applied to the sintered body and the hardness HRB and electrical conductivity IACS% of the sintered body (softening material) cooled to room temperature after the heat treatment. The upper graph of FIG. 2 shows 1 mass of 2 μm alumina powder in an Al—Si—Cu—Mg based alloy powder (average particle size 70 μm) having the same composition as Al-14Si-2.5Cu-0.5Mg as in FIG. This is a result of using a sintered body formed by mixing and molding and liquid phase sintering. The lower graph of FIG. 2 shows that 1% by mass of 2 μm alumina powder is mixed with Al—Zn—Cu—Mg alloy powder (average particle size 70 μm) having a composition of Al-5.5Zn-1.5Cu-2.5Mg. This is a result of using a sintered body that was molded and liquid phase sintered. As shown in both graphs of FIG. 2, the hardness (Rockwell hardness) tends to increase as the heat treatment temperature increases, but there is a region where the hardness becomes substantially constant during the temperature increase. In the region where the temperature is constant, the additive element is completely dissolved in the aluminum alloy. Further, when the temperature rises, it becomes a liquid phase, and when it is rapidly cooled, hardness increases. Therefore, the elongation can be improved by performing the heat treatment in a temperature region where the hardness is substantially constant. In the case of an Al—Si—Cu—Mg alloy, such a heat treatment temperature is preferably 480 ° C. or more and 520 ° C. or less, more preferably 480 ° C. or more and 510 ° C. or less, and particularly preferably 486 ° C. or more and 496 ° C. or less. In the case of an Al—Zn—Cu—Mg alloy, the temperature is preferably 460 ° C. or higher and 500 ° C. or lower, more preferably 470 ° C. or higher and 490 ° C. or lower, and particularly preferably 465 ° C. or higher and 495 ° C. or lower. The softened material softened at this heat treatment temperature tends to have an elongation of 2% or more. On the other hand, electrical conductivity tends to decrease as the heat treatment temperature increases, and tends to increase when the heat treatment temperature is too low. This is because when the heat treatment temperature is high, more Cu, Zn or the like is dissolved. If the electrical conductivity is low, Cu, Zn, etc. are in a solid solution, so that the plastic workability is excellent, and the softening material tends to follow the mold during sizing. Therefore, it is preferable to perform the heat treatment in a temperature region where the electrical conductivity is lower. The holding time required for softening requires time for the softening material to become a solid solution sufficiently, and is generally 0.5 hours or more and 2 hours or less, and more preferably 1 hour or more and 1.2 hours or less.

焼結体に行う熱処理として溶体化処理を行う場合も、熱処理条件は上述した熱処理条件(温度と保持時間)と同様である。加熱後は、冷却速度を100℃/s以上として冷却することが好ましい。   Also when solution treatment is performed as the heat treatment performed on the sintered body, the heat treatment conditions are the same as the heat treatment conditions (temperature and holding time) described above. After heating, it is preferable to cool at a cooling rate of 100 ° C./s or higher.

〔矯正工程〕
軟化材、特に伸びが2%以上である軟化材にサイジングを施す。図3に、上記焼結体(図2と同様)の軟化工程後の軟化材の硬さの推移を示す。図3のグラフに示すように、時間の経過と共に、硬さ(ロックウェル硬さ)は向上する傾向にある。硬さの向上に伴い伸びは減少する。軟化材の硬さHRBが50以下である状態でサイジングを施すことが好ましい。図3のグラフに示すように、Al−Si−Cu−Mg系合金の場合、軟化工程後6時間経過すると、硬さHRBは50以上となり、それに伴い伸びは2%未満となる。また、Al−Zn−Cu−Mg系合金の場合、軟化工程後20時間経過すると、硬さHRBは50以上となり、それに伴い伸びは2%未満となる。
[Correction process]
Sizing is applied to a softening material, particularly a softening material having an elongation of 2% or more. FIG. 3 shows the transition of the hardness of the softened material after the softening step of the sintered body (similar to FIG. 2). As shown in the graph of FIG. 3, the hardness (Rockwell hardness) tends to improve with time. As the hardness increases, the elongation decreases. Sizing is preferably performed in a state where the hardness HRB of the softening material is 50 or less. As shown in the graph of FIG. 3, in the case of an Al—Si—Cu—Mg alloy, after 6 hours from the softening step, the hardness HRB is 50 or more and the elongation is less than 2%. In the case of an Al—Zn—Cu—Mg alloy, after 20 hours from the softening step, the hardness HRB is 50 or more and the elongation is less than 2%.

軟化材をサイジングするには、所望の形状の金型の成形空間に軟化材を充填して加圧する。金型は一般的なものが利用できる。例えば、貫通孔が設けられた筒状のダイと、この貫通孔に挿入配置されて軟化材を加圧圧縮する上パンチ及び下パンチとを備えるものが挙げられる。ダイの貫通孔の内周面と、この貫通孔の一方の開口部に挿入した下パンチとで形成される成形空間に、上述の軟化材を配置した後、上記貫通孔の他方の開口部に挿入した上パンチと、上記下パンチとで軟化材を所定の圧力で加圧・圧縮して矯正材を形成し、ダイから矯正材を抜き出す。この金型を用いた場合、ダイの輪郭形状、及び上パンチ・下パンチの端面形状に応じた柱状の矯正材が得られる。   In order to size the softening material, the softening material is filled into a molding space of a mold having a desired shape and pressed. A general mold can be used. For example, what is provided with the cylindrical die | dye provided with the through-hole, and the upper punch and lower punch which are inserted and arrange | positioned at this through-hole and pressurize and compress a softening material is mentioned. After the softening material is disposed in the molding space formed by the inner peripheral surface of the through hole of the die and the lower punch inserted into one opening of the through hole, the other softening material is disposed in the other opening of the through hole. The softening material is pressed and compressed with a predetermined pressure by the inserted upper punch and the lower punch to form a correction material, and the correction material is extracted from the die. When this mold is used, a columnar correction material corresponding to the contour shape of the die and the end face shapes of the upper punch and the lower punch can be obtained.

サイジングは、熱間でも冷間でもよい。冷間サイジングは、寸法精度を向上させることができ、熱間サイジングは、強度を向上させることができる。また、このサイジングは、しごきの場合や据込みの場合のいずれでもよいが、特にしごきサイジングの場合は、良好な面粗度が得られる。   Sizing may be hot or cold. Cold sizing can improve dimensional accuracy, and hot sizing can improve strength. Further, this sizing may be performed either in the case of ironing or in the case of upsetting, but in the case of ironing sizing, a good surface roughness can be obtained.

〔時効工程〕
サイジングを施した矯正材に熱処理(時効)を施して析出物が析出された時効材とする。この熱処理温度は、170℃以上210℃以下が挙げられる。
[Aging process]
An aging material in which precipitates are deposited by heat-treating (aging) the sizing orthodontic material. As for this heat processing temperature, 170 degreeC or more and 210 degrees C or less are mentioned.

<液相焼結アルミニウム合金部材>
上述した液相焼結アルミニウム合金部材の製造方法によって製造される液相焼結アルミニウム合金部材は、液相焼結を施しているため、原料粉末間の空孔が液相により縮小され、高密度であると共に、高強度である。この液相焼結アルミニウム合金部材の相対密度は96%以上であり、好ましくは98%以上である。ここでの相対密度は、アルミニウム合金からなる部材の真密度を各元素の比重を基に演算し、(実際の密度/真密度)×100を算出した値である。また、この液相焼結アルミニウム合金部材の引張強さは200MPa以上であり、好ましくは250MPa以上である。
<Liquid phase sintered aluminum alloy member>
Since the liquid phase sintered aluminum alloy member produced by the above-described method for producing a liquid phase sintered aluminum alloy member is subjected to liquid phase sintering, the pores between the raw material powders are reduced by the liquid phase, resulting in high density. And high strength. The relative density of this liquid phase sintered aluminum alloy member is 96% or more, preferably 98% or more. Here, the relative density is a value obtained by calculating the actual density of a member made of an aluminum alloy based on the specific gravity of each element and calculating (actual density / true density) × 100. Further, the tensile strength of the liquid phase sintered aluminum alloy member is 200 MPa or more, preferably 250 MPa or more.

液相焼結を施した焼結体に熱処理を施して軟化材としてからサイジングを施しているため、サイジング時に金型に沿った軟化材が形成され易い。よって、液相焼結アルミニウム合金部材に直角を有する場合、その直角度は、全長の0.1%以下である。また、サイジングを施すことで、液相焼結アルミニウム合金部材の面粗度Rzは、6以下である。   Since the sintered body subjected to liquid phase sintering is subjected to a heat treatment to form a softening material and then sized, the softening material along the mold is easily formed during sizing. Therefore, when having a right angle to the liquid phase sintered aluminum alloy member, the perpendicularity is 0.1% or less of the total length. Moreover, the surface roughness Rz of the liquid phase sintered aluminum alloy member is 6 or less by applying sizing.

なお、本実施形態の液相焼結アルミニウム合金部材は、アルミニウム合金からなる母材を構成する母材粒子のアスペクト比(最大径と最小径との比)が小さい(5未満)。即ち、合金組織を調べることで、焼結により製造されたことが確認できる。   In addition, the liquid phase sintered aluminum alloy member of this embodiment has a small aspect ratio (ratio between the maximum diameter and the minimum diameter) of the base material particles constituting the base material made of the aluminum alloy (less than 5). That is, by examining the alloy structure, it can be confirmed that it was manufactured by sintering.

[試験例]
種々のアルミニウム合金を含む液相焼結アルミニウム合金部材を作製する。得られた液相焼結アルミニウム合金部材の相対密度及び引張強さ、直角度、面粗度を調べた。また、液相焼結アルミニウム合金部材の歩留りを調べた。
[Test example]
Liquid phase sintered aluminum alloy members containing various aluminum alloys are prepared. The relative density, tensile strength, squareness, and surface roughness of the obtained liquid phase sintered aluminum alloy member were examined. Moreover, the yield of the liquid phase sintered aluminum alloy member was examined.

(試料の作製)
・試料No.1:Al−Si−Mg−Cu系合金
原料粉末として、Al−18Si−3.25Cu−0.81Mg(単位:質量% 以下同様)の組成のAl−Si−Mg−Cu系合金粉末(高添加アルミニウム合金粉末)と、Al−0.5Mgの組成の高純度アルミニウム粉末と、アルミナ粉末とを用意する。Al−Si−Mg−Cu系合金粉末と高純度アルミニウム粉末の各平均粒径は50μm、アルミナ粉末は、平均粒径が2μm(最大径6μm)である。用意したAl−Si−Mg−Cu系合金粉末、高純度アルミニウム粉末、及びアルミナ粉末をそれぞれ混合させた混合粉末を作製する。Al−Si−Mg−Cu系合金粉末と高純度アルミニウム粉末の質量割合は80:20であり、この割合は、液相焼結アルミニウム合金部材に占める高Siアルミニウム合金相と低Siアルミニウム合金相の質量割合である。混合粉末に対してアルミナ粉末が1.0質量%となるように上記各粉末を混合する。得られた混合粉末を5ton/cmの面圧で金型成形して、円柱状の成形体(径:35mm×高さ:10mm)を作製した。続いて、この成形体を窒素雰囲気中で550±5℃×50分の焼結条件で液相焼結した。
(Sample preparation)
・ Sample No. 1: Al-Si-Mg-Cu-based alloy Al-Si-Mg-Cu-based alloy powder having a composition of Al-18Si-3.25Cu-0.81Mg (unit: mass%) Aluminum alloy powder), high-purity aluminum powder having a composition of Al-0.5Mg, and alumina powder are prepared. The average particle diameter of the Al—Si—Mg—Cu alloy powder and the high-purity aluminum powder is 50 μm, and the alumina powder has an average particle diameter of 2 μm (maximum diameter 6 μm). A mixed powder is prepared by mixing the prepared Al—Si—Mg—Cu alloy powder, high-purity aluminum powder, and alumina powder. The mass ratio of the Al—Si—Mg—Cu alloy powder and the high-purity aluminum powder is 80:20, and this ratio is the ratio of the high Si aluminum alloy phase and the low Si aluminum alloy phase in the liquid phase sintered aluminum alloy member. It is a mass ratio. Said each powder is mixed so that alumina powder may be 1.0 mass% with respect to mixed powder. The obtained mixed powder was die-molded at a surface pressure of 5 ton / cm 2 to prepare a cylindrical shaped body (diameter: 35 mm × height: 10 mm). Subsequently, this compact was liquid phase sintered in a nitrogen atmosphere under sintering conditions of 550 ± 5 ° C. × 50 minutes.

得られた焼結体に、495℃×1時間に加熱後、水冷(150℃/s)して溶体化を施し、0.5時間後に6ton/cmの条件で冷間サイジングを施した。溶体化処理後0.5時間経過した軟化材の硬さ(ロックウェル硬さ)HRBは23であり、伸び(破断伸び)は2%以上であった。サイジングには、上述した筒状ダイとパンチとを用いた。その後、さらに175℃×8時間の時効を行って液相焼結Al−Si−Cu−Mg系合金の試料(液相焼結アルミニウム合金部材)を作製した。 The obtained sintered body was heated to 495 ° C. for 1 hour, then water-cooled (150 ° C./s) to form a solution, and 0.5 hour later, cold sizing was performed under the condition of 6 ton / cm 2 . The hardness (Rockwell hardness) HRB of the softened material 0.5 hours after the solution treatment was 23, and the elongation (breaking elongation) was 2% or more. For the sizing, the above-described cylindrical die and punch were used. Thereafter, aging at 175 ° C. × 8 hours was further performed to prepare a liquid phase sintered Al—Si—Cu—Mg based alloy sample (liquid phase sintered aluminum alloy member).

・試料No.2:Al−Zn−Mg−Cu系合金
原料粉末として、Al−6.5Zn−1.75Cu−2.7Mg(単位:質量% 以下同様)の組成のAl−Zn−Mg−Cu系合金粉末と、アルミナ粉末とを用意する。Al−Zn−Mg−Cu系合金粉末の平均粒径は70μm、アルミナ粉末の平均粒径は2μm(最大径6μm)である。用意したAl−Zn−Mg−Cu系合金粉末とアルミナ粉末とを混合させた混合粉末を作製する。混合粉末に対してアルミナ粉末が1.0質量%となるように上記各粉末を混合する。得られた混合粉末を5ton/cmの面圧で金型成形して成形体を作製した。続いて、この成形体を窒素雰囲気中で610±5℃×20分の焼結条件で液相焼結した。
・ Sample No. 2: Al-Zn-Mg-Cu-based alloy Al-Zn-Mg-Cu-based alloy powder having a composition of Al-6.5Zn-1.75Cu-2.7Mg (unit: mass%) Alumina powder is prepared. The average particle diameter of the Al—Zn—Mg—Cu alloy powder is 70 μm, and the average particle diameter of the alumina powder is 2 μm (maximum diameter 6 μm). A mixed powder is prepared by mixing the prepared Al—Zn—Mg—Cu alloy powder and alumina powder. Said each powder is mixed so that alumina powder may be 1.0 mass% with respect to mixed powder. The obtained mixed powder was mold-molded at a surface pressure of 5 ton / cm 2 to produce a molded body. Subsequently, this compact was liquid phase sintered in a nitrogen atmosphere under sintering conditions of 610 ± 5 ° C. × 20 minutes.

得られた焼結体に、495℃×1時間に加熱後、水冷(150℃/s)して溶体化を施し、1時間後に6ton/cmの条件で冷間サイジングを施した。溶体化処理後1.5時間経過した軟化材の硬さ(ロックウェル硬さ)HRBは23であり、伸び(破断伸び)は2%以上であった。サイジングには、上述した筒状ダイとパンチとを用いた。その後、さらに175℃×8時間の時効を行って液相焼結Al−Zn−Cu−Mg系合金の試料(液相焼結アルミニウム合金部材)を作製した。 The obtained sintered body was heated to 495 ° C. × 1 hour, then water-cooled (150 ° C./s) to form a solution, and after 1 hour, cold sizing was performed on the condition of 6 ton / cm 2 . The hardness (Rockwell hardness) HRB of the softened material that passed 1.5 hours after the solution treatment was 23, and the elongation (breaking elongation) was 2% or more. For the sizing, the above-described cylindrical die and punch were used. Thereafter, aging at 175 ° C. × 8 hours was further performed to prepare a liquid phase sintered Al—Zn—Cu—Mg based alloy sample (liquid phase sintered aluminum alloy member).

・試料No.100:Al−Si−Mg−Cu系合金
比較品として、試料No.1の原料粉末を用いて、従来の方法(液相焼結→サイジング→溶体化→時効)で試料No.100を作製する。この試料は、液相焼結後の処理順序として、サイジング後に溶体化・時効を行った点以外は、試料No.1と同様の条件とした。
・ Sample No. 100: Al—Si—Mg—Cu alloy As a comparative product, sample No. Sample No. 1 was prepared by the conventional method (liquid phase sintering → sizing → solution treatment → aging) using the raw material powder of No. 1. 100 is made. This sample has the same processing order after liquid phase sintering as Sample No. except that solution treatment and aging were performed after sizing. 1 was used.

・試料No.200:Al−Zn−Mg−Cu系合金
比較品として、試料No.2の原料粉末を用いて、従来の方法(液相焼結→サイジング→溶体化→時効)で試料No.200を作製する。この試料は、液相焼結後の処理順序として、サイジング後に溶体化・時効を行った点以外は、試料No.2と同様の条件とした。
・ Sample No. 200: Al—Zn—Mg—Cu-based alloy Sample No. Sample No. 2 was prepared by the conventional method (liquid phase sintering → sizing → solution formation → aging) using the raw material powder of No. 2. 200 is produced. This sample has the same processing order after liquid phase sintering as Sample No. except that solution treatment and aging were performed after sizing. The conditions were the same as 2.

(相対密度)
作製した各試料の液相焼結アルミニウム合金部材について、相対密度を測定した。相対密度は、市販の密度測定装置を利用して実際の密度を測定すると共に、試料の各組成のアルミニウム合金からなる部材の真密度を各元素の比重を基に演算し、(実際の密度/真密度)×100を算出することで求められる。その結果を表1に示す。
(Relative density)
The relative density was measured about the liquid phase sintered aluminum alloy member of each produced sample. The relative density is obtained by measuring the actual density using a commercially available density measuring device and calculating the true density of a member made of an aluminum alloy of each composition of the sample based on the specific gravity of each element (actual density / It is calculated by calculating (true density) × 100. The results are shown in Table 1.

(引張強さ)
作製した各試料の液相焼結アルミニウム合金部材について、JIS Z 2241(2011)の金属材料引張試験方法に基づいて、汎用引張試験機にて引張強さを測定した。その結果を表1に示す。
(Tensile strength)
About the liquid phase sintered aluminum alloy member of each produced sample, tensile strength was measured with a general-purpose tensile tester based on the metal material tensile test method of JIS Z 2241 (2011). The results are shown in Table 1.

(面粗度)
作製した各試料の液相焼結アルミニウム合金部材について、JIS B 0601(2001)に基づいて、市販の表面粗さ測定器にて面粗度Rz(十点平均粗さ)を測定した。その結果を表1に示す。
(Surface roughness)
About the liquid phase sintered aluminum alloy member of each produced sample, surface roughness Rz (10-point average roughness) was measured with a commercially available surface roughness measuring instrument based on JIS B 0601 (2001). The results are shown in Table 1.

(直角度)
作製した各試料の液相焼結アルミニウム合金部材について、JIS B 0621(1984)に基づいて、市販の直角測定器(スコヤマスタ、株式会社ミツトヨ製)にて測定した。直角度の測定方法は、例えば図4に示すように、直角測定器10のダイヤルゲージ11を試料1の側面に当ててシャフト沿いにスリーブ12をスライドすることで試料1の高さ方向全面に亘って直角度を測定した。その結果を表1に示す。
(right angle)
The liquid phase sintered aluminum alloy member of each prepared sample was measured with a commercially available right angle measuring device (Squara Master, manufactured by Mitutoyo Corporation) based on JIS B 0621 (1984). For example, as shown in FIG. 4, the squareness measurement method applies the dial gauge 11 of the right-angle measuring device 10 to the side surface of the sample 1 and slides the sleeve 12 along the shaft to cover the entire surface of the sample 1 in the height direction. The squareness was measured. The results are shown in Table 1.

(歩留り)
作製した各試料の液相焼結アルミニウム合金部材について、歩留りを求めた。歩留りは、部材において割れや欠けのないものを良品、あるものを不良品とし、全体(100個作製)のうち良品と判断したものの割合とした。その結果を表1に示す。
(Yield)
The yield was calculated | required about the liquid phase sintered aluminum alloy member of each produced sample. Yield was defined as the ratio of those that were judged as non-defective among the whole (100 manufactured), with those having no cracks or chips in the member as non-defective products and certain products as defective products. The results are shown in Table 1.

Figure 2017095808
Figure 2017095808

表1に示すように、本実施形態の製造方法によって製造された試料No.1及び試料No.2は、相対密度が98%以上と高く、引張強さが317MPa以上と高い。   As shown in Table 1, the sample No. manufactured by the manufacturing method of the present embodiment was used. 1 and sample no. 2 has a relative density as high as 98% or more and a tensile strength as high as 317 MPa or more.

表1に示すように、液相焼結体に溶体化を施してからサイジングを行った試料No.1及び試料No.2は、面粗度Rzが6以下であり、従来の方法による試料No.100及び試料No.200と比較して小さいことがわかる。また、試料No.1及び試料No.2は、直角度が0.05%以下と、試料No.100及び試料No.200と比較して小さいことがわかる。これらの結果は、サイジングを行う前に施された熱処理によって軟化材の伸びが向上して柔らかくなり、サイジング時に軟化材が金型の形状に沿って形成されたためであると考えられる。そして、本実施形態の製造方法によって液相焼結アルミニウム合金部材を製造した場合、歩留りが100%となり、従来と比較して生産性が向上することがわかる。   As shown in Table 1, the sample No. 1 was sized after the liquid phase sintered body was solutionized. 1 and sample no. No. 2 has a surface roughness Rz of 6 or less. 100 and sample no. It can be seen that it is smaller than 200. Sample No. 1 and sample no. No. 2 is a sample having a squareness of 0.05% or less. 100 and sample no. It can be seen that it is smaller than 200. These results are considered to be because the softening material was stretched and softened by heat treatment performed before sizing, and the softening material was formed along the shape of the mold during sizing. And when a liquid phase sintering aluminum alloy member is manufactured with the manufacturing method of this embodiment, it turns out that a yield will be 100% and productivity will improve compared with the past.

本発明の液相焼結アルミニウム合金部材の製造法は、複雑な三次元形状で寸法精度が求められる部材の製造に好適に利用することができる。本発明の液相焼結アルミニウム合金部材は、高強度、かつ軽量化が望まれる種々の分野の製品素材として好適に利用することができる。   The method for producing a liquid phase sintered aluminum alloy member of the present invention can be suitably used for producing a member that is required to have dimensional accuracy with a complicated three-dimensional shape. The liquid phase sintered aluminum alloy member of the present invention can be suitably used as a product material in various fields where high strength and light weight are desired.

1 試料
10 直角測定器 11 ダイヤルゲージ 12 スリーブ
1 Sample 10 Right angle measuring instrument 11 Dial gauge 12 Sleeve

Claims (11)

Si,Mg,Cu及びZnから選択される少なくとも1種の元素を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金粉末を含む原料粉末を成形して成形体とする成形工程と、
前記成形体に液相焼結を施して焼結体とする焼結工程と、
前記焼結体を加熱した後に水焼入れを施して軟化材とする軟化工程と、
前記軟化材にサイジングを施して矯正材とする矯正工程と、
前記矯正材に熱処理を施して析出物が析出された時効材とする時効工程とを備える液相焼結アルミニウム合金部材の製造方法。
A forming step of forming a raw material powder containing an aluminum alloy powder containing at least one element selected from Si, Mg, Cu and Zn, the balance being Al and unavoidable impurities, and forming a formed body;
A sintering step of subjecting the molded body to liquid phase sintering to form a sintered body;
A softening step of heating the sintered body followed by water quenching to form a softening material;
A straightening step of sizing the softening material to make a straightening material,
A method for producing a liquid phase sintered aluminum alloy member, comprising: an aging step in which a heat treatment is performed on the straightening material to form a aging material in which precipitates are deposited.
前記軟化工程は、前記軟化材の伸びが2%以上となる温度で行う請求項1に記載の液相焼結アルミニウム合金部材の製造方法。   The method for producing a liquid phase sintered aluminum alloy member according to claim 1, wherein the softening step is performed at a temperature at which the elongation of the softening material is 2% or more. 前記軟化工程は、455℃以上520℃以下の温度で行う請求項2に記載の液相焼結アルミニウム合金部材の製造方法。   The said softening process is a manufacturing method of the liquid phase sintered aluminum alloy member of Claim 2 performed at the temperature of 455 degreeC or more and 520 degrees C or less. 前記矯正工程は、前記軟化材の硬さHRBが50以下で行う請求項1から請求項3のいずれか1項に記載の液相焼結アルミニウム合金部材の製造方法。   The method of manufacturing a liquid phase sintered aluminum alloy member according to any one of claims 1 to 3, wherein the straightening step is performed with a hardness HRB of the softening material of 50 or less. 前記アルミニウム合金粉末が、Al−Si−Mg−Cu系合金粉末である請求項1から請求項4のいずれか1項に記載の液相焼結アルミニウム合金部材の製造方法。   The method for producing a liquid phase sintered aluminum alloy member according to any one of claims 1 to 4, wherein the aluminum alloy powder is an Al-Si-Mg-Cu-based alloy powder. 請求項1に記載の液相焼結アルミニウム合金部材の製造方法よって製造された液相焼結アルミニウム合金部材。   A liquid phase sintered aluminum alloy member produced by the method for producing a liquid phase sintered aluminum alloy member according to claim 1. Si,Mg,Cu及びZnから選択される少なくとも1種の元素を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金を含む液相焼結アルミニウム合金部材であって、
相対密度が98%以上、
引張強さが200MPa以上である液相焼結アルミニウム合金部材。
A liquid phase sintered aluminum alloy member containing an aluminum alloy containing at least one element selected from Si, Mg, Cu and Zn, the balance being Al and inevitable impurities,
Relative density is 98% or more,
A liquid phase sintered aluminum alloy member having a tensile strength of 200 MPa or more.
面粗度Rzが6以下である請求項7に記載の液相焼結アルミニウム合金部材。   The liquid phase sintered aluminum alloy member according to claim 7, wherein the surface roughness Rz is 6 or less. 直角度が全長の0.1%以下である請求項7又は請求項8に記載の液相焼結アルミニウム合金部材。   The liquid phase sintered aluminum alloy member according to claim 7 or 8, wherein the perpendicularity is 0.1% or less of the total length. 前記アルミニウム合金が、Al−Si−Mg−Cu系合金である請求項7から請求項9のいずれか1項に記載の液相焼結アルミニウム合金部材。   The liquid phase sintered aluminum alloy member according to any one of claims 7 to 9, wherein the aluminum alloy is an Al-Si-Mg-Cu-based alloy. 非金属無機材料からなり、前記アルミニウム合金からなる母相中に分散される硬質粒子を含む請求項7から請求項10のいずれか1項に記載の液相焼結アルミニウム合金部材。   The liquid phase sintered aluminum alloy member according to any one of claims 7 to 10, comprising hard particles made of a nonmetallic inorganic material and dispersed in a parent phase made of the aluminum alloy.
JP2017008747A 2017-01-20 2017-01-20 Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member Active JP6380864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017008747A JP6380864B2 (en) 2017-01-20 2017-01-20 Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008747A JP6380864B2 (en) 2017-01-20 2017-01-20 Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013200780A Division JP6132100B2 (en) 2013-09-27 2013-09-27 Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member

Publications (2)

Publication Number Publication Date
JP2017095808A true JP2017095808A (en) 2017-06-01
JP6380864B2 JP6380864B2 (en) 2018-08-29

Family

ID=58803723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008747A Active JP6380864B2 (en) 2017-01-20 2017-01-20 Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member

Country Status (1)

Country Link
JP (1) JP6380864B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110170656A (en) * 2019-06-05 2019-08-27 南京工业大学 The increasing material manufacturing method of function and service cellular material
CN111360263A (en) * 2020-04-05 2020-07-03 宁波革创新材料科技有限公司 Aluminum alloy and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294833A (en) * 1988-05-24 1989-11-28 Showa Denko Kk Production of aluminum alloy powder sintered compact body
JPH05140706A (en) * 1991-11-14 1993-06-08 Toyota Motor Corp Manufacture of wear resistant and high strength aluminum alloy parts
JPH06212313A (en) * 1992-01-10 1994-08-02 Sky Alum Co Ltd Production of aluminum sintered compact
JP2000283060A (en) * 1999-03-31 2000-10-10 Sumitomo Electric Ind Ltd Gear rotor, gear rotor set, and manufacture thereof
JP2003328053A (en) * 2002-05-14 2003-11-19 Hitachi Powdered Metals Co Ltd Method for manufacturing sintered aluminum alloy
JP2006124779A (en) * 2004-10-28 2006-05-18 Mitsubishi Heavy Ind Ltd Method for forming precipitation strengthening type alloy, and precipitation strengthening type alloy product
JP2006316312A (en) * 2005-05-12 2006-11-24 Hitachi Powdered Metals Co Ltd Method for producing sintered aluminum alloy with high strength and abrasion resistance
JP2008196009A (en) * 2007-02-13 2008-08-28 Toyota Motor Corp Method for manufacturing aluminum alloy material, and heat treatment type aluminum alloy material
JP2009242883A (en) * 2008-03-31 2009-10-22 Sumitomo Electric Sintered Alloy Ltd Liquid phase sintered aluminum alloy

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294833A (en) * 1988-05-24 1989-11-28 Showa Denko Kk Production of aluminum alloy powder sintered compact body
JPH05140706A (en) * 1991-11-14 1993-06-08 Toyota Motor Corp Manufacture of wear resistant and high strength aluminum alloy parts
JPH06212313A (en) * 1992-01-10 1994-08-02 Sky Alum Co Ltd Production of aluminum sintered compact
JP2000283060A (en) * 1999-03-31 2000-10-10 Sumitomo Electric Ind Ltd Gear rotor, gear rotor set, and manufacture thereof
JP2003328053A (en) * 2002-05-14 2003-11-19 Hitachi Powdered Metals Co Ltd Method for manufacturing sintered aluminum alloy
JP2006124779A (en) * 2004-10-28 2006-05-18 Mitsubishi Heavy Ind Ltd Method for forming precipitation strengthening type alloy, and precipitation strengthening type alloy product
JP2006316312A (en) * 2005-05-12 2006-11-24 Hitachi Powdered Metals Co Ltd Method for producing sintered aluminum alloy with high strength and abrasion resistance
JP2008196009A (en) * 2007-02-13 2008-08-28 Toyota Motor Corp Method for manufacturing aluminum alloy material, and heat treatment type aluminum alloy material
JP2009242883A (en) * 2008-03-31 2009-10-22 Sumitomo Electric Sintered Alloy Ltd Liquid phase sintered aluminum alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110170656A (en) * 2019-06-05 2019-08-27 南京工业大学 The increasing material manufacturing method of function and service cellular material
CN111360263A (en) * 2020-04-05 2020-07-03 宁波革创新材料科技有限公司 Aluminum alloy and manufacturing method thereof
CN111360263B (en) * 2020-04-05 2023-08-29 宝鸡市嘉诚稀有金属材料有限公司 Aluminum alloy and manufacturing method thereof

Also Published As

Publication number Publication date
JP6380864B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6132100B2 (en) Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member
JP6465338B2 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy
JP2005330583A (en) Cu-Cr ALLOY AND Cu-Cr ALLOY PRODUCTION METHOD
JP6471287B2 (en) W-Cr-based alloy or mold, electrode or extrusion die produced thereby
KR101909152B1 (en) Heat resistant aluminium base alloy and fabrication method
Ozer The microstructures and mechanical properties of Al-15Si-2.5 Cu-0.5 Mg/(wt%) B4C composites produced through hot pressing technique and subjected to hot extrusion
JP6380864B2 (en) Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member
WO2019107502A1 (en) Hot-die ni-based alloy, hot-forging die employing same, and forged-product manufacturing method
JP5568818B2 (en) Liquid phase sintered aluminum alloy
Liu et al. Metal injection moulding of aluminium alloy 6061 with tin
Jung et al. Tribological properties of carbon fiber-reinforced aluminum composites processed by spark plasma sintering
JP6837542B2 (en) Copper alloy plate material with excellent heat resistance and heat dissipation
CN113798488B (en) Aluminum-based powder metallurgy material and preparation method thereof
JP6230885B2 (en) α + β type titanium alloy and method for producing the same
RU2616316C1 (en) Conductive extra low interstitial aluminium alloy and method of its production
WO2018181107A1 (en) Sintered aluminum alloy material and method for producing same
JP7321601B1 (en) Magnesium alloy, magnesium alloy compact, method for producing the same, and magnesium alloy member
JP2013227658A (en) Sliding member and manufacturing method of sliding member
WO2022079964A1 (en) Compressor component for transport machine, and method for manufacturing same
Ehsae et al. The effect of Al2O3 content on the microstructure and properties of Al/Al2O3 functionally graded material
Samuel et al. Analysis of Fe-, Cu-, Mg-and Sr-Based Phases in Al–Si Alloys: Role of P Addition
Heyduk et al. Wytwarzanie drutu spawalniczego do spawania kształtowników ze stopów aluminium o podwyższonej zawartości magnezu za pomocą wyciskania na zimno metodą KOBO
CA3239799A1 (en) Hot deformation processing of a precipitation hardening powder metal alloy
CA3239779A1 (en) Precipitation hardening powder metal composition
JP2022063498A (en) Aluminum alloy material having excellent mechanical properties and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180719

R150 Certificate of patent or registration of utility model

Ref document number: 6380864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250