JPH07337037A - Controller for voltage self-excited converter - Google Patents

Controller for voltage self-excited converter

Info

Publication number
JPH07337037A
JPH07337037A JP6130314A JP13031494A JPH07337037A JP H07337037 A JPH07337037 A JP H07337037A JP 6130314 A JP6130314 A JP 6130314A JP 13031494 A JP13031494 A JP 13031494A JP H07337037 A JPH07337037 A JP H07337037A
Authority
JP
Japan
Prior art keywords
voltage
output
converter
self
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6130314A
Other languages
Japanese (ja)
Other versions
JP3321297B2 (en
Inventor
Noriko Kawakami
紀子 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP13031494A priority Critical patent/JP3321297B2/en
Publication of JPH07337037A publication Critical patent/JPH07337037A/en
Application granted granted Critical
Publication of JP3321297B2 publication Critical patent/JP3321297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a controller for a voltage self-excited converter in which the converter can be operated stably without causing overcurrent due to saturation of a converter transformer even if the system voltage is distorted upon throw-in of an adjacent high capacity transformer or a high capacitance capacitor. CONSTITUTION:A voltage self-excited converter comprises a converter 4 for converting the voltage of an AC system 1 into a desired voltage, and converters 6A-6D comprising self-extinguishing elements connected in bridge and converting a DC voltage into an AC voltage or vice versa. The voltage self-excited converter further comprises an integrator 17 for integrating the AC output voltage from the converter at the basic period of power supply, and means for correcting the command value of AC output voltage from the voltage self-excited converter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自励式無効電力補償装
置、自励式直流送電装置や、燃料電池システム等に応用
され、ゲートターンオフサイリスタの様な自己消弧素子
(以下GTOと略す)をブリッジ接続した変換器の直流
端子側に、コンデンサ、電池、整流器等の直流電圧源を
有し、かつ電力変換器の交流端子側に交流電力系統電圧
を所望の値に変換する変圧器を有する電圧形自励式変換
器に関し、特に変換器と電力系統の間に設置される変圧
器の偏磁抑制制御回路を改良した電圧形自励式変換器の
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a self-excited reactive power compensator, a self-excited DC power transmission device, a fuel cell system, etc., and a self-extinguishing element (hereinafter abbreviated as GTO) such as a gate turn-off thyristor. A voltage that has a DC voltage source such as a capacitor, a battery, a rectifier, etc. on the DC terminal side of the bridge-connected converter and a transformer that converts the AC power system voltage to a desired value on the AC terminal side of the power converter. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage-type self-excited converter control device in which an eccentricity suppression control circuit for a transformer installed between a converter and an electric power system is improved.

【0002】[0002]

【従来の技術】従来、交流電力系統と電圧形自励式変換
器の間に、変換器用変圧器を設けて交流系統電圧を所望
の値にするよう構成したものにおいて、変換器用変圧器
の偏磁防止のために、変換器の出力電流の直流分によっ
て、偏磁を抑制するようにした偏磁抑制制御回路を適用
した電圧形自励式変換器の制御装置がある。
2. Description of the Related Art Conventionally, a transformer for transformer is provided between an AC power system and a voltage type self-excited converter so that the AC system voltage has a desired value. For prevention, there is a control device for a voltage-type self-excited converter to which a bias magnetic suppression control circuit that suppresses bias magnetism is controlled by the DC component of the output current of the converter.

【0003】図11はこれを説明するための図であり、
これは以下のように構成されている。すなわち、電力系
統1、系統電圧計測用の計器用変圧器2、電力系統1へ
の出力電流を計測する電流検出器3、変換器用変圧器4
からなっている。変換器用変圧器4は系統側の巻線は直
列に接続され、変換器側の巻線はそれぞれ独立に自励式
変換器6A〜6Dに接続されている。
FIG. 11 is a diagram for explaining this.
It is configured as follows. That is, the power system 1, the instrument transformer 2 for measuring the system voltage, the current detector 3 for measuring the output current to the power system 1, and the transformer transformer 4
It consists of The transformer transformer 4 has the windings on the system side connected in series, and the windings on the converter side are independently connected to the self-excited converters 6A to 6D.

【0004】電流検出器5A〜5DはそれぞれGTO
(ゲートターンオフサイリスタ)から構成される自励式
変換器6A〜6Dの出力電流を検出する。変換器6A〜
6Dの直流端子側に直流電圧検出器7およびコンデンサ
等の直流電圧源8A,8Bが接続されている。電力検出
器9は、計器用変圧器2で検出された系統電圧と、電流
検出器3にて検出された電力系統1への出力電流から、
電力系統1へ出力する有効電力、無効電力を検出する。
電力制御回路10は、電力検出器9で検出された電力
と、直流電圧検出器7で検出された直流電圧を入力とし
て、変換器6A〜6Dの有効電力、無効電力を制御す
る。偏磁抑制制御回路12は電力制御回路10から出力
された出力電圧指令値を、変換器出力電流の直流分を検
出する直流分検出回路11の出力により補正する。パル
ス幅変調回路(PWM回路)13は偏磁抑制制御回路1
2で補正された出力電圧指令値に基づいて自己消弧素子
のオンオフを決定する。パルス増幅器(PA)14はパ
ルス幅変調回路13から得られるパルスを増幅して各自
己消弧素子に与える。
The current detectors 5A to 5D are GTOs, respectively.
The output current of the self-excited converters 6A to 6D composed of (gate turn-off thyristor) is detected. Converter 6A ~
A DC voltage detector 7 and DC voltage sources 8A and 8B such as capacitors are connected to the DC terminal side of 6D. The electric power detector 9 detects the system voltage detected by the transformer 2 for an instrument and the output current to the electric power system 1 detected by the current detector 3,
The active power and reactive power output to the power grid 1 are detected.
The power control circuit 10 receives the power detected by the power detector 9 and the DC voltage detected by the DC voltage detector 7, and controls the active power and the reactive power of the converters 6A to 6D. The magnetic bias suppression control circuit 12 corrects the output voltage command value output from the power control circuit 10 by the output of the DC component detection circuit 11 that detects the DC component of the converter output current. The pulse width modulation circuit (PWM circuit) 13 is a magnetic bias suppression control circuit 1.
On / off of the self-extinguishing element is determined based on the output voltage command value corrected in 2. A pulse amplifier (PA) 14 amplifies the pulse obtained from the pulse width modulation circuit 13 and supplies it to each self-extinguishing element.

【0005】図11において、通常時は電力制御回路1
0及びパルス幅変調回路13は、自励式変換器6A〜6
Dの出力電圧に直流成分を含まないようにGTO点弧パ
ターンを決定する。しかし、実際の出力電圧は、GTO
の特性やゲート信号の伝送時間のバラツキ等によって直
流分を含む波形となる。自励式変換器6A〜6Dの出力
電圧が直流分を含むと、変換器用変圧器4に印加される
一周期あたりの電圧時間積が0とならないために、変圧
器4の鉄芯が徐々に偏磁し、励磁電流が増加し、過電流
にいたり、自励式変換器6A〜6Dは保護停止する。最
悪の場合は、自励式変換器6A〜6Dを構成する自己消
弧素子の破損にいたることもある。
In FIG. 11, the power control circuit 1 is normally operated.
0 and the pulse width modulation circuit 13 are self-excited converters 6A to 6A.
The GTO firing pattern is determined so that the output voltage of D does not include a DC component. However, the actual output voltage is
The waveform has a DC component due to variations in the characteristics of the gate signal and variations in the transmission time of the gate signal. When the output voltage of the self-excited converters 6A to 6D includes a DC component, the voltage-time product per cycle applied to the converter transformer 4 does not become 0, so that the iron core of the transformer 4 gradually deviates. It becomes magnetized, the exciting current increases, and it goes into overcurrent, and the self-exciting converters 6A to 6D stop protection. In the worst case, the self-extinguishing elements forming the self-exciting converters 6A to 6D may be damaged.

【0006】図11に示す従来の回路では、偏磁を防止
するため電流検出器5A〜5Dで自励式変換器6A〜6
Dの出力電流を検出し、偏磁に至る過程で発生する励磁
電流の直流電流分を直流分検出回路11にて検出し、直
流分にもとずいて偏磁抑制制御回路12で演算した補正
量を電力制御回路10からの出力電圧指令値と加算し
て、PWM制御を行い、偏磁を打ち消すように自励式変
換器6A〜6Dの出力電圧を調整していた。
In the conventional circuit shown in FIG. 11, the current detectors 5A to 5D use self-excited converters 6A to 6D to prevent magnetic bias.
A correction calculated by detecting the output current of D and detecting the direct current component of the exciting current generated in the process of reaching the demagnetization by the direct current component detection circuit 11 and calculating by the demagnetization suppression control circuit 12 based on the direct current component. The amount is added to the output voltage command value from the power control circuit 10, PWM control is performed, and the output voltages of the self-excited converters 6A to 6D are adjusted so as to cancel the bias magnetism.

【0007】[0007]

【発明が解決しようとする課題】図11において、電力
系統1の電圧は通常は正弦波状の交流電圧である。その
時の出力電圧指令値、すなわちPWM波形の搬送波と変
調波から得られる値と、変換器出力の相電圧波形の関係
を図12に示す。変換器出力相電圧には、GTOの特性
やゲート信号の伝送時間のバラツキ等によるものを除け
ば直流電圧成分は含まれない。
In FIG. 11, the voltage of the power system 1 is usually a sinusoidal AC voltage. FIG. 12 shows the relationship between the output voltage command value at that time, that is, the value obtained from the carrier wave and the modulated wave of the PWM waveform, and the phase voltage waveform of the converter output. The converter output phase voltage does not include a DC voltage component except for the characteristics of the GTO and variations in the transmission time of the gate signal.

【0008】しかしながら、大容量の無効電力補償装置
や、直流送電等に適用される自励式変換器が設置される
変電所においては、大容量電力用コンデンサの投入、隣
接する大容量変圧器の投入時など、系統電圧が大きく歪
んだり、系統電圧に直流分が発生したりすることがあ
る。
However, in a substation in which a large-capacity reactive power compensator or a self-exciting converter applied to direct current transmission or the like is installed, a large-capacity power capacitor is turned on and an adjacent large-capacity transformer is turned on. At times, the system voltage may be greatly distorted or a DC component may be generated in the system voltage.

【0009】系統電圧が歪んだ場合、電力制御回路は歪
みによる過電流を防止するために、自励式変換器の出力
電圧指令値も系統電圧と同じように歪ませる。そのよう
に歪んだ出力電圧指令値に基づいてパルス幅変調を行っ
た場合の波形を図13に示す。
When the system voltage is distorted, the power control circuit distorts the output voltage command value of the self-excited converter in the same manner as the system voltage in order to prevent overcurrent due to the distortion. FIG. 13 shows a waveform when the pulse width modulation is performed based on the output voltage command value thus distorted.

【0010】図13は、基本周波数の正弦波の振幅が搬
送波の振幅の66%のときに、第2次調波が正弦波の振
幅の25%、位相差90度で含有した時の波形である。
図13の変換器出力相電圧は、変調波に高調波が含まれ
ない図12に比較して、斜線部分で負側の電圧が増え、
縦線部分で正側の電圧が増え、差引くと正の直流電圧が
発生している。つまり、変調波が歪むと、例え変調波の
1周期積分値には直流分が含まれなくても、パルス幅変
調後の変換器出力電圧には直流分が含まれてしまう。
FIG. 13 shows a waveform when the amplitude of the sine wave of the fundamental frequency is 66% of the amplitude of the carrier wave and the second harmonic is contained at 25% of the amplitude of the sine wave and a phase difference of 90 degrees. is there.
In the converter output phase voltage of FIG. 13, the voltage on the negative side increases in the shaded area as compared with FIG. 12 in which the modulated wave does not include harmonics,
The voltage on the positive side increases along the vertical line, and when subtracted, a positive DC voltage is generated. That is, if the modulated wave is distorted, the converter output voltage after pulse width modulation will contain the DC component even if the integrated value of one period of the modulated wave does not contain the DC component.

【0011】その値は例えば、4%の第2次調波が含ま
れると1周期当たりの直流分として、変圧器の定格の電
圧時間積分のピーク値の5%にも達してしまう。変圧器
の通常運転時の定格磁束密度を飽和磁束密度の2/3と
したとすると、約10サイクルで変圧器が飽和する値で
ある。
For example, when 4% of the second harmonic is included, the value reaches 5% of the peak value of the voltage-time integral of the rated voltage of the transformer as a DC component per cycle. Assuming that the rated magnetic flux density during normal operation of the transformer is ⅔ of the saturated magnetic flux density, this is a value at which the transformer is saturated in about 10 cycles.

【0012】このような通常運転時に比較して大きな値
の直流電圧成分による偏磁は、図11に示す変換器直流
巻線電流の直流分による補正では間に合わず、偏磁が進
展し過電流になりシステム停止してしまう不具合があっ
た。
Such a demagnetization due to a DC voltage component having a larger value than that during normal operation cannot be made in time by the correction of the DC component of the converter DC winding current shown in FIG. 11, and the demagnetization progresses to cause an overcurrent. There was a problem that the system stopped.

【0013】本発明の目的は、前述した不具合を解消す
るためになされたものであり、電圧形自励式変換器にお
いて、隣接大容量変圧器の投入や大容量コンデンサの投
入にともない系統電圧が歪んだ場合にも、変換器用変圧
器が飽和し過電流になることなく、安定に運転できる電
圧形自励式変換器の制御装置を提供することにある。
An object of the present invention is to eliminate the above-mentioned problems, and in a voltage type self-exciting converter, the system voltage is distorted due to the turning on of an adjacent large capacity transformer or the turning on of a large capacity capacitor. Even in such a case, it is another object of the present invention to provide a control device for a voltage-type self-excited converter that can be stably operated without saturation of the converter transformer and overcurrent.

【0014】[0014]

【課題を解決するための手段】前述の目的を達成するた
めに、請求項1に対応する発明は、自己消弧素子をブリ
ッジ接続し、直流を交流にあるいは、交流を直流に変換
する電力変換器と、この電力変換器の交流端子側に有し
かつ交流電力系統電圧を所望の値に変換する変圧器と、
前記電力変換器の直流端子側に有する直流電圧源からな
る電圧形自励式変換器において、前記電力変換器の交流
出力電圧を電源基本周期で積分する積分手段と、この積
分手段の出力にもとずいて前記電力変換器の交流出力の
電圧指令値を補正する補正手段と、を具備した電圧形自
励式変換器の制御装置である。
In order to achieve the above-mentioned object, the invention corresponding to claim 1 is a power conversion in which a self-extinguishing element is bridge-connected to convert direct current to alternating current or alternating current to direct current. And a transformer that has an AC terminal side of this power converter and converts the AC power system voltage to a desired value,
In a voltage type self-exciting converter including a DC voltage source provided on the DC terminal side of the power converter, an integrating means for integrating the AC output voltage of the power converter in a power source basic cycle, and an output of the integrating means. The control device for the voltage-type self-excited converter further comprises a correction unit that corrects the voltage command value of the AC output of the power converter.

【0015】前述の目的を達成するために、請求項2に
対応する発明は、自己消弧素子をブリッジ接続し、直流
を交流にあるいは、交流を直流に変換する電力変換器
と、この電力変換器の交流端子側に有しかつ交流電力系
統電圧を所望の値に変換する変圧器と、前記電力変換器
の直流端子側に有する直流電圧源からなる電圧形自励式
変換器において、前記電力変換器の交流出力電圧を電源
基本周期の半分の周期で積分する積分手段と、この積分
手段の出力と前回の積分手段の出力との和を演算する加
算手段と、この加算手段の出力にもとずいて前記電力変
換器の交流出力の電圧指令値を補正する補正手段と、を
具備した電圧形自励式変換器の制御装置である。
In order to achieve the above-mentioned object, the invention corresponding to claim 2 is a power converter which bridge-connects a self-extinguishing element and converts direct current into alternating current or alternating current into direct current, and this power conversion. In the voltage type self-exciting converter comprising a transformer for converting the AC power system voltage to a desired value on the AC terminal side of the power converter and a DC voltage source for the DC terminal side of the power converter, the power conversion Integrating means for integrating the AC output voltage of the power source in a cycle of half of the power source basic cycle, adding means for calculating the sum of the output of this integrating means and the output of the previous integrating means, and the output of this adding means The control device for the voltage-type self-excited converter further comprises a correction unit that corrects the voltage command value of the AC output of the power converter.

【0016】前述の目的を達成するために、請求項3に
対応する発明は、請求項1または請求項2記載の電圧形
自励式変換器の制御装置において、交流出力電圧を、直
流電圧検出値と自己消弧素子の点弧指令から演算するこ
とを特徴とする電圧形自励式変換器の制御装置である。
In order to achieve the above-mentioned object, the invention corresponding to claim 3 is the control device for a voltage type self-excited converter according to claim 1 or claim 2, wherein the AC output voltage is a DC voltage detection value. And a control device for a voltage type self-exciting converter, which is characterized in that it is calculated from a firing command of a self-extinguishing element.

【0017】前述の目的を達成するために、請求項4に
対応する発明は、請求項1または請求項2記載の電圧形
自励式変換器の制御装置において、交流出力電圧の積分
手段を、直流電圧の検出値を周波数に変換する電圧周波
数変換手段と、この電圧周波数変換手段の出力に同期
し、高圧側自己消弧素子がオンしている期間はカウント
アップ、低圧側自己消弧素子がオンしている期間はカウ
ントダウンするカウンタとから構成することを特徴とす
る電圧形自励式変換器の制御装置である。
In order to achieve the above-mentioned object, the invention corresponding to claim 4 is the control device of the voltage type self-excited converter according to claim 1 or claim 2, wherein the integrating means of the AC output voltage is a direct current. In synchronization with the voltage frequency conversion means for converting the detected voltage value into frequency, and the output of this voltage frequency conversion means, the high-voltage side self-extinguishing element counts up while the low-voltage side self-extinguishing element turns on. The control device for the voltage-type self-excited converter is characterized in that it is configured by a counter that counts down during the period.

【0018】前述の目的を達成するために、請求項5に
対応する発明は、自己消弧素子をブリッジ接続し、直流
を交流にあるいは、交流を直流に変換する電力変換器
と、この電力変換器の交流端子側に有しかつ交流電力系
統電圧を所望の値に変換する変圧器と、前記電力変換器
の直流端子側に有する直流電圧源からなる電圧形自励式
変換器において、前記電力変換器の交流出力電圧を電源
基本周期で積分する積分手段と、この積分手段の出力が
一定の値を越えたことを検出するレベル検出手段と、こ
のレベル検出手段から検出信号が出力されている時に、
前記積分手段の出力にもとずいて前記電力変換器の交流
出力電圧指令値を補正する補正手段と、を具備した電圧
形自励式変換器の制御装置である。
In order to achieve the above-mentioned object, the invention corresponding to claim 5 relates to a power converter which bridge-connects a self-extinguishing element to convert direct current to alternating current or alternating current to direct current, and this power conversion. In the voltage type self-exciting converter comprising a transformer for converting the AC power system voltage to a desired value on the AC terminal side of the power converter and a DC voltage source for the DC terminal side of the power converter, the power conversion Means for integrating the AC output voltage of the power source in the basic cycle of the power source, level detecting means for detecting that the output of the integrating means exceeds a certain value, and when a detection signal is output from the level detecting means ,
A control device for a voltage-type self-excited converter, comprising: a correction unit that corrects the AC output voltage command value of the power converter based on the output of the integration unit.

【0019】前述の目的を達成するために、請求項6に
対応する発明は、自己消弧素子をブリッジ接続し、直流
を交流にあるいは、交流を直流に変換する電力変換器
と、この電力変換器の交流端子側に有しかつ交流電力系
統電圧を所望の値に変換する変圧器と、前記電力変換器
の直流端子側に有する直流電圧源からなる電圧形自励式
変換器において、前記電力変換器の交流出力電圧を電源
基本周期の半分の周期で積分する積分手段と、この積分
手段の出力と前回の積分手段の出力との和を演算する加
算手段と、この加算手段の出力が一定の値を越えたこと
を検出するレベル検出手段と、このレベル検出手段から
検出信号が出力されている時に、前記加算手段の出力に
もとずいた前記電力変換器の交流出力電圧指令値を補正
する補正手段と、を具備した電圧形自励式変換器の制御
装置である。
In order to achieve the above-mentioned object, the invention according to claim 6 relates to a power converter which bridge-connects a self-extinguishing element and converts direct current into alternating current or alternating current into direct current, and this power conversion. In the voltage type self-exciting converter comprising a transformer for converting the AC power system voltage to a desired value on the AC terminal side of the power converter and a DC voltage source for the DC terminal side of the power converter, the power conversion Means for integrating the AC output voltage of the power source in a cycle of half the power source basic cycle, an adding means for calculating the sum of the output of this integrating means and the output of the previous integrating means, and the output of this adding means is constant. Level detection means for detecting that the value exceeds the value, and when the detection signal is output from the level detection means, corrects the AC output voltage command value of the power converter based on the output of the addition means. Correction means, A control device for Bei the voltage type self-commutated converter.

【0020】[0020]

【作用】請求項1に対応する発明によれば、電力変換器
の交流出力電圧を積分手段により電源基本周期で積分
し、積分手段で検出された変換器出力電圧に含まれる直
流電圧成分を打ち消すように次の周期の変換器出力電圧
指令値を補正することによって、隣接大容量変圧器の投
入や大容量コンデンサの投入にともない系統電圧が歪
み、変換器出力に直流電圧成分が含まれる場合にも、高
速にその直流分を抑制でき、偏磁過電流にいたらず、安
定に運転できる電圧形自励式変換器の制御装置を提供で
きる。
According to the invention corresponding to claim 1, the AC output voltage of the power converter is integrated by the integrating means in the basic period of the power source, and the DC voltage component contained in the converter output voltage detected by the integrating means is canceled. By correcting the converter output voltage command value for the next cycle as described above, the system voltage is distorted due to the turning on of the large-capacity transformer and the turning-on of the large-capacity capacitor, and when the converter output contains a DC voltage component, Also, it is possible to provide a control device of a voltage type self-excited converter that can suppress the direct current component at high speed and can operate stably without causing an over-magnetization overcurrent.

【0021】請求項2に対応する発明によれば、電力変
換器の交流出力電圧を積分手段により電源基本周期の半
分の周期で積分し、この積分出力と前回の積分出力との
和を演算することにより、直前の1周期に含まれる直流
電圧成分を半周期ごとに検出できる。さらに、前記直流
電圧成分を打ち消すように次の半周期の変換器出力電圧
指令値を補正すれば、更に高速にその直流分を打ち消す
ことができるため、偏磁過電流にいたらず、安定に運転
できる電圧形自励式変換器の制御装置を提供できる。ま
た積分を半周期毎に行い、演算により直前の1周期分の
直流電圧成分を求めることにより、該直流電圧成分は半
周期毎に更新され、出力電圧指令値も半周期毎に補正で
きるので、無駄時間が減少し、より速い制御が可能とな
る。
According to the invention corresponding to claim 2, the AC output voltage of the power converter is integrated by the integrating means in a cycle of half the power source basic cycle, and the sum of this integrated output and the previous integrated output is calculated. Thus, the DC voltage component included in the immediately preceding cycle can be detected every half cycle. Furthermore, if the converter output voltage command value for the next half cycle is corrected so as to cancel the DC voltage component, the DC component can be canceled even faster, so stable operation is achieved without causing an overcurrent of the magnetic bias. A control device for a voltage type self-exciting converter can be provided. Further, the integration is performed every half cycle, and the direct current voltage component for the immediately preceding one cycle is obtained by calculation, so that the direct current voltage component is updated every half cycle and the output voltage command value can be corrected every half cycle. Dead time is reduced and faster control is possible.

【0022】請求項3に対応する発明によれば、請求項
1または請求項2の制御装置において、交流出力電圧
を、高圧側素子の点弧している期間は直流電圧が正極性
で出力され、低圧側素子の点弧している期間は直流電圧
が負極性で出力されることから演算して検出することに
より、変圧器の変換器側巻線の端子電圧の計測器は不要
になり、経済的な自励式変換器の制御装置を提供でき
る。
According to the invention corresponding to claim 3, in the control device according to claim 1 or 2, the alternating current output voltage is output as the positive polarity of the direct current voltage during the period when the high voltage side element is ignited. , The DC voltage is output in the negative polarity during the ignition period of the low voltage side element, so by detecting it by calculation, the measuring device for the terminal voltage of the transformer side winding of the transformer becomes unnecessary, It is possible to provide an economical control device for a self-excited converter.

【0023】請求項4に対応する発明によれば、積分手
段をディジタル回路で構成することにより、変圧器の変
換器側巻線の端子電圧の計測器が不要となり、経済的で
あるばかりでなく、積分手段のオフセットやドリフトに
よる、直流分検出の誤差が低減でき、より信頼性の高い
自励式変換器の制御装置を提供できる。
According to the invention corresponding to claim 4, since the integrating means is constituted by a digital circuit, the measuring device for the terminal voltage of the transformer side winding of the transformer becomes unnecessary, which is not only economical but also economical. The DC component detection error due to the offset or drift of the integrating means can be reduced, and a more reliable self-excited converter control device can be provided.

【0024】請求項5に対応する発明によれば、積分手
段の出力である直流電圧成分の値が一定値を越えたとき
に、積分手段の出力にもとずいた電力変換器の交流出力
電圧指令値の補正を行うようにしたので、積分手段の誤
差等による微少な直流分による不要な補正はせず、隣接
大容量変圧器の投入や大容量コンデンサの投入にともな
い系統電圧が歪み、変換器出力に直流電圧成分が含まれ
る場合には補正をおこない変圧器の偏磁を抑制する、信
頼性の高い自励式変換器の制御装置を提供できる。
According to the invention corresponding to claim 5, when the value of the DC voltage component which is the output of the integrating means exceeds a certain value, the AC output voltage of the power converter which is based on the output of the integrating means. Since the command value is corrected, unnecessary correction due to minute DC component due to error of integration means etc. is not performed, and the system voltage is distorted and converted when the adjacent large capacity transformer or large capacity capacitor is turned on. It is possible to provide a highly reliable controller for a self-exciting converter that suppresses the magnetic bias of the transformer by performing correction when the output of the transformer includes a DC voltage component.

【0025】更に、請求項6に対応する発明は、積分手
段の出力と前回の積分手段の出力との和を演算する加算
手段の出力が一定の値を越えたことを検出した時に、加
算手段の出力にもとずいて電力変換器の交流出力電圧指
令値を補正するようにしたので、積分手段の誤差等によ
る微少な直流分による不要な補正はせず、隣接大容量変
圧器の投入や大容量コンデンサの投入にともない系統電
圧が歪み、変換器出力に直流電圧成分が含まれる場合に
は補正をおこない変圧器の偏磁を抑制する、信頼性が高
く高速な自励式変換器の制御装置を提供できる。
Further, the invention according to claim 6 is such that when it is detected that the output of the adding means for calculating the sum of the output of the integrating means and the output of the previous integrating means exceeds a certain value, Since the AC output voltage command value of the power converter is corrected based on the output of the power converter, unnecessary correction by a minute DC component due to an error of the integration means etc. is not performed, and an adjacent large capacity transformer can be turned on or off. Reliable and high-speed self-excited converter control device that suppresses transformer bias magnetism by correcting when the system voltage is distorted due to the input of a large capacity capacitor and the converter output contains a DC voltage component Can be provided.

【0026】[0026]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。 <第1実施例>本発明の1実施例(請求項1に対応する
発明の実施例)について図1を参照した説明する。図1
において既に説明した図11と同一の要素は同一の符号
を付してその説明を省略する。図1において電圧検出器
15A〜15Dは変換器出力電圧を計測する。同期検出
器16は、例えば位相ロックループ回路(PLL)から
なり、計器用変圧器2で計測された系統電圧を入力し、
系統電圧に同期したパルスを発生する。積分回路17は
交流電圧検出器15Dで検出された変換器出力電圧を、
同期検出器16で検出される系統電圧基本周期ごとに積
分する。積分回路17は簡単のため、変換器6Dの出力
電圧の積分回路しか図示していないが、変換器6A〜6
Cにも同様に設けてそれぞれの出力電圧の補正を行う。
Embodiments of the present invention will be described below with reference to the drawings. <First Embodiment> One embodiment of the present invention (an embodiment of the invention corresponding to claim 1) will be described with reference to FIG. Figure 1
11, the same elements as those already described in FIG. 11 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 1, the voltage detectors 15A to 15D measure the converter output voltage. The synchronization detector 16 is composed of, for example, a phase-locked loop circuit (PLL), inputs the system voltage measured by the instrument transformer 2,
Generates a pulse synchronized with the grid voltage. The integrating circuit 17 converts the converter output voltage detected by the AC voltage detector 15D into
Integration is performed for each system voltage basic cycle detected by the synchronization detector 16. For the sake of simplicity, the integrating circuit 17 only shows an integrating circuit of the output voltage of the converter 6D, but the converters 6A to 6A are shown.
Similarly, the output voltage is corrected by being provided to C as well.

【0027】図2は図1の中の変換器1台分について詳
細に示した図であり、図2においてすでに説明した図1
1、図1と同一の要素は同一の符号とし説明を省略す
る。図2において、変換器は自己消弧素子例えばGTO
18A〜18Fと、これらにそれぞれ逆並列に接続され
たダイオード19A〜19Fと、コンデンサ等の直流電
圧源8A,8Bから構成されている。
FIG. 2 is a diagram showing in detail one converter in FIG. 1, and FIG. 1 already explained in FIG.
1 and the same elements as those in FIG. In FIG. 2, the converter is a self-extinguishing device such as a GTO.
18A to 18F, diodes 19A to 19F connected in antiparallel to these, and DC voltage sources 8A and 8B such as capacitors.

【0028】そして、遅延回路20は積分回路17A〜
17Cの値を保持回路(ホールド回路)21A〜21C
が保持してから、積分回路17A〜17Cのリセットを
行うようにするための回路である。遅延回路20の遅延
時間は、保持回路21A〜21Cが保持するのに十分な
時間で、かつできるだけ短くする必要がある。
The delay circuit 20 includes the integrating circuits 17A to 17A.
Hold circuit (hold circuit) 21A to 21C for the value of 17C
Is a circuit for resetting the integrating circuits 17A to 17C after holding. The delay time of the delay circuit 20 is sufficient to be held by the holding circuits 21A to 21C and needs to be as short as possible.

【0029】<第1実施例の作用効果>図1及び図2を
用いて第1実施例の作用効果について説明する。系統電
圧が歪まず正弦波状であれば、変換器出力相電圧は既に
図12に示したように、正側と負側の電圧は等しくな
る。出力電圧の正と負が等しければ、図2において同期
検出器16で検出された系統基本周期毎に、保持回路2
1A〜21Cで保持された積分器17A〜17Cの出力
はゼロとなる。
<Operation and Effect of First Embodiment> The operation and effect of the first embodiment will be described with reference to FIGS. 1 and 2. If the system voltage is not distorted and is sinusoidal, the converter output phase voltage becomes equal to the positive side voltage and the negative side voltage as already shown in FIG. If the output voltage is positive and negative, the holding circuit 2 is set for each system fundamental cycle detected by the synchronization detector 16 in FIG.
The outputs of the integrators 17A to 17C held by 1A to 21C become zero.

【0030】しかしながら、大容量電力用コンデンサの
投入、隣接する大容量変圧器の投入時など、系統電圧が
大きく歪むと、図13で説明したように、変換器出力相
電圧は直流分を含む波形となる。すると、積分器17A
〜17Cの出力を、系統基本周期毎に保持する保持回路
21A〜21Cには、正側電圧の積分値と負側電圧の積
分値の差分、すなわち図13において斜線部分の面積か
ら縦線部分の面積を引いたものが出力される。保持回路
21A〜21Cで保持された電源基本周期1周期分の直
流分を、次の1周期で打ち消すように偏磁抑制制御回路
12で補正量を決定し、電力制御回路10からの出力電
圧指令値を補正すれば、変換器出力直流分が蓄積されな
いため、偏磁を防止することができる。
However, if the system voltage is greatly distorted when a large capacity power capacitor is turned on or an adjacent large capacity transformer is turned on, as shown in FIG. 13, the converter output phase voltage has a waveform including a DC component. Becomes Then, the integrator 17A
In the holding circuits 21A to 21C that hold the outputs of C to C in each system basic period, the difference between the integrated value of the positive side voltage and the integrated value of the negative side voltage, that is, from the area of the shaded portion to the vertical line portion in FIG. The output minus the area. The bias amount suppression control circuit 12 determines a correction amount so as to cancel the DC component for one cycle of the power source basic cycle held by the holding circuits 21A to 21C, and the output voltage command from the power control circuit 10 is determined. If the value is corrected, the output DC component of the converter is not accumulated, so that the magnetic bias can be prevented.

【0031】以上述べた第1実施例によれば、電圧形自
励式変換器の交流出力電圧を電源基本周期で積分する積
分器17A〜17Cを設けて、積分器17A〜17Cで
検出された変換器出力電圧に含まれる直流電圧成分を打
ち消すように次の周期の変換器出力電圧指令値を補正す
ることによって、隣接大容量変圧器の投入や大容量コン
デンサの投入にともない系統電圧が歪み、変換器出力に
直流電圧成分が含まれる場合にも、高速にその直流分を
抑制でき、偏磁過電流にいたらず、安定に運転できる電
圧形自励式変換器の制御装置を提供できる。
According to the first embodiment described above, the integrators 17A to 17C for integrating the AC output voltage of the voltage type self-exciting converter in the power source basic cycle are provided, and the conversion detected by the integrators 17A to 17C is provided. By correcting the converter output voltage command value of the next cycle so as to cancel the DC voltage component included in the converter output voltage, the system voltage is distorted and converted when the adjacent large capacity transformer or large capacity capacitor is turned on. It is possible to provide a control device for a voltage-type self-excited converter that can suppress the direct current component at high speed even when the output of the transformer includes a direct current voltage component, and can operate stably without causing an overcurrent of the demagnetization.

【0032】<第2実施例>図3は、本発明の第2実施
例(請求項2に対応する発明の実施例)を示すもので、
図3について既に説明済みの図と同一の要素は同一の符
号とし、説明を省略する。図3と図2と同様に図1のシ
ステムにおける自励式変換器1台分について示した図で
あり、残りの3台についても同様の回路を付加する。
<Second Embodiment> FIG. 3 shows a second embodiment of the present invention (an embodiment of the invention corresponding to claim 2).
The same elements as those already described with reference to FIG. 3 are designated by the same reference numerals and the description thereof will be omitted. It is the figure shown about one self-exciting converter in the system of FIG. 1 like FIG. 3 and FIG. 2, and the same circuit is added also to the remaining three.

【0033】図3において同期検出器16からの同期信
号(出力信号)51,52は、電源基本周期毎に出力さ
れ、互いに位相が180度ずれた信号である。論理和回
路22は同期検出器16からの同期信号51,52の論
理和をとる。保持回路21A〜21Fのうち、保持回路
21A,21C,21Eは、同期検出器16の同期信号
51で値を保持し、また保持回路21B,21D,21
Fは同期信号51と180度位相がずれている同期信号
52で値を保持する。加算器23A〜23Cは、それぞ
れ、異なる位相で保持した積分器17A〜17Cの出力
を加算する。
In FIG. 3, synchronization signals (output signals) 51 and 52 from the synchronization detector 16 are signals that are output at each basic cycle of the power supply and are 180 degrees out of phase with each other. The OR circuit 22 ORs the synchronization signals 51 and 52 from the synchronization detector 16. Of the holding circuits 21A to 21F, the holding circuits 21A, 21C, and 21E hold the value by the synchronization signal 51 of the synchronization detector 16, and the holding circuits 21B, 21D, and 21F.
F holds a value as a synchronization signal 52 which is 180 degrees out of phase with the synchronization signal 51. The adders 23A to 23C add the outputs of the integrators 17A to 17C held in different phases, respectively.

【0034】図4は図3の回路の動作を説明するための
タイミングチャートであり、積分器17Aは、同期信号
51と52でリセットされるため、常に電源基本周期の
半分の周期でリセットされ、半周期分の出力電圧を積分
する。保持回路21Aは同期信号51で積分器17Aの
値を保持する。図4においては、負の電圧を出力する半
周期間を積分した値を保持する。保持回路21Bは同期
信号52で積分器17Aの値を保持する。図4において
は正の電圧を出力する半周期間を積分した値を保持す
る。加算器23Aで保持回路21A,21Bの値を加算
する。図4からもわかるように加算器23Aの出力は電
源基本周期の半分の周期で更新され、半周期毎に直前の
1周期の積分値を得られる。加算器23A,23B,2
3Cの出力で電力制御回路10からの出力電圧指令値を
補正すれば、電源基本周期の半分の周期で補正すること
ができ、より高速の補正が可能となる。
FIG. 4 is a timing chart for explaining the operation of the circuit of FIG. 3. Since the integrator 17A is reset by the synchronization signals 51 and 52, it is always reset at half the power supply basic cycle, Integrate the output voltage for half cycle. The holding circuit 21A holds the value of the integrator 17A with the synchronization signal 51. In FIG. 4, a value obtained by integrating a half cycle for outputting a negative voltage is held. The holding circuit 21B holds the value of the integrator 17A with the synchronization signal 52. In FIG. 4, a value obtained by integrating a half cycle for outputting a positive voltage is held. The adder 23A adds the values of the holding circuits 21A and 21B. As can be seen from FIG. 4, the output of the adder 23A is updated at a half cycle of the power supply basic cycle, and the integrated value of the immediately preceding one cycle is obtained every half cycle. Adders 23A, 23B, 2
If the output voltage command value from the power control circuit 10 is corrected with the output of 3C, the correction can be performed in a cycle that is half the power supply basic cycle, and faster correction is possible.

【0035】以上述べた第2実施例によれば、電圧形自
励式変換器の交流出力電圧を、積分器17A〜17Cに
より電源基本周期の半分の周期で積分し、積分器17A
〜17Cの出力と前回の積分器の出力との和を演算する
ことにより直前の1周期に含まれる直流電圧成分を半周
期ごとに検出できる。この直流電圧成分を打ち消すよう
に次の半周期の変換器出力電圧指令値を補正すれば、更
に高速に変換器出力電圧の直流分を打ち消すことができ
るるため、偏磁過電流にいたらず、安定に運転できる電
圧形自励式変換器の制御装置を提供できる。積分を半周
期毎に行い、演算により直前の1周期分の直流電圧成分
を求めることにより、該直流電圧成分は半周期毎に更新
され、出力電圧指令値も半周期毎に補正できるので、無
駄時間が減少し、より速い制御が可能となる。
According to the second embodiment described above, the AC output voltage of the voltage-type self-exciting converter is integrated by the integrators 17A to 17C at a half cycle of the power source basic cycle to obtain the integrator 17A.
By calculating the sum of the output of ~ 17C and the output of the previous integrator, the DC voltage component included in the immediately preceding one cycle can be detected every half cycle. If the converter output voltage command value of the next half cycle is corrected so as to cancel this DC voltage component, the DC component of the converter output voltage can be canceled even faster, so that there is no bias magnetic overcurrent, It is possible to provide a control device for a voltage type self-exciting converter that can be stably operated. By performing the integration every half cycle and obtaining the DC voltage component for the immediately preceding one cycle by calculation, the DC voltage component is updated every half cycle, and the output voltage command value can be corrected every half cycle. Time is reduced and faster control is possible.

【0036】<第3実施例>次に、図5は本発明の第3
実施例(請求項3に対応する実施例)を示すもので、前
述の第1実施例または第2実施例における変換器出力相
電圧の検出を行なう電圧検出器15Eの具体例である。
図5において、増幅器24は直流電圧検出信号53を1
/2にする。反転増幅器25は増幅器24の出力信号の
極性を反転する。アナログスイッチ26A〜26Cは論
理1の信号を入力すると閉じる。論理和回路22B、反
転回路27である。
<Third Embodiment> FIG. 5 shows a third embodiment of the present invention.
An embodiment (an embodiment corresponding to claim 3) is shown, which is a specific example of the voltage detector 15E for detecting the converter output phase voltage in the first embodiment or the second embodiment.
In FIG. 5, the amplifier 24 outputs the DC voltage detection signal 53 to 1
Set to / 2. The inverting amplifier 25 inverts the polarity of the output signal of the amplifier 24. The analog switches 26A to 26C are closed when a logic 1 signal is input. An OR circuit 22B and an inverting circuit 27.

【0037】図6は、図5の動作を説明するための図で
あり、図6(a)は主回路の一部を示す図であり、図6
(b)は(a)の動作を説明するためのタイミングチャ
ート(変換器出力相電圧と、GTOのオンオフの関係)
である。図6について既に説明済みの図と同一の要素は
同一の符合とし説明を省略する。図6は3相変換器の1
相について示してある。
FIG. 6 is a diagram for explaining the operation of FIG. 5, and FIG. 6A is a diagram showing a part of the main circuit.
(B) is a timing chart for explaining the operation of (a) (relationship between converter output phase voltage and on / off of GTO)
Is. The same elements as those already described with reference to FIG. 6 are designated by the same reference numerals and the description thereof will be omitted. FIG. 6 shows a three-phase converter 1
The phases are shown.

【0038】図6において高圧側のGTO18Aが点弧
すると、交流側相電圧VACには正極性で直流電圧VDCの
1/2の電圧が現れる。また、低圧側GTO18Bが点
弧すると、負極性で直流電圧VDCの1/2の電圧が現れ
る。従って、電圧の立ち上がり時間等を無視すれば、直
流電圧とGTOの点弧パターンによって交流出力相電圧
波形の推定ができる。
In FIG. 6, when the high voltage side GTO 18A is ignited, a positive voltage of 1/2 of the DC voltage VDC appears in the AC side phase voltage VAC. When the low voltage side GTO 18B is ignited, a voltage of 1/2 of the DC voltage VDC appears with a negative polarity. Therefore, if the rise time of the voltage is ignored, the AC output phase voltage waveform can be estimated by the DC voltage and the GTO firing pattern.

【0039】いま、図6において、高圧側GTO18A
のオン指令54が入ると、アナログスイッチ26Aが閉
じ、交流相電圧信号56には直流電圧53を増幅器24
で1/2にした電圧が出力される。低圧側GTO18B
のオン指令55がはいるとアナログスイッチ26Bが閉
じ、交流相電圧信号56には、反転増幅器25で極性を
反転した直流電圧の1/2の電圧が出力される。高圧側
GTO18A、低圧側GTO18Bがともにオフしてい
るデッドタイム期間は、実回路においては電流が交流系
統から直流側の向きで流れているときは正極性に、逆向
きの時は負極性に直流電圧の1/2の電圧が出力され
る。1周期の間に力率が大きく変わらなければ、デッド
タイム期間が正の電圧を出す期間と負の電圧を出す期間
は同じになるため、直流分を検出する上では影響はな
い。従って、図6においては、デッドタイム期間は、論
理和回路22Bの出力がゼロになり、反転回路27で反
転されて、アナログスイッチ26Cがオンし、交流相電
圧信号56にはゼロが出力される。
Now, referring to FIG. 6, the high voltage side GTO 18A
When the ON command 54 is input, the analog switch 26A is closed, and the DC voltage 53 is supplied to the amplifier 24 as the AC phase voltage signal 56.
The voltage halved is output. Low voltage side GTO18B
When the ON command 55 is input, the analog switch 26B is closed, and as the AC phase voltage signal 56, a voltage which is ½ of the DC voltage whose polarity is inverted by the inverting amplifier 25 is output. During the dead time period in which both the high-voltage side GTO 18A and the low-voltage side GTO 18B are off, in the actual circuit, when the current is flowing from the AC system in the direction of the DC side, the polarity is positive, and in the opposite direction, the polarity is negative. A voltage that is half the voltage is output. If the power factor does not change significantly during one cycle, the dead time period is the same as the period for outputting a positive voltage and the period for outputting a negative voltage, so there is no effect on the detection of the DC component. Therefore, in FIG. 6, in the dead time period, the output of the OR circuit 22B becomes zero, the output is inverted by the inversion circuit 27, the analog switch 26C is turned on, and zero is output to the AC phase voltage signal 56. .

【0040】なお、デッドタイム中の交流電流の向きを
検出し、アナログスイッチ26Aまたは26Bのいずれ
かのスイッチを入れる回路としても良い。無効電力補償
装置や、直流送電装置等の大容量変換器の交流出力電圧
は通常、数kV以上の高電圧である。また、矩形波電圧
であるため、交流出力相電圧の電圧検出器は高耐圧でし
かも高速であることが要求され、高価である。図5に示
す本発明の1実施例のように、交流出力電圧を、直流電
圧の検出値と自己消弧素子の点弧指令から演算すること
により、交流出力相電圧の検出器が不要となり、経済的
な電圧形自励式変換器の制御装置を提供できる。
A circuit for detecting the direction of the alternating current during the dead time and turning on either the analog switch 26A or 26B may be used. The AC output voltage of a large-capacity converter such as a reactive power compensating device or a DC power transmitting device is usually a high voltage of several kV or more. Further, since it is a rectangular wave voltage, the voltage detector of the AC output phase voltage is required to have high withstand voltage and high speed, which is expensive. As in one embodiment of the present invention shown in FIG. 5, by calculating the AC output voltage from the detected value of the DC voltage and the firing command of the self-extinguishing element, the detector of the AC output phase voltage becomes unnecessary, It is possible to provide an economical control device for a voltage type self-excited converter.

【0041】<第4実施例>図7は、本発明の第4実施
例(請求項4に対応する発明の実施例)の要部、すなわ
ち変換器出力相電圧の検出器と積分器を示すものであ
る。図7において既に説明済みの図と同一の要素は同一
の符合とし説明を省略する。図7において、電圧周波数
変換回路28は入力される直流電圧に応じて周波数を変
化させる。カウンタ29は入力されるクロック信号をカ
ウントし、アップ指令(高圧側GTOオン指令)54が
入力されているときはクロックをカウントアップし、ダ
ウン指令(低圧側GTOオン指令)55が入力されてい
るときはクロックをカウントダウンし、論理和回路22
Bと反転回路27を介してストップ指令が入力されてい
るときはカウントを停止し、遅延回路20Aからリセッ
ト指令が入力されると、カウンタ29の出力を初期化す
る機能を持っている。保持回路(サンプルホールド)3
0はカウンタ29のカウント値を保持する。
<Fourth Embodiment> FIG. 7 shows a main part of a fourth embodiment of the present invention (an embodiment of the invention corresponding to claim 4), that is, a converter output phase voltage detector and an integrator. It is a thing. In FIG. 7, the same elements as those already described are designated by the same reference numerals and the description thereof will be omitted. In FIG. 7, the voltage frequency conversion circuit 28 changes the frequency according to the input DC voltage. The counter 29 counts the input clock signal, counts up the clock when the up command (high voltage side GTO ON command) 54 is input, and inputs the down command (low voltage side GTO ON command) 55. When the clock is counted down, the OR circuit 22
It has a function of stopping counting when a stop command is input through B and the inversion circuit 27 and initializing the output of the counter 29 when a reset command is input from the delay circuit 20A. Holding circuit (sample hold) 3
0 holds the count value of the counter 29.

【0042】図7の動作を図8のタイミングチャートを
参照して説明する。図8において、最初の一周期は途中
で直流電圧が減少している。直流電圧53が減少する
と、電圧周波数変換回路28の周波数が低下し、カウン
タ29のカウントスピードが低下する。直流電圧53が
回復すると周波数は元に戻り、カウントスピードも回復
する。カウントアップ中だけカウントスピードが減少す
るため、1周期後のカウンタ29の値は負の値となる。
図8において直流電圧が減少している(A)の期間は正
の相電圧を出力している期間であり、実際の電圧も1周
期積分すると、負の値となる。
The operation of FIG. 7 will be described with reference to the timing chart of FIG. In FIG. 8, the DC voltage decreases in the middle of the first cycle. When the DC voltage 53 decreases, the frequency of the voltage frequency conversion circuit 28 decreases and the count speed of the counter 29 decreases. When the DC voltage 53 is restored, the frequency is restored and the count speed is restored. Since the count speed decreases only during counting up, the value of the counter 29 after one cycle becomes a negative value.
In FIG. 8, the period (A) in which the DC voltage is decreasing is the period in which the positive phase voltage is output, and the actual voltage also has a negative value when integrated for one cycle.

【0043】図8において(B)の期間でPWMパター
ンが正側の電圧が長くなる異常が発生している。このよ
うな場合、カウントアップする期間が長くなるために、
1周期積分後のカウント値は正の値となる。実際の電圧
も、1周期積分すると正の値となる。
In the period (B) in FIG. 8, there is an abnormality that the voltage on the positive side of the PWM pattern becomes long. In such a case, the period for counting up becomes longer,
The count value after one-cycle integration becomes a positive value. The actual voltage also becomes a positive value when integrated over one cycle.

【0044】図8からわかるように、直流電圧が変動し
た場合も、PWMパタンが変動した場合も、図7に示す
回路構成で出力電圧の積分ができる。以上述べた第4実
施例によれば、電圧周波数変換回路28の出力に同期
し、高圧側GTOがオンしている期間はカウントアッ
プ、低圧側GTOがオンしている期間はカウントダウン
するカウンタ29とから構成したので、変圧器の変換器
側巻線の端子電圧の計測器が不要になり経済的であるば
かりでなく、また積分器をディジタル回路で構成するこ
とにより、積分器のオフセットやドリフトによる直流分
検出の誤差が低減でき、より信頼性の高い自励式変換器
の制御装置を提供できる。
As can be seen from FIG. 8, the output voltage can be integrated with the circuit configuration shown in FIG. 7 regardless of whether the DC voltage changes or the PWM pattern changes. According to the fourth embodiment described above, the counter 29 is synchronized with the output of the voltage frequency conversion circuit 28 and counts up while the high voltage side GTO is on, and counts down while the low voltage side GTO is on. Since it is composed of, it is not only economical because it does not require a measuring device for the terminal voltage of the transformer side winding of the transformer, but also because the integrator is composed of a digital circuit, it is An error in DC component detection can be reduced, and a more reliable self-excited converter control device can be provided.

【0045】<第5実施例>次に図9に、本発明の第5
実施例(請求項5に対応する発明の実施例)を示すもの
で、前述した第1実施例の積分器17A〜17Cの出力
が一定の値を越えたことを検出するレベル検出器32を
具備し、レベル検出器32の出力信号がある時に、積分
器17A〜17Cの出力にもとずいた電圧形変換器の交
流出力電圧指令値の補正を行うものである。図9におい
て既に説明済みの図と同一の要素は同一の符合とし説明
を省略する。図9において、最大値選択器31、レベル
検出器32、切換スイッチ33A〜33Cはレベル検出
器32の出力で保持された電源基本周期の変換器出力電
圧の積分値の1相の値が一定の値を越えると、レベル検
出器32が動作し、切換スイッチ32A〜33Cが保持
回路21A〜21Cの出力側に切り替わり、偏磁抑制制
御回路12に積分値が入力されて補正量が演算され、電
力制御回路10からの出力電圧基準値が補正される。保
持回路21A〜21Cで保持された積分値が小さいとき
は切換スイッチは0側に切り換わり、偏磁抑制制御回路
12への入力は零となり補正されない。積分器17A〜
17Cは測定系の定常オフセット及び誤差も積分するた
め、実際の出力電圧に含まれる直流分が零であってもあ
る値を出力する。一方、隣接大容量変圧器の投入や大容
量コンデンサの投入にともない系統電圧が歪み、変換器
出力に直流電圧成分が含まれる場合には、定常オフセッ
トに比較して大きな直流分が発生する。このように大き
な直流分が発生したときは、レベル検出器32が動作
し、切換スイッチ33A〜33Cが切り換わり、積分器
17A〜17Cの出力が偏磁抑制制御回路12に入力さ
れ、補正が行われる。
<Fifth Embodiment> FIG. 9 shows a fifth embodiment of the present invention.
The embodiment (embodiment of the invention corresponding to claim 5) is shown, which comprises a level detector 32 for detecting that the outputs of the integrators 17A to 17C of the first embodiment have exceeded a certain value. However, when there is an output signal of the level detector 32, the AC output voltage command value of the voltage source converter based on the outputs of the integrators 17A to 17C is corrected. In FIG. 9, the same elements as those already described are designated by the same reference numerals and the description thereof will be omitted. In FIG. 9, the maximum value selector 31, the level detector 32, and the change-over switches 33A to 33C are such that the value of one phase of the integrated value of the converter output voltage of the power supply basic period held at the output of the level detector 32 is constant. When the value exceeds the value, the level detector 32 operates, the changeover switches 32A to 33C are switched to the output side of the holding circuits 21A to 21C, the integrated value is input to the bias magnetic suppression control circuit 12, the correction amount is calculated, and the power is calculated. The output voltage reference value from the control circuit 10 is corrected. When the integrated value held in the holding circuits 21A to 21C is small, the changeover switch is switched to the 0 side, and the input to the magnetic bias suppression control circuit 12 becomes zero and is not corrected. Integrator 17A ~
Since 17C also integrates the steady offset and error of the measurement system, it outputs a certain value even if the DC component contained in the actual output voltage is zero. On the other hand, when the system voltage is distorted due to the turning on of the adjacent large-capacity transformer and the turning-on of the large-capacity capacitor, and when the converter output contains a DC voltage component, a large DC component is generated as compared with the steady offset. When such a large DC component is generated, the level detector 32 operates, the changeover switches 33A to 33C are switched, the outputs of the integrators 17A to 17C are input to the bias magnetic suppression control circuit 12, and correction is performed. Be seen.

【0046】以上述べた第5実施例によれば、積分器の
誤差等による微少な直流分による不要な補正はせず、隣
接大容量変圧器の投入や大容量コンデンサの投入にとも
ない系統電圧が歪み、変換器出力に直流電圧成分が含ま
れる場合に補正をおこない変圧器の偏磁を抑制する信頼
性の高い自励式変換器の制御装置を提供できる。
According to the fifth embodiment described above, unnecessary correction due to a minute DC component due to an error of the integrator or the like is not performed, and the system voltage is changed when the adjacent large capacity transformer or large capacity capacitor is turned on. It is possible to provide a highly reliable controller for a self-exciting converter that suppresses bias magnetizing of a transformer by performing correction when a distortion and a converter output include a DC voltage component.

【0047】<第6実施例>図10は、本発明の第6実
施例(請求項6に対応する発明の実施例)を示すもの
で、積分器17A〜17Cの出力が一定の値を越えたこ
とを検出するレベル検出器32を具備し、レベル検出器
32の出力信号がある時に、加算器23A〜23Cの出
力にもとずいた電圧形変換器の交流出力電圧指令値の補
正するものである。図10において既に説明済みの図と
同一の要素は同一の符合とし説明を省略する。
<Sixth Embodiment> FIG. 10 shows a sixth embodiment of the present invention (an embodiment of the invention corresponding to claim 6) in which the outputs of the integrators 17A to 17C exceed a certain value. Compensating the AC output voltage command value of the voltage source converter based on the outputs of the adders 23A to 23C when the output signal of the level detector 32 is provided Is. In FIG. 10, the same elements as those already described are designated by the same reference numerals and the description thereof will be omitted.

【0048】加算器23A〜23Cで加算された値が大
きいときは、レベル検出器32が動作し、切換スイッチ
33A〜33Cが加算器23A〜23Cの出力側に切り
替わり、偏磁抑制制御回路12に加算値が入力されて補
正量が演算され、電力制御回路10からの出力電圧基準
値が補正される。加算器23A〜23Cで加算された値
が小さいときは切換スイッチ33A〜33Cは0側に切
り換わり、偏磁抑制制御回路12への入力は零となり補
正されない。積分器17A〜17Cは測定系の定常オフ
セット及び誤差も積分するため、実際の出力電圧に含ま
れる直流分が零であっても、ある値を出力する。一方、
隣接大容量変圧器の投入や大容量コンデンサの投入にと
もない系統電圧が歪み、変換器出力に直流電圧成分が含
まれる場合には、定常オフセットに比較して大きな直流
分が発生する。このように大きな直流分が発生したとき
は、レベル検出器32が動作し、切換スイッチ33A〜
33Cが切り換わり、積分器17A〜17Cの出力が偏
磁抑制制御回路12に入力され補正が行われる。
When the value added by the adders 23A to 23C is large, the level detector 32 operates, the changeover switches 33A to 33C are switched to the output side of the adders 23A to 23C, and the bias magnetic suppression control circuit 12 is operated. The added value is input, the correction amount is calculated, and the output voltage reference value from the power control circuit 10 is corrected. When the value added by the adders 23A to 23C is small, the changeover switches 33A to 33C are switched to the 0 side, and the input to the magnetic bias suppression control circuit 12 becomes zero and is not corrected. Since the integrators 17A to 17C also integrate the stationary offset and error of the measurement system, they output a certain value even if the DC component contained in the actual output voltage is zero. on the other hand,
When the adjacent large-capacity transformer is turned on or the large-capacity capacitor is turned on, the system voltage is distorted, and when the converter output includes a DC voltage component, a large DC component is generated as compared with the steady offset. When such a large DC component is generated, the level detector 32 operates and the changeover switches 33A ...
33C is switched, and the outputs of the integrators 17A to 17C are input to the magnetic bias suppression control circuit 12 to be corrected.

【0049】以上述べた第6実施例によれば、積分器の
誤差等による微少な直流分による不要な補正はせず、隣
接大容量変圧器の投入や大容量コンデンサの投入にとも
ない系統電圧が歪み、変換器出力に直流電圧成分が含ま
れる場合に補正をおこない変圧器の偏磁を抑制する、信
頼性が高く高速な電圧形自励式変換器の制御装置を提供
できる。
According to the sixth embodiment described above, unnecessary correction due to a minute DC component due to an error of the integrator is not performed, and the system voltage is changed when the adjacent large capacity transformer or large capacity capacitor is turned on. It is possible to provide a highly reliable and high-speed control device for a voltage-type self-exciting converter, which corrects the distortion and suppresses the demagnetization of the transformer when the output of the converter includes a DC voltage component.

【0050】[0050]

【発明の効果】本発明によれば、電圧形自励式変換器に
おいて、隣接大容量変圧器の投入や大容量コンデンサの
投入にともない系統電圧が歪んだ場合にも、変換器用変
圧器が飽和し過電流になることなく、安定に運転できる
電圧形自励式変換器の制御装置を提供できる。
According to the present invention, in the voltage type self-exciting converter, the transformer for transformer is saturated even when the system voltage is distorted due to the turning on of the adjacent large capacity transformer or the turning on of the large capacity capacitor. It is possible to provide a control device for a voltage type self-exciting converter that can be stably operated without causing an overcurrent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電圧形自励式変換器の制御装置の第1
実施例を示す回路図。
FIG. 1 is a first block diagram of a control device for a voltage type self-excited converter according to the present invention.
The circuit diagram which shows an Example.

【図2】図1の回路を詳細に示す図。FIG. 2 is a diagram showing the circuit of FIG. 1 in detail.

【図3】本発明の電圧形自励式変換器の制御装置の第2
実施例を示す回路図。
FIG. 3 is a second control device for the voltage source self-exciting converter according to the present invention.
The circuit diagram which shows an Example.

【図4】図3の動作を説明するためのタイミングチャー
ト。
FIG. 4 is a timing chart for explaining the operation of FIG.

【図5】本発明の電圧形自励式変換器の制御装置の第3
実施例の要部を示す回路図。
FIG. 5 is a third control device for the voltage source self-exciting converter according to the present invention.
FIG. 3 is a circuit diagram showing a main part of the embodiment.

【図6】図5の動作を説明するための図。FIG. 6 is a diagram for explaining the operation of FIG.

【図7】本発明の電圧形自励式変換器の制御装置の第4
実施例の要部を示す回路図。
FIG. 7 is a fourth diagram of the control device for the voltage source self-exciting converter of the present invention.
FIG. 3 is a circuit diagram showing a main part of the embodiment.

【図8】図7の動作を説明するためのタイミングチャー
ト。
8 is a timing chart for explaining the operation of FIG.

【図9】本発明の電圧形自励式変換器の制御装置の第5
実施例を示す回路図。
FIG. 9 is a fifth embodiment of the control device for the voltage source self-exciting converter of the present invention.
The circuit diagram which shows an Example.

【図10】本発明の本発明の電圧形自励式変換器の制御
装置の第6実施例を示す回路図。
FIG. 10 is a circuit diagram showing a sixth embodiment of the control device for the voltage source self-exciting converter according to the present invention.

【図11】従来の電圧形自励式変換器の制御装置の一例
を示した図。
FIG. 11 is a diagram showing an example of a control device for a conventional voltage type self-exciting converter.

【図12】図11の通常運転時の変換器出力電圧波形を
説明するための図。
FIG. 12 is a diagram for explaining a converter output voltage waveform during normal operation in FIG. 11.

【図13】図11の系統電圧が歪んだときの変換器出力
電圧波形を説明するための図。
13 is a diagram for explaining a converter output voltage waveform when the system voltage of FIG. 11 is distorted.

【符号の説明】[Explanation of symbols]

1,1A〜1C…電力系統、2…計器用変圧器、3…電
流検出器、4…変換器用変圧器、5A〜5D…電流検出
器、6A〜6D…自励式変換器、7…直流電圧検出器、
8A〜8B…直流電圧源、9…電力検出器、10…電力
制御回路、11…直流分検出回路、12…偏磁抑制制御
回路、13…パルス幅変調回路、14…パルス増幅器、
15A〜15E…電圧検出器、16…同期検出器、1
7,17A〜17C…積分器、18A〜18D…GTO
(自己消弧素子)、19A〜19D…ダイオード、20
…遅延回路、21A〜21C…保持回路、22A…論理
和回路、23,23A〜23C…加算器、24…増幅
器、25…反転増幅器、26A〜26C…アナログスイ
ッチ、27…反転回路、28…電圧周波数変換回路、2
9…カウンタ、30…保持回路、31…最大値検出器、
32…レベル検出器、33A〜33C…切換スイッチ、
51,52…電源同期信号、53…直流電圧検出信号、
54…高圧側GTOオン指令、55…低圧側GTOオン
指令、56…交流相電圧信号。
1, 1A to 1C ... Power system, 2 ... Instrument transformer, 3 ... Current detector, 4 ... Converter transformer, 5A-5D ... Current detector, 6A-6D ... Self-exciting converter, 7 ... DC voltage Detector,
8A to 8B ... DC voltage source, 9 ... Power detector, 10 ... Power control circuit, 11 ... DC component detection circuit, 12 ... Demagnetization suppression control circuit, 13 ... Pulse width modulation circuit, 14 ... Pulse amplifier,
15A to 15E ... Voltage detector, 16 ... Synchronous detector, 1
7, 17A to 17C ... Integrator, 18A to 18D ... GTO
(Self-extinguishing element), 19A to 19D ... Diode, 20
... delay circuit, 21A-21C ... holding circuit, 22A ... OR circuit, 23, 23A-23C ... adder, 24 ... amplifier, 25 ... inverting amplifier, 26A-26C ... analog switch, 27 ... inverting circuit, 28 ... voltage Frequency conversion circuit, 2
9 ... Counter, 30 ... Holding circuit, 31 ... Maximum value detector,
32 ... Level detector, 33A to 33C ... Changeover switch,
51, 52 ... Power supply synchronization signal, 53 ... DC voltage detection signal,
54 ... High voltage side GTO ON command, 55 ... Low voltage side GTO ON command, 56 ... AC phase voltage signal.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 自己消弧素子をブリッジ接続し、直流を
交流にあるいは、交流を直流に変換する電力変換器と、
この電力変換器の交流端子側に有しかつ交流電力系統電
圧を所望の値に変換する変圧器と、前記電力変換器の直
流端子側に有する直流電圧源からなる電圧形自励式変換
器において、 前記電力変換器の交流出力電圧を電源基本周期で積分す
る積分手段と、 この積分手段の出力にもとずいて前記電力変換器の交流
出力の電圧指令値を補正する補正手段と、 を具備した電圧形自励式変換器の制御装置。
1. A power converter for connecting a self-extinguishing element to a bridge to convert direct current to alternating current or alternating current to direct current,
In a voltage type self-exciting converter having a transformer for converting the AC power system voltage to a desired value and having the AC terminal side of the power converter, and a DC voltage source having the DC terminal side of the power converter, An integrating means for integrating the AC output voltage of the power converter in a power source basic cycle; and a correcting means for correcting the voltage command value of the AC output of the power converter based on the output of the integrating means. Control device for voltage type self-exciting converter.
【請求項2】 自己消弧素子をブリッジ接続し、直流を
交流にあるいは、交流を直流に変換する電力変換器と、
この電力変換器の交流端子側に有しかつ交流電力系統電
圧を所望の値に変換する変圧器と、前記電力変換器の直
流端子側に有する直流電圧源からなる電圧形自励式変換
器において、 前記電力変換器の交流出力電圧を電源基本周期の半分の
周期で積分する積分手段と、 この積分手段の出力と前回の積分手段の出力との和を演
算する加算手段と、 この加算手段の出力にもとずいて前記電力変換器の交流
出力の電圧指令値を補正する補正手段と、 を具備した電圧形自励式変換器の制御装置。
2. A power converter which bridge-connects self-extinguishing elements and converts direct current into alternating current or alternating current into direct current,
In a voltage type self-exciting converter having a transformer for converting the AC power system voltage to a desired value and having the AC terminal side of the power converter, and a DC voltage source having the DC terminal side of the power converter, Integrating means for integrating the AC output voltage of the power converter in a cycle of a power source basic cycle, adding means for calculating the sum of the output of this integrating means and the output of the previous integrating means, and the output of this adding means A control device for a voltage-type self-excited converter, comprising: a correction unit that corrects the voltage command value of the AC output of the power converter.
【請求項3】 請求項1または請求項2記載の電圧形自
励式変換器の制御装置において、交流出力電圧を、直流
電圧検出値と自己消弧素子の点弧指令から演算すること
を特徴とする電圧形自励式変換器の制御装置。
3. The control device for a voltage type self-exciting converter according to claim 1 or 2, wherein an AC output voltage is calculated from a DC voltage detection value and a firing command of a self-extinguishing element. Voltage source self-exciting converter control device.
【請求項4】 請求項1または請求項2記載の電圧形自
励式変換器の制御装置において、交流出力電圧の積分手
段を、直流電圧の検出値を周波数に変換する電圧周波数
変換手段と、この電圧周波数変換手段の出力に同期し、
高圧側自己消弧素子がオンしている期間はカウントアッ
プ、低圧側自己消弧素子がオンしている期間はカウント
ダウンするカウンタとから構成することを特徴とする電
圧形自励式変換器の制御装置。
4. The control device for a voltage type self-exciting converter according to claim 1 or 2, wherein the integrating means of the AC output voltage is a voltage frequency converting means for converting the detected value of the DC voltage into a frequency. Synchronized with the output of the voltage frequency conversion means,
A control device for a voltage type self-exciting converter, which comprises a counter that counts up while the high-voltage side self-extinguishing element is on, and counts down while the low-voltage side self-extinguishing element is on. .
【請求項5】 自己消弧素子をブリッジ接続し、直流を
交流にあるいは、交流を直流に変換する電力変換器と、
この電力変換器の交流端子側に有しかつ交流電力系統電
圧を所望の値に変換する変圧器と、前記電力変換器の直
流端子側に有する直流電圧源からなる電圧形自励式変換
器において、 前記電力変換器の交流出力電圧を電源基本周期で積分す
る積分手段と、 この積分手段の出力が一定の値を越えたことを検出する
レベル検出手段と、 このレベル検出手段から検出信号が出力されている時
に、前記積分手段の出力にもとずいて前記電力変換器の
交流出力電圧指令値を補正する補正手段と、 を具備した電圧形自励式変換器の制御装置。
5. A power converter that bridge-connects a self-extinguishing element to convert direct current to alternating current or alternating current to direct current,
In a voltage type self-exciting converter having a transformer for converting the AC power system voltage to a desired value and having the AC terminal side of the power converter, and a DC voltage source having the DC terminal side of the power converter, Integrating means for integrating the AC output voltage of the power converter in the power source basic cycle, level detecting means for detecting that the output of the integrating means exceeds a certain value, and a detection signal is output from the level detecting means. And a correction unit that corrects the AC output voltage command value of the power converter based on the output of the integration unit.
【請求項6】 自己消弧素子をブリッジ接続し、直流を
交流にあるいは、交流を直流に変換する電力変換器と、
この電力変換器の交流端子側に有しかつ交流電力系統電
圧を所望の値に変換する変圧器と、前記電力変換器の直
流端子側に有する直流電圧源からなる電圧形自励式変換
器において、 前記電力変換器の交流出力電圧を電源基本周期の半分の
周期で積分する積分手段と、 この積分手段の出力と前回の積分手段の出力との和を演
算する加算手段と、 この加算手段の出力が一定の値を越えたことを検出する
レベル検出手段と、 このレベル検出手段から検出信号が出力されている時
に、前記加算手段の出力にもとずいた前記電力変換器の
交流出力電圧指令値を補正する補正手段と、 を具備した電圧形自励式変換器の制御装置。
6. A power converter for connecting a self-extinguishing element to a bridge and converting direct current to alternating current or alternating current to direct current,
In a voltage type self-exciting converter having a transformer for converting the AC power system voltage to a desired value and having the AC terminal side of the power converter, and a DC voltage source having the DC terminal side of the power converter, Integrating means for integrating the AC output voltage of the power converter in a cycle of a power source basic cycle, adding means for calculating the sum of the output of this integrating means and the output of the previous integrating means, and the output of this adding means Of the AC output voltage command value of the power converter based on the output of the adding means when a detection signal is being output from the level detecting means. A voltage source self-exciting converter control device comprising:
JP13031494A 1994-06-13 1994-06-13 Control device for voltage source self-excited converter Expired - Lifetime JP3321297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13031494A JP3321297B2 (en) 1994-06-13 1994-06-13 Control device for voltage source self-excited converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13031494A JP3321297B2 (en) 1994-06-13 1994-06-13 Control device for voltage source self-excited converter

Publications (2)

Publication Number Publication Date
JPH07337037A true JPH07337037A (en) 1995-12-22
JP3321297B2 JP3321297B2 (en) 2002-09-03

Family

ID=15031366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13031494A Expired - Lifetime JP3321297B2 (en) 1994-06-13 1994-06-13 Control device for voltage source self-excited converter

Country Status (1)

Country Link
JP (1) JP3321297B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014447A (en) * 2004-06-24 2006-01-12 Toshiba Mitsubishi-Electric Industrial System Corp Inverter device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014447A (en) * 2004-06-24 2006-01-12 Toshiba Mitsubishi-Electric Industrial System Corp Inverter device

Also Published As

Publication number Publication date
JP3321297B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US4996637A (en) Electrical converter utilizing switched uni-directional and bi-directional energy sources
JP3221828B2 (en) Power conversion method and power conversion device
KR0125967B1 (en) Control apparatus for power converter
EP0224198A2 (en) Control device for power converter
JPS6271428A (en) Power converter
CN111682575B (en) Three-phase series CA-MMC (capacitor-multilevel converter) with voltage-stabilizing capacitor bridge arm in flexible direct current transmission system and system
JP3236986B2 (en) Power conversion system
JPH07123722A (en) Pwm converter
JPH07337037A (en) Controller for voltage self-excited converter
JP3430194B2 (en) Pulse width modulation power converter
JP3992652B2 (en) 3-phase input charger
JPH07298637A (en) Inverter
Cuma et al. Implementation of a non-linear adaptive filter based sag detection method for dynamic voltage restorers under unbalanced fault conditions
JPH0435990B2 (en)
JP3427656B2 (en) Control method of inverter for photovoltaic power generation
JP3227009B2 (en) AC electric vehicle control device
Farret et al. Minimisation of uncharacteristic harmonics in HVDC convertors through firing angle modulation
JP2745728B2 (en) Inverter control method
JPS62222166A (en) Ac signal detector
JP4851844B2 (en) Power converter
JPH07236230A (en) Controller for voltage fluctuation suppresser
JPH1094262A (en) Voltage-type self-excited converter
JPH10229682A (en) Control method for power converter equipment
JPH03277179A (en) Power supply
JPH05284751A (en) Controller for 3-pulse pwm inverter

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term