JP6471287B2 - W-Cr-based alloy or mold, electrode or extrusion die produced thereby - Google Patents
W-Cr-based alloy or mold, electrode or extrusion die produced thereby Download PDFInfo
- Publication number
- JP6471287B2 JP6471287B2 JP2017007920A JP2017007920A JP6471287B2 JP 6471287 B2 JP6471287 B2 JP 6471287B2 JP 2017007920 A JP2017007920 A JP 2017007920A JP 2017007920 A JP2017007920 A JP 2017007920A JP 6471287 B2 JP6471287 B2 JP 6471287B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- alloy
- phase
- less
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Extrusion Of Metal (AREA)
- Forging (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、W−Cr基合金、またはそれを用いたアルミニウム合金製の各種部品の製造に用いられるダイキャスト金型、および黄銅などの熱間押出しダイス、レンズ金型の周辺部材、S45Cやステンレス等の電気加熱鍛造で用いる台電極などの工具に関する。 The present invention relates to a die-casting die used for manufacturing various parts made of a W—Cr base alloy or an aluminum alloy using the same, a hot extrusion die such as brass, a peripheral member of a lens die, S45C and stainless steel. The present invention relates to a tool such as a base electrode used in electric heating forging.
アルミニウム合金製の各種部品の製造に用いられるダイキャスト金型、黄銅などの棒材の熱間押出しダイス、ガラスレンズ成形用の金型の周辺部材、S45Cおよびステンレス等用の電気加熱鍛造で用いる台電極などに使用される素材には、高温での機械的性質と耐酸化性に優れることなどが要求され、本発明者らが発明した新しいW基合金が用いられている(特許文献1〜3)。 Die-casting dies used for manufacturing various parts made of aluminum alloys, hot extrusion dies for rods such as brass, peripheral members of dies for glass lens molding, pedestal used for electric heating forging for S45C, stainless steel, etc. Materials used for electrodes and the like are required to have excellent mechanical properties and oxidation resistance at high temperatures, and new W-based alloys invented by the present inventors are used (Patent Documents 1 to 3). ).
特許文献1、2にある、アルミニウム合金の各種部品の製造に用いられる本発明者ら発明のW基合金製のダイキャスト金型、およびガラスレンズ成形用金型の周辺部材は、熱膨張係数が小さいことに加えて耐酸化性に優れることから熱亀裂の発生が少なく、長寿命となり好評である。しかし、特許文献1、2のW基合金は、真空焼結により作製されるが、これは拡散ポンプやメタルヒーターが必要になるためコストが高くなる欠点がある。 The peripheral members of the die-casting mold made of the W-based alloy of the present inventors and used for the production of various parts of aluminum alloys in Patent Documents 1 and 2 have a coefficient of thermal expansion. In addition to being small, it has excellent oxidation resistance, so there are few occurrences of thermal cracks and it has a long service life and is popular. However, the W-based alloys of Patent Documents 1 and 2 are produced by vacuum sintering, but this requires a diffusion pump and a metal heater, which increases the cost.
特許文献3にある、S45Cやステンレス等の各種鋼材部品の製造に用いられる、本発明者ら発明の新しいW基合金製の電気加熱鍛造用の台電極は、優れた耐酸化性に加えて900℃以上での高温硬さが熱間ダイス鋼のSKD61はもちろん、熱間でよく用いられるWC−Cr3C2−Co−Ni系超硬合金と比べても高いことから、長寿命となり好評である。 The base electrode for electric heating forging made of the new W-based alloy of the present inventors used in the manufacture of various steel parts such as S45C and stainless steel in Patent Document 3 is 900 in addition to excellent oxidation resistance. High-temperature hardness above ℃ is higher than SKD61 of hot die steel, as well as WC-Cr 3 C 2 -Co-Ni cemented carbide often used hot, so it has a long service life and is popular. is there.
そこで、これを黄銅等の棒材成形用の熱間押出しダイスに用いると、高温で変形し難いため、精度の高い押出しができて好評である。しかし、この場合は、寿命形態が割れであるので、より割れ難い、高硬度で高強度の素材があると、より長寿命化できるので、そのような素材が求められている。 Therefore, when this is used in a hot extrusion die for forming a bar material such as brass, it is difficult to be deformed at a high temperature, so that it is possible to perform extrusion with high accuracy and is popular. However, in this case, since the life form is cracked, if there is a material that is harder to break and has a high hardness and high strength, the life can be further extended, so such a material is required.
本発明は、段落0005および段落0007に記述したような諸問題を解決するためになされたもので、上記のW基合金よりも、低コストで作製でき、かつ、破壊しにくい新素材を提供しようとするものである。 The present invention has been made to solve the problems as described in paragraphs 0005 and 0007, and is intended to provide a new material that can be manufactured at a lower cost and is less likely to break than the above W-based alloys. It is what.
本発明者らによる特許文献1〜3のW基合金はW以外にNi、Fe、CoおよびCrからなる。主成分のWが75〜98mass%、Ni、Feおよび/またはCoの3種のFe族合計量が1〜15mass%で、Cr量が1〜20mass%、および不可避不純物からなる組成である。 In addition to W, the W-based alloys of Patent Documents 1 to 3 by the present inventors are made of Ni, Fe, Co, and Cr. The main component W is 75 to 98 mass%, the total amount of the three Fe groups of Ni, Fe and / or Co is 1 to 15 mass%, the Cr amount is 1 to 20 mass%, and the composition is inevitable impurities.
ここでFeとCoの合計量はNi、FeおよびCoの3種の合計量の0〜30mass%である。また、Wの10mass%以下が、Ta、Ti、および/またはMoで置換されたものも含まれている。これらは真空焼結で作製される。 Here, the total amount of Fe and Co is 0 to 30 mass% of the total amount of three types of Ni, Fe and Co. Moreover, the thing by which 10 mass% or less of W was substituted by Ta, Ti, and / or Mo is also contained. These are produced by vacuum sintering.
まず、特許文献1〜3のW基合金との比較として、合金組織に及ぼす諸元素添加の影響を調べることとした。表1は、Ni、Fe、Cr合計量を特許文献1〜3のW基合金におけるもの(1〜15mass%)より多くし(16.2〜17.5mass%)、後掲の段落0014に記載する理由によりTaの代わりに新たにNbを添加し、添加量を変化させたモデル試料の配合組成を示す。 First, as a comparison with the W-based alloys of Patent Documents 1 to 3, the influence of various element additions on the alloy structure was examined. In Table 1, the total amount of Ni, Fe, and Cr is larger than that in the W-based alloys (1 to 15 mass%) of Patent Documents 1 to 3 (16.2 to 17.5 mass%), and described in paragraph 0014 below. Therefore, the compound composition of the model sample in which Nb is newly added instead of Ta and the addition amount is changed is shown.
各原料粉末を表1の組成に配合し、混合粉砕、冷間成形後、特許文献1〜3とは異なり低コストとなる、普通の真空ポンプとカーボンヒーターの炉を用いて、80kPaAr雰囲気焼結を1490℃−2h行い、4×8×25mm3の試験片を作製した。作製した4種のモデル合金は試料M1〜M4と以下記す。焼結温度と時間を1490℃−2hとしたのは、厚肉製品にも対応できる条件を選択したものである。 Each raw material powder is blended into the composition shown in Table 1, mixed and pulverized, and cold formed, and at low cost unlike Patent Documents 1 to 3, using an ordinary vacuum pump and carbon heater furnace, sintering at 80 kPa Ar atmosphere. Was performed at 1490 ° C. for 2 hours to prepare a 4 × 8 × 25 mm 3 test piece. The four types of model alloys produced are referred to as samples M1 to M4 below. The sintering temperature and time were set to 1490 ° C.−2 h, which is a condition that can be applied to a thick product.
ここで、Taの代わりにNbを選択したのは、特許文献1〜3に示されるTaは走査型電子顕微鏡付属のエネルギー分散型X線分析において、TaのLαピークとWのLαピークとがほぼ重なることから、試料組成の試料表面からの距離依存性および各構成相の組成分析が困難なことに対し、Nbは重ならないため、それらの組成分析が容易であることによる。 Here, Nb was selected in place of Ta because Ta shown in Patent Documents 1 to 3 shows that in the energy dispersive X-ray analysis attached to the scanning electron microscope, the Ta Lα peak and the W Lα peak are almost equal. Since they overlap, the distance dependency of the sample composition from the sample surface and the composition analysis of each constituent phase are difficult. On the other hand, Nb does not overlap, so that the composition analysis is easy.
さらに、NbとTaは周期表でいずれも5族に属することに起因して化学特性が非常に近いこと、またNb粉末はTa粉末に比べて価格が約1/2と低くかつ地殻内存在量は原子数で約20倍と大きいことから資源的問題が小さいことなども考慮した。 Furthermore, Nb and Ta are very close in chemical properties because they both belong to Group 5 in the periodic table. Also, Nb powder is about half as cheap as Ta powder and presents in the crust. Since the number of atoms is about 20 times as large, the resource problem is small.
なお、表1はmass%であるが、体積率および原子率で比較する場合もあるので、vol%表示とした場合およびat.%表示とした場合をそれぞれ表2および表3に示した。なお、at.%はmol%と表示する場合が多いが、状態図との比較を容易にする目的でat.%と記した。 Table 1 shows mass%, but there may be a case where the volume ratio and atomic ratio are compared. Tables 2 and 3 show the cases of% display. At. % Is often expressed as mol%, but at. %.
4種のモデル試料についてSEMによる観察を行い、図1を得た。図1の下段のより拡大したSEM組織から明らかなように、本試料には、白灰色球状粒子相(以下a相と記す)、灰色結合相(以下b相と記す)、灰黒色結合相(以下c相と記す)、および黒色粒子相(以下d相と記す)が認められる。モデル試料において、a相の次にb相が多く認められ、c相は3.9vol%Nb添加で増加したが、その後減少した。d相は全てにおいて僅かであった。 Four types of model samples were observed by SEM, and FIG. 1 was obtained. As apparent from the enlarged SEM structure in the lower part of FIG. 1, this sample has a white gray spherical particle phase (hereinafter referred to as a phase), a gray binder phase (hereinafter referred to as b phase), and a gray-black binder phase ( (Hereinafter referred to as c phase) and black particle phase (hereinafter referred to as d phase) are observed. In the model sample, b phase was observed after a phase, and c phase increased with addition of 3.9 vol% Nb, but then decreased. The d phase was slight in all.
なお、図1では各文字a、b、c、dに下付き文字pを付加しているが、これは各相のEDX分析点を表す。この4種のモデル試料のa〜d相についてEDXで定量分析し、その結果を図2に示した。 In FIG. 1, a subscript p is added to each of the characters a, b, c, and d. This represents an EDX analysis point of each phase. The four types of model samples, a to d phases, were quantitatively analyzed by EDX, and the results are shown in FIG.
図2のa相の分析結果より、a相はWにCrが15at.%程度固溶したW−Cr相であることが分った。なお、後述の図3に示すように、X線回折では、W−Cr固溶体は、Wが主成分であるのでWの位置にピークがあり、a相がW−Cr固溶体であることは、EDXで分析して初めてわかる。 From the analysis result of the a phase in FIG. 2, the a phase is W and Cr is 15 at. It was found that it was a W—Cr phase that was dissolved in about%. In addition, as shown in FIG. 3 to be described later, in X-ray diffraction, W-Cr solid solution has a peak at the position of W because W is the main component, and the a phase is W-Cr solid solution. It can be understood only after analysis.
W粉末とCr粉末を混合して焼結しW−Cr固溶体相を生じることは、非特許文献1のW−Crの二元系状態図の示すことと一致する。これより本願における焼結合金はW−Cr基の合金であることがわかった。W相がW−Cr固溶体相となったことが、本系合金の耐酸化性が優れる原因の一つと考えられる(耐酸化性については後述の表8の酸化増量に示す)。これらは第1の知見である。 The fact that W powder and Cr powder are mixed and sintered to produce a W-Cr solid solution phase is consistent with the W-Cr binary phase diagram of Non-Patent Document 1. From this, it was found that the sintered alloy in the present application is a W-Cr based alloy. The fact that the W phase has become a W—Cr solid solution phase is considered to be one of the reasons why the oxidation resistance of the present alloy is excellent (the oxidation resistance is shown in the oxidation increase in Table 8 described later). These are the first findings.
図2のb相の分析結果より、b相はM1試料ではWおよびCrを主成分とし、Ni、O、Feを含むことが分る。M2〜M4試料すなわち、Nbを添加した試料では、a相にはNbが認められないが、b相にはNbが認められるようになり、添加量が多くなるに従ってb相中のNb量が増加している。 From the analysis result of the b phase in FIG. 2, it can be seen that the b phase is mainly composed of W and Cr and contains Ni, O, and Fe in the M1 sample. M2~M4 sample Namely, the samples were added Nb, but not observed Nb in a phase, the b-phase become Nb is observed, Nb amount of b phase as the amount added increases increases doing.
b相中のCr固溶量はNb添加により減少するが、添加量が多くなっても殆ど変化しない。b相中のW固溶量は、Nbを3.1at.%添加すると増加するが、その後添加量が多くなるほど減少している。これらに比べてNi、FeおよびOの量は変化が少ない。ここでb相にOがあることは注目に値する。 The amount of Cr solid solution in the b phase decreases with the addition of Nb, but hardly changes even when the amount added is increased. The amount of W solid solution in the b phase is 3.1 at. % Increases, but decreases as the amount added increases thereafter. Compared to these, the amounts of Ni, Fe and O are less changed. Here, it is worth noting that there is O in the b phase.
図2のc相の分析結果より、c相はM1試料では、NiおよびCrを主成分とし、O、W、Feを含むことがわかった。この結合相もNb添加によりCrは減少するが、添加量が多くなっても殆ど変化しない。Ni量は、Nbを6.3at.%添加まで僅かに増加するが、その後僅かに低下した。これらに比べてW、FeおよびOの量は変化が少ない。このc相にもOがあることは注目に値する。 From the analysis result of the c phase in FIG. 2, it was found that the c phase is mainly composed of Ni and Cr and contains O, W, and Fe in the M1 sample. In this binder phase, Cr decreases with the addition of Nb, but hardly changes even when the amount added is increased. The amount of Ni was 6.3 at. Slightly increased to % addition, but then decreased slightly. Compared to these, the amounts of W 2 , Fe, and O change little. It is worth noting that there is O in this c phase.
図2のd相の分析結果より、d相は多くのOを含み、主としてCrないし、CrおよびNbの酸化物であることがわかった。これは、非特許文献2のNb2O5−Cr2O3の擬二元系状態図を調べた結果、Nb2O5と類似構造の(Nb,Cr)2O5−Xになっていると思われた。 From the analysis result of the d phase in FIG. 2, it was found that the d phase contains a large amount of O and is mainly an oxide of Cr or Cr and Nb. This is a result of examining the pseudo-binary system phase diagram of Nb 2 O 5 -Cr 2 O 3 in Non-Patent Document 2, the Nb 2 O 5 similar structure (Nb, Cr) becomes 2 O 5-X I thought it was.
前述のb、c相のOおよびd相すなわちCr、Nbの酸化物のOは、用いた原料に含まれるOおよび焼結雰囲気のArガス(純度99.99%以上)に含まれる不純物としてのO2が供給源と思われる。 O in the b and c phases and O in the d phase, ie, the oxides of Cr and Nb, are contained as impurities contained in O contained in the raw materials used and Ar gas (purity: 99.99% or more) in the sintering atmosphere. O 2 appears to be the source.
b、cおよびd相にOが存在し、a相にOが認められないのは、a相は焼結時に終始固相であり、他の三相はそうでないことに起因することが、それらの形態から示唆される。すなわち、b、c相はそれらの形態から焼結温度では液相であり、冷却時に固相となり、d相は液相成分のCrとNbが酸素と反応して固相粒子として析出・成長したことを示唆する。 O is present in the b, c and d phases, and O is not observed in the a phase. This is because the a phase is a solid phase throughout the sintering and the other three phases are not. It is suggested from the form. That is, the b and c phases are liquid phases at the sintering temperature due to their form, and become a solid phase upon cooling, and the d phase precipitates and grows as solid phase particles when the liquid phase components Cr and Nb react with oxygen. I suggest that.
次に、図2のb相およびc相のOが、結合相に固溶しているのか、金属間化合物ないし酸化物として存在するのか確かめるため、X線回折を行い、その結果を図3に示す。図3より、W(○のピーク)、Ni(◇のピーク)、六方晶または立方晶NbCr2(●のピーク)の位置にピークが認められた。 Next, in order to confirm whether O in the b phase and c phase in FIG. 2 is dissolved in the binder phase or exists as an intermetallic compound or oxide, X-ray diffraction is performed, and the result is shown in FIG. Show. From FIG. 3, a peak was recognized at the position of W (◯ peak), Ni (Ni peak), hexagonal crystal or cubic NbCr 2 (● peak).
ここで、図2の組織から、W位置のピークはW−Cr固溶体(○)、Ni位置のピークはNi−Fe基固溶体(◇)と判断されるので、図3にはそのように記載した。なお、一部の低いピークは同定できなかったことからX相で表した。X相は量が少なく、特性などには影響しないと思われる。 Here, from the structure of FIG. 2, the peak at the W position is determined to be a W—Cr solid solution (◯), and the peak at the Ni position is determined to be a Ni—Fe-based solid solution (◇). . Since some low peaks could not be identified, they were represented by X phase. The amount of X phase seems to be small and does not affect the properties.
W−Cr固溶体(○)のX線回折強度は、M1からM4となる(Nb添加量が増加する)に従って減少するが、これは、配合組成でWをNbで置換して添加していることの他、Nb添加により灰色結合相中へのW固溶量も増加していることにも因ると考えられる。 The X-ray diffraction intensity of the W-Cr solid solution (◯) decreases from M1 to M4 (Nb addition amount increases), but this is that W is replaced by Nb in the composition and added. In addition to this, it is considered that the amount of W solid solution in the gray binder phase is also increased by the addition of Nb.
六方晶また立方晶NbCr2(●)は、Nb添加すなわちM2で現れ、M3からM4にかけてはピーク位置による変動が見られ、必ずしも増加していない。NbCr2は、結合相のbないしc相中に含まれると考えられる。 Hexagonal or cubic NbCr 2 (●) appears with Nb addition, that is, M2, and fluctuations due to peak positions are observed from M3 to M4, and do not necessarily increase. NbCr 2 is considered to be contained in the b to c phases of the binder phase.
Ni−Fe基固溶体(◇)はNb添加により変化しないが、これは、ピーク高さは配合組成にも依存することに因ると考えられる。 The Ni—Fe-based solid solution (◇) does not change with the addition of Nb, which is thought to be due to the fact that the peak height also depends on the formulation composition.
以上の相のうち、SEMで観察できなかったのはNbCr2相である。そこで、図1より拡大観察することとし、10万倍まで拡大して図4を得た。図4は、無食刻では組織が見られなかったので、80kPaAr雰囲気焼結した場合の試験片について、6Paの減圧雰囲気中で600℃−5minの熱食刻を行ったM3組成の試料について、b相およびc相を、SEMで拡大観察した結果である。 Of the above phases, the NbCr 2 phase was not observed by SEM. Therefore, it was decided to observe from FIG. 1, and the image was enlarged up to 100,000 times to obtain FIG. In FIG. 4, since no structure was observed without etching, the test piece when sintered at 80 kPa Ar atmosphere was subjected to thermal etching at 600 ° C. for 5 minutes in a reduced pressure atmosphere of 6 Pa. It is the result of having observed b phase and c phase by SEM by magnification.
これより、b相およびc相に、寸法が約200nmの小さい針状の白色の分散相が認められた。図4における、熱食刻で多数現れた分散相粒子は、X線回折で認められたNbCr2相と判断された。これらは第2の知見である。この分散相を取囲む母相は、EDXにより、Ni−Fe基固溶体相にW、Cr、Nb、Oが固溶した相と思われた。 From this, a small acicular white dispersed phase having a size of about 200 nm was observed in the b phase and the c phase. In FIG. 4, the dispersed phase particles that appeared in large numbers by thermal etching were determined to be NbCr 2 phases observed by X-ray diffraction. These are the second findings. The parent phase surrounding this dispersed phase was considered to be a phase in which W, Cr, Nb , and O were dissolved in the Ni — Fe-based solid solution phase by EDX.
以上より、X線回折では酸化物を検出できなかったが、Oが結合相に固溶しているか否かも判断できなかった。これは、X線回折では微量の結晶相は検出が困難であること、および固溶元素は直接検出できないことによると思われた。そこで、次に、Oが結合相に固溶できるか、関連する状態図を調べた。 From the above, oxides could not be detected by X-ray diffraction, but it could not be determined whether O was dissolved in the binder phase. This was thought to be due to the fact that a very small amount of crystal phase was difficult to detect by X-ray diffraction and that solid solution elements could not be detected directly. Therefore, next, a related phase diagram was examined to see if O could be dissolved in the binder phase.
図5は非特許文献3によるNb−O−Wの三元系状態図である。この三元系ではNb−O二元系と同様にNb−W固溶体中にOが固溶することが示されている。しかし、Ni−O−W(非特許文献4)、Fe−O−W(非特許文献5)の三元系状態図ではOの固溶は示されていない。 FIG. 5 is a Nb—O—W ternary phase diagram according to Non-Patent Document 3. In this ternary system, it is shown that O dissolves in the Nb—W solid solution as in the Nb—O binary system. However, solid solution of O is not shown in the ternary phase diagram of Ni—O—W (Non-Patent Document 4) and Fe—O—W (Non-Patent Document 5).
他方、Fe−O(非特許文献6)およびNi−O(非特許文献7)の二元系状態図によると、FeとNiいずれに対してもOは、液相中へはそれぞれ0.22mass%と0.4mass%、固相中へはいずれも0.1mass%以下ではあるが微量溶解または固溶をすることが示されている。 On the other hand, according to the binary phase diagram of Fe-O (Non-Patent Document 6) and Ni-O (Non-Patent Document 7), O is 0.22 mass into the liquid phase for both Fe and Ni. % And 0.4 mass%, both of which are 0.1 mass% or less in the solid phase, but are shown to be dissolved or dissolved in a small amount.
ここで、非特許文献8のエリンガム図によると、1490℃ではNb2O5とCr2O3は、仮に存在するとしても、H2により還元されないが、1490℃で再焼結して酸素量が減少すれば、そのOは、結合相に固溶しているOと判断できることに気がついた。 Here, according to the Ellingham diagram of Non-Patent Document 8, Nb 2 O 5 and Cr 2 O 3 are not reduced by H 2 even if they exist at 1490 ° C., but are re-sintered at 1490 ° C. It has been found that if O decreases, the O can be determined to be O dissolved in the binder phase.
そこで、80kPaAr雰囲気焼結をしたM3組成の試料を100kPaH2雰囲気で1490℃−1hの加熱処理を行い、その加熱処理前後について、合金酸素量をLECO社製酸素窒素同時分析装置TC−500(以下酸素窒素分析装置と記載)で分析した。 Therefore, a sample of M3 composition that has been sintered at 80 kPaAr atmosphere is subjected to heat treatment at 1490 ° C.-1 h in a 100 kPaH 2 atmosphere, and the oxygen content of the alloy before and after the heat treatment is determined by LECO's oxygen-nitrogen simultaneous analyzer TC-500 (hereinafter referred to as “oxygen-nitrogen analyzer”) It was analyzed with an oxygen-nitrogen analyzer.
その結果、Oは、加熱処理前は0.30mass%であったものが、加熱処理後は0.060mass%に減少した。上記のようにNb2O5とCr2O3はH2により還元されないので、この減少したOは、結合相中に固溶しているOであると判断された。 As a result, O was 0.30 mass% before the heat treatment, but decreased to 0.060 mass% after the heat treatment. As described above, since Nb 2 O 5 and Cr 2 O 3 are not reduced by H 2 , it was determined that this reduced O was O dissolved in the binder phase.
以上より、b相で認められるOは、M1組成ではFe、Ni、W、Crで構成された結合相に固溶したO、M2〜M4組成ではFe、Ni、W、Cr、Nbで構成された結合相に固溶したOであると判断された。c相で認められるOも結合相に固溶したOと考えられる。これらは第3の知見である。 From the above, O recognized in the b phase is composed of O dissolved in the binder phase composed of Fe, Ni, W, and Cr in the M1 composition, and Fe, Ni, W, Cr, and Nb in the M2 to M4 compositions. It was determined that the O was dissolved in the bonded phase. O observed in the c phase is also considered to be O dissolved in the binder phase. These are the third findings.
以上をまとめると、モデル合金に認められるa相はW−Cr固溶体粒子、b相はNb無添加ではOが固溶したFe−Ni−W−Cr固溶体結合相、Nb添加ではOが固溶しNbCr2が分散したFe−Ni−W−Cr−Nb固溶体結合相、c相はNb無添加ではOが固溶したFe−Ni−W−Cr固溶体結合相、Nb添加ではOが固溶しNbCr2が分散したFe−Ni−W−Cr−Nb固溶体結合相、d相はNb無添加ではCr2O3、Nb添加では(Nb,Cr)2O5−Xと見なせた。 In summary, the a phase observed in the model alloy is W-Cr solid solution particles, the b phase is Fe-Ni-W-Cr solid solution bonded phase in which O is solid solution without addition of Nb, and O is solid solution with addition of Nb. Fe-Ni-W-Cr-Nb solid solution bonded phase in which NbCr 2 is dispersed, c phase is Fe-Ni-W-Cr solid solution bonded phase in which O is solid-solved when Nb is not added, O is solid-solved when Nb is added, and NbCr 2 dispersed Fe-Ni-W-Cr- Nb solid solution binding phase, d-phase is at Cr 2 O 3, Nb added in Nb not added was regarded as (Nb, Cr) 2 O 5 -X.
なお、b相とc相の成分の種類は同じであるが、量は異なり、b相はCr、W、Niがリッチで、c相はCr、Niリッチという違いがある。 The types of components of the b phase and the c phase are the same, but the amounts are different, the b phase is rich in Cr, W, and Ni, and the c phase is Cr and Ni rich.
以上の組成のうち、Oについてはその効果がよく分らなかった。さらに、80kPaとしたAr雰囲気焼結は、d相すなわちCrないしCr、Nbの酸化物を生じていることから、本系合金の焼結方法としては適さない可能性が考えられた。 Of the above compositions, the effect of O was not well understood. Furthermore, since Ar atmosphere sintering at 80 kPa produces d-phase, that is, oxides of Cr, Cr, and Nb, the possibility of being unsuitable as a sintering method for this alloy was considered.
これらのことを確かめるため、焼結雰囲気を大気圧下で水素気流中で加熱・還元する水素雰囲気焼結(以下100kPaH2雰囲気焼結と記す)として、その他は同様とした試料を作製した。作製した試料についてSEM観察を行い、図6を得た。配合組成は表1の試料M1〜M4とそれぞれ同じであるが、焼結方法が異なるので試料記号はM1’〜M4’として示す。 In order to confirm these, a sample similar to the others was prepared as hydrogen atmosphere sintering (hereinafter referred to as 100 kPaH 2 atmosphere sintering) in which the sintering atmosphere was heated and reduced in a hydrogen stream under atmospheric pressure. SEM observation was performed about the produced sample, and FIG. 6 was obtained. The composition is the same as each of the samples M1 to M4 in Table 1, but the sintering method is different, so the sample symbols are shown as M1 ′ to M4 ′.
100kPaH2雰囲気焼結した試料では、図1のa相およびb相に相当する相は、全ての試料に認められ、それぞれa’相およびb’相として図6に示した。また、図1のc相に相当する相は、c’相として図6に示した。なお、c’相は0〜7.9vol%Nb添加試料に認められたが、11.9vol%Nb添加試料には認められなかった。 In the sample sintered at 100 kPaH 2 atmosphere, phases corresponding to the a phase and the b phase in FIG. 1 were observed in all the samples, and are shown in FIG. 6 as a ′ phase and b ′ phase, respectively. Further, the phase corresponding to the c phase in FIG. 1 is shown in FIG. 6 as the c ′ phase. In addition, although c 'phase was recognized by the 0-7.9 vol% Nb addition sample, it was not recognized by the 11.9 vol% Nb addition sample.
図1のd相に相当する相は、いずれの試料にもほとんど認められなかった。これは、O2を不純物して含むArを用いなかったこと、及び100kPaH2雰囲気焼結により原料に含まれる酸化物が焼結途中で還元除去され、結果として焼結試料ではほとんど酸化物を生じなかったことを示す。 A phase corresponding to the d phase in FIG. 1 was hardly observed in any of the samples. This is because Ar containing impurities as O 2 was not used, and oxide contained in the raw material was reduced and removed during sintering by 100 kPaH 2 atmosphere sintering, and as a result, almost no oxide was generated in the sintered sample. Indicates no.
図7は、図6のa’相、b’相およびc’相について、SEM付属のEDXで分析した結果である。a’相はa相とほぼ同じW、Cr量であった。b’相はb相と比較してO量が減少し、僅かとなった。それに因ってかCrおよびNiの量がb相より僅かに大となった。c’相にはOが認められず、それに因ってNiがc相より多くなったと思われる。 FIG. 7 shows the results of analyzing the a ′ phase, b ′ phase, and c ′ phase of FIG. 6 by EDX attached to the SEM. The a 'phase had substantially the same W and Cr amounts as the a phase. In the b 'phase, the amount of O decreased compared with the b phase and became slight. Therefore, the amount of Cr and Ni was slightly larger than the b phase. O is not recognized in the c ′ phase, and it is thought that Ni is more than the c phase.
図1の試料M1〜M4と比較すると、試料M1’〜M4’は微粒化している。当初は、結合相へのW固溶量が増加したためと推定したが、画像解析でW−Cr相以外の相(others)の面積率を調べた結果を表4に示すように、試料M3〜M4と試料M3’〜M4’における面積率の値は対応試料においてそれぞれほぼ同じであることが分った。 Compared to the samples M1 to M4 in FIG. 1, the samples M1 'to M4' are atomized. Initially, it was estimated that the amount of W solid solution in the binder phase increased. However, as shown in Table 4, the results of examining the area ratio of phases other than the W-Cr phase by image analysis are shown in Table 3 It was found that the area ratio values in M4 and samples M3 ′ to M4 ′ were almost the same in the corresponding samples.
したがって、「結合相中へのW固溶量が増加したことに因る」という予想は完全に否定された。このことから、試料M1’〜M4’が微粒化した原因は、結合相中へのOの固溶量が減少し、その分、Crの固溶量が増加したことにより、a’相すなわちW−Cr相(粒子)の粒成長が抑制されたためと考えられた。 Therefore, the expectation of “because the amount of W solid solution in the binder phase increased” was completely denied. From this, the reason why the samples M1 ′ to M4 ′ are atomized is that the solid solution amount of O in the binder phase is decreased, and the solid solution amount of Cr is increased correspondingly. It was thought that the grain growth of the -Cr phase (particles) was suppressed.
M4とM4’の合金酸素量を酸素窒素分析装置で分析した結果、前者は0.26mass%であったのに対し、後者は0.026mass%と明らかに少ないことを確認した。なお、M4のb相のEDXによるO量は約3at.%で、これは0.6mass%に相当し、結合相量は約50vol%であることおよびEDXの精度を合わせ考慮すると、酸素窒素分析装置による結果とほぼ一致すると言える。 As a result of analyzing the oxygen content of the alloy of M4 and M4 'with an oxygen-nitrogen analyzer, it was confirmed that the former was 0.26 mass%, whereas the latter was 0.026 mass%. The amount of O by MDX b phase EDX was about 3 at. %, Which corresponds to 0.6 mass%, the amount of the binder phase is about 50 vol%, and considering the accuracy of EDX, it can be said that the results are almost the same as the results obtained by the oxygen-nitrogen analyzer.
さらに、M4のb相とM4’のb’相について、結合相の硬さをマイクロビッカースで測定し比較した。これは、合金全体の硬さ測定では、a相およびa’相すなわちW−Cr相粒子の寸法が硬さに影響するので、結合相のOによる固溶硬化量が分からなかったためである。 Further, the hardness of the binder phase of the b phase of M4 and the b 'phase of M4' was measured by micro Vickers and compared. This is because in the measurement of the hardness of the entire alloy, the size of the a-phase and a′-phase, that is, the W—Cr phase particles influences the hardness, so that the solid solution hardening amount due to O of the binder phase was not known.
結果として、b相は1680HV(0.098N)を示し、b’相は1310HV(0.098N)であり、前者はOによる固溶硬化(酸素固溶強化)されていることが確認された。これは、第4の知見である。なお、Nb添加の場合はNbCr2による分散硬化がある。 As a result, the b phase showed 1680 HV (0.098 N), the b ′ phase was 1310 HV (0.098 N) , and the former was confirmed to be solid solution hardened (oxygen solid solution strengthening) by O. This is the fourth finding. In the case of Nb added is dispersion-hardened by NbCr 2.
図8にX線回折による、M3’の測定結果を上記のM3の結果と共に示すが、NbCr2の量は、M3’とM3で大差なかった。(Nb,Cr)2O5−XはM3’でも認められないのは、段落0036で述べた通り、量が少ないためと思われる。なお、ピークがないこと、および段落0053の酸素分析結果と合わせ考えると(Nb,Cr)2O5−Xは量が少ないことがわかる。 FIG. 8 shows the measurement result of M3 ′ by X-ray diffraction together with the result of M3 described above. The amount of NbCr 2 was not significantly different between M3 ′ and M3. The reason why (Nb, Cr) 2 O 5-X is not recognized even in M3 ′ is because the amount is small as described in paragraph 0036. In addition, it can be seen that (Nb, Cr) 2 O 5-X is small in amount when there is no peak and when combined with the oxygen analysis result in paragraph 0053.
なお、試料M4’は、研削加工中に細かく砕けてしまったことにより、Oの固溶量が少ない場合、本系合金は脆いことが分かった。ここで、脆化の原因について考える。まず、Oが結合相に固溶しなくなった代わりにCrの固溶量が増加することによる脆化が考えられる。 Note that the sample M4 'was finely crushed during the grinding process, so that it was found that this alloy was brittle when the amount of O dissolved was small. Here, the cause of embrittlement is considered. First, it can be considered that embrittlement is caused by an increase in the solid solution amount of Cr instead of the solid solution of O in the binder phase.
しかし、この場合、Crの固溶量はNb無添加の場合より少ないので、Cr固溶量増加に伴う脆化は少ないと思われる。従って、段落0055で明らかとした酸素固溶強化がなくなった分、脆化すると考えられた。実用強度を得るためにはOが結合相に固溶する必要があることになる。 However, in this case, the amount of solid solution of Cr is smaller than that in the case where Nb is not added, so that it seems that there is little embrittlement accompanying the increase of the amount of solid solution of Cr. Therefore, it was considered that the oxygen solid solution strengthening clarified in Paragraph 0055 disappeared, and thus embrittlement occurred. In order to obtain practical strength, O must be dissolved in the binder phase.
脆化すなわち強度の目安としてしばしば用いられる抗折力は、W−Cr相の寸法や分布の影響もあるのでO量だけでは律せられないが、有用な抗折力を有する発明合金のO量は、0.051mass%以上、0.085mass%以下である(後述する表8に抗折力を示し、表7に合金中O量を示す)ことからこの範囲のO量が必要と見なせた。 The bending strength often used as a measure of embrittlement, that is, the strength, is not limited by the amount of O because it is affected by the size and distribution of the W-Cr phase, but the amount of O of the invention alloy having a useful bending strength. Is 0.051 mass% or more and 0.085 mass% or less (showing bending strength in Table 8 to be described later, and showing O amount in the alloy in Table 7), it was considered that an O amount in this range was necessary. .
このOの固溶量は、結合相量と焼結時の雰囲気で決まるが、80kPaのAr雰囲気では、O2が400ppm未満では、固溶量が不足する。O2が600ppmより多いと焼結性が低下して緻密化しなくなる。 The solid solution amount of O is determined by the amount of the binder phase and the atmosphere at the time of sintering, but in an Ar atmosphere of 80 kPa, the solid solution amount is insufficient when O 2 is less than 400 ppm. If the O 2 content is more than 600 ppm, the sinterability will be reduced and densification will not occur.
なお、添加する遷移金属として、Nbの他にはTa、Tiが考えられる。NbをTaおよび/またはTiとしても同様の特性を得た。以上より、Cr添加量、Nb添加量を規定し、適切な酸素固溶強化を行うことで、破壊しにくい合金を得ることができることが分った。これは、第5の知見である。 As transition metals to be added, Ta and Ti can be considered in addition to Nb. Similar characteristics were obtained even when Nb was Ta and / or Ti. From the above, Cr amount, and defining the addition amount of Nb, by performing suitable oxygen solid solution strengthening, it was found that it is possible to obtain a breakdown hardly alloys. This is the fifth finding.
TaについてはNbとほぼ同様に、酸素固溶強化が見られると共に、金属間化合物としてTaCr2を形成することによる分散強化が見られた。Tiについては、酸素固溶強化は見られたが、金属間化合物は形成せず、金属間化合物による分散強化は見られなかった。 As for Ta, in the same manner as Nb, oxygen solid solution strengthening was observed, and dispersion strengthening by forming TaCr 2 as an intermetallic compound was observed. For Ti, although oxygen solid solution strengthening was observed, no intermetallic compound was formed, and no dispersion strengthening due to the intermetallic compound was observed.
そのかわりにTiの酸化物が微細分散しそれによる分散強化が見られた。Tiの酸化物が微細分散した原因は、原料粉末として用いたTiH2が、Ta、Nbより粉砕されやすいためである。使用する原料粉末のW、Cr、Nb、Ta、TiH2の粒度は、所定の硬さ及び抗折力を得られるものならばよい。これは、第6の知見である。 Instead, Ti oxide was finely dispersed, and dispersion strengthening was observed. The reason why the oxide of Ti is finely dispersed is that TiH 2 used as the raw material powder is more easily pulverized than Ta and Nb. The particle sizes of W, Cr, Nb, Ta, and TiH 2 of the raw material powder to be used may be any as long as a predetermined hardness and bending strength can be obtained. This is the sixth finding.
なお、80kPaAr雰囲気焼結を60あるいは100kPaAr雰囲気焼結としても上記の結果は同じであった。ここで、60kPaより圧力を低くすると、Ni、Feの揮散による炉の経時劣化を生じてメンテナンス費用が多くかかり高コストとなる。また、100kPaより圧力を高くすると加熱時の対流熱損失が大となって電力をより多く使用し高コストとなる。 The above results were the same even when the 80 kPa Ar atmosphere sintering was changed to 60 or 100 kPa Ar atmosphere sintering. Here, if the pressure is lower than 60 kPa, deterioration of the furnace over time due to volatilization of Ni and Fe occurs, resulting in high maintenance costs and high costs. Further, when the pressure is higher than 100 kPa, the convective heat loss during heating becomes large, and more power is used and the cost is increased.
WをW−Crとし、さらに結合相中にCrを固溶する本発明合金の耐酸化性が優れる事は後述する表8の発明合金および参考合金の酸化増量が既存合金より少ないことから明瞭である。このようにして、本発明は完成した。 It is clear that the oxidation resistance of the alloy of the present invention, in which W is W—Cr and Cr is dissolved in the binder phase, is excellent because the oxidation increase of the invention alloy and the reference alloy in Table 8 described later is smaller than that of the existing alloy. is there. Thus, the present invention has been completed.
組成についてまとめると次の様になる。本W−Cr基合金は、NiおよびFeの合計量は合金全体の1.5mass%以上3.1mass%以下がよい、1.5mass%より少なくなると焼結性が低下して緻密な合金を得にくくなる。3.1mass%より多くなると高温硬さが低下する。 The composition is summarized as follows. In the present W-Cr-based alloy, the total amount of Ni and Fe is preferably 1.5 mass% or more and 3.1 mass% or less of the whole alloy. When the content is less than 1.5 mass%, the sinterability is lowered to obtain a dense alloy. It becomes difficult. When it exceeds 3.1 mass%, the high temperature hardness decreases.
合金中の酸素量は0.051mass%以上0.085mass%以下がよい。0.051mass%より少ないと酸素固溶強化が得にくくなる。0.085mass%より多いと焼結しにくくなって抗折力が低くなって必要な強度が得られなくなる。 The amount of oxygen in the alloy is preferably 0.051 mass% or more and 0.085 mass% or less. When it is less than 0.051 mass%, it is difficult to obtain oxygen solid solution strengthening. If it is more than 0.085 mass%, it will be difficult to sinter and the bending strength will be lowered, making it impossible to obtain the required strength.
アルミニウム合金用ダイキャスト金型およびガラスレンズ成形用金型の周辺部材の場合、本W−Cr基合金は、Cr、Nb、Ta、Tiの合計量が合金全体の2.0mass%以上7.6mass%以下でこのうちCrは2.0mass%以上5.0mass%以下がよい。 In the case of peripheral members of aluminum alloy die-casting dies and glass lens molding dies, the total amount of Cr, Nb, Ta and Ti in this W-Cr-based alloy is 2.0 mass% or more and 7.6 mass of the whole alloy. % Of which Cr is preferably 2.0 mass% or more and 5.0 mass% or less.
Cr、Nb、Ta、Tiの合計量が合金全体の2.0mass%より少ないと硬さが33.8HRCより低くなり実用硬さが不足する。7.6mass%より多いと難焼結性となって抗折力が830MPaより低くなって実用強度が得られなくなる。Crは2.0mass%より少ないと、耐酸化性が不足するとともに、Crによる固溶強化が不足する。5.0mass%より多いと難焼結性となって抗折力が830MPaより低くなって実用強度が得られなくなる。 If the total amount of Cr, Nb, Ta and Ti is less than 2.0 mass% of the entire alloy, the hardness will be lower than 33.8 HRC and the practical hardness will be insufficient. If it exceeds 7.6 mass%, it becomes difficult to sinter and the bending strength becomes lower than 830 MPa, so that practical strength cannot be obtained. When Cr is less than 2.0 mass%, oxidation resistance is insufficient and solid solution strengthening by Cr is insufficient. If it exceeds 5.0 mass%, it becomes difficult to sinter and the bending strength becomes lower than 830 MPa, so that practical strength cannot be obtained.
S45Cやステンレス等の鋼材の電気加熱鍛造の台電極の場合、本W−Cr基合金は、Cr、Nb、Ta、Tiの合計量が、合金全体の3.0mass%以上7.6mass%以下でこのうちCrは2.3mass%以上5.0mass%以下がよい。 In the case of a base electrode for electric heating forging of steel materials such as S45C and stainless steel, the total amount of Cr, Nb, Ta, Ti in this W-Cr based alloy is 3.0 mass% or more and 7.6 mass% or less of the entire alloy. Of these, Cr is preferably 2.3 mass% or more and 5.0 mass% or less.
Cr、Nb、Ta、Tiの合計量が合金全体の3.0mass%より少ないと硬さが41.8HRCより低くなり実用硬さが不足する。7.6mass%より多いと難焼結性となって抗折力が830MPaより低くなって実用強度が得られなくなる。Crは使用温度が比較的高いので2.3mass%より少ないと、耐酸化性が不足するとともに、Crによる固溶強化が不足する。5.0mass%より多いと難焼結性となって抗折力が830MPaより低くなって実用強度が得られなくなる。 If the total amount of Cr, Nb, Ta and Ti is less than 3.0 mass% of the entire alloy, the hardness will be lower than 41.8 HRC and the practical hardness will be insufficient. If it exceeds 7.6 mass%, it becomes difficult to sinter and the bending strength becomes lower than 830 MPa, so that practical strength cannot be obtained. Since Cr is used at a relatively high temperature, if it is less than 2.3 mass%, oxidation resistance is insufficient and solid solution strengthening by Cr is insufficient . If it exceeds 5.0 mass%, it becomes difficult to sinter and the bending strength becomes lower than 830 MPa, so that practical strength cannot be obtained.
黄銅等の棒材成形用の熱間押出しダイスの場合、本W−Cr基合金は、Cr、Nb、Ta、Tiの合計量が、合金全体の4.0mass%以上7.6mass%以下でこのうちCrは2.3mass%以上5.0mass%以下がよい。 In the case of a hot extrusion die for forming a bar material such as brass, this W-Cr-based alloy has a total amount of Cr, Nb, Ta, and Ti of 4.0 mass% or more and 7.6 mass% or less of the entire alloy. Of these, Cr is preferably 2.3 mass% or more and 5.0 mass% or less.
Cr、Nb、Ta、Tiの合計量が合金全体の4.0mass%より少ないと金属間化合物および/またはTiを含む酸化物の分散強化が不足し、実用強度が得られなくなる。7.6mass%より多いと難焼結性となって抗折力が1572MPaより低くなって実用強度が得られなくなる。Crは2.3mass%より少ないと、Crによる固溶強化が不足し、実用強度が得られなくなる。5.0mass%より多いと難焼結性となって抗折力が1572MPaより低くなって実用強度が得られなくなる。 Cr, Nb, Ta, a total amount of Ti is dispersion strengthened oxide containing intermetallic compound and / or Ti is less than 4.0 mass% of the total alloy is insufficient, the actual use strength can not be obtained. If it exceeds 7.6 mass%, it becomes difficult to sinter and the bending strength becomes lower than 1572 MPa, so that practical strength cannot be obtained. When Cr is less than 2.3 mass%, solid solution strengthening by Cr is insufficient, the actual use intensity can not be obtained. If it exceeds 5.0 mass%, it becomes difficult to sinter and the bending strength becomes lower than 1572 MPa, so that practical strength cannot be obtained.
本願による発明合金は、既存合金のW基合金と異なり、W−Cr基合金であり、その結合相は、Cr単独または、Nb、Ta、Tiの3種のうちの1種以上との複合で適切な量添加することにより、Crの固溶強化、Oによる固溶硬化(強化)および/または、NbCr2、TaCr2、Tiの酸化物の3種のうちの1種以上で分散硬化しているので、従来のW基合金よりも硬くて強い。以上から、発明合金の産業上の利用価値は高い。 The invention alloy according to the present application is a W-Cr-based alloy, unlike the W-based alloy of the existing alloy, and the binder phase is Cr alone or a composite with one or more of Nb, Ta, and Ti. By adding an appropriate amount, Cr is solid-solution strengthened, solid solution hardening (strengthening) with O, and / or dispersion-hardened with one or more of three kinds of oxides of NbCr 2 , TaCr 2 and Ti. Therefore, it is harder and stronger than conventional W-based alloys. From the above, the industrial utility value of the invention alloy is high.
本発明の素材は通常の粉末冶金法によって製造できる。すなわち、W、Ni、Fe、Crと、必要によりNb、Ta、Tiの3種のうち1種以上を所定の組成に配合し、ボールミルあるいはアトライターによる湿式混合を経て乾燥後、所望の形状にプレス圧100〜500MPaで圧縮成形する。 The material of the present invention can be produced by a usual powder metallurgy method. In other words, W, Ni, Fe, Cr and, if necessary, one or more of Nb, Ta, and Ti are blended into a predetermined composition, dried by wet mixing using a ball mill or attritor, and then formed into a desired shape. Compression molding is performed at a press pressure of 100 to 500 MPa.
次に、成形体を1350〜1500℃で30〜120minのAr雰囲気焼結をする。ここで、純度99.9%のArガスを1350〜1500℃で60kPa以上100kPa以下の圧力で導入し、Arガスに含まれる形で、O 2 をAr中に400ppm以上600ppm以下として導入する。焼結後、最終的な形状に切削加工、研削加工および/または放電加工して成形し仕上げて、製品化する。 Next, the compact is sintered at 1350-1500 ° C. for 30-120 min in an Ar atmosphere . Here it was introduced at 100kPa pressure below than 60kPa at 1350-1500 ° C. 99.9% pure Ar gas, in the form contained in the Ar gas is introduced O 2 as follows 600ppm or 400ppm in Ar. After sintering, the final shape is formed by cutting, grinding and / or electric discharge machining, finished, and commercialized.
試料を表5の配合組成で作製し、各特性を測定した。原料粉末は、平均粒度約6μmのW粉末(酸素量0.027mass%)、平均粒度約2.5μmのNi粉末(酸素量0.15mass%)、平均粒度約5μmのFe粉末(酸素量0.63mass%)、平均粒度約40μmのCr粉末(酸素量0.64mass%)、平均粒度約6.9μmのTa粉末(酸素量0.13mass%)、平均粒度約6.9μmのTiH2粉末(酸素量0.17mass%)、平均粒度約8.25μmのNb粉末(酸素量0.23mass%)を用いた。 A sample was prepared with the composition shown in Table 5, and each characteristic was measured. The raw material powder is a W powder having an average particle size of about 6 μm (oxygen amount 0.027 mass%), a Ni powder having an average particle size of about 2.5 μm (oxygen amount 0.15 mass%), and an Fe powder having an average particle size of about 5 μm (oxygen amount 0.02 mass%). 63 mass%), Cr powder having an average particle size of about 40 μm (oxygen amount 0.64 mass%), Ta powder having an average particle size of about 6.9 μm (oxygen amount 0.13 mass%), TiH 2 powder having an average particle size of about 6.9 μm (oxygen) Nb powder (oxygen amount 0.23 mass%) having an average particle size of about 8.25 μm was used.
TiのみTi粉末でなくTiH2粉末を用いた理由は、Ti粉末は酸素と反応し易く、低酸素の粉末を安価に得られないためであり、TiH2粉末は比較的安価で、純度が高く、かつ焼結途中でH2が解離してTiになるためである。 The reason for using TiH 2 powder instead of Ti powder alone is that Ti powder easily reacts with oxygen, and low-oxygen powder cannot be obtained at low cost. TiH 2 powder is relatively inexpensive and has high purity. This is because H 2 dissociates into Ti during sintering.
配合した粉末は、湿式ボールミルで24h混合し、プレス圧を100MPa以上500MPa以下とした冷間成形を行い、真空(0.8Pa、試料記号T1、以下T1と記す)焼結、または、純度99.9%のO2量400ppm以上600ppm以下のArガスを60kPa以上100kPa以下の圧力で導入して、1490℃−2hで焼結して(T1以外の試料)4×8×25mm3の試験片を得た。 The blended powder was mixed for 24 hours in a wet ball mill, subjected to cold forming at a press pressure of 100 MPa to 500 MPa, and sintered in a vacuum (0.8 Pa, sample symbol T1, hereinafter referred to as T1), or a purity of 99. A 9% O 2 amount of 400 ppm or more and 600 ppm or less of Ar gas was introduced at a pressure of 60 kPa or more and 100 kPa or less, and sintered at 1490 ° C. for 2 hours (samples other than T1) 4 × 8 × 25 mm 3 test piece Obtained.
表6は、種々の添加物の効果を正確に把握するため、組成をvol%で表示し、AMをBMで割って100倍した値を示した(以下BMに対するAMの比率と記す)。ここで、BMとはbinder metalを示し、具体的にはNi、Feの合計量(vol%)である。AMとはadditional metalを示し、具体的にはCr、Ta、TiおよびNbの合計量(vol%)である。 Table 6 shows the composition expressed in vol% and shows the value obtained by dividing AM by BM and multiplying it by 100 in order to accurately grasp the effects of various additives (hereinafter referred to as the ratio of AM to BM). Here, BM indicates binder metal, specifically, the total amount (vol%) of Ni and Fe. AM refers to additive metal, and is specifically the total amount (vol%) of Cr, Ta, Ti and Nb.
表7は、表6の組成の試料について、実用の製品の大きさに対応した、1490℃−2hの焼結をした後の、主相の種類と主相と結合相および酸化物相をSEM画像からピクセル数で定量し、vol%で示した。また、合金中のO量を測定した結果を併示した。なお既述したように、試料記号T1のみ従来の真空焼結の材料である。その他は、Arガスを60kPa以上100kPa以下の圧力で焼結した合金である。発明合金のA、ABの表記については段落0088で説明する。 Table 7 shows the types of main phases, main phases, binder phases, and oxide phases after Sintering at 1490 ° C. for 2 hours for the samples having the compositions shown in Table 6 and SEM. Quantified by the number of pixels from the image and expressed in vol%. The results of measuring the amount of O in the alloy are also shown. As already described, only the sample symbol T1 is a conventional vacuum sintering material. The other is an alloy obtained by sintering Ar gas at a pressure of 60 kPa to 100 kPa. The notation of A and AB in the invention alloy will be described in paragraph 0088.
表8は、表7の合金について、比重、抗折力、硬さ、伸び、および酸化増量(大気中800℃−30min保持前後の重量差)を、アルミニウム合金のダイキャスト金型および黄銅等の熱間押出しダイスでの実用試験結果と共に示した。また、表6に示したBMに対するAMの比率も分りやすくする目的で再度示した。 Table 8 shows the specific gravity, bending strength, hardness, elongation, and oxidation increase (weight difference before and after holding in the atmosphere at 800 ° C. for 30 minutes), die casting mold of aluminum alloy, brass, etc. The results are shown together with the results of practical tests using hot extrusion dies. In addition, the ratio of AM to BM shown in Table 6 is shown again for the purpose of easy understanding.
ここで、段落0096〜0100に示す通り、アルミニウム合金用ダイキャスト金型に用いることができる発明合金をA発明合金とし、ダイキャスト金型、S45Cやステンレス等の各種鋼材部品の電気加熱鍛造で用いる台電極、および黄銅等の棒材成形に用いる熱間押出しダイスの、全てに用いることができる発明合金をAB発明合金とした。 Here, as shown in paragraphs 0096 to 0100, the invention alloy that can be used for the die-casting die for aluminum alloy is an A-invention alloy, which is used for electric heating forging of various steel parts such as die-casting die, S45C and stainless steel. The invention alloy that can be used for all of the base electrode and the hot extrusion dies used for forming rods such as brass was used as the AB invention alloy.
比重は、組成により決まった。表8に示した抗折力とBMに対するAMの比率を、抗折力に及ぼすBMに対するAMの比率の影響として図9に示すが、抗折力はBMに対するAMの比率との強い相関は見られなかった。破壊の起源も破面が平坦で明瞭にできなかった。 Specific gravity was determined by the composition. The ratio of the bending strength shown in Table 8 and the ratio of AM to BM is shown in FIG. 9 as the effect of the ratio of AM to BM on the bending strength, but the bending strength shows a strong correlation with the ratio of AM to BM. I couldn't. The origin of destruction was not clear because the fracture surface was flat.
表8に示した硬さとBMに対するAMの比率を、硬さに及ぼすBMに対するAMの比率の影響として図10に示すが、BMに対するAMの比率と、W−Cr相の粒度との関係もあり、弱い正の相関にとどまった。 The hardness shown in Table 8 and the ratio of AM to BM are shown in FIG. 10 as the effect of the ratio of AM to BM on the hardness. There is also a relationship between the ratio of AM to BM and the particle size of the W-Cr phase. Only a weak positive correlation.
表8に示した一般のW基合金の伸びが6%であるのに対し、試料の伸びは0.4%と小さいが、これはO、Crなどによる固溶硬化による。なお、伸びは室温の引張り試験で求めた。 While the elongation of the general W-based alloy shown in Table 8 is 6%, the elongation of the sample is as small as 0.4%, which is due to solid solution hardening with O, Cr or the like. The elongation was determined by a room temperature tensile test.
AM添加試料は800℃−30minの酸化増量が22g/m2以下と優れる。よって、実用の際に工具表面に酸化層を生じても、容易には深くならないことが分かる。費用対効果を考えると酸化増量が22g/m2以下である必要があった。 The sample added with AM is excellent in that the oxidation increase at 800 ° C. for 30 minutes is 22 g / m 2 or less. Therefore, it can be seen that even if an oxide layer is formed on the tool surface in practical use, it does not easily become deep. In view of cost effectiveness, the increase in oxidation needs to be 22 g / m 2 or less.
なお、図9と図10にM1〜M4の結果がないのは、試験片の内部が緻密化不十分であったため正確な値が得られなかったため略したものである。 In FIG. 9 and FIG. 10, the results of M1 to M4 are omitted because the inside of the test piece was insufficiently densified and an accurate value was not obtained.
特許文献1〜3の近い組成の試料と機械的性質が必ずしも一致しないが、これは焼結温度および時間、用いた原料のW粒度などが異なることによる。よって、厳密な比較はできなかった。但し、本発明合金は段落0005および0013に記載したように、より低コストとなる焼結をしているメリットがある。 Although the mechanical properties do not necessarily match those of the samples having similar compositions in Patent Documents 1 to 3, this is because the sintering temperature and time, the W particle size of the raw material used, and the like are different. Therefore, a strict comparison was not possible. However, as described in paragraphs 0005 and 0013, the alloy according to the present invention has an advantage of being sintered at a lower cost.
なお、表8には示さなかった高温硬さの傾向は次の通りであった。A発明合金S1は室温の硬さが390HV(9.8N)で、900℃の高温では、180HV(9.8N)、AB発明合金S2は、室温の硬さが590HV(9.8N)で、900℃の高温では、300HV(9.8N)の硬さを示し、優れていた。既存合金T2は、室温の硬さが320HV(9.8N)で、900℃の高温では、140HV(9.8N)となり、室温硬さが低い分、高温硬さも低くなった。 In addition, the tendency of the high temperature hardness which was not shown in Table 8 was as follows. The invention A alloy S1 has a room temperature hardness of 390 HV (9.8 N), at a high temperature of 900 ° C., 180 HV (9.8 N), the AB invention alloy S2 has a room temperature hardness of 590 HV (9.8 N), At a high temperature of 900 ° C., it showed a hardness of 300 HV (9.8 N) and was excellent. The existing alloy T2 had a hardness at room temperature of 320 HV (9.8 N), and at a high temperature of 900 ° C., it became 140 HV (9.8 N).
既存合金T1は、硬さ、抗折力から一見、実用レベルにあるように見えるが、結合相が金属間化合物による分散硬化(強化)や酸素固溶強化されていないため軟質で伸びが6.0%あり、アルミニウム合金用ダイキャスト金型、S45Cやステンレス等の各種鋼材部品の電気加熱鍛造で用いる台電極、または黄銅等の棒材成形に用いる熱間押出しダイスに用いると少しの応力で変形するのでまったく実用できなかった。 The existing alloy T1 seems to be at a practical level at first glance from the viewpoint of hardness and bending strength, but the binder phase is soft and stretched because it is not subjected to dispersion hardening (strengthening) or oxygen solid solution strengthening by intermetallic compounds. 0%, deformed with little stress when used for die casting molds for aluminum alloys, base electrodes used in electric heating forging of various steel parts such as S45C and stainless steel, or hot extrusion dies used for forming rods such as brass So it was not practical at all.
T1以外の試料をアルミニウム合金のダイキャスト金型に使用した場合の性能は、表8に示すが次のようであった。T2は肌荒れが大きく不評であった。B5およびC5は強度不足で割れてしまった。他の表8に示しダイキャスト金型の列の△はT2より肌荒れが小となり、○はT2より肌荒れが小となった上に、寿命が2倍以上となり、◎はT2より肌荒れが小となった上に、寿命が4倍以上となった。 Table 8 shows the performance when samples other than T1 were used in an aluminum alloy die-casting die. T2 was unpopular because of its rough skin. B5 and C5 were cracked due to insufficient strength. △ in the die cast mold row shown in Table 8 is less rough than T2, ○ is less rough than T2, life is more than twice, and ◎ is less rough than T2. In addition, the service life is more than four times.
T1以外の試料を黄銅等の棒材成形に用いる熱間押出しダイスに適用した結果は、表8に示すが、熱間押出しダイスの列の×は強度および硬さが不足し費用対効果が得られず実用できなかった。○はT2より割れるまでの寿命が3倍以上となり、◎は割れるまでの寿命が6倍以上となった。 The results of applying samples other than T1 to hot extrusion dies used for molding rods such as brass are shown in Table 8, but the x in the row of hot extrusion dies is insufficient in strength and hardness, resulting in cost effectiveness. It was not practical. ○ indicates that the life until breaking from T2 is 3 times or more, and ◎ indicates that the life until cracking is 6 times or more.
表8のダイキャスト金型の列で△○◎の試料は、ガラスレンズ成形用の金型の周辺部材に用いても、T2と比べて、それぞれ12倍、24倍、36倍以上優れた長寿命を示した。 In the row of die-cast molds in Table 8, the samples with Δ ○ ◎ are 12 times, 24 times, 36 times more excellent than T2, respectively, even when used as a peripheral member of a glass lens mold. Showed life.
S45Cやステンレス等の各種鋼材部品の電気加熱鍛造で用いる台電極に用いた場合、ダイキャスト金型の列の○◎は用いることができた。T2と比べて、○は10倍以上、◎は20倍以上の優れた長寿命を示した。 When used as a base electrode used in electric heating forging of various steel parts such as S45C and stainless steel, the circles in the die cast mold row could be used. Compared with T2, ◯ indicates an excellent long life of 10 times or more, and ◎ indicates an excellent life of 20 times or more.
本発明のW−Cr基合金は、耐酸化性、高温硬さが優れるため、ダイキャスト金型、熱間押出しダイス、レンズ金型の周辺部材、電気加熱鍛造用電極に用いることで、それらの寿命を著しく長くするため、産業界への貢献が大きく、年間1億円以上の販売が見込まれる。 Since the W-Cr-based alloy of the present invention has excellent oxidation resistance and high-temperature hardness, it can be used for die casting molds, hot extrusion dies, lens mold peripheral members, and electric heating forging electrodes. In order to prolong the service life significantly, it contributes greatly to the industry and is expected to sell over 100 million yen annually.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017007920A JP6471287B2 (en) | 2017-01-19 | 2017-01-19 | W-Cr-based alloy or mold, electrode or extrusion die produced thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017007920A JP6471287B2 (en) | 2017-01-19 | 2017-01-19 | W-Cr-based alloy or mold, electrode or extrusion die produced thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018115378A JP2018115378A (en) | 2018-07-26 |
JP6471287B2 true JP6471287B2 (en) | 2019-02-20 |
Family
ID=62983948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017007920A Active JP6471287B2 (en) | 2017-01-19 | 2017-01-19 | W-Cr-based alloy or mold, electrode or extrusion die produced thereby |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6471287B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102112725B1 (en) * | 2018-08-14 | 2020-05-19 | 서울대학교산학협력단 | Method for manufacturing dispersion-strengthened metal sintered body |
CN110760730B (en) * | 2019-11-27 | 2021-01-29 | 中国兵器工业第五九研究所 | Superplastic tough tungsten alloy material and preparation method thereof |
CN111172417A (en) * | 2020-01-20 | 2020-05-19 | 西安交通大学 | Powder metallurgy material of endogenetic oxide strengthened alloy and preparation method thereof |
CN113817944B (en) * | 2021-09-13 | 2022-10-11 | 安泰天龙(北京)钨钼科技有限公司 | High-performance tungsten alloy bar and preparation method thereof |
CN115608896B (en) * | 2022-09-29 | 2023-10-03 | 济南巨能数控机械有限公司 | Process and die for floating pressing of titanium sponge integral electrode |
JP7351582B1 (en) * | 2023-03-08 | 2023-09-27 | 冨士ダイス株式会社 | Sintered alloy and mold |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3721510B2 (en) * | 2001-03-14 | 2005-11-30 | 冨士ダイス株式会社 | Sintered alloy suitable for optical glass mold and its peripheral components |
JP2007270339A (en) * | 2006-03-30 | 2007-10-18 | Fuji Dies Kk | Metal mold for die casting and its peripheral member |
JP2011246797A (en) * | 2010-05-21 | 2011-12-08 | Fuji Dies Kk | Electrode for electric heating upsetting machine and peripheral member thereof |
-
2017
- 2017-01-19 JP JP2017007920A patent/JP6471287B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018115378A (en) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6471287B2 (en) | W-Cr-based alloy or mold, electrode or extrusion die produced thereby | |
KR101928329B1 (en) | Method for manufacturing nanocrystalline high entropy alloy(hea) and high entropy alloy(hea) manufactured therefrom | |
JP5427380B2 (en) | Carbide composite material and manufacturing method thereof | |
Jiang et al. | Microstructure and mechanical properties of AlNbTiVZr system refractory high entropy alloys | |
Průša et al. | Mechanical properties and thermal stability of Al–Fe–Ni alloys prepared by centrifugal atomisation and hot extrusion | |
WO2012108319A1 (en) | Abrasion-resistant titanium alloy member having excellent fatigue strength | |
Xia et al. | The sintering densification, microstructure and mechanical properties of gamma Ti–48Al–2Cr–2Nb alloy with a small addition of copper | |
Yu et al. | Effect of swaging on microstructure and mechanical properties of liquid-phase sintered 93W-4.9 (Ni, Co)-2.1 Fe alloy | |
CN108342635A (en) | A kind of hexa-atomic high-entropy alloy CoCrFeNiVAl of high intensity infusibilityxAnd preparation method thereof | |
TW201920707A (en) | Sintered molybdenum part | |
US10427216B2 (en) | Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member | |
Kim et al. | Densification behavior of Mo nanopowders prepared by mechanochemical processing | |
Bai et al. | Study on preparation and mechanical properties of Fe3Al–20 wt.% Al2O3 composites | |
JP6259978B2 (en) | Ni-based intermetallic compound sintered body and method for producing the same | |
Yen et al. | Shape memory characteristics and mechanical properties of high-density powder metal TiNi with post-sintering heat treatment | |
Fan et al. | Effects of Si variation and Zr addition on the microstructure, oxidation resistance and mechanical property at 1523 K of Nb-Si-Ti/Zr/Hf-Cr/Al high-entropy superalloys | |
JP6155894B2 (en) | Iron-based sintered material and method for producing the same | |
US20160145723A1 (en) | Fusion carbide of refractory metal cementing | |
CN117070786A (en) | High-entropy alloy with nanoscale heterostructure and preparation method thereof | |
JP6615108B2 (en) | High temperature oxidation resistant rare metal-free hard sintered body and method for producing the same | |
Li et al. | In situ phase interface engineering of MoLa alloys for enhanced strength | |
JP6380864B2 (en) | Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member | |
WO2017199819A1 (en) | Iron-based sintered alloy and method for producing same | |
JP2023047623A (en) | Heat-resistant alloy and method for producing heat-resistant alloy | |
Nakajo et al. | Producing CrFeCoNiSi-based high entropy alloy by spark plasma sintering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170613 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20181228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20181228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6471287 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |