JPH07166288A - High strength sintered hard alloy having superfine-grained surface - Google Patents

High strength sintered hard alloy having superfine-grained surface

Info

Publication number
JPH07166288A
JPH07166288A JP34062293A JP34062293A JPH07166288A JP H07166288 A JPH07166288 A JP H07166288A JP 34062293 A JP34062293 A JP 34062293A JP 34062293 A JP34062293 A JP 34062293A JP H07166288 A JPH07166288 A JP H07166288A
Authority
JP
Japan
Prior art keywords
particle
fine
vicinity
cemented carbide
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34062293A
Other languages
Japanese (ja)
Inventor
Yusuke Iyori
裕介 井寄
Nobuhiko Shima
順彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP34062293A priority Critical patent/JPH07166288A/en
Publication of JPH07166288A publication Critical patent/JPH07166288A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To inhibit the growth and propagation of fine cracking liable to occur at the surface of a tool material at the time of use and to prolong service life by constituting a tool material of a high strength sintered hard alloy where the part in the vicinity of surface is composed of fine-grain WC and the inner part is composed of coarse-grain WC. CONSTITUTION:The part in the vicinity of surface, between the surface and the part at a depth of 50-100mum from the surface, is constituted of WC of <=1mum average particle diameter and the inner part is constituted of WC sintered hard alloy of >=3mum average particle diameter. Moreover, the average content (weight ratio) of V is regulated to 0.1-2.0% in a fine-particle WC part in the surface layer and to <=0.05% in a coarse-particle WC part in the inner part, or the average content of Cr is regulated to 0.3-5% in the fine-particle WC part and to <=0.1% in the coarse-particle part. V and Cr are WC particle growth inhibitors, and a green compact before sintering is immersed in a solution in which respective compounds of V and Cr are dispersed, or the solution is applied or sprayed to or onto the green compact. Moreover, as another means, the part in the vicinity of surface is constituted of a green compact consisting of fine-particle WC and growth inhibitor as an additive and the inner part is constituted of a green compact composed of coarse-particle WC, and these are formed into sandwich-like state and sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塑性加工・鉱山工具等
に用いられる高強度超硬合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high strength cemented carbide used for plastic working, mining tools and the like.

【0002】[0002]

【従来の技術】圧延、押し出し、塑性加工などに用いら
れる金型や、削岩、掘削ビットなどに用いるビットなど
には従来より超硬合金が広範に使用されている。しか
し、このような用途に現行の超硬を用いた場合には、し
ばしば超硬金型が破損するという事故が発生する。本発
明者らはその破損事故の原因を鋭意調査した結果、現行
の超硬が強度(硬さ、圧縮強度)と靱性(抗折力、高破
壊靱性値K1C)を同時に充分に満足していないためと判
断された。
2. Description of the Related Art Conventionally, cemented carbide has been widely used for dies used for rolling, extrusion, plastic working, etc., and bits used for rock drilling, excavation bits and the like. However, when the existing cemented carbide is used for such an application, an accident often occurs in which the cemented carbide die is damaged. As a result of diligent investigations into the cause of the damage accident, the present inventors have found that the current cemented carbide satisfies both strength (hardness, compressive strength) and toughness (breaking strength, high fracture toughness value K 1C ) at the same time. It was judged that there was no.

【0003】[0003]

【発明が解決しようとする課題】すなわち破損事故原因
の大半は(1)超硬金型が負荷応力に負けて(抗折力が
低い)破損するか、(2)繰り返しの負荷応力で生じた
マイクロクラックの成長速度が速くて(破壊靱性値が低
い)急速に大きなクラックとなり破損事故となることを
確認した。
That is, most of the causes of breakage accidents are caused by (1) failure of the cemented carbide die under load stress (low bending strength) or (2) repeated load stress. It was confirmed that the growth rate of microcracks was high (the fracture toughness value was low) and the cracks rapidly became large, resulting in damage.

【0004】[0004]

【本発明の目的】しかし、超硬合金の性質として強度が
高いと靱性は低く、逆に靱性が高いと強度が低いという
問題点がある。本発明は従来になく靱性も強度も同時に
高めた超硬合金を創生し塑性加工型材や鉱山工具等に供
しょうとするものである。
SUMMARY OF THE INVENTION However, as a property of the cemented carbide, when the strength is high, the toughness is low, and when the toughness is high, the strength is low. The present invention intends to create a cemented carbide having both toughness and strength at the same time, which has never been obtained before, and to use it for a plastic working mold material, a mining tool, or the like.

【0005】[0005]

【課題を解決するための手段】発明者らは前述の破損事
故事例の調査検討の結果、さらに興味深い結論を得た。
すなわち従来より強度の指標とされた硬さと圧縮強度、
および靱性の指標とされた抗折力と破壊靱性値(K1C
はともに同義ではなく、下記のように傾向を示す。 強度指標 靱性指標 硬さ 圧縮強度 抗折力 破壊靱性値(K1c) 微粒合金 高 高 高 低 粗粒合金 低 低 低 高 上記ののようにまったく逆の値を示し、さらに微粒合金
と粗粒合金では各指標値が丁度逆転するという結論を得
た。そのため粗粒合金を用いた型では負荷応力に負けて
(抗折力が低い)破損する確率が高く、微粒合金を用い
た型では繰り返しの負荷応力で生じたマイクロクラック
の成長速度が速くて(破壊靱性値が低い)急速に大きな
クラックとなり破損事故に至る確率が高くなることをつ
きとめた。
[Means for Solving the Problems] As a result of the investigation and examination of the above-mentioned damage accident case, the inventors have obtained a more interesting conclusion.
That is, hardness and compressive strength, which have been used as indicators of strength in the past,
Strength and fracture toughness index (K 1C ), which was used as an index of strength and toughness
Are not synonymous with each other and show the following tendency. Strength index Toughness index Hardness Compressive strength Fracture strength Fracture toughness value (K 1c ) Fine grain alloy High High High Low Coarse grain alloy Low Low Low High Exactly opposite values as above, and fine grain alloy and coarse grain alloy Then, it was concluded that each index value is just reversed. Therefore, the mold using the coarse grain alloy has a high probability of being damaged by load stress (low bending strength), and the mold using the fine grain alloy has a high growth rate of microcracks generated by repeated load stress ( The fracture toughness value is low.) It was found that the probability of a large crack rapidly becoming a failure accident increases.

【0006】いずれの場合も高負荷加重・高負荷回数で
の破損確率は高い。しかし、破損に至る過程をさらに詳
細に観察すると、まず応力集中部の表面または表面近傍
部に、微細なクラックが生じ、次にこのクラックがお互
いに連結しながら内部へ向かって成長していく。そして
最終段階としてクラックがある大きさになると破損に至
る。以上の検討結果から表面近傍は微粒化して負荷応力
に充分対抗できるようにして(抗折力を大きく)クラッ
クの発生を抑止し、内部はクラックの成長を抑止する
(破壊靱性値を大きく)ように粗粒化した従来にない合
金を創生した。これによって耐欠損性と耐摩耗性および
疲労強度の高い超硬型を提供することができる。
In either case, there is a high probability of damage under high load load and high load frequency. However, when observing the process leading to the damage in more detail, first, minute cracks are generated on the surface of the stress concentration portion or in the vicinity of the surface, and then these cracks grow toward the inside while connecting with each other. Then, at the final stage, if the size of the crack becomes large, it will be damaged. From the above examination results, it is supposed that the vicinity of the surface will be atomized so that it can sufficiently resist the load stress (large bending strength) to suppress the occurrence of cracks, and the inside will suppress the growth of cracks (larger fracture toughness value). We have created an unprecedented alloy with coarse grains. This makes it possible to provide a cemented carbide mold having high fracture resistance, wear resistance, and fatigue strength.

【0007】[0007]

【作用】以下に特許請求の範囲に従ってさらに詳細に説
明する。まず、表面近傍の超硬合金を構成するWCは平
均粒径が1μm以下であることが望まれる。1μmを越
えると高負荷によるクラックの発生の抑止効果が減少す
る。(抗折力が低下する)合金の充分内部は平均粒径が
3μm以上とする。3μm未満では破壊靱性値(K1C
が低くなり、クラックの進展速度が速く破損に至る時間
が短くなる。
The operation will be described in more detail below according to the claims. First, it is desired that the WC constituting the cemented carbide near the surface has an average particle size of 1 μm or less. If it exceeds 1 μm, the effect of suppressing the generation of cracks due to high load decreases. (The transverse rupture strength is reduced.) The average grain size is 3 μm or more inside the alloy. Fracture toughness value (K 1C ) when less than 3 μm
The crack propagation rate is high and the time to failure is short.

【0008】表面近傍部(微粒化して抗折力と硬さを高
めた部分)は表面から内部に向かって少なくとも50μ
m、多くて5000μmとすると本発明の効果がさらに
大きい。50μm未満ではクラックの発生抵抗が少な
く、本発明の目的の効果が顕著ではない。5000μm
を越えると表面近傍の応力集中部で発生したクラックの
進展速度が速く破損に至る時間を延長しようとする本発
明の効果がやや減ずる。表面近傍部のWCの粒径を微細
化し内部を粗粒化することは従来の技術では実現が困難
である。発明者らは鋭意検討した結果、従来から知られ
ている粒成長抑制材であるVやCr等の化合物を分散さ
せた溶液に焼結前のいわゆるグリーンをディッピングし
たり、該溶液を塗布または噴霧する、あるいは表面近傍
を微粒のWC及び粒成長抑制剤を添加したグリーンとし
内部を粗粒のWCで構成されたグリーンとしたサンドイ
ッチ状のグリーンボディとし、これを焼結するなど種々
の方法を試みいずれもその条件を最適化することで本発
明の主旨を具現することができた。
At least 50 μm in the vicinity of the surface (the portion which is atomized to increase the transverse rupture strength and hardness) from the surface to the inside.
The effect of the present invention is further enhanced when m, at most 5000 μm. If the thickness is less than 50 μm, the crack resistance is low and the effect of the present invention is not remarkable. 5000 μm
When it exceeds, the progress rate of cracks generated in the stress concentration portion near the surface is fast and the effect of the present invention for extending the time to failure is slightly reduced. It is difficult to make the grain size of the WC near the surface smaller and to make the inside coarser by conventional techniques. As a result of diligent studies, the inventors dip a so-called green before sintering into a solution in which a compound such as V or Cr, which is a conventionally known grain growth inhibitor, is dispersed, or apply or spray the solution. Or try various methods such as sintering a green body in the vicinity of the surface of which is a green body to which fine WC and a grain growth inhibitor are added and whose inside is a green composed of coarse WC, and which is sintered. In either case, the gist of the present invention could be realized by optimizing the conditions.

【0009】さらにいずれの場合も本発明の効果は次に
述べる条件を満たした場合に顕著であることを実証し
た。粒成長抑制剤としてVを用いた場合表面近傍のVの
平均含有量が0.1%以上2%以下であることが望まし
い。0.1%未満では粒成長効果が明瞭でなく表面近傍
と内部のWCの粒径差が不明瞭となり本発明の主旨の効
果が弱まる。2%を越えると抗折力が低下しクラックが
発生しやすくなる。内部の平均含有量は0.05以下で
あることがのぞましい。その値を越えると内部の破壊靱
性値が低下し本発明の主旨を充分に具現できない。同じ
く、粒成長抑制剤としてCrを用いた場合表面近傍のC
rの平均含有量が0.3%以上5%以下であることが望
ましい。0.3%未満では粒成長効果が明瞭でなく表面
近傍と内部のWCの粒径差が不明瞭となり本発明の主旨
の効果が弱まる。5%を越えると抗折力が低下しクラッ
クが発生しやすくなる。内部の平均含有量は0.1以下
であることがのぞましい。その値を越えると内部の破壊
靱性値が低下し本発明の主旨を充分に具現できない。
Further, it has been proved that the effect of the present invention is remarkable in any case when the following conditions are satisfied. When V is used as the grain growth inhibitor, the average content of V in the vicinity of the surface is preferably 0.1% or more and 2% or less. If it is less than 0.1%, the grain growth effect is not clear, and the grain size difference between the WC near the surface and the inside is unclear, and the effect of the present invention is weakened. If it exceeds 2%, the transverse rupture strength decreases and cracks are likely to occur. The average internal content is preferably 0.05 or less. If it exceeds that value, the internal fracture toughness value decreases, and the gist of the present invention cannot be fully realized. Similarly, when Cr is used as a grain growth inhibitor, C near the surface is used.
It is desirable that the average content of r is 0.3% or more and 5% or less. If it is less than 0.3%, the grain growth effect is not clear, and the grain size difference between the WC in the vicinity of the surface and the inside is unclear, and the effect of the present invention is weakened. If it exceeds 5%, the transverse rupture strength decreases and cracks are likely to occur. The average internal content is preferably 0.1 or less. If it exceeds that value, the internal fracture toughness value decreases, and the gist of the present invention cannot be fully realized.

【0010】[0010]

【実施例】WC,Co,Crなどの原料粉末を所定の比
に秤量後ボールミルでアルコールを分散剤として用い7
2時間湿式混合した。混合終了後スプレードライを用い
て乾燥造粒を行い、微粒合金用混合粉末(A)、粗粒合
金粉末(B)の2系統の混合粉末を作した。次に特殊プ
レス機を用いて表面部には(A)系統の混合粉、内部に
は(B)系統の混合粉のサンドイッチ構造となるように
プレス成形体を作り、適宜処理温度を選定しながら真空
焼結を行った。焼結完了後所定の形状に加工し硬さ、ヤ
ング率、抗折力、破壊靱性値(K1C)疲労破壊強度(1
6回で疲労破壊する繰り返し圧縮応力、kg/mm2
を測定した。さらにプレス型及びフォーミングロールを
試作し効果を調査した。表1、表2及び表3にその結果
を示す。
Example: Raw material powders such as WC, Co and Cr were weighed to a predetermined ratio and then alcohol was used as a dispersant in a ball mill.
Wet mixed for 2 hours. After completion of the mixing, dry granulation was performed using spray drying to prepare two types of mixed powders of the fine particle alloy mixed powder (A) and the coarse particle alloy powder (B). Next, using a special press machine, a press-molded body is formed on the surface so as to have a sandwich structure of the (A) system mixed powder and the (B) system mixed powder inside, and the processing temperature is appropriately selected. Vacuum sintering was performed. After sintering, it is processed into a predetermined shape and hardness, Young's modulus, transverse rupture strength, fracture toughness (K 1C ), fatigue fracture strength (1
Cyclic compressive stress that causes fatigue failure at 0 6 times, kg / mm 2 )
Was measured. Further, press type and forming rolls were prototyped and the effect was investigated. The results are shown in Table 1, Table 2 and Table 3.

【0011】[0011]

【発明の効果】このように、表面近傍部を微粒超硬合金
とし内部を粗粒超硬合金とすることでクラックの発生抵
抗と進展抵抗を高めた合金を創生することができ、超硬
型として従来になく高負荷に耐え長寿命のものを提供で
きる。
As described above, by forming a fine grained cemented carbide in the vicinity of the surface and a coarse grained cemented carbide in the interior, it is possible to create an alloy with an increased resistance to crack generation and resistance to progress. It is possible to provide a mold that withstands a high load and has a long life, which is unprecedented.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面近傍が平均粒径1μm以下のWCで
構成されたWC基超硬合金で構成され、充分内部が平均
粒径3μm以上のWCで構成されたWC基超硬合金で構
成されたことを特徴とする高強度超硬合金。
1. A WC-based cemented carbide composed of WC having an average particle size of 1 μm or less in the vicinity of the surface, and a WC-based cemented carbide composed sufficiently of WC having an average particle size of 3 μm or more. A high-strength cemented carbide characterized by that.
【請求項2】 請求項1記載の高強度超硬合金におい
て、表面近傍が材料の表面から深さ方向に50μm〜5
000μmであることを特徴とする高強度超硬合金。
2. The high-strength cemented carbide according to claim 1, wherein the vicinity of the surface is 50 μm to 5 in the depth direction from the surface of the material.
High-strength cemented carbide characterized by having a thickness of 000 μm.
【請求項3】 請求項1記載の高強度超硬合金におい
て、表面近傍のVの平均含有量が0.1%重量以上2%
以下であり、充分内部におけるVの平均含有量が0.0
5%以下であることを特徴とする高強度超硬合金。
3. The high-strength cemented carbide according to claim 1, wherein the average V content in the vicinity of the surface is 0.1% by weight or more and 2%.
And the average content of V in the interior is 0.0
High-strength cemented carbide characterized by being 5% or less.
【請求項4】 請求項3記載の高強度超硬合金におい
て、表面近傍が材料の表面から深さ方向に50μm〜5
000μmであることを特徴とする高強度超硬合金。
4. The high-strength cemented carbide according to claim 3, wherein the vicinity of the surface is 50 μm to 5 in the depth direction from the surface of the material.
High-strength cemented carbide characterized by having a thickness of 000 μm.
【請求項5】 請求項1記載の高強度超硬合金におい
て、表面近傍のCrの平均含有量が0.3重量%以上5
%以下であり、充分内部におけるCrの平均含有量が
0.1重量%以下であることを特徴とする高強度超硬合
金。
5. The high-strength cemented carbide according to claim 1, wherein the average Cr content in the vicinity of the surface is 0.3% by weight or more and 5
%, And the average content of Cr in the interior is 0.1% by weight or less, a high-strength cemented carbide.
【請求項6】 請求項5記載の高強度超硬合金におい
て、表面近傍が材料の表面から深さ方向に50μm〜5
000μmであることを特徴とする高強度超硬合金。
6. The high-strength cemented carbide according to claim 5, wherein the vicinity of the surface is 50 μm to 5 μm in the depth direction from the surface of the material.
High-strength cemented carbide characterized by having a thickness of 000 μm.
JP34062293A 1993-12-08 1993-12-08 High strength sintered hard alloy having superfine-grained surface Pending JPH07166288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34062293A JPH07166288A (en) 1993-12-08 1993-12-08 High strength sintered hard alloy having superfine-grained surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34062293A JPH07166288A (en) 1993-12-08 1993-12-08 High strength sintered hard alloy having superfine-grained surface

Publications (1)

Publication Number Publication Date
JPH07166288A true JPH07166288A (en) 1995-06-27

Family

ID=18338741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34062293A Pending JPH07166288A (en) 1993-12-08 1993-12-08 High strength sintered hard alloy having superfine-grained surface

Country Status (1)

Country Link
JP (1) JPH07166288A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041107A (en) * 2003-07-22 2005-02-17 Olympus Corp Method for manufacturing composite material for pressing mold, composite material for pressing mold and pressing mold
CN102534341A (en) * 2012-02-27 2012-07-04 中南大学 Method for eliminating WC (Wolfram Carbide) grain fragmentation at phase boundary between ultra-coarse grain hard alloy and super-coarse grain hard alloy
CN102534339A (en) * 2012-01-06 2012-07-04 常州西利合金工具有限公司 Preparation method for producing end milling cutter blank mixture
CN102703745A (en) * 2012-06-04 2012-10-03 厦门钨业股份有限公司 Preparation method of extra coarse grain hard alloy
CN102965534A (en) * 2012-11-13 2013-03-13 中南大学 Preparation method of hard alloy with ultra-coarse grains on surface
CN103658638A (en) * 2013-12-12 2014-03-26 河南省大地合金股份有限公司 Manufacturing method of bar material of hard alloy end mill for machining stainless steel
CN112143953A (en) * 2020-09-25 2020-12-29 江西江钨硬质合金有限公司 High-performance non-uniform structure hard alloy and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041107A (en) * 2003-07-22 2005-02-17 Olympus Corp Method for manufacturing composite material for pressing mold, composite material for pressing mold and pressing mold
CN102534339A (en) * 2012-01-06 2012-07-04 常州西利合金工具有限公司 Preparation method for producing end milling cutter blank mixture
CN102534341A (en) * 2012-02-27 2012-07-04 中南大学 Method for eliminating WC (Wolfram Carbide) grain fragmentation at phase boundary between ultra-coarse grain hard alloy and super-coarse grain hard alloy
CN102703745A (en) * 2012-06-04 2012-10-03 厦门钨业股份有限公司 Preparation method of extra coarse grain hard alloy
CN102965534A (en) * 2012-11-13 2013-03-13 中南大学 Preparation method of hard alloy with ultra-coarse grains on surface
CN103658638A (en) * 2013-12-12 2014-03-26 河南省大地合金股份有限公司 Manufacturing method of bar material of hard alloy end mill for machining stainless steel
CN112143953A (en) * 2020-09-25 2020-12-29 江西江钨硬质合金有限公司 High-performance non-uniform structure hard alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US7575805B2 (en) Polycrystalline diamond abrasive elements
USRE40717E1 (en) Method of making a cemented carbide power with low compacting pressure
CN105088044B (en) A kind of preparation method of the mutually superhard level hard metal article of nanometer of soap-free emulsion polymeization
US2731711A (en) Sintered tungsten carbide composition
DE102018001515A1 (en) Sintered cBN material and cutting tool
JP2006328539A (en) Coated cemented carbide, and tool
JPH07166288A (en) High strength sintered hard alloy having superfine-grained surface
DE102016100196A1 (en) Shaped sintered abrasive grains based on alumina with fractions of mineralogical phases consisting of mullite, tialite and / or armalcolite and baddeleyite and / or Srilankit and a process for their preparation
JP6968341B2 (en) Cubic boron nitride-based sintered body with microstructural structure and cutting tools
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPS61235533A (en) High heat resistant sintered hard alloy
US3036907A (en) Metal bonded abrasive composition
JPH02209448A (en) Sintered hard alloy containing composite area
CN110964966A (en) Hard alloy suitable for cutting high manganese steel and preparation method thereof
JPH10324942A (en) Ultra-fine cemented carbide, and its manufacture
JPS6256944B2 (en)
JPH11138326A (en) Cemented carbide ball end mill having ball nose part whose half tip part indicates excellent antifriction property
JPH05230589A (en) Wc-based cemented carbide
DE60025430T2 (en) Ceramic cutting tool based on densely sintered nanocomposite alumina
JP6986232B2 (en) Cubic boron nitride base sintered body and cutting tools made of this
KR20090121247A (en) Method of making a composite diamond body
JPH08319532A (en) Sintered hard alloy for punching tool
JPH07138690A (en) Hyperfine-grained hard alloy and parts
JPH07197265A (en) Surface coated high strength sintered cemented carbide
KR102010052B1 (en) Medium carbon free cutting steel having excellent hot workability and method for manufacturing the same