JPH02209448A - Sintered hard alloy containing composite area - Google Patents

Sintered hard alloy containing composite area

Info

Publication number
JPH02209448A
JPH02209448A JP3234789A JP3234789A JPH02209448A JP H02209448 A JPH02209448 A JP H02209448A JP 3234789 A JP3234789 A JP 3234789A JP 3234789 A JP3234789 A JP 3234789A JP H02209448 A JPH02209448 A JP H02209448A
Authority
JP
Japan
Prior art keywords
alloy
bonding phase
sintered hard
hard alloy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3234789A
Other languages
Japanese (ja)
Other versions
JP2775810B2 (en
Inventor
Minoru Nakano
稔 中野
Toshio Nomura
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1032347A priority Critical patent/JP2775810B2/en
Publication of JPH02209448A publication Critical patent/JPH02209448A/en
Application granted granted Critical
Publication of JP2775810B2 publication Critical patent/JP2775810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To combinedly provide the sintered hard alloy with excellent toughness and wear resistance, in a sintered hard alloy constituted of a hard dispersed phase contg. WC and a bonding phase of iron-group metal, by forming the area of the alloy surface having changed quantity of the bonding phase as compared to that of the inside. CONSTITUTION:The sintered hard alloy is constituted of a hard dispersed phase contg. WC and a bonding phase of iron-group metal; the alloy surface contains the area having reduced quantity of the bonding phase as compared to that of the inside; and compressive stress is produced on the surface part of the alloy. Since the sintered hard alloy contains the area having reduced quantity of the bonding phase of Co, etc., on the surface, wear resistance on the alloy surface can be maintained or improved. At the same time, the quantity of the bonding phase of Co, etc., can relatively be increased inside of the alloy which does not contribute to the wear resistance, so that high toughness can be imparted as a whole. Furthermore, for obtaining the sintered hard alloy, powder having prescribed quantity of the bonding phase is packed into a forming mold and powder having reduced quantity of the bonding phase is packed into the part to form the surface which is subjected to press forming sintering. Or, the method of subjecting powder having prescribed quantity of the bonding phase to press forming and repeating carburization and decarburization in the sintering stage can be used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、優れた靭性と耐摩耗性とを兼ね備えた超硬合
金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cemented carbide having both excellent toughness and wear resistance.

〔従来の技術〕[Conventional technology]

従来から、工具用合金として、WCやTie等を含む硬
質分散相と、E’es Nis Co等の鉄族金属の結
合相とからなる超硬合金が用いられてさた。特に、ポン
チ、ヘッダー等の鍛造工具のように耐摩耗性及び耐衝撃
性が要求されるものには、WC−C。
Conventionally, cemented carbide comprising a hard dispersed phase containing WC, Tie, etc., and a binder phase of an iron group metal such as E'es Nis Co has been used as an alloy for tools. In particular, WC-C is used for forged tools such as punches and headers that require wear resistance and impact resistance.

系超硬合金が主に使用されている。Cemented carbides are mainly used.

これら超硬合金では、工具としての性能を改善するため
、Co量の調整やWCの微細化によって耐摩耗性や靭性
の向上が図られてさた。
In order to improve the performance of these cemented carbides as tools, efforts have been made to improve wear resistance and toughness by adjusting the amount of Co and making the WC finer.

しかし、耐摩耗性と靭性とは相反する性質であるため、
両方を同時に改善向上させることは困難であった。例え
ば、Wc−C10系超硬合金では、高靭性を付与するた
めCo量を増加させると必然的に耐摩耗性が低下し、逆
にCo量を減少させると耐摩耗性は向上するが靭性が低
下する。
However, since wear resistance and toughness are contradictory properties,
It was difficult to improve both at the same time. For example, in Wc-C10 cemented carbide, increasing the amount of Co to impart high toughness will inevitably reduce the wear resistance, and conversely, decreasing the amount of Co will improve the wear resistance but reduce the toughness. descend.

このような事情から、超硬合金の耐摩耗・耐衝撃用工具
としての用途は、ハイスに比較して制限されてさた。
Due to these circumstances, the use of cemented carbide as wear-resistant and impact-resistant tools has been limited compared to high speed steel.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はかかる従来の事情に鑑み、耐摩耗・耐衝撃用工
具として好適な、優れた靭性と耐摩耗性とを兼ね具えた
超硬合金を提供することを目的とする。
In view of such conventional circumstances, an object of the present invention is to provide a cemented carbide that has both excellent toughness and wear resistance and is suitable as a wear-resistant and impact-resistant tool.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明ではwcを含む硬質分
散相と鉄族金属の結合相とからなる超硬合金において、
合金表面に合金内部よりも結合相量の減少した領域を有
し、合金表面部に圧縮応力を生ぜしめたことを特徴とす
る。
In order to achieve the above object, the present invention provides a cemented carbide comprising a hard dispersed phase containing WC and a binder phase of iron group metal.
It is characterized by having a region on the alloy surface in which the amount of binder phase is reduced compared to the inside of the alloy, producing compressive stress on the alloy surface.

超硬合金の表面に合金内部よりも結合相量の減少した領
域を形成する手段としては、プレス成形の型に所定の結
合相量(平均的結合相量ンの粉末を充填し、その表面と
なる部分に結合相量を減少させた粉末を充填し、これを
プレス成形した後焼結する方法がある。又、所定の結合
相量の粉末のみを用いてプレス成形した後、焼結過程G
こおいて浸炭と脱炭とを繰返すことによって表面の結合
相を合金内部に偏析させ、結果的に表面に結合相量を減
少させた領域を形成する方法もある。
As a means of forming a region on the surface of a cemented carbide with a reduced amount of binder phase than the inside of the alloy, a press forming mold is filled with powder of a predetermined amount of binder phase (average amount of binder phase), and the surface and the There is a method in which a powder with a reduced amount of binder phase is filled into a part, which is then press-formed and then sintered.Alternatively, after press-forming using only powder with a predetermined amount of binder phase, the sintering process G
There is also a method of repeating carburization and decarburization to segregate the binder phase on the surface into the interior of the alloy, resulting in the formation of a region on the surface in which the amount of binder phase is reduced.

〔作用〕[Effect]

本発明の超硬合金では、合金表面にco等の結合相量を
減少した領域を有するので、合金表面での耐摩耗性が維
持又は改善される。これと同時に、耐摩耗性に寄与しな
い合金内部で相対的にCo等の結合相量を多く出来るの
で、全体として高い靭性を付与することが可能である。
Since the cemented carbide of the present invention has a region in which the amount of binder phase such as cobalt is reduced on the alloy surface, wear resistance on the alloy surface is maintained or improved. At the same time, it is possible to relatively increase the amount of a binder phase such as Co within the alloy that does not contribute to wear resistance, so it is possible to provide high toughness as a whole.

結合相最減少領域の厚さtdと、該領域以外の平均的結
合相量領域の厚さts  との比ts/ldは1、Q〜
100の範囲が好ましい。
The ratio ts/ld of the thickness td of the region with the lowest binder phase decrease to the thickness ts of the average binder phase amount region other than this region is 1, Q ~
A range of 100 is preferred.

超硬合金の表面と内部に2つの組成の異なる領域が形成
されるので、焼結後の冷却過程において合金表面部に引
張力ないし圧縮力の残留応力が生じる。即ち、合金表面
部の残留応力σは、結合相最減少領域の厚さtd、熱膨
張係数αd及びヤング率Kdと、その他の平均的結合相
量領域の厚さts。
Since two regions with different compositions are formed on the surface and inside of the cemented carbide, residual stress of tensile force or compressive force is generated on the surface of the alloy during the cooling process after sintering. That is, the residual stress σ of the alloy surface portion is determined by the thickness td of the region with the lowest binder phase reduction, the thermal expansion coefficient αd, the Young's modulus Kd, and the thickness ts of the other average binder phase content region.

熱膨張係数αS及びヤング率Esとにより、次式で表わ
される: σ=K(αS−αd)Ed・△T (Kはts/ld及びEs/Edで定められる値であり
、△Tは焼結温度と室温の温度差を表わす。)従って、
結合相最減少領域と平均的結合量領域の組成や厚さ等を
選択することによって、合金表面部に圧縮応力を生せし
めることが可能である。
The coefficient of thermal expansion αS and Young's modulus Es are expressed by the following formula: σ=K(αS-αd)Ed・△T (K is the value determined by ts/ld and Es/Ed, and △T is the value determined by ts/ld and Es/Ed. It represents the temperature difference between freezing temperature and room temperature.) Therefore,
By selecting the composition, thickness, etc. of the region of minimum binder phase reduction and the region of average bonding amount, it is possible to generate compressive stress on the alloy surface.

例えば、WC−CO系超超硬合金は上記の比ts/ld
がほぼ1.0〜100の範囲において、残留応力σが圧
縮応力となる。具体的に、合金表面をWC−10wt%
CO及び合金内部をWC!−15wt%COで構成した
本発明の超硬合金について、合金表面部の残留応力σと
両頭域の厚さの比ts/ldの関係を図面に示す。
For example, WC-CO cemented carbide has the above ratio ts/ld
In the range of approximately 1.0 to 100, the residual stress σ becomes compressive stress. Specifically, the alloy surface was coated with WC-10wt%
WC inside CO and alloy! The drawing shows the relationship between the residual stress σ on the alloy surface and the ratio ts/ld of the thickness of both head regions for the cemented carbide of the present invention composed of -15 wt% CO.

このように、合金表面部に圧縮応力を与えることにより
、圧縮応力のない同一組成の合金表面部よりも引張強度
や破壊靭性値を一層向上させることが出来る。
In this manner, by applying compressive stress to the alloy surface portion, the tensile strength and fracture toughness values can be further improved compared to the alloy surface portion of the same composition without compressive stress.

〔実施例〕〔Example〕

実施例1 型を用いて外径20闘及び内径10mmの円筒状にプレ
ス成形したwe−15wt%CO粉末の外周に、更にW
e−7wt%CO粉末を厚さ0.1 mm、 0.5 
fntn、 l srnとなるようにプレス成形して複
層構造とし、1400Cで焼結した。得られた合金の合
金表面(外周)の結合相最減少領域の厚さtdと、該領
域以外の平均的結合相量領域の厚さtsとの比ts/l
dは、試料ASB及びCが夫々50.10及び1であっ
た。
Example 1 W was further added to the outer periphery of WE-15wt% CO powder which was press-molded into a cylindrical shape with an outer diameter of 20mm and an inner diameter of 10mm using a mold.
e-7 wt% CO powder with a thickness of 0.1 mm, 0.5
It was press-molded to have a multilayer structure with fntn, l srn, and sintered at 1400C. Ratio ts/l of the thickness td of the region with the lowest binder phase reduction on the alloy surface (outer periphery) of the obtained alloy and the thickness ts of the average binder phase amount region other than this region
d was 50.10 and 1 for samples ASB and C, respectively.

又、合金表面部の残留応力をX線解析で測定したところ
、試料A、B及びCが夫々−10〜ら、−24臀−及び
−0,5kg、Anynであった。
Further, when the residual stress on the alloy surface was measured by X-ray analysis, samples A, B, and C had weights of -10 to -24 kg, and -0.5 kg, Anyn, respectively.

各合笠試料を前方押出用ポンチとして用い、5OR21
を断面減少率58%及び押出長IQsmで寿命テストを
行なった。比較のために、通常のWC−7wt%CO合
金(試料D)とWC!−15wt%CO合金(試料E)
からなるポンチについても同様にテストした。その結果
、本発明の合金である試料A、B及びCでは夫々12万
個、30万個及び8万個のショットが可能であった。し
かし、試料りは6万個で亀裂が発生して寿命に至り、試
料Eは4万個で摩耗が大きく使用不能となった。
Using each Aigasa sample as a punch for forward extrusion, 5OR21
A life test was conducted at a cross-sectional reduction rate of 58% and an extrusion length IQsm. For comparison, normal WC-7wt%CO alloy (sample D) and WC! -15wt% CO alloy (sample E)
A punch made of was also tested in the same way. As a result, 120,000 shots, 300,000 shots, and 80,000 shots were possible for Samples A, B, and C, which are alloys of the present invention, respectively. However, after 60,000 pieces, sample E developed cracks and reached the end of its life, and sample E was so worn that it became unusable after 40,000 pieces.

実施例2 実施例1と同じ試料A、B及びCを用いて、初期形状が
直径32闘及び長さ/径1.5の3150を鍛造(前方
押出)してキャブランクを加工した。
Example 2 Using the same samples A, B, and C as in Example 1, a 3150 with an initial shape of 32 mm in diameter and a length/diameter of 1.5 was forged (forward extruded) to fabricate a cab blank.

この時のポンチの寿命は試料A、B及びCが夫々8万個
、30万個及び6万個であった。
The lifespan of the punches at this time was 80,000, 300,000, and 60,000 for Samples A, B, and C, respectively.

しかし、比較のために行なった通常のWC−7wt%C
O合金(試料D)とWC!−15wt%CO合金(試料
E)での同様のテストでは、試料りは2万個で亀裂が発
生して寿命に至り、試料Eは3000個で摩耗が大きく
使用不能となった。
However, the normal WC-7wt%C carried out for comparison
O alloy (sample D) and WC! In a similar test using a -15wt% CO alloy (sample E), the sample plate developed cracks and reached the end of its life after 20,000 pieces, and sample E was so worn that it became unusable after 3000 pieces.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、合金表面と内部とで結合相量を変えた
領域を形成することによって、優れた靭性と耐摩耗性と
を兼ね具えた超硬合金を提供することが出来る。
According to the present invention, it is possible to provide a cemented carbide having both excellent toughness and wear resistance by forming regions with different amounts of binder phase on the surface and inside the alloy.

従って、この超硬合金は、鍛造等に用いる耐摩耗・耐衝
撃用工具として好適である。
Therefore, this cemented carbide is suitable as a wear-resistant and impact-resistant tool used in forging and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の超硬合金の一具体例において、合金表面
部の残留応力σと、合金表面の結合相最減少領域の厚さ
tdと該領域以外の平均的結合相量領域の厚さtsとの
比ts/ldとの関係を示すグラフである。
The drawing shows a specific example of the cemented carbide of the present invention, the residual stress σ on the alloy surface, the thickness td of the region with the lowest binder phase reduction on the alloy surface, and the thickness ts of the average binder phase amount region other than this region. It is a graph showing the relationship between the ratio ts/ld and the ratio ts/ld.

Claims (1)

【特許請求の範囲】[Claims] (1)WCを含む硬質分散相と鉄族金属の結合相とから
なる超硬合金において、合金表面に合金内部よりも結合
相量の減少した領域を有し、合金表面部に圧縮応力を生
ぜしめたことを特徴とする超硬合金。
(1) In a cemented carbide consisting of a hard dispersed phase containing WC and a binder phase of iron group metal, the alloy surface has a region where the amount of binder phase is reduced compared to the inside of the alloy, producing compressive stress on the alloy surface. A cemented carbide that is characterized by its hardness.
JP1032347A 1989-02-10 1989-02-10 Cemented carbide with composite area Expired - Fee Related JP2775810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1032347A JP2775810B2 (en) 1989-02-10 1989-02-10 Cemented carbide with composite area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1032347A JP2775810B2 (en) 1989-02-10 1989-02-10 Cemented carbide with composite area

Publications (2)

Publication Number Publication Date
JPH02209448A true JPH02209448A (en) 1990-08-20
JP2775810B2 JP2775810B2 (en) 1998-07-16

Family

ID=12356425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032347A Expired - Fee Related JP2775810B2 (en) 1989-02-10 1989-02-10 Cemented carbide with composite area

Country Status (1)

Country Link
JP (1) JP2775810B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447549A (en) * 1992-02-20 1995-09-05 Mitsubishi Materials Corporation Hard alloy
JP2000355701A (en) * 1999-06-10 2000-12-26 Honda Motor Co Ltd Coating member made of composite material
JP2000355705A (en) * 1999-06-10 2000-12-26 Honda Motor Co Ltd Die made of composite material
JP2001098306A (en) * 1999-09-24 2001-04-10 Honda Motor Co Ltd Die made of composite material
US7070643B2 (en) 2003-03-27 2006-07-04 Toshiba Tungaloy Co., Ltd. Compositionally graded sintered alloy and method of producing the same
US8968834B2 (en) 2008-09-15 2015-03-03 Igor Yuri Konyashin Wear part with hard facing
US9394592B2 (en) 2009-02-27 2016-07-19 Element Six Gmbh Hard-metal body
JP2019162702A (en) * 2018-03-20 2019-09-26 京セラ株式会社 Tool and cutting tool comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179846A (en) * 1984-11-13 1986-08-12 サントレ−ド リミテイド Hard alloy body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179846A (en) * 1984-11-13 1986-08-12 サントレ−ド リミテイド Hard alloy body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447549A (en) * 1992-02-20 1995-09-05 Mitsubishi Materials Corporation Hard alloy
JP2000355701A (en) * 1999-06-10 2000-12-26 Honda Motor Co Ltd Coating member made of composite material
JP2000355705A (en) * 1999-06-10 2000-12-26 Honda Motor Co Ltd Die made of composite material
JP2001098306A (en) * 1999-09-24 2001-04-10 Honda Motor Co Ltd Die made of composite material
US7070643B2 (en) 2003-03-27 2006-07-04 Toshiba Tungaloy Co., Ltd. Compositionally graded sintered alloy and method of producing the same
US8968834B2 (en) 2008-09-15 2015-03-03 Igor Yuri Konyashin Wear part with hard facing
US9394592B2 (en) 2009-02-27 2016-07-19 Element Six Gmbh Hard-metal body
JP2019162702A (en) * 2018-03-20 2019-09-26 京セラ株式会社 Tool and cutting tool comprising the same

Also Published As

Publication number Publication date
JP2775810B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
US5069869A (en) Process for direct shaping and optimization of the mechanical characteristics of penetrating projectiles of high-density tungsten alloy
CA1113284A (en) Powder-metallurgy steel article with high vanadium-carbide content
JP2010514933A (en) Corrosion resistant tool for cold forming
JP2010514934A (en) Cold forming punch
JPH02209448A (en) Sintered hard alloy containing composite area
US4983212A (en) Cermet alloys and composite mechanical parts made by employing them
JP2003519283A (en) High speed steel manufactured by powder metallurgy
JP3025601B2 (en) Forging die and method of manufacturing the same
US20070081916A1 (en) Production of the metallic parts with the alloyed layer containing dispersed compound particles, and the wear-proof parts
JP4567826B2 (en) Press forming mold alloy
JP5121276B2 (en) High-speed steel alloy composite products
JPH0373614B2 (en)
EP0085125A1 (en) Cemented carbide compositions and process for making such compositions
JP7205257B2 (en) Mold for plastic working made of cemented carbide and its manufacturing method
JPS5831061A (en) Superhard tungsten carbide alloy with high strength and high oxidation resistance
US20220411903A1 (en) Microstructure of nbc-based cemented carbide
JP2855687B2 (en) Cemented carbide for wear-resistant tools
JPH02209449A (en) Sintered hard alloy containing composite area
JPH11172364A (en) Production of sintered tool steel
KR0178578B1 (en) Method for manufacturing cementer carbides sintered body
JPS63216942A (en) Tool for warm and hot forgings
JPS6214632B2 (en)
US20220341007A1 (en) NbC-BASED CEMENTED CARBIDE
JPH04210447A (en) Punch for coldforging excellent in wear resistance
JPS625981B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees