JPH05140706A - Manufacture of wear resistant and high strength aluminum alloy parts - Google Patents

Manufacture of wear resistant and high strength aluminum alloy parts

Info

Publication number
JPH05140706A
JPH05140706A JP3326478A JP32647891A JPH05140706A JP H05140706 A JPH05140706 A JP H05140706A JP 3326478 A JP3326478 A JP 3326478A JP 32647891 A JP32647891 A JP 32647891A JP H05140706 A JPH05140706 A JP H05140706A
Authority
JP
Japan
Prior art keywords
aluminum alloy
treatment
strength
wear resistance
alloy parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3326478A
Other languages
Japanese (ja)
Other versions
JP2909569B2 (en
Inventor
Shuntaro Sudo
俊太郎 須藤
Akira Manabe
明 真鍋
Yoshimasa Okubo
喜正 大久保
Hideo Mizukoshi
秀雄 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Toyota Motor Corp
Original Assignee
Sumitomo Light Metal Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Toyota Motor Corp filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP32647891A priority Critical patent/JP2909569B2/en
Publication of JPH05140706A publication Critical patent/JPH05140706A/en
Application granted granted Critical
Publication of JP2909569B2 publication Critical patent/JP2909569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To furthermore improve the strength and wear resistance of forged aluminum alloy parts. CONSTITUTION:An alloy obtd. by dispersing 0.2 to 5vol.% hard grains having 1 to 10mum average grain diameter and >=1000 Vickers hardness into a matrix material having a compsn. constituted of, by weight, 2.5 to 5.5% Cu, 0.3 to 2.5% Mg, 0.1 to 0.19% Si, 0.3 to 1.0% of one or two kinds of Mn and Cr and the balance Al with inevitable impurities is subjected to soln. treatment, is thereafter subjected to plastic working at a room temp. and is furthermore subjected to aging treatment to manufacture wear resistant and high strength aluminum alloy parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性高強度アルミ
ニウム合金部品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a wear resistant high strength aluminum alloy part.

【0002】[0002]

【従来の技術】近年、エンジン部品を従来のスチールに
代えて、アルミニウム合金を用いて作成し、軽量化して
燃費を向上する検討が盛んに行われている。しかし、特
にバルブリフター、バルブスプリングリテーナ等のエン
ジン部品は、高温強度・耐摩耗性が必要とされるため、
現在までスチールが主として用いられてきた。これらの
部品を軽量化するため、アルミニウム合金を使用する
と、通常のアルミニウム合金では強度・耐摩耗性が不足
する。
2. Description of the Related Art In recent years, engine parts have been actively made in place of conventional steel and made of aluminum alloy to reduce weight and improve fuel efficiency. However, engine parts such as valve lifters and valve spring retainers, in particular, require high temperature strength and wear resistance, so
Until now, steel has been mainly used. When an aluminum alloy is used to reduce the weight of these parts, the strength and wear resistance of ordinary aluminum alloys are insufficient.

【0003】耐摩耗性に関しては、その不足分を補うた
め、アルミニウム合金中にセラミック粒子を複合した材
料が開発されている(例えば特開昭64−56844
号)が、強度に関しては、それを充分に高める技術は確
立されていない。例えば、合金組成を変えたり、熱処理
(通常の溶体化時効処理:T6 処理)の最適条件を探究
したりしてアルミニウム合金の強度を向上させる試みが
為されてきたが、画期的に強度を向上させる手段は未だ
見出されていない。
Regarding the wear resistance, in order to make up for the deficiency, a material in which ceramic particles are compounded in an aluminum alloy has been developed (for example, JP-A-64-56844).
No.), but with respect to strength, a technique for sufficiently enhancing it has not been established. For example, attempts have been made to improve the strength of aluminum alloys by changing the alloy composition and exploring the optimum conditions for heat treatment (normal solution aging treatment: T6 treatment). No means have yet been found to improve it.

【0004】[0004]

【発明が解決しようとする課題】アルミニウムマトリッ
クス中に占める他種金属の割合を高めると強度を向上さ
せることも可能であるが、そうするとアルミニウム合金
の靱性が低下し、鍛造等による成形が困難となる。本発
明は、以上の点に鑑み為されたもので、その解決しよう
とする課題は、鍛造によって製造され得る一段と強度・
耐摩耗性が向上したアルミニウム合金部品の製造方法を
提供することである。
Although it is possible to improve the strength by increasing the proportion of the other metal in the aluminum matrix, the toughness of the aluminum alloy is lowered and it becomes difficult to form the alloy by forging. .. The present invention has been made in view of the above points, and a problem to be solved by the present invention is to further improve strength and strength that can be produced by forging.
It is an object of the present invention to provide a method for manufacturing an aluminum alloy part having improved wear resistance.

【0005】[0005]

【課題を解決するための手段】本発明の耐摩耗性高強度
アルミ合金部品の製造方法は、重量%で、Cu:2.5〜
5.5 %、Mg:0.3 〜2.5 %、Si:0.1 〜0.19%、M
nとCrの1種又は2種:0.3 〜1.0 %、残部:不可避
不純物を含むAl;からなる組成のマトリックス材中に
平均粒子径1〜10μ,ビッカース硬さ1000以上の硬質粒
子を0.2 〜5体積%分散させた合金を溶体化処理した
後、室温にて塑性加工を施し、さらに時効処理を施すこ
とを特徴とする。
The method for producing a wear-resistant high-strength aluminum alloy part according to the present invention comprises, in weight%, Cu: 2.5 to 2.5.
5.5%, Mg: 0.3-2.5%, Si: 0.1-0.19%, M
0.2 to 5 hard particles having an average particle diameter of 1 to 10 μ and a Vickers hardness of 1000 or more in a matrix material having a composition of one or two of n and Cr: 0.3 to 1.0%, the balance: Al containing inevitable impurities; After the solution treatment of the alloy dispersed in volume%, the alloy is characterized by being subjected to plastic working at room temperature and further subjected to an aging treatment.

【0006】なお、本発明のアルミニウム合金部品の製
造方法において施される、溶体化処理→室温での塑
性加工(冷間処理)→時効処理 の連続処理は、アル
ミニウム合金の処理質別記号で規定されているT8処理
に相当する。以下、本発明の構成要件について説明す
る。金属の%は重量%である。
The continuous treatment of solution treatment → plasticizing at room temperature (cold treatment) → aging treatment, which is performed in the method for manufacturing an aluminum alloy part of the present invention, is defined by the aluminum alloy treatment quality symbol. This corresponds to the T8 processing performed. The constituent features of the present invention will be described below. Metal percentages are weight percentages.

【0007】A.化学成分の限定理由は次の通りであ
る。 (1) Cu含有量=2.5 〜5.5 %の理由:CuはMgと共
存してAl−Cu−Mg系析出中間層(S′)を形成す
る。このS′が上記T8処理でアルミニウムマトリック
ス中に微細に分散するため、合金の室温ないし高温での
強度が向上する。Cu含有量が2.5 %未満ではその効果
が小さく、5.5 %を越えると塑性変形能が低下するた
め、T8処理時に強く加工すると割れ等が発生し易くな
る。 (2) Mg含有量=0.3 〜2.5 %の理由:MgはCuと共
存してAl−Cu−Mg系析出中間層(S′)を形成す
る。このS′が上記T8処理でアルミニウムマトリック
ス中に微細に分散するため、合金の室温ないし高温での
強度が向上する。Mg含有量が0.3 %未満ではその効果
が小さく、2.5 %を越えると塑性変形能が低下するた
め、T8処理時に強く加工すると割れ等が発生し易くな
る。 (3) Si含有量=0.1 〜0.19%の理由:Siの添加によ
り上記S′が微細に形成され、合金の室温ないし高温で
の強度が向上する。その量が0.1 %未満では効果が認め
られず、0.19%を越えると一部のSiが粒界上に析出す
るため、T8処理時に強く加工すると割れ等が発生し易
くなる。 (4) MnとCrの1種又は2種の含有率=0.3 〜1.0 %
の理由:Mn及び/又はCrは、Siと共存して再結晶
組織を微細にさせる作用をなす。この結果、T8処理で
合金の室温ないし高温での強度が向上し、同時に延性・
靱性も向上する。延性・靱性向上の効果は、0.5 〜0.6
%の時最も強く現れ、0.3 %未満でもまた1.0 %を越え
ても、その効果は不十分である。さらに0.3 %未満のと
きは強度の向上が認められない。
A. The reasons for limiting the chemical components are as follows. (1) Reason for Cu content = 2.5 to 5.5%: Cu coexists with Mg to form an Al—Cu—Mg based precipitation intermediate layer (S ′). Since this S'is finely dispersed in the aluminum matrix by the above T8 treatment, the strength of the alloy at room temperature or high temperature is improved. If the Cu content is less than 2.5%, its effect is small, and if it exceeds 5.5%, the plastic deformability decreases, so that if it is strongly worked during T8 treatment, cracks and the like are likely to occur. (2) Reason for Mg content = 0.3 to 2.5%: Mg coexists with Cu to form an Al—Cu—Mg based precipitation intermediate layer (S ′). Since this S'is finely dispersed in the aluminum matrix by the above T8 treatment, the strength of the alloy at room temperature or high temperature is improved. If the Mg content is less than 0.3%, its effect is small, and if it exceeds 2.5%, the plastic deformability decreases, so if it is strongly worked during T8 treatment, cracks and the like are likely to occur. (3) Reason for Si content = 0.1 to 0.19%: The above S'is finely formed by the addition of Si, and the strength of the alloy at room temperature or high temperature is improved. If the amount is less than 0.1%, no effect is observed, and if it exceeds 0.19%, some of the Si precipitates on the grain boundaries. Therefore, if it is strongly worked during T8 treatment, cracks and the like are likely to occur. (4) Content of one or two of Mn and Cr = 0.3 to 1.0%
Reason for: Mn and / or Cr coexists with Si to make the recrystallized structure finer. As a result, the strength of the alloy at room temperature or high temperature is improved by T8 treatment, and at the same time, ductility and
The toughness is also improved. The effect of improving ductility and toughness is 0.5 to 0.6
%, The effect is most pronounced, and the effect is insufficient at less than 0.3% and more than 1.0%. Further, if it is less than 0.3%, no improvement in strength is observed.

【0008】B.硬質粒子について (1) 使用できる硬質粒子の例:耐摩耗性を大幅に向上す
るためにアルミニウムに添加できる硬質粒子の例とし
て、炭化珪素、窒化珪素、ジルコニア、アルミナ、ジル
コン等のセラミック粒子、フェロモリブデン等の金属粒
子、TiAl、Ni3 Al等の金属間化合物の如き硬質
粒子を挙げることができる。 (2) ビッカース硬さが1000以上必要な理由:硬さが
ビッカース硬さ1000未満では、充分な耐摩耗性が得
られないばかりでなくT8処理時粒子の塑性変形及び粒
子の破壊が生じ転位導入が加速されないため強化作用が
充分でないことから1000以上とした。 (3) 平均粒子径が1〜10μでなければならない理由:
平均粒子径が10μを越えると合金自体の耐摩耗性は向
上するが相手材を摩耗させる。さらに平均粒子径が1μ
未満では粒子同士が凝集してしまい、T8処理時、凝集
部位から割れ等が発生する。
B. About hard particles (1) Examples of hard particles that can be used: Examples of hard particles that can be added to aluminum to significantly improve wear resistance include ceramic particles such as silicon carbide, silicon nitride, zirconia, alumina, zircon, and ferro Examples thereof include metal particles such as molybdenum and hard particles such as intermetallic compounds such as TiAl and Ni 3 Al. (2) Reason why Vickers hardness of 1000 or more is required: When the Vickers hardness is less than 1000, not only sufficient wear resistance cannot be obtained, but also plastic deformation of particles and fracture of particles occur during T8 treatment, and dislocations are introduced. Was not accelerated and the strengthening effect was not sufficient, so it was set to 1000 or more. (3) Reason why the average particle size must be 1 to 10 μ:
If the average particle size exceeds 10 μ, the wear resistance of the alloy itself is improved, but the mating material is worn. Furthermore, the average particle size is 1μ
If it is less than the above, the particles are aggregated with each other, and cracks or the like are generated from the aggregated portion during the T8 treatment.

【0009】C.T8処理における好ましい条件は次の
通りである。 (C-1) 溶体化処理 最初の溶体化処理は470〜510℃で0.2〜5時間
行うのが好ましい。この範囲から遠ざかるほど、強度・
耐摩耗性の向上効果は小さくなる。 (C-2) 室温での塑性加工 溶体化処理後のこの冷間加工は、1〜10%の加工率
(抽伸加工時の断面減少率)で行うのが好ましい。加工
率が1%未満では強度・耐摩耗性の向上効果が得られ
ず、10%を越えると加工時に割れ等が発生する。な
お、溶体化処理前に多少の塑性加工を施しても、特性は
損なわれない。 (C-3) 最後の時効処理は150〜200℃で5〜15時
間行うのが好ましい。この範囲から遠ざかるほど、強度
・耐摩耗性の向上効果は小さくなる。
C. The preferred conditions for the T8 treatment are as follows. (C-1) Solution Treatment The first solution treatment is preferably performed at 470 to 510 ° C. for 0.2 to 5 hours. The further away from this range the strength
The effect of improving wear resistance is reduced. (C-2) Plastic Working at Room Temperature This cold working after the solution treatment is preferably carried out at a working rate of 1 to 10% (area reduction rate during drawing). If the working rate is less than 1%, the effect of improving strength and wear resistance cannot be obtained, and if it exceeds 10%, cracks and the like occur during working. The properties are not impaired even if some plastic working is performed before the solution treatment. (C-3) The final aging treatment is preferably performed at 150 to 200 ° C. for 5 to 15 hours. The further away from this range, the smaller the effect of improving strength and wear resistance.

【0010】[0010]

【作用】本発明の上記構成によれば、以下のような作用
により、アルミニウム合金部品の強度と耐摩耗性が向上
する。 (1) 強度への作用 本発明の如く硬質粒子を少量添加する複合材料の場合、
溶体化→時効処理(T6処理)して得られた従来品で
は、硬質粒子が一般的な介在物と同様の作用しか奏しな
いため、硬質粒子の添加による耐摩耗性向上に強度向上
が伴わない。しかし、本発明では、冷間加工中の塑性流
動による転位導入が塑性変形しない粒子周辺で特に加速
されるため、粒子周辺に高密度な転位ネットワークが形
成される。その結果、冷間加工後の時効処理によりAl
−Cu−Mg系析出中間層(S′)がそのネットワーク
上に微細に析出するため強度が向上する。 (2) 耐摩耗性への作用 本発明の製造方法により得られたアルミニウム合金部品
では、冷間加工による転位の導入により硬質粒子がマト
リックス材にしっかり保持されているため、従来のT6
品でのように高面圧下で硬質粒子が脱落するようなこと
は起こらない。そのため、高面圧下で脱落した硬質粒子
が相互に摺動するアルミニウム合金部品と相手材の摩耗
を加速させることは無くなり、アルミニウム合金部品の
耐摩耗性がより一層向上する。
According to the above construction of the present invention, the strength and wear resistance of the aluminum alloy component are improved by the following actions. (1) Effect on strength In the case of a composite material containing a small amount of hard particles as in the present invention,
In the conventional product obtained by solutionizing → aging treatment (T6 treatment), hard particles have only the same effect as general inclusions, and therefore the addition of hard particles does not improve the wear resistance and the strength. .. However, in the present invention, the introduction of dislocations due to plastic flow during cold working is accelerated particularly in the vicinity of the grains that are not plastically deformed, so that a high-density dislocation network is formed around the grains. As a result, the aging treatment after cold working resulted in Al
Since the -Cu-Mg-based precipitation intermediate layer (S ') is finely precipitated on the network, the strength is improved. (2) Effect on wear resistance In the aluminum alloy part obtained by the production method of the present invention, since the hard particles are firmly held in the matrix material by the introduction of dislocations by cold working, the conventional T6
Hard particles do not fall off under high surface pressure as in products. Therefore, the hard particles that have fallen off under high surface pressure do not accelerate the wear of the aluminum alloy component and the mating material that slide with each other, and the wear resistance of the aluminum alloy component is further improved.

【0011】[0011]

【実施例】以下、本発明の実施例を比較例とともに説明
するが、本発明は下記実施例により限定されるものでは
ない。
EXAMPLES Examples of the present invention will be described below together with comparative examples, but the present invention is not limited to the following examples.

【0012】実施例1〜3及び比較例1〜7として、下
記表2に示すような硬さの硬質粒子を含有する下記表1
に示す組成の各種アルミニウム合金を、次のようにして
製造した。すなわち、先ず空気噴霧法により各種アルミ
ニウム合金粉末を製造し、149μ以下に分級した。次
いでこの合金粉末に所定の粒径及び量の硬質粒子を添加
し、ボールミルによって混合した。この混合粉末を外径
2.5インチのアルミニウム缶に装入した後、缶内の空
気及び粉末表面に吸着している水分を取り除くため48
0℃にて1時間の真空脱ガス処理を施し、これを押出用
ビレットとした。このビレットを400℃で直径18m
mに押出し(押出比15)、得られた押出材からT8処
理品又はT6処理品を製造した。なお、T8処理として
は、495℃にて1時間加熱後水冷する溶体化処理後、
所定の塑性加工を施し、直ちに185℃にて8時間の時
効処理を施した。またT6処理としては、495℃にて
1時間加熱後水冷する溶体化処理後直ちに185℃にて
8時間の時効処理を施した。以上のようにT8又はT6
処理した押出材から、機械加工により引張試験片を製造
し、室温の引張試験に供試した。結果を表1に示す。
As Examples 1 to 3 and Comparative Examples 1 to 7, the following Table 1 containing hard particles having a hardness as shown in Table 2 below.
Various aluminum alloys having the composition shown in were produced as follows. That is, first, various aluminum alloy powders were manufactured by the air atomization method and classified to 149 μ or less. Then, hard particles having a predetermined particle size and amount were added to this alloy powder and mixed by a ball mill. After this mixed powder was charged into an aluminum can having an outer diameter of 2.5 inches, 48 in order to remove the air in the can and the moisture adsorbed on the powder surface.
Vacuum degassing treatment was performed at 0 ° C. for 1 hour, and this was used as an extrusion billet. This billet has a diameter of 18 m at 400 ° C.
It was extruded into m (extrusion ratio 15), and a T8 treated product or a T6 treated product was manufactured from the obtained extruded material. As the T8 treatment, after the solution treatment of heating at 495 ° C. for 1 hour and then cooling with water,
Predetermined plastic working was performed, and immediately aging treatment was performed at 185 ° C. for 8 hours. As the T6 treatment, an aging treatment was performed at 185 ° C. for 8 hours immediately after the solution treatment of heating at 495 ° C. for 1 hour and then water cooling. As described above, T8 or T6
Tensile test pieces were manufactured from the treated extruded material by machining and subjected to a tensile test at room temperature. The results are shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【表2】 [Table 2]

【0014】実施例1で製造した試験片の金属組織の電
子顕微鏡写真を図1として、そして比較例1で製造した
試験片のそれを図2として示す。図1と図2の比較か
ら、実施例1のT8処理品ではS′が微細に分散してい
ることがわかる。表1から明らかなように、本発明の実
施例1〜3により製造された試験片は、いずれも高い強
度を示している。これに対し、比較例1の試験片は、通
常の熱処理であるため強度が充分ではなく、比較例2及
び3の試験片は硬質粒子を添加していないため強度が低
く、比較例4の試験片はCu添加量が少なくMg添加量
も少ないため強度が低く、比較例5の試験片は添加した
粒子の硬さが低いため、強度が低い。また、比較例6の
試験片はCu添加量が多いため、さらに比較例7の試験
片はT8処理時の加工率が高いため割れが発生した。
An electron micrograph of the metal structure of the test piece produced in Example 1 is shown in FIG. 1, and that of the test piece produced in Comparative Example 1 is shown in FIG. From the comparison between FIG. 1 and FIG. 2, it can be seen that S ′ is finely dispersed in the T8 treated product of Example 1. As is clear from Table 1, the test pieces manufactured according to Examples 1 to 3 of the present invention all exhibit high strength. On the other hand, the test piece of Comparative Example 1 is not sufficiently strong because it is a normal heat treatment, and the test pieces of Comparative Examples 2 and 3 have low strength because no hard particles are added. The piece has low strength because the amount of Cu added is small and the amount of Mg added is small, and the test piece of Comparative Example 5 has low strength because the added particles have low hardness. Further, the test piece of Comparative Example 6 contained a large amount of Cu, and the test piece of Comparative Example 7 had a high processing rate during T8 treatment, and thus cracking occurred.

【0015】[0015]

【発明の効果】本発明によれば、鍛造性に優れかつ耐摩
耗性と特に強度が一段と向上したアルミニウム合金部品
を製造することができる。従って、例えば従来のスチー
ル製部品と置き換え得るアルミニウム合金製のバルブリ
フター、バルブスプリングリテーナー等のエンジン部品
を製造することが可能となり、エンジンの軽量化・高性
能化に貢献できる。
According to the present invention, it is possible to manufacture an aluminum alloy part having excellent forgeability and further improved wear resistance and especially strength. Therefore, for example, it becomes possible to manufacture engine parts such as valve lifters and valve spring retainers made of aluminum alloy that can replace conventional steel parts, which can contribute to weight reduction and high performance of the engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一実施例により製造されたアルミ
ニウム合金部品の金属組織の顕微鏡写真である。
FIG. 1 is a photomicrograph of the metal structure of an aluminum alloy part manufactured by an embodiment of the method of the present invention.

【図2】従来方法により製造されたアルミニウム合金部
品の金属組織の顕微鏡写真である。
FIG. 2 is a micrograph of a metal structure of an aluminum alloy part manufactured by a conventional method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大久保 喜正 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 水越 秀雄 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshimasa Okubo 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industry Co., Ltd. (72) Hideo Mizukoshi 5-11-3 Shimbashi, Minato-ku, Tokyo No. Sumitomo Light Metal Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Cu:2.5 〜5.5 %、Mg:
0.3 〜2.5 %、Si:0.1 〜0.19%、MnとCrの1種
又は2種:0.3 〜1.0 %、残部:不可避不純物を含むA
l;からなる組成のマトリックス材中に平均粒子径1〜
10μ,ビッカース硬さ1000以上の硬質粒子を0.2 〜5体
積%分散させた合金を溶体化処理した後、室温にて塑性
加工を施し、さらに時効処理を施すことを特徴とする耐
摩耗性高強度アルミ合金部品の製造方法。
1. Cu: 2.5 to 5.5% by weight, Mg:
0.3 to 2.5%, Si: 0.1 to 0.19%, one or two types of Mn and Cr: 0.3 to 1.0%, balance: A containing unavoidable impurities
1; average particle size 1 to 1 in a matrix material having a composition of
High wear resistance and high strength characterized by subjecting an alloy in which hard particles of 10μ and Vickers hardness of 1000 or more are dispersed in 0.2 to 5% by volume to solution treatment, plastic working at room temperature, and further aging treatment. Aluminum alloy parts manufacturing method.
JP32647891A 1991-11-14 1991-11-14 Manufacturing method of wear resistant high strength aluminum alloy parts Expired - Fee Related JP2909569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32647891A JP2909569B2 (en) 1991-11-14 1991-11-14 Manufacturing method of wear resistant high strength aluminum alloy parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32647891A JP2909569B2 (en) 1991-11-14 1991-11-14 Manufacturing method of wear resistant high strength aluminum alloy parts

Publications (2)

Publication Number Publication Date
JPH05140706A true JPH05140706A (en) 1993-06-08
JP2909569B2 JP2909569B2 (en) 1999-06-23

Family

ID=18188262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32647891A Expired - Fee Related JP2909569B2 (en) 1991-11-14 1991-11-14 Manufacturing method of wear resistant high strength aluminum alloy parts

Country Status (1)

Country Link
JP (1) JP2909569B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2334966A (en) * 1998-03-05 1999-09-08 Aeromet International Plc An aluminium-copper alloy
JP2001032033A (en) * 1999-07-23 2001-02-06 Toshiba Tungaloy Co Ltd Friction material
CN103114230A (en) * 2013-02-22 2013-05-22 江阴市创新气门嘴有限公司 Special alloy inflating valve for TPMS (Tire Pressure Monitoring System) and preparation method of special alloy inflating valve
JP2015067843A (en) * 2013-09-27 2015-04-13 住友電工焼結合金株式会社 Method for producing liquid phase sintered aluminum alloy member and liquid phase sintered aluminum alloy member
JP2017095808A (en) * 2017-01-20 2017-06-01 住友電工焼結合金株式会社 Manufacturing method of liquid phase sintered aluminum alloy member and liquid phase sintered aluminum alloy member
DE112004000995B4 (en) 2003-06-06 2021-12-16 Corus Aluminium Walzprodukte Gmbh Highly damage tolerant aluminum alloy product, especially for aerospace applications

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2334966A (en) * 1998-03-05 1999-09-08 Aeromet International Plc An aluminium-copper alloy
GB2334966B (en) * 1998-03-05 2003-03-05 Aeromet Internat Plc Cast aluminium-copper alloy
JP2001032033A (en) * 1999-07-23 2001-02-06 Toshiba Tungaloy Co Ltd Friction material
DE112004000995B4 (en) 2003-06-06 2021-12-16 Corus Aluminium Walzprodukte Gmbh Highly damage tolerant aluminum alloy product, especially for aerospace applications
CN103114230A (en) * 2013-02-22 2013-05-22 江阴市创新气门嘴有限公司 Special alloy inflating valve for TPMS (Tire Pressure Monitoring System) and preparation method of special alloy inflating valve
JP2015067843A (en) * 2013-09-27 2015-04-13 住友電工焼結合金株式会社 Method for producing liquid phase sintered aluminum alloy member and liquid phase sintered aluminum alloy member
CN105579168A (en) * 2013-09-27 2016-05-11 住友电工烧结合金株式会社 Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member
CN105579168B (en) * 2013-09-27 2018-08-28 住友电工烧结合金株式会社 The manufacturing method and liquid-phase sintering aluminium alloy part of liquid-phase sintering aluminium alloy part
US10427216B2 (en) 2013-09-27 2019-10-01 Sumitomo Electric Sintered Alloy, Ltd. Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member
JP2017095808A (en) * 2017-01-20 2017-06-01 住友電工焼結合金株式会社 Manufacturing method of liquid phase sintered aluminum alloy member and liquid phase sintered aluminum alloy member

Also Published As

Publication number Publication date
JP2909569B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JP4222157B2 (en) Titanium alloy with improved rigidity and strength
JP3602102B2 (en) Hot tool steel
US20140007995A1 (en) Cobalt-base alloy with high heat resistance and high strength and process for producing the same
JPH05345945A (en) Aluminum alloy
JPH02258935A (en) Manufacture of 7000 series aluminum alloy and composite material, which has high mechanical strength and good ductility and consists of discontinuous reinforcement and matrix formed from said alloy, by spray up method
JPH10204566A (en) Aluminum alloy material excellent in anodic oxidation treatment property and having high strength and wear resistance, and its production
CN111349827B (en) Aluminum alloy for compressor sliding member, forged product of compressor sliding member, and method for producing forged product of compressor sliding member
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
JP2909569B2 (en) Manufacturing method of wear resistant high strength aluminum alloy parts
WO1997025449A1 (en) Wear-resistant aluminum alloy and compressor piston formed therefrom
JP3424156B2 (en) Manufacturing method of high strength aluminum alloy member
JP2007169699A (en) High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component
JPH11293374A (en) Aluminum alloy with resistance to heat and wear, and its production
JP2003277867A (en) Aluminum powder alloy having excellent high temperature strength, method of producing piston for internal combustion engine and piston for internal combustion engine
JP2776645B2 (en) High-strength wear-resistant aluminum alloy with excellent cold forgeability
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JP7318284B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts
Lin et al. Effects of conform continuous extrusion and heat treatment on the microstructure and mechanical properties of Al–13Si–7.5 Cu–1Mg alloy
JP2907389B2 (en) Aluminum alloy material for wear resistance processing with excellent toughness
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JPH06192780A (en) High heat and wear resistance aluminum alloy and powder thereof
JP3179095B2 (en) Valve train members for internal combustion engines
JP3903412B2 (en) Aluminum-lithium alloy
JP7318282B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts
JPH0557346B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees