JP3321297B2 - Control device for voltage source self-excited converter - Google Patents

Control device for voltage source self-excited converter

Info

Publication number
JP3321297B2
JP3321297B2 JP13031494A JP13031494A JP3321297B2 JP 3321297 B2 JP3321297 B2 JP 3321297B2 JP 13031494 A JP13031494 A JP 13031494A JP 13031494 A JP13031494 A JP 13031494A JP 3321297 B2 JP3321297 B2 JP 3321297B2
Authority
JP
Japan
Prior art keywords
voltage
output
converter
self
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13031494A
Other languages
Japanese (ja)
Other versions
JPH07337037A (en
Inventor
紀子 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP13031494A priority Critical patent/JP3321297B2/en
Publication of JPH07337037A publication Critical patent/JPH07337037A/en
Application granted granted Critical
Publication of JP3321297B2 publication Critical patent/JP3321297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自励式無効電力補償装
置、自励式直流送電装置や、燃料電池システム等に応用
され、ゲートターンオフサイリスタの様な自己消弧素子
(以下GTOと略す)をブリッジ接続した変換器の直流
端子側に、コンデンサ、電池、整流器等の直流電圧源を
有し、かつ電力変換器の交流端子側に交流電力系統電圧
を所望の値に変換する変圧器を有する電圧形自励式変換
器に関し、特に変換器と電力系統の間に設置される変圧
器の偏磁抑制制御回路を改良した電圧形自励式変換器の
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a self-excited reactive power compensator, a self-excited DC power transmitting device, a fuel cell system, and the like, and includes a self-turn-off device (hereinafter abbreviated as GTO) such as a gate turn-off thyristor. A voltage that has a DC voltage source such as a capacitor, a battery, and a rectifier on the DC terminal side of the bridge-connected converter, and a transformer that converts an AC power system voltage to a desired value on the AC terminal side of the power converter. More particularly, the present invention relates to a control device for a voltage-type self-excited converter, which has an improved control circuit for suppressing the magnetization of a transformer installed between the converter and a power system.

【0002】[0002]

【従来の技術】従来、交流電力系統と電圧形自励式変換
器の間に、変換器用変圧器を設けて交流系統電圧を所望
の値にするよう構成したものにおいて、変換器用変圧器
の偏磁防止のために、変換器の出力電流の直流分によっ
て、偏磁を抑制するようにした偏磁抑制制御回路を適用
した電圧形自励式変換器の制御装置がある。
2. Description of the Related Art Conventionally, a transformer for a converter is provided between an AC power system and a voltage-type self-excited converter so that the AC system voltage becomes a desired value. In order to prevent this, there is a control device for a voltage-type self-excited converter to which a demagnetization suppression control circuit that suppresses demagnetization by a DC component of the output current of the converter is used.

【0003】図11はこれを説明するための図であり、
これは以下のように構成されている。すなわち、電力系
統1、系統電圧計測用の計器用変圧器2、電力系統1へ
の出力電流を計測する電流検出器3、変換器用変圧器4
からなっている。変換器用変圧器4は系統側の巻線は直
列に接続され、変換器側の巻線はそれぞれ独立に自励式
変換器6A〜6Dに接続されている。
FIG. 11 is a diagram for explaining this.
This is configured as follows. That is, a power system 1, an instrument transformer 2 for measuring system voltage, a current detector 3 for measuring an output current to the power system 1, and a transformer 4 for a converter.
Consists of In the transformer 4 for the converter, the windings on the system side are connected in series, and the windings on the converter side are independently connected to the self-excited converters 6A to 6D.

【0004】電流検出器5A〜5DはそれぞれGTO
(ゲートターンオフサイリスタ)から構成される自励式
変換器6A〜6Dの出力電流を検出する。変換器6A〜
6Dの直流端子側に直流電圧検出器7およびコンデンサ
等の直流電圧源8A,8Bが接続されている。電力検出
器9は、計器用変圧器2で検出された系統電圧と、電流
検出器3にて検出された電力系統1への出力電流から、
電力系統1へ出力する有効電力、無効電力を検出する。
電力制御回路10は、電力検出器9で検出された電力
と、直流電圧検出器7で検出された直流電圧を入力とし
て、変換器6A〜6Dの有効電力、無効電力を制御す
る。偏磁抑制制御回路12は電力制御回路10から出力
された出力電圧指令値を、変換器出力電流の直流分を検
出する直流分検出回路11の出力により補正する。パル
ス幅変調回路(PWM回路)13は偏磁抑制制御回路1
2で補正された出力電圧指令値に基づいて自己消弧素子
のオンオフを決定する。パルス増幅器(PA)14はパ
ルス幅変調回路13から得られるパルスを増幅して各自
己消弧素子に与える。
The current detectors 5A to 5D are respectively GTO
(Gate turn-off thyristors) to detect output currents of the self-excited converters 6A to 6D. Converter 6A ~
A DC voltage detector 7 and DC voltage sources 8A and 8B such as capacitors are connected to the DC terminal side of 6D. The power detector 9 calculates, from the system voltage detected by the instrument transformer 2 and the output current to the power system 1 detected by the current detector 3,
The active power and the reactive power output to the power system 1 are detected.
The power control circuit 10 receives the power detected by the power detector 9 and the DC voltage detected by the DC voltage detector 7 as inputs and controls the active power and the reactive power of the converters 6A to 6D. The demagnetization suppression control circuit 12 corrects the output voltage command value output from the power control circuit 10 with the output of the DC component detection circuit 11 that detects the DC component of the converter output current. The pulse width modulation circuit (PWM circuit) 13 is a demagnetization suppression control circuit 1
On / off of the self-extinguishing element is determined based on the output voltage command value corrected in step 2. A pulse amplifier (PA) 14 amplifies the pulse obtained from the pulse width modulation circuit 13 and supplies the amplified pulse to each self-extinguishing element.

【0005】図11において、通常時は電力制御回路1
0及びパルス幅変調回路13は、自励式変換器6A〜6
Dの出力電圧に直流成分を含まないようにGTO点弧パ
ターンを決定する。しかし、実際の出力電圧は、GTO
の特性やゲート信号の伝送時間のバラツキ等によって直
流分を含む波形となる。自励式変換器6A〜6Dの出力
電圧が直流分を含むと、変換器用変圧器4に印加される
一周期あたりの電圧時間積が0とならないために、変圧
器4の鉄芯が徐々に偏磁し、励磁電流が増加し、過電流
にいたり、自励式変換器6A〜6Dは保護停止する。最
悪の場合は、自励式変換器6A〜6Dを構成する自己消
弧素子の破損にいたることもある。
In FIG. 11, a power control circuit 1 is normally used.
0 and the pulse width modulation circuit 13 are self-excited converters 6A to 6A.
The GTO firing pattern is determined so that the DC voltage is not included in the output voltage of D. However, the actual output voltage is GTO
The waveform becomes a waveform including a direct current component due to the characteristics of the signal and the variation of the transmission time of the gate signal. If the output voltages of the self-excited converters 6A to 6D include a DC component, the voltage-time product applied to the converter transformer 4 per cycle does not become zero, so that the iron core of the transformer 4 is gradually biased. The self-excited converters 6A to 6D stop protection due to magnetizing, the exciting current increases, and an overcurrent occurs. In the worst case, the self-extinguishing converters 6A to 6D may be damaged.

【0006】図11に示す従来の回路では、偏磁を防止
するため電流検出器5A〜5Dで自励式変換器6A〜6
Dの出力電流を検出し、偏磁に至る過程で発生する励磁
電流の直流電流分を直流分検出回路11にて検出し、直
流分にもとずいて偏磁抑制制御回路12で演算した補正
量を電力制御回路10からの出力電圧指令値と加算し
て、PWM制御を行い、偏磁を打ち消すように自励式変
換器6A〜6Dの出力電圧を調整していた。
In the conventional circuit shown in FIG. 11, self-excited converters 6A to 6D are controlled by current detectors 5A to 5D in order to prevent demagnetization.
The output current of D is detected, the direct current component of the exciting current generated in the process of demagnetization is detected by the direct current component detection circuit 11, and the correction is performed by the depolarization suppression control circuit 12 based on the direct current component. The amount was added to the output voltage command value from the power control circuit 10 to perform PWM control, and the output voltages of the self-excited converters 6A to 6D were adjusted so as to cancel out the magnetic bias.

【0007】[0007]

【発明が解決しようとする課題】図11において、電力
系統1の電圧は通常は正弦波状の交流電圧である。その
時の出力電圧指令値、すなわちPWM波形の搬送波と変
調波から得られる値と、変換器出力の相電圧波形の関係
を図12に示す。変換器出力相電圧には、GTOの特性
やゲート信号の伝送時間のバラツキ等によるものを除け
ば直流電圧成分は含まれない。
In FIG. 11, the voltage of the power system 1 is usually a sinusoidal AC voltage. FIG. 12 shows the relationship between the output voltage command value at that time, that is, the value obtained from the carrier wave and the modulation wave of the PWM waveform, and the phase voltage waveform of the converter output. The converter output phase voltage does not include a DC voltage component except for a characteristic of the GTO, a variation in transmission time of the gate signal, and the like.

【0008】しかしながら、大容量の無効電力補償装置
や、直流送電等に適用される自励式変換器が設置される
変電所においては、大容量電力用コンデンサの投入、隣
接する大容量変圧器の投入時など、系統電圧が大きく歪
んだり、系統電圧に直流分が発生したりすることがあ
る。
However, in a substation in which a large-capacity reactive power compensator or a self-excited converter applied to DC transmission or the like is installed, a large-capacity power capacitor is turned on, and an adjacent large-capacity transformer is turned on. At times, the system voltage may be greatly distorted or a DC component may be generated in the system voltage.

【0009】系統電圧が歪んだ場合、電力制御回路は歪
みによる過電流を防止するために、自励式変換器の出力
電圧指令値も系統電圧と同じように歪ませる。そのよう
に歪んだ出力電圧指令値に基づいてパルス幅変調を行っ
た場合の波形を図13に示す。
When the system voltage is distorted, the power control circuit distorts the output voltage command value of the self-excited converter in the same manner as the system voltage in order to prevent an overcurrent due to the distortion. FIG. 13 shows a waveform when pulse width modulation is performed based on the output voltage command value distorted in such a manner.

【0010】図13は、基本周波数の正弦波の振幅が搬
送波の振幅の66%のときに、第2次調波が正弦波の振
幅の25%、位相差90度で含有した時の波形である。
図13の変換器出力相電圧は、変調波に高調波が含まれ
ない図12に比較して、斜線部分で負側の電圧が増え、
縦線部分で正側の電圧が増え、差引くと正の直流電圧が
発生している。つまり、変調波が歪むと、例え変調波の
1周期積分値には直流分が含まれなくても、パルス幅変
調後の変換器出力電圧には直流分が含まれてしまう。
FIG. 13 is a waveform when the amplitude of the sine wave of the fundamental frequency is 66% of the amplitude of the carrier wave, and the second harmonic contains 25% of the amplitude of the sine wave and has a phase difference of 90 degrees. is there.
The converter output phase voltage in FIG. 13 has a negative-side voltage increase in a shaded portion as compared with FIG.
The voltage on the positive side increases in the vertical line portion, and when subtracted, a positive DC voltage is generated. That is, if the modulated wave is distorted, even if the DC component is not included in the one-cycle integral value of the modulated wave, the converter output voltage after the pulse width modulation includes the DC component.

【0011】その値は例えば、4%の第2次調波が含ま
れると1周期当たりの直流分として、変圧器の定格の電
圧時間積分のピーク値の5%にも達してしまう。変圧器
の通常運転時の定格磁束密度を飽和磁束密度の2/3と
したとすると、約10サイクルで変圧器が飽和する値で
ある。
[0011] For example, when the second harmonic of 4% is included, its value reaches 5% of the peak value of the rated voltage-time integration of the transformer as a DC component per cycle. Assuming that the rated magnetic flux density during normal operation of the transformer is 2/3 of the saturation magnetic flux density, the value is such that the transformer is saturated in about 10 cycles.

【0012】このような通常運転時に比較して大きな値
の直流電圧成分による偏磁は、図11に示す変換器直流
巻線電流の直流分による補正では間に合わず、偏磁が進
展し過電流になりシステム停止してしまう不具合があっ
た。
Such a magnetic bias due to a DC voltage component having a large value compared to that during the normal operation cannot be made by the correction based on the DC component of the converter DC winding current shown in FIG. There was a problem that the system stopped.

【0013】本発明の目的は、前述した不具合を解消す
るためになされたものであり、電圧形自励式変換器にお
いて、隣接大容量変圧器の投入や大容量コンデンサの投
入にともない系統電圧が歪んだ場合にも、変換器用変圧
器が飽和し過電流になることなく、安定に運転できる電
圧形自励式変換器の制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problem. In a voltage-type self-excited converter, the system voltage is distorted when an adjacent large-capacity transformer is turned on or a large-capacity capacitor is turned on. Even in such a case, it is an object of the present invention to provide a control device for a voltage-type self-excited converter that can be operated stably without saturating the converter transformer and causing overcurrent.

【0014】[0014]

【課題を解決するための手段】前述の目的を達成するた
めに、請求項1に対応する発明は、自己消弧素子をブリ
ッジ接続し、直流を交流にあるいは、交流を直流に変換
する電力変換器と、この電力変換器の交流端子側に有し
かつ交流電力系統電圧を所望の値に変換する変圧器と、
前記電力変換器の直流端子側に有する直流電圧源からな
る電圧形自励式変換器において、前記電力変換器の交流
出力電圧を電源基本周期で積分する積分手段と、この積
分手段の出力にもとずいて前記電力変換器の交流出力の
電圧指令値を補正する補正手段と、を具備した電圧形自
励式変換器の制御装置である。
In order to achieve the above object, a first aspect of the present invention is a power converter for connecting a self-extinguishing element to a bridge and converting DC to AC or AC to DC. And a transformer having an AC terminal side of the power converter and converting an AC power system voltage to a desired value.
In a voltage source self-excited converter comprising a DC voltage source provided on a DC terminal side of the power converter, an integrating means for integrating an AC output voltage of the power converter in a power supply basic cycle, and an output of the integrating means. And a correcting means for correcting the voltage command value of the AC output of the power converter.

【0015】前述の目的を達成するために、請求項2に
対応する発明は、自己消弧素子をブリッジ接続し、直流
を交流にあるいは、交流を直流に変換する電力変換器
と、この電力変換器の交流端子側に有しかつ交流電力系
統電圧を所望の値に変換する変圧器と、前記電力変換器
の直流端子側に有する直流電圧源からなる電圧形自励式
変換器において、前記電力変換器の交流出力電圧を電源
基本周期の半分の周期で積分する積分手段と、この積分
手段の出力と前回の積分手段の出力との和を演算する加
算手段と、この加算手段の出力にもとずいて前記電力変
換器の交流出力の電圧指令値を補正する補正手段と、を
具備した電圧形自励式変換器の制御装置である。
According to another aspect of the present invention, there is provided a power converter for converting a direct current to an alternating current or an alternating current to a direct current by bridging a self-extinguishing element. A voltage-source self-excited converter comprising a transformer having an AC terminal side of the transformer and converting an AC power system voltage to a desired value, and a DC voltage source having a DC terminal side of the power converter. Means for integrating the AC output voltage of the heater in a half cycle of the power supply basic cycle, addition means for calculating the sum of the output of the integration means and the output of the previous integration means, and the output of the addition means. And a correcting means for correcting the voltage command value of the AC output of the power converter.

【0016】前述の目的を達成するために、請求項3に
対応する発明は、請求項1または請求項2記載の電圧形
自励式変換器の制御装置において、交流出力電圧を、直
流電圧検出値と自己消弧素子の点弧指令から演算するこ
とを特徴とする電圧形自励式変換器の制御装置である。
According to a third aspect of the present invention, there is provided a control device for a voltage-type self-excited converter according to the first or second aspect, wherein the AC output voltage is converted to a DC voltage detection value. And a control device for the voltage-type self-excited converter, which is calculated from a firing command of the self-extinguishing element.

【0017】前述の目的を達成するために、請求項4に
対応する発明は、請求項1または請求項2記載の電圧形
自励式変換器の制御装置において、交流出力電圧の積分
手段を、直流電圧の検出値を周波数に変換する電圧周波
数変換手段と、この電圧周波数変換手段の出力に同期
し、高圧側自己消弧素子がオンしている期間はカウント
アップ、低圧側自己消弧素子がオンしている期間はカウ
ントダウンするカウンタとから構成することを特徴とす
る電圧形自励式変換器の制御装置である。
According to a fourth aspect of the present invention, there is provided a control apparatus for a voltage-type self-excited converter according to the first or second aspect, wherein the integration means for the AC output voltage includes: Voltage frequency conversion means for converting the detected value of the voltage into a frequency, and in synchronization with the output of the voltage frequency conversion means, counts up while the high-voltage self-extinguishing element is on, and the low-voltage self-extinguishing element turns on. And a counter that counts down during the current period.

【0018】前述の目的を達成するために、請求項5に
対応する発明は、自己消弧素子をブリッジ接続し、直流
を交流にあるいは、交流を直流に変換する電力変換器
と、この電力変換器の交流端子側に有しかつ交流電力系
統電圧を所望の値に変換する変圧器と、前記電力変換器
の直流端子側に有する直流電圧源からなる電圧形自励式
変換器において、前記電力変換器の交流出力電圧を電源
基本周期で積分する積分手段と、この積分手段の出力が
一定の値を越えたことを検出するレベル検出手段と、こ
のレベル検出手段から検出信号が出力されている時に、
前記積分手段の出力にもとずいて前記電力変換器の交流
出力電圧指令値を補正する補正手段と、を具備した電圧
形自励式変換器の制御装置である。
According to a fifth aspect of the present invention, there is provided a power converter for converting a direct current to an alternating current or an alternating current to a direct current by bridging a self-extinguishing element. A voltage-source self-excited converter comprising a transformer having an AC terminal side of the transformer and converting an AC power system voltage to a desired value, and a DC voltage source having a DC terminal side of the power converter. Means for integrating the AC output voltage of the unit at the basic cycle of the power supply, level detecting means for detecting that the output of the integrating means has exceeded a certain value, and when a detection signal is output from the level detecting means. ,
And a correcting unit for correcting an AC output voltage command value of the power converter based on an output of the integrating unit.

【0019】前述の目的を達成するために、請求項6に
対応する発明は、自己消弧素子をブリッジ接続し、直流
を交流にあるいは、交流を直流に変換する電力変換器
と、この電力変換器の交流端子側に有しかつ交流電力系
統電圧を所望の値に変換する変圧器と、前記電力変換器
の直流端子側に有する直流電圧源からなる電圧形自励式
変換器において、前記電力変換器の交流出力電圧を電源
基本周期の半分の周期で積分する積分手段と、この積分
手段の出力と前回の積分手段の出力との和を演算する加
算手段と、この加算手段の出力が一定の値を越えたこと
を検出するレベル検出手段と、このレベル検出手段から
検出信号が出力されている時に、前記加算手段の出力に
もとずいた前記電力変換器の交流出力電圧指令値を補正
する補正手段と、を具備した電圧形自励式変換器の制御
装置である。
According to a sixth aspect of the present invention, there is provided a power converter for converting a direct current to an alternating current or an alternating current to a direct current by bridging a self-extinguishing element. A voltage-source self-excited converter comprising a transformer having an AC terminal side of the transformer and converting an AC power system voltage to a desired value, and a DC voltage source having a DC terminal side of the power converter. Means for integrating the AC output voltage of the heat exchanger in a half cycle of the power supply basic cycle, addition means for calculating the sum of the output of the integration means and the output of the previous integration means, and wherein the output of the addition means is constant. Level detecting means for detecting that the value has been exceeded, and when a detection signal is output from the level detecting means, an AC output voltage command value of the power converter based on the output of the adding means is corrected. Correction means; A control device for Bei the voltage type self-commutated converter.

【0020】[0020]

【作用】請求項1に対応する発明によれば、電力変換器
の交流出力電圧を積分手段により電源基本周期で積分
し、積分手段で検出された変換器出力電圧に含まれる直
流電圧成分を打ち消すように次の周期の変換器出力電圧
指令値を補正することによって、隣接大容量変圧器の投
入や大容量コンデンサの投入にともない系統電圧が歪
み、変換器出力に直流電圧成分が含まれる場合にも、高
速にその直流分を抑制でき、偏磁過電流にいたらず、安
定に運転できる電圧形自励式変換器の制御装置を提供で
きる。
According to the first aspect of the present invention, the AC output voltage of the power converter is integrated by the integrating means in the basic period of the power supply, and the DC voltage component included in the converter output voltage detected by the integrating means is canceled. By correcting the converter output voltage command value in the next cycle as described above, the system voltage may be distorted due to the input of the adjacent large-capacity transformer or the input of the large-capacity capacitor, and the converter output may include a DC voltage component. In addition, it is possible to provide a control device for a voltage-type self-excited converter that can suppress the direct current component at high speed and operate stably without causing a magnetic overcurrent.

【0021】請求項2に対応する発明によれば、電力変
換器の交流出力電圧を積分手段により電源基本周期の半
分の周期で積分し、この積分出力と前回の積分出力との
和を演算することにより、直前の1周期に含まれる直流
電圧成分を半周期ごとに検出できる。さらに、前記直流
電圧成分を打ち消すように次の半周期の変換器出力電圧
指令値を補正すれば、更に高速にその直流分を打ち消す
ことができるため、偏磁過電流にいたらず、安定に運転
できる電圧形自励式変換器の制御装置を提供できる。ま
た積分を半周期毎に行い、演算により直前の1周期分の
直流電圧成分を求めることにより、該直流電圧成分は半
周期毎に更新され、出力電圧指令値も半周期毎に補正で
きるので、無駄時間が減少し、より速い制御が可能とな
る。
According to the second aspect of the present invention, the AC output voltage of the power converter is integrated by the integrating means in a half cycle of the power supply basic cycle, and the sum of the integrated output and the previous integrated output is calculated. Thus, the DC voltage component included in the immediately preceding cycle can be detected every half cycle. Furthermore, if the converter output voltage command value of the next half cycle is corrected so as to cancel the DC voltage component, the DC component can be canceled at a higher speed. A control device for a voltage-type self-excited converter that can be provided can be provided. Also, by performing integration every half cycle and calculating the DC voltage component for the immediately preceding cycle by calculation, the DC voltage component is updated every half cycle, and the output voltage command value can also be corrected every half cycle. Dead time is reduced, and faster control is possible.

【0022】請求項3に対応する発明によれば、請求項
1または請求項2の制御装置において、交流出力電圧
を、高圧側素子の点弧している期間は直流電圧が正極性
で出力され、低圧側素子の点弧している期間は直流電圧
が負極性で出力されることから演算して検出することに
より、変圧器の変換器側巻線の端子電圧の計測器は不要
になり、経済的な自励式変換器の制御装置を提供でき
る。
According to a third aspect of the present invention, in the control device according to the first or second aspect, the AC output voltage is output as a positive DC voltage during a period in which the high voltage side element is ignited. During the firing of the low-voltage side element, the DC voltage is output from the negative polarity, so that it is calculated and detected, thereby eliminating the need for a measuring device for the terminal voltage of the transformer-side winding of the transformer. An economical self-commutated converter controller can be provided.

【0023】請求項4に対応する発明によれば、積分手
段をディジタル回路で構成することにより、変圧器の変
換器側巻線の端子電圧の計測器が不要となり、経済的で
あるばかりでなく、積分手段のオフセットやドリフトに
よる、直流分検出の誤差が低減でき、より信頼性の高い
自励式変換器の制御装置を提供できる。
According to the fourth aspect of the present invention, since the integrating means is constituted by a digital circuit, it becomes unnecessary to measure the terminal voltage of the transformer-side winding of the transformer, which is economical. In addition, it is possible to reduce a DC component detection error due to an offset or a drift of the integrating means, and to provide a more reliable self-excited converter control device.

【0024】請求項5に対応する発明によれば、積分手
段の出力である直流電圧成分の値が一定値を越えたとき
に、積分手段の出力にもとずいた電力変換器の交流出力
電圧指令値の補正を行うようにしたので、積分手段の誤
差等による微少な直流分による不要な補正はせず、隣接
大容量変圧器の投入や大容量コンデンサの投入にともな
い系統電圧が歪み、変換器出力に直流電圧成分が含まれ
る場合には補正をおこない変圧器の偏磁を抑制する、信
頼性の高い自励式変換器の制御装置を提供できる。
According to the fifth aspect of the present invention, when the value of the DC voltage component output from the integrating means exceeds a certain value, the AC output voltage of the power converter based on the output of the integrating means is obtained. Since the command value is corrected, unnecessary correction due to minute DC components due to errors in the integration means, etc. is not performed, and the system voltage is distorted and converted when the adjacent large-capacity transformer is turned on or the large-capacity capacitor is turned on. When a DC voltage component is included in the output of the transformer, it is possible to provide a highly reliable self-excited converter control device that performs correction and suppresses the magnetic bias of the transformer.

【0025】更に、請求項6に対応する発明は、積分手
段の出力と前回の積分手段の出力との和を演算する加算
手段の出力が一定の値を越えたことを検出した時に、加
算手段の出力にもとずいて電力変換器の交流出力電圧指
令値を補正するようにしたので、積分手段の誤差等によ
る微少な直流分による不要な補正はせず、隣接大容量変
圧器の投入や大容量コンデンサの投入にともない系統電
圧が歪み、変換器出力に直流電圧成分が含まれる場合に
は補正をおこない変圧器の偏磁を抑制する、信頼性が高
く高速な自励式変換器の制御装置を提供できる。
Further, according to the present invention, when it is detected that the output of the adding means for calculating the sum of the output of the integrating means and the previous output of the integrating means exceeds a predetermined value, the adding means is provided. Since the AC output voltage command value of the power converter is corrected based on the output of the power converter, unnecessary correction by a minute DC component due to an error in the integration means etc. is not performed. A reliable and high-speed self-commutated converter control device that corrects when the DC voltage component is included in the converter output and suppresses the transformer demagnetization when the system voltage is distorted due to the insertion of the large capacity capacitor. Can be provided.

【0026】[0026]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。 <第1実施例> 本発明の1実施例(請求項1に対応する発明の実施例)
について図1を参照した説明する。図1において既に説
明した図11と同一の要素は同一の符号を付してその説
明を省略する。図1において電圧検出器15A〜15D
は変換器出力電圧を計測する。同期検出器16は、例え
ば位相ロックループ回路(PLL)からなり、計器用変
圧器2で計測された系統電圧を入力し、系統電圧に同期
したパルスを発生する。積分器17は交流電圧検出器1
5Dで検出された変換器出力電圧を、同期検出器16で
検出される系統電圧基本周期ごとに積分する。積分
7は簡単のため、変換器6Dの出力電圧の積分しか図
示していないが、変換器6A〜6Cにも同様に設けてそ
れぞれの出力電圧の補正を行う。
Embodiments of the present invention will be described below with reference to the drawings. <First Embodiment> One embodiment of the present invention (an embodiment of the invention corresponding to claim 1)
Will be described with reference to FIG. In FIG. 1, the same elements as those in FIG. 11 described above are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 1, voltage detectors 15A to 15D
Measures the converter output voltage. The synchronization detector 16 is composed of, for example, a phase locked loop circuit (PLL), receives the system voltage measured by the instrument transformer 2, and generates a pulse synchronized with the system voltage. The integrator 17 is the AC voltage detector 1
The converter output voltage detected by 5D is integrated for each basic period of the system voltage detected by the synchronous detector 16. Integrator 1
For 7 simplicity, only the integrator output voltage of the converter 6D is not shown, performs the correction of the respective output voltage is provided as well to the transducer 6A-6C.

【0027】図2は図1の中の変換器1台分について詳
細に示した図であり、図2においてすでに説明した図1
1、図1と同一の要素は同一の符号とし説明を省略す
る。図2において、変換器は自己消弧素子例えばGTO
18A〜18Fと、これらにそれぞれ逆並列に接続され
たダイオード19A〜19Fと、コンデンサ等の直流電
圧源8A,8Bから構成されている。
FIG. 2 is a diagram showing in detail one converter in FIG. 1, and FIG. 2 already described in FIG.
1, the same elements as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. In FIG. 2, the converter is a self-extinguishing element such as a GTO.
18A to 18F, diodes 19A to 19F respectively connected in anti-parallel thereto, and DC voltage sources 8A and 8B such as capacitors.

【0028】そして、遅延回路20は積分17A〜1
7Cの値を保持回路(ホールド回路)21A〜21Cが
保持してから、積分17A〜17Cのリセットを行う
ようにするための回路である。遅延回路20の遅延時間
は、保持回路21A〜21Cが保持するのに十分な時間
で、かつできるだけ短くする必要がある。
[0028] The delay circuit 20 is the integrator 17A~1
7C values from the held hold circuit (holding circuit) 21A to 21C of a circuit for to perform a reset of the integrator 17A-17C. The delay time of the delay circuit 20 needs to be a time sufficient for the holding circuits 21A to 21C to hold and as short as possible.

【0029】<第1実施例の作用効果>図1及び図2を
用いて第1実施例の作用効果について説明する。系統電
圧が歪まず正弦波状であれば、変換器出力相電圧は既に
図12に示したように、正側と負側の電圧は等しくな
る。出力電圧の正と負が等しければ、図2において同期
検出器16で検出された系統基本周期毎に、保持回路2
1A〜21Cで保持された積分器17A〜17Cの出力
はゼロとなる。
<Operation and Effect of First Embodiment> The operation and effect of the first embodiment will be described with reference to FIGS. If the system voltage is not distorted and has a sinusoidal waveform, the converter output phase voltage has the same positive and negative voltages as already shown in FIG. If the output voltages are equal in positive and negative, the holding circuit 2 is switched every system basic period detected by the synchronization detector 16 in FIG.
The outputs of the integrators 17A to 17C held by 1A to 21C become zero.

【0030】しかしながら、大容量電力用コンデンサの
投入、隣接する大容量変圧器の投入時など、系統電圧が
大きく歪むと、図13で説明したように、変換器出力相
電圧は直流分を含む波形となる。すると、積分器17A
〜17Cの出力を、系統基本周期毎に保持する保持回路
21A〜21Cには、正側電圧の積分値と負側電圧の積
分値の差分、すなわち図13において斜線部分の面積か
ら縦線部分の面積を引いたものが出力される。保持回路
21A〜21Cで保持された電源基本周期1周期分の直
流分を、次の1周期で打ち消すように偏磁抑制制御回路
12で補正量を決定し、電力制御回路10からの出力電
圧指令値を補正すれば、変換器出力直流分が蓄積されな
いため、偏磁を防止することができる。
However, when the system voltage is greatly distorted, for example, when a large-capacity power capacitor is turned on or when an adjacent large-capacity transformer is turned on, the converter output phase voltage has a waveform including a DC component as described with reference to FIG. Becomes Then, the integrator 17A
The holding circuits 21A to 21C that hold the outputs of C to 17C every system basic cycle have a difference between the integral value of the positive side voltage and the integral value of the negative side voltage, that is, the area of the hatched portion in FIG. The result of subtracting the area is output. The demagnetization suppression control circuit 12 determines a correction amount so that the DC component for one cycle of the power supply basic cycle held in the holding circuits 21A to 21C is canceled in the next cycle, and the output voltage command from the power control circuit 10 is determined. If the value is corrected, the DC output component of the converter is not accumulated, so that the magnetic bias can be prevented.

【0031】以上述べた第1実施例によれば、電圧形自
励式変換器の交流出力電圧を電源基本周期で積分する積
分器17A〜17Cを設けて、積分器17A〜17Cで
検出された変換器出力電圧に含まれる直流電圧成分を打
ち消すように次の周期の変換器出力電圧指令値を補正す
ることによって、隣接大容量変圧器の投入や大容量コン
デンサの投入にともない系統電圧が歪み、変換器出力に
直流電圧成分が含まれる場合にも、高速にその直流分を
抑制でき、偏磁過電流にいたらず、安定に運転できる電
圧形自励式変換器の制御装置を提供できる。
According to the first embodiment described above, the integrators 17A to 17C for integrating the AC output voltage of the voltage source self-excited converter in the basic period of the power supply are provided, and the conversion detected by the integrators 17A to 17C is provided. By correcting the converter output voltage command value in the next cycle so as to cancel the DC voltage component included in the output voltage of the transformer, the system voltage is distorted when the adjacent large-capacity transformer is turned on or the large-capacity capacitor is turned on. Even when a DC voltage component is included in the output of the converter, it is possible to provide a control device for a voltage-type self-excited converter that can suppress the DC component at high speed and can operate stably without causing a magnetic overcurrent.

【0032】<第2実施例>図3は、本発明の第2実施
例(請求項2に対応する発明の実施例)を示すもので、
図3について既に説明済みの図と同一の要素は同一の符
号とし、説明を省略する。図3と図2と同様に図1のシ
ステムにおける自励式変換器1台分について示した図で
あり、残りの3台についても同様の回路を付加する。
<Second Embodiment> FIG. 3 shows a second embodiment of the present invention (an embodiment of the present invention corresponding to claim 2).
The same elements as those already described in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted. FIG. 3 is a diagram showing one self-excited converter in the system of FIG. 1 as in FIGS. 3 and 2, and similar circuits are added to the remaining three converters.

【0033】図3において同期検出器16からの同期信
号(出力信号)51,52は、電源基本周期毎に出力さ
れ、互いに位相が180度ずれた信号である。論理和回
路22は同期検出器16からの同期信号51,52の論
理和をとる。保持回路21A〜21Fのうち、保持回路
21A,21C,21Eは、同期検出器16の同期信号
51で値を保持し、また保持回路21B,21D,21
Fは同期信号51と180度位相がずれている同期信号
52で値を保持する。加算器23A〜23Cは、それぞ
れ、異なる位相で保持した積分器17A〜17Cの出力
を加算する。
In FIG. 3, synchronization signals (output signals) 51 and 52 from the synchronization detector 16 are signals which are output every basic period of the power supply and are 180 ° out of phase with each other. The OR circuit 22 calculates the logical sum of the synchronization signals 51 and 52 from the synchronization detector 16. Among the holding circuits 21A to 21F, the holding circuits 21A, 21C, and 21E hold the values by the synchronization signal 51 of the synchronization detector 16, and hold the values by the holding circuits 21B, 21D, and 21E.
F holds the value of the synchronization signal 52 which is 180 degrees out of phase with the synchronization signal 51. The adders 23A to 23C add the outputs of the integrators 17A to 17C held at different phases, respectively.

【0034】図4は図3の回路の動作を説明するための
タイミングチャートであり、積分器17Aは、同期信号
51と52でリセットされるため、常に電源基本周期の
半分の周期でリセットされ、半周期分の出力電圧を積分
する。保持回路21Aは同期信号51で積分器17Aの
値を保持する。図4においては、負の電圧を出力する半
周期間を積分した値を保持する。保持回路21Bは同期
信号52で積分器17Aの値を保持する。図4において
は正の電圧を出力する半周期間を積分した値を保持す
る。加算器23Aで保持回路21A,21Bの値を加算
する。図4からもわかるように加算器23Aの出力は電
源基本周期の半分の周期で更新され、半周期毎に直前の
1周期の積分値を得られる。加算器23A,23B,2
3Cの出力で電力制御回路10からの出力電圧指令値を
補正すれば、電源基本周期の半分の周期で補正すること
ができ、より高速の補正が可能となる。
FIG. 4 is a timing chart for explaining the operation of the circuit of FIG. 3. Since the integrator 17A is reset by the synchronizing signals 51 and 52, it is always reset at a half cycle of the power supply basic cycle. Integrate the output voltage for a half cycle. The holding circuit 21A holds the value of the integrator 17A with the synchronization signal 51. In FIG. 4, a value obtained by integrating a half period for outputting a negative voltage is held. The holding circuit 21B holds the value of the integrator 17A with the synchronization signal 52. In FIG. 4, a value obtained by integrating a half period for outputting a positive voltage is held. The values of the holding circuits 21A and 21B are added by the adder 23A. As can be seen from FIG. 4, the output of the adder 23A is updated at a half cycle of the power supply basic cycle, and an integral value of the immediately preceding cycle is obtained every half cycle. Adders 23A, 23B, 2
If the output voltage command value from the power control circuit 10 is corrected with the output of 3C, the correction can be performed in a half cycle of the power supply basic cycle, and higher-speed correction can be performed.

【0035】以上述べた第2実施例によれば、電圧形自
励式変換器の交流出力電圧を、積分器17A〜17Cに
より電源基本周期の半分の周期で積分し、積分器17A
〜17Cの出力と前回の積分器の出力との和を演算する
ことにより直前の1周期に含まれる直流電圧成分を半周
期ごとに検出できる。この直流電圧成分を打ち消すよう
に次の半周期の変換器出力電圧指令値を補正すれば、更
に高速に変換器出力電圧の直流分を打ち消すことができ
るるため、偏磁過電流にいたらず、安定に運転できる電
圧形自励式変換器の制御装置を提供できる。積分を半周
期毎に行い、演算により直前の1周期分の直流電圧成分
を求めることにより、該直流電圧成分は半周期毎に更新
され、出力電圧指令値も半周期毎に補正できるので、無
駄時間が減少し、より速い制御が可能となる。
According to the second embodiment described above, the AC output voltage of the voltage-type self-excited converter is integrated by the integrators 17A to 17C in a half cycle of the power supply basic cycle.
By calculating the sum of the outputs of .about.17C and the output of the previous integrator, the DC voltage component included in the immediately preceding cycle can be detected every half cycle. If the converter output voltage command value of the next half cycle is corrected so as to cancel this DC voltage component, the DC component of the converter output voltage can be canceled at a higher speed. A control device for a voltage-type self-excited converter that can be operated stably can be provided. The integration is performed every half cycle, and the DC voltage component for the immediately preceding cycle is obtained by calculation. The DC voltage component is updated every half cycle, and the output voltage command value can be corrected every half cycle. Time is reduced and faster control is possible.

【0036】<第3実施例>次に、図5は本発明の第3
実施例(請求項3に対応する実施例)を示すもので、前
述の第1実施例または第2実施例における変換器出力相
電圧の検出を行なう電圧検出器15Eの具体例である。
図5において、増幅器24は直流電圧検出信号53を1
/2にする。反転増幅器25は増幅器24の出力信号の
極性を反転する。アナログスイッチ26A〜26Cは論
理1の信号を入力すると閉じる。論理和回路22B、反
転回路27である。
<Third Embodiment> FIG. 5 shows a third embodiment of the present invention.
FIG. 14 shows an embodiment (an embodiment corresponding to claim 3), which is a specific example of the voltage detector 15E for detecting the converter output phase voltage in the first embodiment or the second embodiment.
In FIG. 5, the amplifier 24 sets the DC voltage detection signal 53 to 1
/ 2. The inverting amplifier 25 inverts the polarity of the output signal of the amplifier 24. The analog switches 26A to 26C close when a logical 1 signal is input. An OR circuit 22B and an inverting circuit 27.

【0037】図6は、図5の動作を説明するための図で
あり、図6(a)は主回路の一部を示す図であり、図6
(b)は(a)の動作を説明するためのタイミングチャ
ート(変換器出力相電圧と、GTOのオンオフの関係)
である。図6について既に説明済みの図と同一の要素は
同一の符合とし説明を省略する。図6は3相変換器の1
相について示してある。
FIG. 6 is a diagram for explaining the operation of FIG. 5, and FIG. 6A is a diagram showing a part of the main circuit.
(B) is a timing chart for explaining the operation of (a) (relationship between converter output phase voltage and GTO on / off).
It is. The same elements as those in FIG. 6 which have already been described are denoted by the same reference numerals, and description thereof will be omitted. FIG. 6 shows one of the three-phase converters.
The phases are shown.

【0038】図6において高圧側のGTO18Aが点弧
すると、交流側相電圧VACには正極性で直流電圧VDCの
1/2の電圧が現れる。また、低圧側GTO18Bが点
弧すると、負極性で直流電圧VDCの1/2の電圧が現れ
る。従って、電圧の立ち上がり時間等を無視すれば、直
流電圧とGTOの点弧パターンによって交流出力相電圧
波形の推定ができる。
In FIG. 6, when the GTO 18A on the high voltage side is ignited, the AC side phase voltage VAC has a positive polarity and a voltage which is 1/2 of the DC voltage VDC. When the low-voltage side GTO 18B is fired, a voltage of 性 of the DC voltage VDC appears with a negative polarity. Therefore, if the rise time of the voltage and the like are ignored, the AC output phase voltage waveform can be estimated from the DC voltage and the firing pattern of the GTO.

【0039】いま、図6において、高圧側GTO18A
のオン指令54が入ると、アナログスイッチ26Aが閉
じ、交流相電圧信号56には直流電圧53を増幅器24
で1/2にした電圧が出力される。低圧側GTO18B
のオン指令55がはいるとアナログスイッチ26Bが閉
じ、交流相電圧信号56には、反転増幅器25で極性を
反転した直流電圧の1/2の電圧が出力される。高圧側
GTO18A、低圧側GTO18Bがともにオフしてい
るデッドタイム期間は、実回路においては電流が交流系
統から直流側の向きで流れているときは正極性に、逆向
きの時は負極性に直流電圧の1/2の電圧が出力され
る。1周期の間に力率が大きく変わらなければ、デッド
タイム期間が正の電圧を出す期間と負の電圧を出す期間
は同じになるため、直流分を検出する上では影響はな
い。従って、図6においては、デッドタイム期間は、論
理和回路22Bの出力がゼロになり、反転回路27で反
転されて、アナログスイッチ26Cがオンし、交流相電
圧信号56にはゼロが出力される。
Now, in FIG. 6, the high-pressure side GTO 18A
Is turned on, the analog switch 26A is closed and the DC voltage 53 is applied to the AC phase voltage signal 56 by the amplifier 24.
The voltage reduced to 1/2 is output. Low pressure side GTO18B
Is turned on, the analog switch 26B is closed, and the AC phase voltage signal 56 outputs a voltage of 1 / of the DC voltage whose polarity is inverted by the inverting amplifier 25. In the dead time period in which both the high-side GTO 18A and the low-side GTO 18B are off, in a real circuit, when a current flows from the AC system in the direction of the DC side, the current has a positive polarity, and in the opposite direction, the DC has a negative polarity. A voltage that is の of the voltage is output. If the power factor does not change significantly during one cycle, the dead time period is the same as the period during which a positive voltage is output, and the period during which a negative voltage is output, so that there is no effect on the detection of DC components. Therefore, in FIG. 6, during the dead time period, the output of the OR circuit 22B becomes zero, the output is inverted by the inverting circuit 27, the analog switch 26C is turned on, and zero is output to the AC phase voltage signal 56. .

【0040】なお、デッドタイム中の交流電流の向きを
検出し、アナログスイッチ26Aまたは26Bのいずれ
かのスイッチを入れる回路としても良い。無効電力補償
装置や、直流送電装置等の大容量変換器の交流出力電圧
は通常、数kV以上の高電圧である。また、矩形波電圧
であるため、交流出力相電圧の電圧検出器は高耐圧でし
かも高速であることが要求され、高価である。図5に示
す本発明の1実施例のように、交流出力電圧を、直流電
圧の検出値と自己消弧素子の点弧指令から演算すること
により、交流出力相電圧の検出器が不要となり、経済的
な電圧形自励式変換器の制御装置を提供できる。
It is to be noted that a circuit for detecting the direction of the alternating current during the dead time and turning on one of the analog switches 26A and 26B may be used. The AC output voltage of a large-capacity converter such as a reactive power compensator or a DC power transmission device is usually a high voltage of several kV or more. In addition, since the voltage detector is a rectangular wave voltage, the voltage detector for the AC output phase voltage is required to have a high withstand voltage and a high speed, and is expensive. As in the embodiment of the present invention shown in FIG. 5, by calculating the AC output voltage from the detected value of the DC voltage and the firing command of the self-extinguishing element, a detector for the AC output phase voltage becomes unnecessary. An economical voltage-type self-excited converter control device can be provided.

【0041】<第4実施例>図7は、本発明の第4実施
例(請求項4に対応する発明の実施例)の要部、すなわ
ち変換器出力相電圧の検出器と積分器を示すものであ
る。図7において既に説明済みの図と同一の要素は同一
の符合とし説明を省略する。図7において、電圧周波数
変換回路28は入力される直流電圧に応じて周波数を変
化させる。カウンタ29は入力されるクロック信号をカ
ウントし、アップ指令(高圧側GTOオン指令)54が
入力されているときはクロックをカウントアップし、ダ
ウン指令(低圧側GTOオン指令)55が入力されてい
るときはクロックをカウントダウンし、論理和回路22
Bと反転回路27を介してストップ指令が入力されてい
るときはカウントを停止し、遅延回路20Aからリセッ
ト指令が入力されると、カウンタ29の出力を初期化す
る機能を持っている。保持回路(サンプルホールド)3
0はカウンタ29のカウント値を保持する。
<Fourth Embodiment> FIG. 7 shows a main part of a fourth embodiment of the present invention (an embodiment of the invention corresponding to claim 4), that is, a detector for the converter output phase voltage and an integrator. Things. In FIG. 7, the same elements as those already described are designated by the same reference numerals, and the description will be omitted. 7, the voltage frequency conversion circuit 28 changes the frequency according to the input DC voltage. The counter 29 counts an input clock signal. When an up command (high-pressure GTO on command) 54 is input, the clock counts up, and a down command (low-pressure GTO on command) 55 is input. When the clock counts down, the OR circuit 22
When a stop command is input via B and the inverting circuit 27, the counting is stopped, and when a reset command is input from the delay circuit 20A, the output of the counter 29 is initialized. Hold circuit (sample hold) 3
0 holds the count value of the counter 29.

【0042】図7の動作を図8のタイミングチャートを
参照して説明する。図8において、最初の一周期は途中
で直流電圧が減少している。直流電圧53が減少する
と、電圧周波数変換回路28の周波数が低下し、カウン
タ29のカウントスピードが低下する。直流電圧53が
回復すると周波数は元に戻り、カウントスピードも回復
する。カウントアップ中だけカウントスピードが減少す
るため、1周期後のカウンタ29の値は負の値となる。
図8において直流電圧が減少している(A)の期間は正
の相電圧を出力している期間であり、実際の電圧も1周
期積分すると、負の値となる。
The operation of FIG. 7 will be described with reference to the timing chart of FIG. In FIG. 8, the DC voltage decreases in the first cycle. When the DC voltage 53 decreases, the frequency of the voltage frequency conversion circuit 28 decreases, and the count speed of the counter 29 decreases. When the DC voltage 53 recovers, the frequency returns and the count speed recovers. Since the count speed decreases only during the count-up, the value of the counter 29 after one cycle becomes a negative value.
In FIG. 8, the period (A) in which the DC voltage is decreasing is a period in which the positive phase voltage is output, and the actual voltage also becomes a negative value when integrated for one cycle.

【0043】図8において(B)の期間でPWMパター
ンが正側の電圧が長くなる異常が発生している。このよ
うな場合、カウントアップする期間が長くなるために、
1周期積分後のカウント値は正の値となる。実際の電圧
も、1周期積分すると正の値となる。
In FIG. 8, during the period (B), an abnormality occurs in which the voltage on the positive side of the PWM pattern becomes longer. In such a case, the period for counting up becomes longer,
The count value after one cycle integration is a positive value. The actual voltage also becomes a positive value after one cycle integration.

【0044】図8からわかるように、直流電圧が変動し
た場合も、PWMパタンが変動した場合も、図7に示す
回路構成で出力電圧の積分ができる。以上述べた第4実
施例によれば、電圧周波数変換回路28の出力に同期
し、高圧側GTOがオンしている期間はカウントアッ
プ、低圧側GTOがオンしている期間はカウントダウン
するカウンタ29とから構成したので、変圧器の変換器
側巻線の端子電圧の計測器が不要になり経済的であるば
かりでなく、また積分器をディジタル回路で構成するこ
とにより、積分器のオフセットやドリフトによる直流分
検出の誤差が低減でき、より信頼性の高い自励式変換器
の制御装置を提供できる。
As can be seen from FIG. 8, the output voltage can be integrated by the circuit configuration shown in FIG. 7 both when the DC voltage fluctuates and when the PWM pattern fluctuates. According to the fourth embodiment described above, the counter 29 counts up while the high-voltage GTO is on and counts down while the low-voltage GTO is on, in synchronization with the output of the voltage frequency conversion circuit 28. In addition, it is not only economical because there is no need to measure the terminal voltage of the transformer side winding of the transformer, but also by configuring the integrator with a digital circuit, the offset and drift of the integrator can be reduced. An error in DC component detection can be reduced, and a more reliable self-excited converter control device can be provided.

【0045】<第5実施例>次に図9に、本発明の第5
実施例(請求項5に対応する発明の実施例)を示すもの
で、前述した第1実施例の積分器17A〜17Cの出力
が一定の値を越えたことを検出するレベル検出器32を
具備し、レベル検出器32の出力信号がある時に、積分
器17A〜17Cの出力にもとずいた電圧形変換器の交
流出力電圧指令値の補正を行うものである。図9におい
て既に説明済みの図と同一の要素は同一の符合とし説明
を省略する。図9において、最大値選択器31、レベル
検出器32、切換スイッチ33A〜33Cはレベル検出
器32の出力で保持された電源基本周期の変換器出力電
圧の積分値の1相の値が一定の値を越えると、レベル検
出器32が動作し、切換スイッチ32A〜33Cが保持
回路21A〜21Cの出力側に切り替わり、偏磁抑制制
御回路12に積分値が入力されて補正量が演算され、電
力制御回路10からの出力電圧基準値が補正される。保
持回路21A〜21Cで保持された積分値が小さいとき
は切換スイッチは0側に切り換わり、偏磁抑制制御回路
12への入力は零となり補正されない。積分器17A〜
17Cは測定系の定常オフセット及び誤差も積分するた
め、実際の出力電圧に含まれる直流分が零であってもあ
る値を出力する。一方、隣接大容量変圧器の投入や大容
量コンデンサの投入にともない系統電圧が歪み、変換器
出力に直流電圧成分が含まれる場合には、定常オフセッ
トに比較して大きな直流分が発生する。このように大き
な直流分が発生したときは、レベル検出器32が動作
し、切換スイッチ33A〜33Cが切り換わり、積分器
17A〜17Cの出力が偏磁抑制制御回路12に入力さ
れ、補正が行われる。
<Fifth Embodiment> Next, FIG. 9 shows a fifth embodiment of the present invention.
This embodiment (embodiment of the invention corresponding to claim 5) shows a level detector 32 for detecting that the outputs of the integrators 17A to 17C of the first embodiment have exceeded a predetermined value. Then, when there is an output signal of the level detector 32, the AC output voltage command value of the voltage source converter based on the outputs of the integrators 17A to 17C is corrected. In FIG. 9, the same elements as those already described are denoted by the same reference numerals and description thereof will be omitted. In FIG. 9, the maximum value selector 31, the level detector 32, and the changeover switches 33A to 33C have a constant one-phase value of the integrated value of the converter output voltage of the power supply basic cycle held by the output of the level detector 32. When the value exceeds the value, the level detector 32 operates, the changeover switches 32A to 33C are switched to the output sides of the holding circuits 21A to 21C, the integral value is input to the demagnetization suppression control circuit 12, the correction amount is calculated, and the electric power is calculated. The output voltage reference value from control circuit 10 is corrected. When the integrated values held by the holding circuits 21A to 21C are small, the changeover switch is switched to the 0 side, and the input to the demagnetization suppression control circuit 12 is zero and is not corrected. Integrator 17A-
17C also integrates the steady-state offset and error of the measurement system, and therefore outputs a certain value even if the DC component included in the actual output voltage is zero. On the other hand, when the adjacent large-capacity transformer is turned on or the large-capacity capacitor is turned on, the system voltage is distorted, and when a DC voltage component is included in the converter output, a large DC component is generated as compared with the steady-state offset. When such a large DC component is generated, the level detector 32 operates, the changeover switches 33A to 33C are switched, the outputs of the integrators 17A to 17C are input to the demagnetization suppression control circuit 12, and correction is performed. Will be

【0046】以上述べた第5実施例によれば、積分器の
誤差等による微少な直流分による不要な補正はせず、隣
接大容量変圧器の投入や大容量コンデンサの投入にとも
ない系統電圧が歪み、変換器出力に直流電圧成分が含ま
れる場合に補正をおこない変圧器の偏磁を抑制する信頼
性の高い自励式変換器の制御装置を提供できる。
According to the fifth embodiment described above, unnecessary correction due to a minute DC component due to an error of the integrator or the like is not performed, and the system voltage is reduced when an adjacent large-capacity transformer is turned on or a large-capacity capacitor is turned on. It is possible to provide a highly reliable self-excited converter control device that performs correction when distortion and DC voltage components are included in the converter output and suppresses the magnetic bias of the transformer.

【0047】<第6実施例>図10は、本発明の第6実
施例(請求項6に対応する発明の実施例)を示すもの
で、積分器17A〜17Cの出力が一定の値を越えたこ
とを検出するレベル検出器32を具備し、レベル検出器
32の出力信号がある時に、加算器23A〜23Cの出
力にもとずいた電圧形変換器の交流出力電圧指令値の補
正するものである。図10において既に説明済みの図と
同一の要素は同一の符合とし説明を省略する。
<Sixth Embodiment> FIG. 10 shows a sixth embodiment (an embodiment of the invention corresponding to claim 6) of the present invention, wherein the outputs of the integrators 17A to 17C exceed a certain value. A level detector 32 for detecting that the AC output voltage command value of the voltage source converter based on the outputs of the adders 23A to 23C when there is an output signal of the level detector 32 It is. In FIG. 10, the same elements as those already described are denoted by the same reference numerals, and description thereof will be omitted.

【0048】加算器23A〜23Cで加算された値が大
きいときは、レベル検出器32が動作し、切換スイッチ
33A〜33Cが加算器23A〜23Cの出力側に切り
替わり、偏磁抑制制御回路12に加算値が入力されて補
正量が演算され、電力制御回路10からの出力電圧基準
値が補正される。加算器23A〜23Cで加算された値
が小さいときは切換スイッチ33A〜33Cは0側に切
り換わり、偏磁抑制制御回路12への入力は零となり補
正されない。積分器17A〜17Cは測定系の定常オフ
セット及び誤差も積分するため、実際の出力電圧に含ま
れる直流分が零であっても、ある値を出力する。一方、
隣接大容量変圧器の投入や大容量コンデンサの投入にと
もない系統電圧が歪み、変換器出力に直流電圧成分が含
まれる場合には、定常オフセットに比較して大きな直流
分が発生する。このように大きな直流分が発生したとき
は、レベル検出器32が動作し、切換スイッチ33A〜
33Cが切り換わり、積分器17A〜17Cの出力が偏
磁抑制制御回路12に入力され補正が行われる。
When the value added by the adders 23A to 23C is large, the level detector 32 operates and the changeover switches 33A to 33C are switched to the output sides of the adders 23A to 23C. The addition value is input, the correction amount is calculated, and the output voltage reference value from the power control circuit 10 is corrected. When the value added by the adders 23A to 23C is small, the changeover switches 33A to 33C are switched to the 0 side, and the input to the demagnetization suppression control circuit 12 is zero and is not corrected. Since the integrators 17A to 17C also integrate the steady-state offset and error of the measurement system, they output a certain value even if the DC component included in the actual output voltage is zero. on the other hand,
When the adjacent large-capacity transformer is turned on or the large-capacity capacitor is turned on, the system voltage is distorted, and when a DC voltage component is included in the converter output, a large DC component is generated as compared with the steady-state offset. When such a large DC component is generated, the level detector 32 operates and the changeover switches 33A to 33A.
33C is switched, and the outputs of the integrators 17A to 17C are input to the demagnetization suppression control circuit 12 to perform correction.

【0049】以上述べた第6実施例によれば、積分器の
誤差等による微少な直流分による不要な補正はせず、隣
接大容量変圧器の投入や大容量コンデンサの投入にとも
ない系統電圧が歪み、変換器出力に直流電圧成分が含ま
れる場合に補正をおこない変圧器の偏磁を抑制する、信
頼性が高く高速な電圧形自励式変換器の制御装置を提供
できる。
According to the sixth embodiment described above, unnecessary correction due to a minute DC component due to an error of the integrator or the like is not performed, and the system voltage is changed when the adjacent large-capacity transformer is turned on or the large-capacity capacitor is turned on. It is possible to provide a highly reliable and high-speed control device for a voltage-type self-excited converter that performs correction when distortion and a DC voltage component is included in the output of the converter and suppresses the magnetization of the transformer.

【0050】[0050]

【発明の効果】本発明によれば、電圧形自励式変換器に
おいて、隣接大容量変圧器の投入や大容量コンデンサの
投入にともない系統電圧が歪んだ場合にも、変換器用変
圧器が飽和し過電流になることなく、安定に運転できる
電圧形自励式変換器の制御装置を提供できる。
According to the present invention, in a voltage-type self-excited converter, the transformer for a converter is saturated even when the system voltage is distorted due to the input of an adjacent large-capacity transformer or the input of a large-capacity capacitor. A control device for a voltage-type self-excited converter that can operate stably without overcurrent can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電圧形自励式変換器の制御装置の第1
実施例を示す回路図。
FIG. 1 shows a first embodiment of a control device for a voltage-type self-excited converter according to the present invention.
FIG. 3 is a circuit diagram showing an embodiment.

【図2】図1の回路を詳細に示す図。FIG. 2 is a diagram showing the circuit of FIG. 1 in detail.

【図3】本発明の電圧形自励式変換器の制御装置の第2
実施例を示す回路図。
FIG. 3 shows a second embodiment of the control device of the voltage source self-excited converter according to the present invention.
FIG. 3 is a circuit diagram showing an embodiment.

【図4】図3の動作を説明するためのタイミングチャー
ト。
FIG. 4 is a timing chart for explaining the operation of FIG. 3;

【図5】本発明の電圧形自励式変換器の制御装置の第3
実施例の要部を示す回路図。
FIG. 5 is a third embodiment of the control device for the voltage-source self-excited converter according to the present invention.
FIG. 2 is a circuit diagram showing a main part of the embodiment.

【図6】図5の動作を説明するための図。FIG. 6 is a diagram for explaining the operation of FIG. 5;

【図7】本発明の電圧形自励式変換器の制御装置の第4
実施例の要部を示す回路図。
FIG. 7 shows a fourth embodiment of the control device of the voltage source self-excited converter according to the present invention.
FIG. 2 is a circuit diagram showing a main part of the embodiment.

【図8】図7の動作を説明するためのタイミングチャー
ト。
FIG. 8 is a timing chart for explaining the operation of FIG. 7;

【図9】本発明の電圧形自励式変換器の制御装置の第5
実施例を示す回路図。
FIG. 9 shows a fifth embodiment of the control device for the voltage-source self-excited converter according to the present invention.
FIG. 3 is a circuit diagram showing an embodiment.

【図10】本発明の本発明の電圧形自励式変換器の制御
装置の第6実施例を示す回路図。
FIG. 10 is a circuit diagram showing a sixth embodiment of the control device of the voltage source self-excited converter according to the present invention.

【図11】従来の電圧形自励式変換器の制御装置の一例
を示した図。
FIG. 11 is a diagram showing an example of a control device of a conventional voltage-type self-excited converter.

【図12】図11の通常運転時の変換器出力電圧波形を
説明するための図。
FIG. 12 is a view for explaining a converter output voltage waveform during normal operation in FIG. 11;

【図13】図11の系統電圧が歪んだときの変換器出力
電圧波形を説明するための図。
FIG. 13 is a diagram for explaining a converter output voltage waveform when the system voltage in FIG. 11 is distorted.

【符号の説明】[Explanation of symbols]

1,1A〜1C…電力系統、2…計器用変圧器、3…電
流検出器、4…変換器用変圧器、5A〜5D…電流検出
器、6A〜6D…自励式変換器、7…直流電圧検出器、
8A〜8B…直流電圧源、9…電力検出器、10…電力
制御回路、11…直流分検出回路、12…偏磁抑制制御
回路、13…パルス幅変調回路、14…パルス増幅器、
15A〜15E…電圧検出器、16…同期検出器、1
7,17A〜17C…積分器、18A〜18D…GTO
(自己消弧素子)、19A〜19D…ダイオード、20
…遅延回路、21A〜21C…保持回路、22A…論理
和回路、23,23A〜23C…加算器、24…増幅
器、25…反転増幅器、26A〜26C…アナログスイ
ッチ、27…反転回路、28…電圧周波数変換回路、2
9…カウンタ、30…保持回路、31…最大値検出器、
32…レベル検出器、33A〜33C…切換スイッチ、
51,52…電源同期信号、53…直流電圧検出信号、
54…高圧側GTOオン指令、55…低圧側GTOオン
指令、56…交流相電圧信号。
1, 1A-1C: power system, 2: transformer for instrument, 3: current detector, 4: transformer for converter, 5A-5D: current detector, 6A-6D: self-excited converter, 7: DC voltage Detector,
8A-8B: DC voltage source, 9: Power detector, 10: Power control circuit, 11: DC component detection circuit, 12: Demagnetization suppression control circuit, 13: Pulse width modulation circuit, 14: Pulse amplifier,
15A to 15E: voltage detector, 16: synchronization detector, 1
7, 17A to 17C: integrator, 18A to 18D: GTO
(Self-extinguishing element), 19A to 19D: diode, 20
... Delay circuits, 21A to 21C ... Hold circuits, 22A ... OR circuits, 23, 23A to 23C ... Adders, 24 ... Amplifiers, 25 ... Inverting amplifiers, 26A to 26C ... Analog switches, 27 ... Inverting circuits, 28 ... Voltage Frequency conversion circuit, 2
9 counter, 30 holding circuit, 31 maximum value detector,
32: level detector, 33A to 33C: changeover switch,
51, 52: power supply synchronization signal, 53: DC voltage detection signal,
54: High-pressure side GTO ON command, 55: Low-pressure side GTO ON command, 56: AC phase voltage signal.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02M 7/757 H02M 7/155 H02M 7/48 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02M 7/757 H02M 7/155 H02M 7/48

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 自己消弧素子をブリッジ接続し、直流を
交流にあるいは、交流を直流に変換する電力変換器と、
この電力変換器の交流端子側に有しかつ交流電力系統電
圧を所望の値に変換する変圧器と、前記電力変換器の直
流端子側に有する直流電圧源からなる電圧形自励式変換
器において、 前記電力変換器の交流出力電圧を電源基本周期で積分す
る積分手段と、 この積分手段の出力にもとずいて前記電力変換器の交流
出力の電圧指令値を補正する補正手段と、 を具備した電圧形自励式変換器の制御装置。
1. A power converter for bridging a self-extinguishing element and converting DC to AC or AC to DC,
A transformer having an AC terminal side of the power converter and converting an AC power system voltage to a desired value, and a voltage source self-excited converter including a DC voltage source having a DC terminal side of the power converter, Integrating means for integrating the AC output voltage of the power converter in a power supply basic cycle; and correcting means for correcting a voltage command value of the AC output of the power converter based on an output of the integrating means. Control device for voltage source self-excited converter.
【請求項2】 自己消弧素子をブリッジ接続し、直流を
交流にあるいは、交流を直流に変換する電力変換器と、
この電力変換器の交流端子側に有しかつ交流電力系統電
圧を所望の値に変換する変圧器と、前記電力変換器の直
流端子側に有する直流電圧源からなる電圧形自励式変換
器において、 前記電力変換器の交流出力電圧を電源基本周期の半分の
周期で積分する積分手段と、 この積分手段の出力と前回の積分手段の出力との和を演
算する加算手段と、 この加算手段の出力にもとずいて前記電力変換器の交流
出力の電圧指令値を補正する補正手段と、 を具備した電圧形自励式変換器の制御装置。
2. A power converter for bridging a self-extinguishing element and converting DC to AC or AC to DC.
A transformer having an AC terminal side of the power converter and converting an AC power system voltage to a desired value, and a voltage source self-excited converter including a DC voltage source having a DC terminal side of the power converter, Integrating means for integrating the AC output voltage of the power converter in a half cycle of a power supply basic cycle; adding means for calculating the sum of the output of the integrating means and the output of the previous integrating means; output of the adding means A control unit for correcting a voltage command value of an AC output of the power converter based on the control signal.
【請求項3】 請求項1または請求項2記載の電圧形自
励式変換器の制御装置において、交流出力電圧を、直流
電圧検出値と自己消弧素子の点弧指令から演算すること
を特徴とする電圧形自励式変換器の制御装置。
3. The control device for a voltage-type self-excited converter according to claim 1, wherein the AC output voltage is calculated from a DC voltage detection value and a firing command for a self-extinguishing element. Control device for voltage-type self-excited converter.
【請求項4】 請求項1または請求項2記載の電圧形自
励式変換器の制御装置において、交流出力電圧の積分手
段を、直流電圧の検出値を周波数に変換する電圧周波数
変換手段と、この電圧周波数変換手段の出力に同期し、
高圧側自己消弧素子がオンしている期間はカウントアッ
プ、低圧側自己消弧素子がオンしている期間はカウント
ダウンするカウンタとから構成することを特徴とする電
圧形自励式変換器の制御装置。
4. A control device for a voltage-type self-excited converter according to claim 1, wherein the integrating means for the AC output voltage comprises: a voltage frequency converting means for converting a detected value of the DC voltage into a frequency; Synchronized with the output of the voltage frequency conversion means,
A control device for a voltage-type self-excited converter, comprising: a counter that counts up while the high-voltage self-extinguishing element is on and counts down while the low-voltage self-extinguishing element is on. .
【請求項5】 自己消弧素子をブリッジ接続し、直流を
交流にあるいは、交流を直流に変換する電力変換器と、
この電力変換器の交流端子側に有しかつ交流電力系統電
圧を所望の値に変換する変圧器と、前記電力変換器の直
流端子側に有する直流電圧源からなる電圧形自励式変換
器において、 前記電力変換器の交流出力電圧を電源基本周期で積分す
る積分手段と、 この積分手段の出力が一定の値を越えたことを検出する
レベル検出手段と、 このレベル検出手段から検出信号が出力されている時
に、前記積分手段の出力にもとずいて前記電力変換器の
交流出力電圧指令値を補正する補正手段と、 を具備した電圧形自励式変換器の制御装置。
5. A power converter for bridging a self-extinguishing element and converting DC to AC or AC to DC,
A transformer having an AC terminal side of the power converter and converting an AC power system voltage to a desired value, and a voltage source self-excited converter including a DC voltage source having a DC terminal side of the power converter, Integrating means for integrating the AC output voltage of the power converter in a power supply basic cycle; level detecting means for detecting that the output of the integrating means has exceeded a certain value; and a detection signal is output from the level detecting means. And a correcting means for correcting the AC output voltage command value of the power converter based on the output of the integrating means.
【請求項6】 自己消弧素子をブリッジ接続し、直流を
交流にあるいは、交流を直流に変換する電力変換器と、
この電力変換器の交流端子側に有しかつ交流電力系統電
圧を所望の値に変換する変圧器と、前記電力変換器の直
流端子側に有する直流電圧源からなる電圧形自励式変換
器において、 前記電力変換器の交流出力電圧を電源基本周期の半分の
周期で積分する積分手段と、 この積分手段の出力と前回の積分手段の出力との和を演
算する加算手段と、 この加算手段の出力が一定の値を越えたことを検出する
レベル検出手段と、 このレベル検出手段から検出信号が出力されている時
に、前記加算手段の出力にもとずいた前記電力変換器の
交流出力電圧指令値を補正する補正手段と、 を具備した電圧形自励式変換器の制御装置。
6. A power converter for bridging a self-extinguishing element and converting direct current to alternating current or alternating current to direct current,
A transformer having an AC terminal side of the power converter and converting an AC power system voltage to a desired value, and a voltage source self-excited converter including a DC voltage source having a DC terminal side of the power converter, Integrating means for integrating the AC output voltage of the power converter in a half cycle of a power supply basic cycle; adding means for calculating the sum of the output of the integrating means and the output of the previous integrating means; output of the adding means And a level detecting means for detecting that the output of the power converter has exceeded a predetermined value. An AC output voltage command value of the power converter based on an output of the adding means when a detection signal is output from the level detecting means. And a control unit for the voltage-source self-excited converter, comprising:
JP13031494A 1994-06-13 1994-06-13 Control device for voltage source self-excited converter Expired - Lifetime JP3321297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13031494A JP3321297B2 (en) 1994-06-13 1994-06-13 Control device for voltage source self-excited converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13031494A JP3321297B2 (en) 1994-06-13 1994-06-13 Control device for voltage source self-excited converter

Publications (2)

Publication Number Publication Date
JPH07337037A JPH07337037A (en) 1995-12-22
JP3321297B2 true JP3321297B2 (en) 2002-09-03

Family

ID=15031366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13031494A Expired - Lifetime JP3321297B2 (en) 1994-06-13 1994-06-13 Control device for voltage source self-excited converter

Country Status (1)

Country Link
JP (1) JP3321297B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667771B2 (en) * 2004-06-24 2011-04-13 東芝三菱電機産業システム株式会社 Inverter device
JP6794772B2 (en) * 2016-10-24 2020-12-02 富士電機株式会社 Power converter

Also Published As

Publication number Publication date
JPH07337037A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
JP3221828B2 (en) Power conversion method and power conversion device
CA2051143C (en) Inverter control device
JP3321297B2 (en) Control device for voltage source self-excited converter
EP0634833B1 (en) Control system for power converter
JP2527911B2 (en) PWM converter
JPH0759274A (en) Uninterruptible power supply device
JPH07298627A (en) Controller for power converter
JP3992652B2 (en) 3-phase input charger
US10516342B1 (en) Three arm rectifier and inverter circuit
US20220334151A1 (en) Open-phase detection circuit and power conversion apparatus
JPH1118433A (en) Pulse width modulating power converter
Cuma et al. Implementation of a non-linear adaptive filter based sag detection method for dynamic voltage restorers under unbalanced fault conditions
JP2745728B2 (en) Inverter control method
JPH0435990B2 (en)
Marei et al. A novel current regulated PWM technique for multi-converter active power line conditioner
Suzuki et al. Current Control using Pulsed Current Sampling Considering Sampling Points and Sensor Positions for Single-Phase Inverter
JP3427656B2 (en) Control method of inverter for photovoltaic power generation
JPS61106031A (en) Method of starting power converter
JPH0646565A (en) Power converter
JP2835165B2 (en) Inverter control device with DC bias suppression control for three-phase transformer
JP2000055942A (en) Method for detecting current of power converter
Wu et al. Single-Stage Dual-Side Interleaved High-Frequency Isolated DC-AC Converter and its Closed-Loop Control Strategy
JPH08340679A (en) Biased magnetization preventing circuit in high-frequency transformer
JPH02134574A (en) Ac voltage detector
Haque et al. A ZVS cycloconverter based series active filter

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term