JPS62107006A - Sintered hard alloy member for plastic working and its manufacture - Google Patents

Sintered hard alloy member for plastic working and its manufacture

Info

Publication number
JPS62107006A
JPS62107006A JP24836385A JP24836385A JPS62107006A JP S62107006 A JPS62107006 A JP S62107006A JP 24836385 A JP24836385 A JP 24836385A JP 24836385 A JP24836385 A JP 24836385A JP S62107006 A JPS62107006 A JP S62107006A
Authority
JP
Japan
Prior art keywords
alloy
plastic working
sintering
sintered
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24836385A
Other languages
Japanese (ja)
Inventor
Akio Sawada
澤田 明男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daijietsuto Kogyo Kk
Dijet Industrial Co Ltd
Original Assignee
Daijietsuto Kogyo Kk
Dijet Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daijietsuto Kogyo Kk, Dijet Industrial Co Ltd filed Critical Daijietsuto Kogyo Kk
Priority to JP24836385A priority Critical patent/JPS62107006A/en
Publication of JPS62107006A publication Critical patent/JPS62107006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered hard alloy member for plastic working having high toughness and causing little deformation by sintering an alloy consisting of a WC-base hard phase and a binding phase of an iron group metal and by producing a specified percentage of permanent set in the sintered alloy as compared with the state after the sintering. CONSTITUTION:An alloy consisting of a WC-base hard phase and a binding phase of an iron group metal is sintered. Compressive stress above the yield stress of the sintered alloy is produced in the alloy, and after the stress is relieved, >=0.3% permanent set is produced in the sintered alloy as compared with the state after the sintering. The upper limit of the permanent set depends on the amount of the binding phase but is usually about half of the fracture strain.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、塑性用:r、用超硬合金に関し、さらに詳細
にはダイスやパンチなどに適合する′M性の高い、しか
も変形が少な(、かつ寸法精度が良好な塑性加工用超硬
合金およびその製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a cemented carbide for plastic use, and more specifically to a cemented carbide for use in dies, punches, etc., which has high M properties and less deformation. (and relates to a cemented carbide for plastic working with good dimensional accuracy and a manufacturing method thereof.

〔従来技術〕[Prior art]

従来′、ダイスやバンチなどの塑性加工用工具は、ダイ
ス鋼や高速度鋼などの工具鋼が主として用いられてきた
が、近年、超硬合金および塑性加工技術の進歩によって
wCC超超硬合金多く便用されるようになってきた。
Traditionally, tool steels such as die steel and high-speed steel have been mainly used for plastic working tools such as dies and bunches, but in recent years, with advances in cemented carbide and plastic working technology, many wCC cemented carbide alloys have been used. It has come to be used conveniently.

その主たる理由は、超硬合金は上記した工具鋼に比べて
、硬度が高く耐摩耗性に優れていること。圧縮強度が大
で高荷重の塑性加工ができること。ヤング率が高く寸法
精度の維持性が良好であること。など塑性加工用工具材
料として優れた点が多いことである。
The main reason for this is that cemented carbide has higher hardness and superior wear resistance than the tool steels mentioned above. It has high compressive strength and can perform plastic working under high loads. High Young's modulus and good ability to maintain dimensional accuracy. It has many advantages as a tool material for plastic working.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、より高精度な形状が要求される精密な塑性加工
においては工具鋼製の該工具は勿論のこと超硬合金製の
該工具でも変形が生じて充分な精度を維持できないこと
が多々あり、この場合は、あらかじめ工具自体の変形量
を推測し計算して補正形成した該工具が用いられている
が、これによりても使用中の該工具に変形が顕著に進行
して所望する工具寿命または製品が得られないなどの問
題点を有している。
However, in precise plastic working that requires a more precise shape, not only tools made of tool steel but also tools made of cemented carbide often deform and cannot maintain sufficient accuracy. In this case, a tool that has been corrected by estimating and calculating the amount of deformation of the tool itself is used; There are problems such as not being able to obtain products.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した問題点に鑑みなしたもので、長期の
使用tこ耐え、かつ充分なる精度が維持できる精密な塑
性加工用工具−こ適する塑性加工用超硬部材を提供する
ことを第1の目的とし、1起塑性加工用超硬部材の製造
方法を提供することを第2の目的とするものである。
The present invention has been made in view of the above-mentioned problems, and its primary purpose is to provide a precision plastic working tool that can withstand long-term use and maintain sufficient accuracy - a cemented carbide member suitable for plastic working. The first object of the present invention is to provide a method for manufacturing a cemented carbide member for plastic processing.

〔問題点を解決するための手段〕[Means for solving problems]

本発は、前記した問題点に関し、下記する構成によって
その問題点を解決したものである。
The present invention solves the above-mentioned problems by using the configuration described below.

すなわち、主としてWCを硬質相とし、鉄族金属を結合
相とする焼結合金において、該合金の焼結後の状態時に
比べてα3%以上の永久歪みを有せしめた塑性加工用超
硬部材を第1の要旨とし、主としてWCを硬質相とし、
鉄族金属を結合相とする合金を焼結した後、その合金の
降伏応力以上の圧縮応力を負荷し、そして前記圧縮応力
を除荷したのちにおいて0.3%以上の永久歪みを該合
金内に生じせしめる塑性加工用超硬合金部材の製造方法
を第2の要旨とするものである。
That is, in a sintered alloy mainly composed of WC as a hard phase and an iron group metal as a binder phase, a cemented carbide member for plastic working that has a permanent strain of α3% or more compared to the state after sintering of the alloy is used. The first gist is mainly WC as a hard phase,
After sintering an alloy having an iron group metal as a binder phase, a compressive stress higher than the yield stress of the alloy is applied, and after the compressive stress is unloaded, a permanent strain of 0.3% or more is created in the alloy. The second gist is a method for producing a cemented carbide member for plastic working.

〔発明の作用〕[Action of the invention]

以上夛こよる塑性加工用超硬合金部材は、従来の超硬合
金に比べて、さらにヤング率が高くなり、かつ降伏応力
も大巾に高まる。その結果、実際に使用中にか〜る一定
荷重までの歪量は前記した超硬合金に比較して大巾に減
少して塑性加工用工具として使用した場合、精度維持が
きわめて良好なものとなって多数回の使用によっても精
度変化が極端に小さくなる。
The above-mentioned cemented carbide members for plastic working have a higher Young's modulus and a significantly higher yield stress than conventional cemented carbides. As a result, the amount of distortion during actual use up to a certain load is significantly reduced compared to the cemented carbide mentioned above, and when used as a plastic working tool, accuracy can be maintained extremely well. As a result, changes in accuracy become extremely small even after multiple uses.

なお、主としてweからなるFf!質相を結合する鉄族
金属は、少量であっても合金の塑性変形は促進するが、
その変形量はきわめて少なく。
In addition, Ff! mainly consists of we! Even in small amounts, iron group metals, which bind the qualitative phases, promote plastic deformation of the alloy.
The amount of deformation is extremely small.

また結合相量の少ない合金tこ0.3%以上の永久歪を
生じせしめるためには該合金の圧縮強度の限界値近辺ま
で負荷する必要があり、これは合金の破壊につながるた
め好ましいものではなく結合相量は8 wt%以上が適
当であり、かつ効果的である。なお、合金の変形量は結
合相量が多くなるほど大きくなり効果的な永久歪を有せ
しめるためには結合相量は太い程好ましいが、実用面で
は15〜23wt%の範囲内がよい。
In addition, in order to produce a permanent strain of 0.3% or more in an alloy with a small amount of binder phase, it is necessary to apply a load close to the limit value of the compressive strength of the alloy, which is not preferable because it leads to the alloy's failure. A binder phase amount of 8 wt% or more is appropriate and effective. The amount of deformation of the alloy increases as the amount of the binder phase increases, and in order to provide effective permanent strain, the larger the amount of the binder phase, the more preferable it is, but from a practical standpoint, it is preferably within the range of 15 to 23 wt%.

合金の永久歪量は、0.3%以下では工具の精度維持上
たいしたメリットはない。また上限値については結合相
itこより破断まで歪量が変化するから歪量として数値
的には表わせないもの一破断歪の半分ぐらいまでが適当
である。
If the amount of permanent strain of the alloy is 0.3% or less, there is no significant advantage in maintaining tool accuracy. Regarding the upper limit value, since the amount of strain changes from the point of bonding phase to breakage, it is appropriate to set the amount of strain up to about half of the strain at break, which cannot be numerically expressed as the amount of strain.

結合相とする金属は、コバルトでもよいし、〜 二・リケルでもよい。またCo−Jtl−Or糸であっ
てもよいが、コバルトよりも二・リケpを結合相とした
合金の方が塑性変形し易く永久歪が顕著に生じるので効
果的である。
The metal used as the binder phase may be cobalt or ~2.2 Likel. Co-Jtl-Or yarn may also be used, but an alloy with Ni-like p as a binder phase is more effective than cobalt because it is more easily plastically deformed and causes significant permanent strain.

〔実施例〕〔Example〕

以下、実施例を述べる。 Examples will be described below.

通常の超硬合金の製造方法により表−2tこ示したよう
にWe−15〜23%co および、We−cri C
2−Co−Ni  合金をツくッた。
As shown in Table 2t, We-15 to 23% co and We-cri C
2-Co-Ni alloy was made.

なお、比較合金L Z 3.11は焼結後シこおいて処
理を施さない合金で、本発明による合金は、表−1に示
したような値の圧縮応力を負荷して得た。これにより本
発明による合金の内部に生じた永久歪量を表−2に示し
た。
Note that the comparative alloy L Z 3.11 is an alloy that is not subjected to any post-sintering treatment after sintering, and the alloy according to the present invention was obtained by applying compressive stress of the values shown in Table 1. The amount of permanent strain generated inside the alloy according to the present invention is shown in Table 2.

表−1 上記表において、例えばWe−2o<co金合金ついて
説明すると、処理を施していない比較合金2と本発明合
金5. uは圧縮強度や衝撃値などの特性値はほとんど
差はないが、ヤング率において本発明合金が大巾に高い
値であることが判る。
Table 1 In the above table, for example, to explain the We-2o<co gold alloy, comparative alloy 2 which is not treated and alloy 5 of the present invention. Although there is almost no difference in characteristic values such as compressive strength and impact value, it can be seen that the alloy of the present invention has a significantly higher value in terms of Young's modulus.

また、250 Klf/−の負荷を加えたときの比較合
金2の企及が1.55%であるのに対し、本発明合金3
.11はそれぞれ0.65%、α55%と半分以下に減
少する。そして本発明合金社と比較合金lとを比較する
と本発明合金は圧縮強度こそ低いが衝撃値が高く、I7
かも25 [I Kqf、−までの歪量は比較合金lよ
り小さい。すなわち処理を施さないWe−15%Co合
金が衝撃値が低くて使用に耐えず、このlft衝撃性を
高めるため(こCO量を増やして20%Co合金にした
場合も使用中において型精度の維持が困難であったが、
本発明合金においては以上のような不具合はない。なお
前記表に示した如く、本発明による合金は、永久歪を与
えることにより機械的緒特性を低下させることなくヤン
グ率が大巾に高くなり、ある荷重までの歪量が減少する
Also, when a load of 250 Klf/- is applied, the comparative alloy 2 has an attempt of 1.55%, whereas the invention alloy 3
.. 11 is reduced by more than half to 0.65% and α55%, respectively. Comparing Inventive Alloy Co. and Comparative Alloy I, the Inventive Alloy has low compressive strength but high impact value, and I7
The amount of strain up to 25 [I Kqf, - is smaller than that of comparative alloy l. In other words, the untreated We-15%Co alloy has a low impact value and cannot withstand use, and in order to increase this lft impact resistance (even if the amount of CO is increased and a 20%Co alloy is made, the mold accuracy will be improved during use). Although it was difficult to maintain
The alloy of the present invention does not have the above-mentioned problems. As shown in the table above, by applying permanent strain to the alloy according to the present invention, the Young's modulus can be greatly increased without deteriorating the mechanical properties, and the amount of strain can be reduced up to a certain load.

〔発明の効果〕〔Effect of the invention〕

/−を与えておこなった。(試験条件)処理を施してい
ないWe−15%Co合金(we粒度約2μ)によるも
のは、L000〜2.000個でパンチが折損した。(
試験結果) WC−16%Co(WC粒度約2μ)を焼結後、3 u
 OKg、A−で加圧して永久歪量を約0,6%とした
本発明合金は、10.000〜15.000個まで試験
でき、かつ打抜品の寸法精度も良好であった。(試験結
果) 次に、以下の各試料を異形パンチに形成し、3150材
の異形カップの前方押出し加工をパンチ面圧220 K
ff/−を与えておこなった。
/- was given. (Test conditions) In the case of untreated We-15%Co alloy (we particle size of about 2μ), the punches broke at L000 to 2,000 pieces. (
Test results) After sintering WC-16%Co (WC particle size approximately 2 μ), 3 u
The alloy of the present invention, which had a permanent set amount of about 0.6% when pressed at OKg and A-, could be tested up to 10,000 to 15,000 pieces, and the dimensional accuracy of the punched products was also good. (Test results) Next, each of the following samples was formed into an irregularly shaped punch, and the irregularly shaped cup made of 3150 material was forward extruded at a punch surface pressure of 220 K.
This was done by giving ff/-.

処理を施していないWe−15〜18%C。Untreated We-15-18%C.

合金(WC粒度約2μ)によるものは約2.000個で
割損した。
About 2,000 pieces of the alloy (WC grain size about 2μ) broke.

また、We−22%Co合金(粒度5μ))こよるもの
は割損はなくなったが、パンチが!l!!性変形して太
くなり加工品の寸法が所定値より@/I0゜〜I/14
1g1大きくなった。そこでパンチを再研削して再度使
用したが、L000個ぐらいで寸法精度がでなくなった
In addition, the We-22%Co alloy (grain size 5μ) had no breakage, but the punch! l! ! The dimensions of the processed product become thicker due to deformation than the specified value @/I0°~I/14
It became bigger by 1g1. Therefore, the punch was re-ground and used again, but the dimensional accuracy was lost after about 1000 pieces.

WC−22%Coを焼結後、2 IIOKGIf/m−
の血圧で加圧して約1.5%の永久歪を生じさせた本発
明による合金によって形成した異形パンチは、t o 
o、 o o o〜2 Q O,On 0個の加工がで
きパンチ寿命が大巾に延び、しかも精度も良好であった
After sintering WC-22%Co, 2 IIOKGIf/m-
A profiled punch formed from an alloy according to the invention that was pressurized at a blood pressure of 1.5% to a permanent set of about 1.5% was
o, o o o~2 Q O, On 0 pieces could be processed, the life of the punch was greatly extended, and the accuracy was also good.

Claims (2)

【特許請求の範囲】[Claims] (1)主としてWCを硬質相とし、鉄族金属を結合相と
する焼結合金において、該合金の焼結後の状態時に比べ
て0.3%以上の永久歪みを有していることを特徴とす
る塑性加工用超硬合金部材。
(1) A sintered alloy mainly composed of WC as a hard phase and an iron group metal as a binder phase, characterized by having a permanent strain of 0.3% or more compared to the state of the alloy after sintering. Cemented carbide parts for plastic working.
(2)主としてWCを硬質相とし、鉄族金属を結合相と
する合金を焼結した後、その合金の降伏応力以上の圧縮
応力を負荷して除荷後において0.3%以上の永久歪み
を生じせしめることを特徴とする塑性加工用超硬合金部
材の製造方法。
(2) After sintering an alloy mainly consisting of WC as a hard phase and an iron group metal as a binder phase, a compressive stress higher than the yield stress of the alloy is applied, and after unloading, a permanent strain of 0.3% or more is achieved. 1. A method for producing a cemented carbide member for plastic working, characterized by producing the following.
JP24836385A 1985-11-05 1985-11-05 Sintered hard alloy member for plastic working and its manufacture Pending JPS62107006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24836385A JPS62107006A (en) 1985-11-05 1985-11-05 Sintered hard alloy member for plastic working and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24836385A JPS62107006A (en) 1985-11-05 1985-11-05 Sintered hard alloy member for plastic working and its manufacture

Publications (1)

Publication Number Publication Date
JPS62107006A true JPS62107006A (en) 1987-05-18

Family

ID=17176986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24836385A Pending JPS62107006A (en) 1985-11-05 1985-11-05 Sintered hard alloy member for plastic working and its manufacture

Country Status (1)

Country Link
JP (1) JPS62107006A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431948A (en) * 1987-07-28 1989-02-02 Toshiba Tungaloy Co Ltd High strength sintered alloy
JPS6431949A (en) * 1987-07-28 1989-02-02 Toshiba Tungaloy Co Ltd High strength sintered alloy
JPH0660256A (en) * 1992-08-07 1994-03-04 Kyowa Kogyosho:Kk Automatic vending machine with game function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431948A (en) * 1987-07-28 1989-02-02 Toshiba Tungaloy Co Ltd High strength sintered alloy
JPS6431949A (en) * 1987-07-28 1989-02-02 Toshiba Tungaloy Co Ltd High strength sintered alloy
JPH0660256A (en) * 1992-08-07 1994-03-04 Kyowa Kogyosho:Kk Automatic vending machine with game function

Similar Documents

Publication Publication Date Title
JPS6238402B1 (en)
US5460776A (en) Process for producing connected sintered articles
JPH024904A (en) Method for producing heat-resistant uncompleted product having high ductility in lateral direction made of aluminum alloy from half-finished product produced by powder metallurgy
US3746519A (en) High strength metal bonded tungsten carbide base composites
CN107881309A (en) A kind of cold holes expansion slotted liner bushing and intensifying method
JP3025601B2 (en) Forging die and method of manufacturing the same
JPS62107006A (en) Sintered hard alloy member for plastic working and its manufacture
JPS6291480A (en) Ceramic formation
JP2601284B2 (en) Sintered diamond composite and manufacturing method thereof
JPH076011B2 (en) Method for producing high hardness and high toughness cemented carbide with excellent thermal conductivity
JP2775810B2 (en) Cemented carbide with composite area
JP2010047840A (en) Material produced by powder metallurgy with improved isotropy of the mechanical property
JPS61235533A (en) High heat resistant sintered hard alloy
JP2004143596A (en) Tenacious metallic nano-crystalline bulk material with high hardness and high strength, and its manufacturing method
US3987658A (en) Graphite forging die
JPH07166288A (en) High strength sintered hard alloy having superfine-grained surface
JP5826138B2 (en) Tough cemented carbide and coated cemented carbide
JP2855687B2 (en) Cemented carbide for wear-resistant tools
JPH10219384A (en) Hard cermet material, and tool for metal working and machine parts for metal working using same
JP3512224B2 (en) Cemented carbide members with reduced resin adhesion
JPS6134130A (en) Manufacture of high strength cermet having superior chipping resistance
US4781886A (en) Method for producing refractory metal parts of high hardness
JP2023150452A (en) Shearing work method and shearing workpiece
JPH0712566B2 (en) Method for manufacturing high hardness material joining type tool
JP2855686B2 (en) Cemented carbide for wear-resistant tools