JPH07335046A - Manufacture of conductive transparent substrate - Google Patents
Manufacture of conductive transparent substrateInfo
- Publication number
- JPH07335046A JPH07335046A JP13225594A JP13225594A JPH07335046A JP H07335046 A JPH07335046 A JP H07335046A JP 13225594 A JP13225594 A JP 13225594A JP 13225594 A JP13225594 A JP 13225594A JP H07335046 A JPH07335046 A JP H07335046A
- Authority
- JP
- Japan
- Prior art keywords
- transparent
- conductive film
- transparent conductive
- target
- sputtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Liquid Crystal (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、導電性透明基材の製造
方法に係り、特に、透明基材の所定面上に透明導電膜を
設けてなるタイプの導電性透明基材の製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive transparent base material, and more particularly to a method for producing a conductive transparent base material of a type in which a transparent conductive film is provided on a predetermined surface of a transparent base material. .
【0002】[0002]
【従来の技術】液晶表示装置は軽量化、薄型化が可能で
あり、駆動電圧も低いことから、パ−ソナルコンピュー
タやワードプロセッサ等のOA機器へ活発に導入されて
いる。そして、前述のような利点を有している液晶表示
装置は必然的に大面積化、多画素化、高精細化の方向に
向かっており、表示欠陥のない高品質の液晶表示素子が
求められている。液晶表示素子は、互いに対向して配置
された2つの透明電極により液晶を挟み込んだサンドイ
ッチ構造をなしており、透明電極は高品質の液晶表示素
子を得るうえでの重要な要素の一つである。この透明電
極は、例えば透明基板上に成膜した透明導電膜を所定の
エッチング液でエッチングして所望形状にパターニング
することで作製されている。そして、このような透明電
極の材料等として、透明基材の所定面上に透明導電膜を
設けてなるタイプの導電性透明基材が利用されている。2. Description of the Related Art A liquid crystal display device can be made lighter and thinner, and has a lower driving voltage, so that it has been actively introduced to OA equipment such as personal computers and word processors. The liquid crystal display device having the above-mentioned advantages is inevitably in the direction of increasing the area, increasing the number of pixels, and increasing the definition, and a high quality liquid crystal display element without display defects is required. ing. The liquid crystal display element has a sandwich structure in which a liquid crystal is sandwiched by two transparent electrodes arranged so as to face each other, and the transparent electrode is one of the important elements for obtaining a high quality liquid crystal display element. . This transparent electrode is produced, for example, by etching a transparent conductive film formed on a transparent substrate with a predetermined etching solution and patterning it into a desired shape. As a material for such a transparent electrode, a conductive transparent base material of a type in which a transparent conductive film is provided on a predetermined surface of a transparent base material is used.
【0003】透明電極材料としては、現在、ITO(イ
ンジウム・錫酸化物)膜が主として利用されているが、
ITO膜は耐湿熱性が比較的低く、湿気により電気伝導
度が低下しやすいという難点を有している。このような
難点を解決し得る透明導電膜として、酸化インジウムと
酸化亜鉛とを含有する組成物からなる焼結体ターゲット
をスパッタリングすることで得られる、主要カチオン元
素としてインジウム(In)および亜鉛(Zn)を含有
する非晶質酸化物からなる透明導電膜を本発明者らは既
に提案してきた(例えば特願平5−315075号明細
書参照)。At present, an ITO (indium tin oxide) film is mainly used as a transparent electrode material.
The ITO film has a relatively low resistance to heat and humidity, and has a drawback that its electric conductivity is likely to decrease due to humidity. As a transparent conductive film capable of solving such a difficulty, indium (In) and zinc (Zn (Zn) are used as main cation elements obtained by sputtering a sintered body target made of a composition containing indium oxide and zinc oxide. The present inventors have already proposed a transparent conductive film made of an amorphous oxide containing (1) (see, for example, Japanese Patent Application No. 5-315075).
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記の
透明導電膜においてもその大気中での耐熱性は未だ十分
であるとはいえず、高温環境下での導電性の経時的劣化
は比較的大きい。このため、例えば車載用液晶パネルや
液晶プロジェクター等のように長期耐熱安定性が要求さ
れる用途の液晶表示装置の材料としては、必ずしもその
仕様を満足するものではなかった。本発明の目的は、主
要カチオン元素としてインジウム(In)および亜鉛
(Zn)を含有する非晶質酸化物からなる透明導電膜を
利用した導電性透明基材であって、導電性の面からみた
耐熱性がより向上したものを得ることができる導電性透
明基材の製造方法を提供することにある。However, even in the above transparent conductive film, it cannot be said that the heat resistance in the atmosphere is still sufficient, and the deterioration of the conductivity with time in a high temperature environment is relatively large. . For this reason, as a material for a liquid crystal display device for applications where long-term heat resistance stability is required, such as an in-vehicle liquid crystal panel or a liquid crystal projector, the specifications are not always satisfied. An object of the present invention is to provide a conductive transparent substrate using a transparent conductive film made of an amorphous oxide containing indium (In) and zinc (Zn) as main cation elements. It is an object of the present invention to provide a method for producing a conductive transparent substrate, which can obtain a product having further improved heat resistance.
【0005】[0005]
【課題を解決するための手段】上記目的を達成する本発
明の導電性透明基材の製造方法は、酸化インジウムと酸
化亜鉛とを含有する組成物からなる焼結体ターゲットを
用いたスパッタリング法により、主要カチオン元素とし
てインジウム(In)および亜鉛(Zn)を含有する非
晶質酸化物からなる透明導電膜を透明基材上に形成する
にあたり、前記透明導電膜の形成に先立って、不活性ガ
ス雰囲気下で前記ターゲットをプラズマ処理することを
特徴とするものである。Means for Solving the Problems The method for producing a conductive transparent substrate of the present invention that achieves the above object is a sputtering method using a sintered body target made of a composition containing indium oxide and zinc oxide. In forming a transparent conductive film made of an amorphous oxide containing indium (In) and zinc (Zn) as main cation elements on a transparent substrate, an inert gas is used before the formation of the transparent conductive film. The target is plasma-treated in an atmosphere.
【0006】以下、本発明を詳細に説明する。まず、本
発明で使用するターゲットについて説明すると、このタ
ーゲットは上述したように酸化インジウムと酸化亜鉛と
を含有する組成物の酸化物焼結体からなる。ここで、前
記の焼結体の具体例としては下記(1)〜(2)のもの
が挙げられる。The present invention will be described in detail below. First, the target used in the present invention will be described. This target is composed of an oxide sintered body of a composition containing indium oxide and zinc oxide as described above. Here, as specific examples of the above-mentioned sintered body, the following (1) to (2) can be mentioned.
【0007】(1)酸化インジウムと酸化亜鉛との組成
物からなる焼結体ターゲットで、Inの原子比In/
(In+Zn)が所定の値のもの。ここで、「Inの原
子比In/(In+Zn)が所定の値のもの」とは、最
終的に得られる膜におけるInの原子比In/(In+
Zn)が0.55〜0.90、好ましくは0.82〜
0.90の範囲内の所望値となるものを意味する。具体
的には、Inの原子比In/(In+Zn)が0.55
〜0.90、好ましくは0.82〜0.90である焼結
体ターゲットを用いることで達成される。前記原子比が
0.55〜0.90の範囲から外れると、このターゲッ
トをスパッタリングすることで得られる膜におけるIn
の原子比In/(In+Zn)が0.55未満に、また
は0.90を超えるようになり易く、目的とする透明導
電膜を得ることが困難になる。前記の原子比を0.82
〜0.90にすると、さらに耐熱性に優れた透明導電膜
を得ることができる。この焼結体ターゲットは、酸化イ
ンジウムと酸化亜鉛との混合物からなる焼結体であって
もよいし、In2 O3 (ZnO)m (m=2〜20)で
表される六方晶層状化合物の1種以上とIn2 O3 とか
ら実質的になる焼結体であってもよい。なお、六方晶層
状化合物を表す前記式においてmを2〜20に限定する
理由は、mが前記範囲外では六方晶層状化合物にならな
いからである。mの好ましい範囲は2〜8であり、更に
好ましくは2〜6である。(1) A sintered body target made of a composition of indium oxide and zinc oxide, having an atomic ratio of In / In /
(In + Zn) has a predetermined value. Here, "the atomic ratio In of In / (In + Zn) having a predetermined value" means the atomic ratio In of the finally obtained film In / (In +
Zn) is 0.55 to 0.90, preferably 0.82
It means a desired value within the range of 0.90. Specifically, the atomic ratio In / In / (In + Zn) is 0.55.
˜0.90, preferably 0.82 to 0.90. When the atomic ratio is out of the range of 0.55 to 0.90, In in the film obtained by sputtering this target.
The atomic ratio In / (In + Zn) tends to be less than 0.55 or exceeds 0.90, which makes it difficult to obtain the target transparent conductive film. The atomic ratio is 0.82
When it is set to about 0.90, a transparent conductive film having further excellent heat resistance can be obtained. The sintered body target may be a sintered body made of a mixture of indium oxide and zinc oxide, or a hexagonal layered compound represented by In 2 O 3 (ZnO) m (m = 2 to 20). It may be a sintered body consisting essentially of one or more of the above and In 2 O 3 . In addition, the reason why m is limited to 2 to 20 in the above formula representing the hexagonal layered compound is that when m is out of the above range, it does not become a hexagonal layered compound. The preferable range of m is 2 to 8, and more preferably 2 to 6.
【0008】(2)酸化インジウムと酸化亜鉛の他に価
数が正3価以上である1種以上の第3元素の酸化物を含
有させた組成物からなる焼結体ターゲットで、Inの原
子比In/(In+Zn)および第3元素の総量の原子
比(全第3元素)/(In+Zn+全第3元素)がそれ
ぞれ所定値のもの。ここで、「Inの原子比In/(I
n+Zn)が所定の値のもの」とは、最終的に得られる
膜におけるInの原子比In/(In+Zn)が0.5
5〜0.90、好ましくは0.82〜0.90の範囲内
の所望値となるものを意味する。具体的には、Inの原
子比In/(In+Zn)が0.55〜0.90、好ま
しくは0.82〜0.90である焼結体ターゲットを用
いることで達成される。また、「第3元素の総量の原子
比(全第3元素)/(In+Zn+全第3元素)が所定
値のもの」とは、最終的に得られる膜における第3元素
の総量の原子比(全第3元素)/(In+Zn+全第3
元素)が0.2以下の所望値となるものを意味する。第
3元素の具体例としてはAl,Sb,Ga,Ge等が挙
げられる。この焼結体ターゲットは、酸化インジウムと
酸化亜鉛と少なくとも1種の第3元素の酸化物との混合
物から実質的になる焼結体であってもよいし、In2 O
3(ZnO)m (m=2〜20)で表される六方晶層状
化合物に少なくとも1種の前記第3元素を含有させてな
る化合物の1種以上とIn2 O3 とから実質的になる焼
結体であってもよい。(2) A sintered body target made of a composition containing, in addition to indium oxide and zinc oxide, one or more oxides of a third element having a valence of positive trivalence or more, and an In atom. The ratio In / (In + Zn) and the atomic ratio of the total amount of the third element (total third element) / (In + Zn + total third element) are predetermined values. Here, the atomic ratio of In is In / (I
"n + Zn) has a predetermined value" means that the atomic ratio In / In / (In + Zn) of the finally obtained film is 0.5.
It means a desired value within the range of 5 to 0.90, preferably 0.82 to 0.90. Specifically, it is achieved by using a sintered body target having an atomic ratio In / In / (In + Zn) of 0.55 to 0.90, preferably 0.82 to 0.90. Further, “the atomic ratio of the total amount of the third element (total third element) / (In + Zn + total third element) is a predetermined value” means that the atomic ratio of the total amount of the third element in the finally obtained film ( All third element) / (In + Zn + all third)
Element) means that the desired value is 0.2 or less. Specific examples of the third element include Al, Sb, Ga, Ge and the like. The sintered body target may be a sintered body substantially made of a mixture of indium oxide, zinc oxide and at least one oxide of the third element, or In 2 O
3 (ZnO) m (m = 2 to 20), and at least one compound of at least one kind of the third element contained in the hexagonal layered compound, and In 2 O 3 It may be a sintered body.
【0009】なお、上記(1)または(2)の酸化物焼
結体が前述の六方晶層状化合物を含有する場合、この六
方晶層状化合物の含有量は5wt%以上であることが好
ましく、10wt%以上含有することがより好ましい。
この場合の酸化物焼結体は、前述のようにIn2 O3 を
含有するわけであるが、このIn2 O3 は非晶質であっ
てもよいし結晶質であってもよい。When the oxide sintered body of (1) or (2) contains the above-mentioned hexagonal layered compound, the content of the hexagonal layered compound is preferably 5 wt% or more, and 10 wt % Or more is more preferable.
The oxide sintered body in this case contains In 2 O 3 as described above, but this In 2 O 3 may be amorphous or crystalline.
【0010】また、上記(1)および(2)の酸化物焼
結体におけるInとZnの原子比In/(In+Zn)
は、前述のように、得られる透明導電膜におけるInと
Znの原子比In/(In+Zn)が0.55〜0.9
0の範囲内の所望値となる値とする。これは、透明導電
膜における前記の原子比が0.55未満では当該透明導
電膜の導電性が低くなり易く、0.90を超えると当該
透明導電膜の耐湿熱性が低下し易くなるからである。ま
た、上記(2)の酸化物焼結体における第3元素の合量
の原子比(全第3元素)/(In+Zn+全第3元素)
も、前述のように、得られる透明導電膜における第3元
素の合量の原子比(全第3元素)/(In+Zn+全第
3元素)が0.2以下の所望値となる値とする。これ
は、透明導電膜における前記第3元素の合量の原子比が
0.2を超えると、当該透明導電膜においてイオンの散
乱が起こり易くなり、イオンの散乱が起こると導電性が
低下するからである。Further, the atomic ratio of In to Zn in the oxide sintered bodies of (1) and (2) above is In / (In + Zn).
As described above, the atomic ratio In / Zn In / (In + Zn) in the obtained transparent conductive film is 0.55 to 0.9.
The value is a desired value within the range of 0. This is because if the atomic ratio in the transparent conductive film is less than 0.55, the conductivity of the transparent conductive film tends to be low, and if it exceeds 0.90, the wet heat resistance of the transparent conductive film is likely to decrease. . Also, the atomic ratio of the total amount of the third element in the oxide sintered body of (2) above (all third elements) / (In + Zn + all third elements).
Also, as described above, the atomic ratio (total third element) / (In + Zn + total third element) of the total amount of the third element in the obtained transparent conductive film is set to a desired value of 0.2 or less. This is because when the atomic ratio of the total amount of the third element in the transparent conductive film exceeds 0.2, the scattering of ions easily occurs in the transparent conductive film, and the conductivity decreases when the scattering of ions occurs. Is.
【0011】酸化物焼結体におけるInとZnの原子比
は、焼結体の出発原料として使用するインジウム化合物
と亜鉛化合物の混合比を調整することで制御できる。こ
のとき、前述した六方晶層状化合物の化学量論比に見合
う量を超えて一方の化合物(インジウム化合物または亜
鉛化合物)が過剰に混合されると、過剰に混合された化
合物に由来する非晶質または結晶質の酸化物(インジウ
ム酸化物または亜鉛酸化物)が六方晶層状化合物以外の
成分として焼結体中に存在するようになると推定され
る。また、酸化物焼結体における第3元素の合量の原子
比も、焼結体の出発原料として使用する第3元素化合物
(第3元素の化合物)の添加量を調整することで制御で
きる。The atomic ratio of In and Zn in the oxide sintered body can be controlled by adjusting the mixing ratio of the indium compound and the zinc compound used as starting materials for the sintered body. At this time, when one compound (indium compound or zinc compound) is excessively mixed in an amount exceeding the amount corresponding to the stoichiometric ratio of the hexagonal layered compound described above, the amorphous substance derived from the excessively mixed compound is obtained. Alternatively, it is presumed that crystalline oxide (indium oxide or zinc oxide) will be present in the sintered body as a component other than the hexagonal layered compound. Also, the atomic ratio of the total amount of the third element in the oxide sintered body can be controlled by adjusting the addition amount of the third element compound (compound of the third element) used as the starting material of the sintered body.
【0012】一方、透明導電膜におけるInとZnの原
子比および第3元素の合量の原子比は、ターゲットとし
て用いる上記の酸化物焼結体におけるInとZnの原子
比および第3元素の合量の原子比と概ね一致する。ただ
し、酸化物焼結体の相対密度が70%未満であると、得
られる透明導電膜が黒化し易くなる。また、成膜速度が
低下すると共に酸化物焼結体自体も黒化し易くなる。し
たがって、ターゲットとして用いる酸化物焼結体の相対
密度は70%以上のできるだけ高い値とすることが好ま
しい。酸化物焼結体のより好ましい相対密度は85%以
上であり、さらに好ましい相対密度は90%以上であ
る。相対密度の高い酸化物焼結体を得るためには、出発
原料またはその焼成物を粉砕して得た粉末をCIP(冷
間静水圧)等で成型した後にHIP(熱間静水圧)等に
より焼結することが好ましい。また、酸化物焼結体の純
度は98%以上であることが好ましい。98%未満で
は、不純物の存在により、得られる透明導電膜の耐湿熱
性が不十分になったり、導電性が低下したり、光透過性
が低下したりすることがある。On the other hand, the atomic ratio of In and Zn and the total atomic ratio of the third element in the transparent conductive film are the same as the atomic ratio of In and Zn and the third element in the above oxide sintered body used as the target. It roughly agrees with the atomic ratio of quantity. However, when the relative density of the oxide sintered body is less than 70%, the obtained transparent conductive film is easily blackened. In addition, the film forming rate is reduced and the oxide sintered body itself is easily blackened. Therefore, it is preferable that the relative density of the oxide sintered body used as the target is as high as 70% or more. A more preferable relative density of the oxide sintered body is 85% or more, and a further preferable relative density is 90% or more. In order to obtain an oxide sintered body having a high relative density, powder obtained by crushing a starting material or a fired product thereof is molded by CIP (cold isostatic pressure) or the like and then subjected to HIP (hot isostatic pressure) or the like. It is preferable to sinter. Further, the purity of the oxide sintered body is preferably 98% or more. If it is less than 98%, the moisture and heat resistance of the obtained transparent conductive film may be insufficient, the conductivity may be reduced, or the light transmittance may be reduced due to the presence of impurities.
【0013】本発明の方法では、上述した焼結体ターゲ
ットを用いたスパッタリング法により透明基材上に透明
導電膜を形成するにあたり、透明導電膜の形成に先立っ
て、不活性ガス雰囲気下で前記のターゲットをプラズマ
処理する(以下、この処理をプレスパッタリングとい
う)。このプレスパッタリングはターゲット表面を清浄
化するための処理であり、より具体的には、大気に暴露
した際に吸着する酸素、水、炭酸ガス等をターゲット表
面から取り除くための処理である。In the method of the present invention, in forming the transparent conductive film on the transparent substrate by the sputtering method using the above-mentioned sintered body target, prior to the formation of the transparent conductive film, the above-mentioned process is performed under an inert gas atmosphere. Is subjected to plasma treatment (hereinafter, this treatment is referred to as pre-sputtering). This pre-sputtering is a treatment for cleaning the target surface, and more specifically, a treatment for removing oxygen, water, carbon dioxide gas and the like adsorbed when exposed to the atmosphere from the target surface.
【0014】プレスパッタリングは、RFマグネトロン
スパッタリング装置、DCマグネトロンスパッタリング
装置、イオンビームスパッタリング装置等のスパッタリ
ング装置を用いて、不活性ガス雰囲気下でターゲット表
面をスパッタリングすることで行うことができる。この
ときの条件は、スパッタリングの方法や、ターゲットの
組成、用いる装置の特性等により種々変わってくるため
に一概に規定することは困難であるが、例えば以下のよ
うに設定することが好ましい。The pre-sputtering can be carried out by sputtering the target surface in an inert gas atmosphere using a sputtering device such as an RF magnetron sputtering device, a DC magnetron sputtering device, an ion beam sputtering device. It is difficult to unconditionally set the conditions at this time because it varies depending on the sputtering method, the composition of the target, the characteristics of the apparatus used, and the like, but it is preferable to set, for example, as follows.
【0015】・プレスパッタリング時の真空度およびタ
ーゲット印加電圧 最初に真空チャンバー内を1×10-5〜1×10-6Torr
程度(1.3×10-3〜1.3×10-4Pa程度)まで
十分に排気する。次に雰囲気ガスをチャンバー内に導入
してプレスパッタリングを行うが、このときの真空度は
1×10-4〜5×10-2Torr程度(1.3×10-2〜
6.7×100 Pa程度)、より好ましくは2×10-4
〜1×10-2Torr(2.7×10-2〜1.3×100 P
a程度)、更に好ましくは3×10-4〜5×10-3Torr
(4.0×10-2〜6.7×10-1Pa程度)とする。
また、ターゲット印加電圧は100〜500Vが好まし
い。プレスパッタリング時の真空度が1×10-4Torrよ
り高い(1×10-4Torrよりも圧力が低い)とプラズマ
の安定性が悪く、5×10-2Torrよりも低い(5×10
-2Torrよりも圧力が高い)とターゲットへの印加電圧を
高くすることができなくなる。また、ターゲット印加電
圧が100V未満ではプレスパッタリングに要する時間
が長くなるため、スループットの低下をまねく。Degree of vacuum and voltage applied to target during pre-sputtering First, the inside of the vacuum chamber is 1 × 10 −5 to 1 × 10 −6 Torr.
Sufficiently evacuate to about (1.3 × 10 −3 to 1.3 × 10 −4 Pa). Next, an atmosphere gas is introduced into the chamber for pre-sputtering, and the degree of vacuum at this time is about 1 × 10 −4 to 5 × 10 −2 Torr (1.3 × 10 −2 to
6.7 × 10 0 Pa), more preferably 2 × 10 −4
~1 × 10 -2 Torr (2.7 × 10 -2 ~1.3 × 10 0 P
a)), more preferably 3 × 10 −4 to 5 × 10 −3 Torr
(About 4.0 × 10 −2 to 6.7 × 10 −1 Pa).
The target applied voltage is preferably 100 to 500V. If the degree of vacuum during pre-sputtering is higher than 1 × 10 −4 Torr (pressure lower than 1 × 10 −4 Torr), plasma stability is poor and lower than 5 × 10 −2 Torr (5 × 10 −2 Torr).
If the pressure is higher than -2 Torr), the voltage applied to the target cannot be increased. Further, if the target applied voltage is less than 100 V, the time required for pre-sputtering becomes long, which leads to a decrease in throughput.
【0016】・雰囲気ガス 雰囲気ガスは不活性ガス(Heガス,Neガス,Arガ
ス,Xeガス,Krガス)であれば何でもよいが、プレ
スパッタ効率およびコストの面で、Arガスが好まし
い。また、不活性ガスの純度については特に規定する必
要はないが、特に酸素や水分が混入している場合につい
ては、これらをできる限り除去したものを使用したほう
が好ましい。したがって、市販品の99.99%以上の
純度の乾燥ガスを用いれば十分である。Atmosphere gas Any atmosphere gas may be used as long as it is an inert gas (He gas, Ne gas, Ar gas, Xe gas, Kr gas), but Ar gas is preferable in terms of pre-sputtering efficiency and cost. The purity of the inert gas does not have to be specified in particular, but when oxygen and water are mixed in, it is preferable to use those which are removed as much as possible. Therefore, it is sufficient to use a dry gas having a purity of 99.99% or more of a commercially available product.
【0017】・プレスパッタリング時のスパッタリング
出力 RFマグネトロンスパッタリング装置で直径4インチの
円板形を呈するターゲット(相対密度90%以上)を使
用し、基板温度を20℃とした場合、プレスパッタリン
グ時のスパッタリング出力は0.5〜5W/cm2 の範
囲内とすることが好ましい。5W/cm2 を超えた場合
はターゲットの割れをまねくおそれがあり、0.5W/
cm2 未満の場合はスパッタ効率が小さく実用的でな
い。また、連続走行式DCマグネトロンスパッタリング
装置で上面および下面が5インチ×12インチの矩形を
呈する板状のターゲット(相対密度90%以上)を使用
し、基板温度を20℃とした場合、プレスパッタリング
時のスパッタリング出力は1〜5W/cm2 の範囲内と
することが好ましい。5W/cm2 を超えた場合はター
ゲットの割れをまねくおそれがあり、1W/cm2 未満
の場合はスパッタ効率が小さく実用的でない。Sputtering output during pre-sputtering When a target having a disc shape of 4 inches in diameter (relative density of 90% or more) is used in an RF magnetron sputtering device and the substrate temperature is 20 ° C., sputtering during pre-sputtering The output is preferably in the range of 0.5 to 5 W / cm 2 . If it exceeds 5 W / cm 2 , the target may be cracked.
If it is less than cm 2 , the sputtering efficiency is low and not practical. Also, when using a plate-shaped target (relative density of 90% or more) having a rectangular top surface and a bottom surface of 5 inches × 12 inches in a continuous running DC magnetron sputtering device and a substrate temperature of 20 ° C., pre-sputtering The sputtering output is preferably in the range of 1 to 5 W / cm 2 . If it exceeds 5 W / cm 2 , the target may be cracked, and if it is less than 1 W / cm 2 , the sputtering efficiency is low and it is not practical.
【0018】・プレスパッタリング時間 直径4インチの円板形を呈するターゲット(相対密度9
0%以上)を使用し、スパッタリング出力を100W
に、基板温度を20℃にそれぞれ設定して、通常のRF
マグネトロンスパッタリング装置によりプレスパッタリ
ングを行う場合のプレスパッタリング時間は3〜60
分、好ましくは5〜30分、より好ましくは10〜20
分である。プレスパッタリング時間が3分未満では当該
プレスパッタリングによるターゲット表面の清浄化効果
が小さく、最終的に得られる透明導電膜における耐熱性
の向上の度合いも小さくなる。一方、プレスパッタリン
グ時間を60分以上に設定すると、ターゲット表面の清
浄化効果は大きいがスループットの低下をまねき、生産
上実用的でない。Pre-sputtering time A target having a disc shape with a diameter of 4 inches (relative density 9
0% or more) and the sputtering output is 100W
Then, set the substrate temperature to 20 ℃ and
The pre-sputtering time in the case of performing pre-sputtering with a magnetron sputtering device is 3 to 60.
Minutes, preferably 5 to 30 minutes, more preferably 10 to 20
Minutes. If the pre-sputtering time is less than 3 minutes, the effect of cleaning the target surface by the pre-sputtering is small, and the degree of improvement in heat resistance of the finally obtained transparent conductive film is also small. On the other hand, if the pre-sputtering time is set to 60 minutes or more, the target surface cleaning effect is great, but this leads to a decrease in throughput and is not practical in production.
【0019】また、上面および下面が5インチ×12イ
ンチの矩形を呈する板状のターゲット(相対密度90%
以上)を使用し、スパッタリング出力を1Wに、基板温
度を20℃にそれぞれ設定して、連続走行式DCマグネ
トロンスパッタリング装置によりプレスパッタリングを
行う場合のプレスパッタリング時間は1〜5分、好まし
くは1.5〜2分である。この場合のプレスパッタリン
グ時間についても、上記と同様の理由によりプレスパッ
タリング効果とスループットの双方から規定される最適
値がある。最適プレスパッタリング時間はスパッタリン
グの方法や、ターゲットの組成および相対密度、スパッ
タリング条件、用いる装置の特性等により種々変わって
くるので、本発明は上述した時間によって制限を受ける
ものではない。Further, a plate-like target (relative density 90%) having a rectangular shape of 5 inches × 12 inches on the upper surface and the lower surface is used.
When the sputtering power is set to 1 W and the substrate temperature is set to 20 ° C. and pre-sputtering is performed by the continuous running DC magnetron sputtering apparatus, the pre-sputtering time is 1 to 5 minutes, preferably 1. 5 to 2 minutes. The pre-sputtering time in this case also has an optimum value defined by both the pre-sputtering effect and the throughput for the same reason as above. The optimum pre-sputtering time varies variously depending on the sputtering method, the composition and relative density of the target, the sputtering conditions, the characteristics of the apparatus used, etc., so the present invention is not limited by the above-mentioned time.
【0020】上述のようにしてターゲットをプレスパッ
タリングすることで当該ターゲット表面の清浄化を図る
ことができ、表面が清浄化されたターゲットをスパッタ
リングすることにより、導電性の面からみた耐熱性がよ
り向上した透明導電膜(主要カチオン元素としてインジ
ウム(In)および亜鉛(Zn)を含有する非晶質酸化
物からなるもの)を透明基材上に形成することができ
る。このときの透明基材としては目的に応じて種々の物
質あるいは部材を用いることができが、例えば電気絶縁
性の透明ガラスまたは透明高分子からなるものを使用す
ることが好ましい。By pre-sputtering the target as described above, the target surface can be cleaned, and by sputtering the target whose surface has been cleaned, the heat resistance in terms of conductivity is further improved. An improved transparent conductive film (made of an amorphous oxide containing indium (In) and zinc (Zn) as main cation elements) can be formed on a transparent substrate. As the transparent substrate at this time, various substances or members can be used according to the purpose, but it is preferable to use, for example, a transparent glass or a transparent polymer having an electrically insulating property.
【0021】透明ガラスからなる透明基材の具体例とし
ては、ソーダ石灰ガラス、鉛ガラス、硼硅酸ガラス、高
硅酸ガラス、無アルカリガラス等々の透明ガラス製のフ
ィルム状物あるいは板状物が挙げられる。これらの中で
も、透明導電膜中へのアルカリイオンの拡散が起こらな
いという点から、アルカリ成分を含有しないものが好ま
しい。Specific examples of the transparent substrate made of transparent glass include transparent glass films or plates such as soda lime glass, lead glass, borosilicate glass, high silicate glass, and alkali-free glass. Can be mentioned. Among these, those containing no alkali component are preferable from the viewpoint that the diffusion of alkali ions into the transparent conductive film does not occur.
【0022】また、透明高分子からなる透明基材の具体
例としては、ポリカーボネート樹脂、ポリアリレート樹
脂、ポリエステル樹脂、ポリエチレンテレフタレート樹
脂、ポリエーテルスルホン樹脂、アモルファスポリオレ
フィン樹脂、ポリスチレン樹脂、アクリル樹脂等からな
るフィルムまたはシートが挙げられる。これらの中で
も、透明性および熱的安定性の点からポリカーボネート
樹脂、ポリアリレート樹脂、ポリエチレンテレフタレー
ト樹脂、またはポリエーテルスルホン樹脂からなるもの
が好ましい。Specific examples of the transparent substrate made of a transparent polymer include polycarbonate resin, polyarylate resin, polyester resin, polyethylene terephthalate resin, polyether sulfone resin, amorphous polyolefin resin, polystyrene resin, acrylic resin and the like. Examples include films or sheets. Among these, those made of polycarbonate resin, polyarylate resin, polyethylene terephthalate resin, or polyether sulfone resin are preferable from the viewpoint of transparency and thermal stability.
【0023】透明基材の光透過率は70%以上であるこ
とが好ましい。光透過率が70%未満では透明基材とし
て不適である。透明基材としては光透過率が80%以上
であるものがより好ましく、更に好ましいものは光透過
率が90%以上のものである。また、透明基材の厚さは
得ようとする導電性透明基材の用途や透明基材の材質等
に応じて適宜選択されるが、概ね15μm〜3mmの範
囲内が好ましく、50μm〜2mmの範囲内がより好ま
しい。The light transmittance of the transparent substrate is preferably 70% or more. When the light transmittance is less than 70%, it is not suitable as a transparent substrate. As the transparent base material, those having a light transmittance of 80% or more are more preferable, and those having a light transmittance of 90% or more are even more preferable. The thickness of the transparent substrate is appropriately selected according to the intended use of the conductive transparent substrate to be obtained, the material of the transparent substrate, etc., but it is preferably in the range of 15 μm to 3 mm, preferably 50 μm to 2 mm. The range is more preferable.
【0024】透明基材上に透明導電膜を形成する際のス
パッタリング条件は、スパッタリングの方法や用いる装
置の特性等により種々変わってくるために一概に規定す
ることは困難であるが、例えばDCマグネトロンスパッ
タリング法による場合には以下のように設定することが
好ましい。It is difficult to unconditionally define the sputtering conditions for forming the transparent conductive film on the transparent substrate, since it varies depending on the sputtering method, the characteristics of the apparatus used, and the like. For example, a DC magnetron is used. When the sputtering method is used, the following settings are preferable.
【0025】・スパッタリング時の真空度およびターゲ
ット印加電圧 スパッタリング時の真空度は1×10-4〜5×10-2To
rr程度(1.3×10-2〜6.7×100 Pa程度)、
より好ましくは2×10-4〜1×10-2Torr(2.7×
10-2〜1.3×100 Pa程度)、更に好ましくは3
×10-4〜5×10-3Torr(4.0×10-2〜6.7×
10-1Pa程度)とする。また、ターゲット印加電圧は
100〜500Vが好ましい。スパッタリング時の真空
度が1×10-4Torrより高い(1×10-4Torrよりも圧
力が低い)とプラズマの安定性が悪く、5×10-2Torr
よりも低い(5×10-2Torrよりも圧力が高い)とター
ゲットへの印加電圧を高くすることができなくなる。ま
た、ターゲット印加電圧が100V未満では良質の薄膜
を得ることが困難になったり、成膜速度が制限を受ける
ことがある。Vacuum degree during sputtering and target applied voltage The vacuum degree during sputtering is from 1 × 10 −4 to 5 × 10 −2 To.
rr (about 1.3 × 10 -2 to 6.7 × 10 0 Pa),
More preferably 2 × 10 −4 to 1 × 10 −2 Torr (2.7 ×
10 −2 to 1.3 × 10 0 Pa), more preferably 3
× 10 -4 ~5 × 10 -3 Torr (4.0 × 10 -2 ~6.7 ×
10 -1 Pa). The target applied voltage is preferably 100 to 500V. When the degree of vacuum during sputtering is higher than 1 × 10 -4 Torr (pressure lower than 1 × 10 -4 Torr), plasma stability is poor and 5 × 10 -2 Torr
If it is lower (the pressure is higher than 5 × 10 -2 Torr), the applied voltage to the target cannot be increased. If the target applied voltage is less than 100 V, it may be difficult to obtain a good quality thin film, or the film forming speed may be limited.
【0026】・雰囲気ガス 雰囲気ガスとしては、アルゴンガス等の不活性ガス、も
しくはアルゴンガス等の不活性ガスと酸素ガスとの混合
ガスが好ましい。アルゴンガスと酸素ガスとの混合ガス
を用いる場合、導入酸素ガスのアルゴンガスに対する体
積比は50%以下とすることが好ましく、より好ましく
は0.001〜10%の範囲内とする。この範囲を外れ
ると、電気抵抗が低くかつ光透過率の高い膜が得られな
い場合がある。Atmosphere gas As the atmosphere gas, an inert gas such as argon gas or a mixed gas of an inert gas such as argon gas and oxygen gas is preferable. When a mixed gas of argon gas and oxygen gas is used, the volume ratio of the introduced oxygen gas to the argon gas is preferably 50% or less, more preferably 0.001 to 10%. If it is out of this range, a film having low electric resistance and high light transmittance may not be obtained.
【0027】・基板温度 基板温度(基材の温度)は、基材の耐熱性に応じて、当
該基材が熱により変形や変質を起こさない温度範囲内で
適宜選択される。基板温度が室温未満では冷却用の機器
が別途必要になるため、製造コストが上昇する。また、
基板温度を高温に加熱するにしたがって製造コストが上
昇する。透明樹脂製の基材を用いた場合には室温〜20
0℃の範囲内が好ましく、200℃を超えると基材が変
形することがある。また、透明ガラス製の基材を用いた
場合には室温〜400℃の範囲内が好ましく、400℃
を超えると基材が変形したり、高温に加熱することの効
果が得られなくなる場合がある。Substrate temperature The substrate temperature (temperature of the base material) is appropriately selected within a temperature range in which the base material does not deform or deteriorate due to heat according to the heat resistance of the base material. If the substrate temperature is lower than room temperature, a separate cooling device is required, which increases the manufacturing cost. Also,
The manufacturing cost increases as the substrate temperature is heated to a high temperature. Room temperature to 20 when using a transparent resin substrate
It is preferably in the range of 0 ° C, and when it exceeds 200 ° C, the substrate may be deformed. When a transparent glass substrate is used, it is preferably in the range of room temperature to 400 ° C, and 400 ° C.
If it exceeds, the base material may be deformed or the effect of heating to a high temperature may not be obtained.
【0028】・スパッタリング出力 RFマグネトロンスパッタリング装置で直径4インチの
円板形を呈するターゲット(相対密度90%以上)を使
用し、基板温度を20℃とした場合、スパッタリング出
力は0.5〜5W/cm2 の範囲内とすることが好まし
い。5W/cm2 を超えた場合はターゲットの割れをま
ねくおそれがあり、0.5W/cm2 未満の場合はスパ
ッタ効率が小さく実用的でない。また、連続走行式DC
マグネトロンスパッタリング装置で上面および下面が5
インチ×12インチの矩形を呈する板状のターゲット
(相対密度90%以上)を使用し、基板温度を20℃と
した場合、スパッタリング出力は1〜5W/cm2の範
囲内とすることが好ましい。5W/cm2 を超えた場合
はターゲットの割れをまねくおそれがあり、1W/cm
2 未満の場合はスパッタ効率が小さく実用的でない。Sputtering power When a target having a disk shape of 4 inches in diameter (relative density of 90% or more) is used in an RF magnetron sputtering device and the substrate temperature is 20 ° C., the sputtering power is 0.5 to 5 W / It is preferably within the range of cm 2 . If it exceeds 5 W / cm 2 , the target may be cracked, and if it is less than 0.5 W / cm 2 , the sputtering efficiency is small and not practical. In addition, continuous running DC
The magnetron sputtering system has 5 upper and lower surfaces.
When a plate-shaped target (relative density of 90% or more) having a rectangular shape of inches × 12 inches is used and the substrate temperature is 20 ° C., the sputtering output is preferably in the range of 1 to 5 W / cm 2 . If it exceeds 5 W / cm 2 , the target may be cracked, and 1 W / cm
If it is less than 2 , the sputtering efficiency is low and not practical.
【0029】前述したプレスパッタリングを行った後の
ターゲットを上述した条件でスパッタリングすることに
より、目的とする透明導電膜を透明基材上に形成するこ
とができる。ただし、前述したように、スパッタリング
条件はスパッタリングの方法や用いる装置の特性等によ
り種々変わってくるので、本発明は上述した条件によっ
て制限を受けるものではない。The target transparent conductive film can be formed on the transparent substrate by sputtering the target after the above-mentioned pre-sputtering under the above-mentioned conditions. However, as described above, the sputtering conditions vary variously depending on the sputtering method, the characteristics of the apparatus used, and the like, so the present invention is not limited by the above-described conditions.
【0030】透明導電膜におけるInとZnの原子比I
n/(In+Zn)は、ターゲットの説明の中で既に述
べたように0.55〜0.90の範囲内であることが好
ましく、より好ましい値は0.82〜0.90である。
また、この透明導電膜がInおよびZn以外のカチオン
元素として正三価以上の原子価を有する第3元素を1種
または複数種含む場合、全カチオン元素に占める前記第
3元素の合量の原子比(全第3元素)/(In+Zn+
全第3元素)は、ターゲットの説明の中で既に述べたよ
うに0.2以下であることが好ましい。Atomic ratio I of In and Zn in the transparent conductive film I
n / (In + Zn) is preferably in the range of 0.55 to 0.90, and more preferably 0.82 to 0.90, as already described in the description of the target.
When the transparent conductive film contains one or more kinds of cation elements other than In and Zn and having a valence of positive trivalence or more, the atomic ratio of the total amount of the third elements in all the cation elements. (All third elements) / (In + Zn +
The total third element) is preferably 0.2 or less as already described in the description of the target.
【0031】透明導電膜の膜厚は、その用途に応じて異
なるが、3〜3000nmであることが好ましい。3n
m未満では十分な導電性が得られず、3000nmを超
えると光透過性の低下が起き易い。好ましい膜厚は5〜
1000nmであり、更に好ましくは10〜800nm
である。The thickness of the transparent conductive film varies depending on its use, but is preferably 3 to 3000 nm. 3n
If it is less than m, sufficient conductivity cannot be obtained, and if it exceeds 3000 nm, the light transmittance tends to be lowered. The preferred film thickness is 5
1000 nm, more preferably 10-800 nm
Is.
【0032】本発明の方法により得られる導電性透明基
材は、主要カチオン元素としてインジウム(In)およ
び亜鉛(Zn)を含有する非晶質酸化物からなる透明導
電膜を利用した導電性透明基材であって、導電性の面か
らみた耐熱性がより向上したものである。この導電性透
明基材は、実用上十分な導電性および光透過性を有する
とともにITO膜よりも耐湿性に優れている。このよう
な特徴を有する当該導電性透明基材は、液晶表示素子用
透明電極、EL(エレクトロルミネッセンス)表示素子
用透明電極、太陽電池用透明電極等、種々の用途の透明
電極の材料等として有用である。The conductive transparent substrate obtained by the method of the present invention is a conductive transparent substrate using a transparent conductive film made of an amorphous oxide containing indium (In) and zinc (Zn) as main cation elements. It is a material that has further improved heat resistance in terms of conductivity. This conductive transparent substrate has practically sufficient conductivity and light transmittance and is more excellent in moisture resistance than the ITO film. The conductive transparent substrate having such characteristics is useful as a material for transparent electrodes for various purposes such as transparent electrodes for liquid crystal display elements, transparent electrodes for EL (electroluminescence) display elements, transparent electrodes for solar cells, etc. Is.
【0033】[0033]
【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.
【0034】実施例1 透明基材としてコーニング社製のガラス基板(#705
9;以下、CG#7059と略記する)を用い、ターゲ
ットとしてIn2 O3 (ZnO)4 で表される六方晶層
状化合物と酸化インジウム(In2 O3 )とからなる焼
結体(InとZnの原子比In/(In+Zn)=0.
85,相対密度90%)を用いて、以下の要領で導電性
透明基材を製造した。まず、CG#7059およびター
ゲットをRFマグネトロンスパッタリング装置に装着
し、真空槽内を5×10-4Pa以下まで減圧した。次
に、Arガス(純度99.99%)を真空槽内圧力が1
×10-1Paになるように導入し、スパッタリング出力
を1.2W/cm2 に、基板温度を20℃にそれぞれ設
定して、シャッターを閉じた状態で5分間プレスパッタ
リングを行った。この後、Arガス(純度99.99
%)とO2 ガス(純度99.99%)との混合ガス(A
rガス:O2 ガス=1000:2.8(体積比))を真
空槽内圧力が1×10-1Paになるように導入し、スパ
ッタリング出力を1.2W/cm2 に、基板温度を20
℃にそれぞれ設定して、シャッターを開けた状態でスパ
ッタリングを行って、膜厚100nmの透明導電膜をC
G#7059の片面に成膜した。Example 1 A glass substrate (# 705) manufactured by Corning Incorporated was used as a transparent base material.
9; hereinafter abbreviated as CG # 7059), and using a hexagonal layered compound represented by In 2 O 3 (ZnO) 4 as a target and a sintered body (In and In 2 O 3 ). Zn atomic ratio In / (In + Zn) = 0.
85, relative density 90%) was used to produce a conductive transparent substrate in the following manner. First, CG # 7059 and the target were attached to an RF magnetron sputtering device, and the pressure inside the vacuum chamber was reduced to 5 × 10 −4 Pa or less. Next, Ar gas (purity 99.99%) was used at a vacuum chamber pressure of 1
It was introduced so as to have a pressure of × 10 -1 Pa, the sputtering output was set to 1.2 W / cm 2 , the substrate temperature was set to 20 ° C, and pre-sputtering was performed for 5 minutes with the shutter closed. After this, Ar gas (purity 99.99
%) And O 2 gas (purity 99.99%) mixed gas (A
(r gas: O 2 gas = 1000: 2.8 (volume ratio)) was introduced so that the internal pressure of the vacuum chamber was 1 × 10 −1 Pa, the sputtering output was 1.2 W / cm 2 , and the substrate temperature was 20
The transparent conductive film with a film thickness of 100 nm is C
A film was formed on one side of G # 7059.
【0035】このようにして得られた導電性透明ガラス
基材では、透明導電膜におけるInとZnの原子比In
/(In+Zn)はターゲットと同一の0.85であっ
た。また、X線回折により透明導電膜の結晶性を調べた
結果、非晶質であることが判明した。このX線回折の測
定結果を図1に示す。さらに、この透明導電膜の初期比
抵抗(R0 )を四端子法により測定するとともに(使用
機種;三菱油化社製のロレスタFP)、大気中、90℃
の条件で耐熱性試験を行い、試験時間1000時間後の
比抵抗(R1000)を同様にして測定した。そして、耐熱
試験前後での比抵抗比(R1000/R0 )を抵抗変化率と
定義して、透明導電膜の性能を示す指標とした。これら
の初期比抵抗(R0 )、耐熱性試験後の比抵抗
(R1000)、抵抗変化率(R1000/R0 )の値を表1に
示す。また、耐熱性試験後における導電性透明ガラス基
材の可視光透過率を測定した(使用機種;島津製作所製
のUV3100S)。このうち、波長550nmの光の
透過率を表1に併記する。In the conductive transparent glass substrate thus obtained, the atomic ratio of In to Zn in the transparent conductive film In
/ (In + Zn) was 0.85, which was the same as the target. Further, as a result of examining the crystallinity of the transparent conductive film by X-ray diffraction, it was found to be amorphous. The measurement result of this X-ray diffraction is shown in FIG. Further, the initial specific resistance (R 0 ) of this transparent conductive film was measured by the four-terminal method (used model: Mitsubishi Oil Chemical Co., Ltd. Loresta FP), and at 90 ° C. in air.
A heat resistance test was performed under the conditions of, and the specific resistance (R 1000 ) after 1000 hours of test time was measured in the same manner. Then, the specific resistance ratio (R 1000 / R 0 ) before and after the heat resistance test was defined as the rate of resistance change and used as an index showing the performance of the transparent conductive film. Table 1 shows the values of the initial specific resistance (R 0 ), the specific resistance after the heat resistance test (R 1000 ), and the resistance change rate (R 1000 / R 0 ). In addition, the visible light transmittance of the conductive transparent glass substrate after the heat resistance test was measured (used model: Shimadzu UV3100S). Among them, the transmittance of light having a wavelength of 550 nm is also shown in Table 1.
【0036】実施例2〜実施例5 プレスパッタリングの時間を実施例毎に表1に示す時間
に変えた以外は実施例1と同条件でプレスパッタリング
およびスパッタリングを行って、CG#7059の片面
に膜厚100nmの透明導電膜をそれぞれ成膜した。こ
のようにして得られた各導電性透明ガラス基材では、透
明導電膜におけるInとZnの原子比In/(In+Z
n)はいずれも0.85であった。また、X線回折によ
り各透明導電膜の結晶性を調べた結果、いずれも非晶質
であることが判明した。Examples 2 to 5 Pre-sputtering and sputtering were carried out under the same conditions as in Example 1 except that the time for pre-sputtering was changed to the time shown in Table 1 for each example. A transparent conductive film having a film thickness of 100 nm was formed. In each conductive transparent glass substrate thus obtained, the atomic ratio of In to Zn in the transparent conductive film In / (In + Z
n) was 0.85 in all cases. In addition, as a result of examining the crystallinity of each transparent conductive film by X-ray diffraction, it was found that all were amorphous.
【0037】さらに、各透明導電膜の初期比抵抗
(R0 )を実施例1と同一手法で測定すると共に、実施
例1と同一条件の耐熱性試験を行って試験時間1000
時間後の比抵抗(R1000)を実施例1と同一手法で測定
した。そして、実施例1と同一手法でそれぞれの抵抗変
化率(比抵抗比)を求めた。これらの値を表1に示す。
また、耐熱性試験後における各導電性透明ガラス基材の
可視光透過率を実施例1と同一手法で測定した。このう
ち、波長550nmの光の透過率を表1に併記する。Further, the initial specific resistance (R 0 ) of each transparent conductive film was measured by the same method as in Example 1, and a heat resistance test under the same conditions as in Example 1 was performed to test for 1000 hours.
The specific resistance (R 1000 ) after the elapse of time was measured by the same method as in Example 1. Then, each resistance change rate (resistivity ratio) was obtained by the same method as in Example 1. These values are shown in Table 1.
Further, the visible light transmittance of each conductive transparent glass substrate after the heat resistance test was measured by the same method as in Example 1. Among them, the transmittance of light having a wavelength of 550 nm is also shown in Table 1.
【0038】比較例1〜比較例2 比較例1ではプレスパッタリングを行わず、比較例2で
はプレスパッタリング時間を2分とし、他の条件はそれ
ぞれ実施例1と同一として、CG#7059の片面に膜
厚100nmの透明導電膜を成膜した。このようにして
得られた各導電性透明ガラス基材について、それぞれの
透明導電膜の初期比抵抗(R0 )を実施例1と同一手法
で測定すると共に、実施例1と同一条件の耐熱性試験を
行って試験時間1000時間後の比抵抗(R1000)を実
施例1と同一手法で測定した。そして、実施例1と同一
手法でそれぞれの抵抗変化率(比抵抗比)を求めた。こ
れらの値を表1に示す。また、耐熱性試験後における各
導電性透明ガラス基材の可視光透過率を実施例1と同一
手法で測定した。このうち、波長550nmの光の透過
率を表1に併記する。Comparative Examples 1 to 2 In Comparative Example 1, no pre-sputtering was performed, in Comparative Example 2, the pre-sputtering time was set to 2 minutes, and the other conditions were the same as those in Example 1, and one side of CG # 7059 was used. A transparent conductive film having a film thickness of 100 nm was formed. Regarding each conductive transparent glass substrate thus obtained, the initial specific resistance (R 0 ) of each transparent conductive film was measured by the same method as in Example 1, and the heat resistance under the same conditions as in Example 1 The test was conducted and the specific resistance (R 1000 ) after 1000 hours of test time was measured by the same method as in Example 1. Then, each resistance change rate (resistivity ratio) was obtained by the same method as in Example 1. These values are shown in Table 1. Further, the visible light transmittance of each conductive transparent glass substrate after the heat resistance test was measured by the same method as in Example 1. Among them, the transmittance of light having a wavelength of 550 nm is also shown in Table 1.
【0039】実施例6 透明基材としてポリカーボネートフィルム(帝人化成株
式会社製のAM3000。以下、PCフィルムと略記す
る)を用いた以外は実施例1と同条件でプレスパッタリ
ングおよびスパッタリングを行って、PCフィルムの片
面に膜厚100nmの透明導電膜を成膜した。このよう
にして得られた導電性透明高分子基材では、透明導電膜
におけるInとZnの原子比In/(In+Zn)は
0.85であった。また、X線回折により透明導電膜の
結晶性を調べた結果、非晶質であることが判明した。Example 6 PC was subjected to pre-sputtering and sputtering under the same conditions as in Example 1 except that a polycarbonate film (AM3000 manufactured by Teijin Chemicals Ltd., hereinafter abbreviated as PC film) was used as the transparent substrate. A transparent conductive film having a thickness of 100 nm was formed on one surface of the film. In the conductive transparent polymer substrate thus obtained, the atomic ratio In / Zn In / (In + Zn) of the transparent conductive film was 0.85. Further, as a result of examining the crystallinity of the transparent conductive film by X-ray diffraction, it was found to be amorphous.
【0040】さらに、透明導電膜の初期比抵抗(R0 )
を実施例1と同一手法で測定すると共に、実施例1と同
一条件の耐熱性試験を行って試験時間1000時間後の
比抵抗(R1000)を実施例1と同一手法で測定した。そ
して、実施例1と同一手法で抵抗変化率(比抵抗比)を
求めた。これらの値を表1に示す。また、耐熱性試験後
における導電性透明高分子基材の可視光透過率を実施例
1と同一手法で測定した。このうち、波長550nmの
光の透過率を表1に併記する。Further, the initial specific resistance (R 0 ) of the transparent conductive film
Was measured by the same method as in Example 1, and a heat resistance test was performed under the same conditions as in Example 1 to measure the specific resistance (R 1000 ) after a test time of 1000 hours by the same method as in Example 1. Then, the resistance change rate (resistivity ratio) was obtained by the same method as in Example 1. These values are shown in Table 1. Further, the visible light transmittance of the conductive transparent polymer substrate after the heat resistance test was measured by the same method as in Example 1. Among them, the transmittance of light having a wavelength of 550 nm is also shown in Table 1.
【0041】実施例7〜実施例10 プレスパッタリングの時間を実施例毎に表1に示す時間
に変えた以外は実施例6と同条件でプレスパッタリング
およびスパッタリングを行って、PCフィルムの片面に
膜厚100nmの透明導電膜をそれぞれ成膜した。この
ようにして得られた各導電性透明高分子基材では、透明
導電膜におけるInとZnの原子比In/(In+Z
n)はいずれも0.85であった。また、X線回折によ
り各透明導電膜の結晶性を調べた結果、いずれも非晶質
であることが判明した。Examples 7 to 10 Presputtering and sputtering were carried out under the same conditions as in Example 6 except that the time of presputtering was changed to the time shown in Table 1 for each example to form a film on one side of the PC film. A transparent conductive film having a thickness of 100 nm was formed. In each conductive transparent polymer substrate thus obtained, the atomic ratio of In to Zn in the transparent conductive film In / (In + Z
n) was 0.85 in all cases. In addition, as a result of examining the crystallinity of each transparent conductive film by X-ray diffraction, it was found that all were amorphous.
【0042】さらに、各透明導電膜の初期比抵抗
(R0 )を実施例1と同一手法で測定すると共に、実施
例1と同一条件の耐熱性試験を行って試験時間1000
時間後の比抵抗(R1000)を実施例1と同一手法で測定
した。そして、実施例1と同一手法でそれぞれの抵抗変
化率(比抵抗比)を求めた。これらの値を表1に示す。
また、耐熱性試験後における各導電性透明高分子基材の
可視光透過率を実施例1と同一手法で測定した。このう
ち、波長550nmの光の透過率を表1に併記する。Further, the initial specific resistance (R 0 ) of each transparent conductive film was measured by the same method as in Example 1, and a heat resistance test under the same conditions as in Example 1 was performed to test for 1000 hours.
The specific resistance (R 1000 ) after the elapse of time was measured by the same method as in Example 1. Then, each resistance change rate (resistivity ratio) was obtained by the same method as in Example 1. These values are shown in Table 1.
Further, the visible light transmittance of each conductive transparent polymer substrate after the heat resistance test was measured by the same method as in Example 1. Among them, the transmittance of light having a wavelength of 550 nm is also shown in Table 1.
【0043】比較例3〜比較例4 比較例3ではプレスパッタリングを行わず、比較例4で
はプレスパッタリング時間を2分とし、他の条件はそれ
ぞれ実施例6と同一として、PCフィルムの片面に膜厚
100nmの透明導電膜を成膜した。このようにして得
られた各導電性透明高分子基材について、それぞれの透
明導電膜の初期比抵抗(R0 )を実施例1と同一手法で
測定すると共に、実施例1と同一条件の耐熱性試験を行
って試験時間1000時間後の比抵抗(R1000)を実施
例1と同一手法で測定した。そして、実施例1と同一手
法でそれぞれの抵抗変化率(比抵抗比)を求めた。これ
らの値を表1に示す。また、耐熱性試験後における各導
電性透明高分子基材の可視光透過率を実施例1と同一手
法で測定した。このうち、波長550nmの光の透過率
を表1に併記する。Comparative Examples 3 to 4 In Comparative Example 3, pre-sputtering was not performed, in Comparative Example 4, the pre-sputtering time was set to 2 minutes, and the other conditions were the same as in Example 6, and the film was formed on one side of the PC film. A transparent conductive film having a thickness of 100 nm was formed. With respect to each conductive transparent polymer substrate thus obtained, the initial specific resistance (R 0 ) of each transparent conductive film was measured by the same method as in Example 1, and the heat resistance under the same conditions as in Example 1 was measured. The specific resistance (R 1000 ) after 1000 hours of the property test was measured by the same method as in Example 1. Then, each resistance change rate (resistivity ratio) was obtained by the same method as in Example 1. These values are shown in Table 1. Further, the visible light transmittance of each conductive transparent polymer substrate after the heat resistance test was measured by the same method as in Example 1. Among them, the transmittance of light having a wavelength of 550 nm is also shown in Table 1.
【0044】[0044]
【表1】 [Table 1]
【0045】表1から明らかなように、実施例1〜実施
例5で得た各導電性透明ガラス基材では、これを構成す
る透明導電膜の抵抗変化率が1.03〜1.13の範囲
内であるのに対して、比較例1〜比較例2で得た各導電
性透明ガラス基材では、これを構成する透明導電膜の抵
抗変化率が1.28〜1.31と高い。このことから、
実施例1〜実施例5で形成した各透明導電膜は、導電性
の面からみた耐熱性が比較例1〜比較例2で形成した各
透明導電膜よりも向上していることがわかる。そして、
初期比抵抗および光透過率の比較からわかるように、実
施例1〜実施例5で形成した各透明導電膜は導電性およ
び光透過性の点でも比較例1〜比較例2で形成した各透
明導電膜より向上している。As is apparent from Table 1, in each of the conductive transparent glass substrates obtained in Examples 1 to 5, the transparent conductive film constituting the substrate has a resistance change rate of 1.03 to 1.13. In contrast, in each of the conductive transparent glass substrates obtained in Comparative Examples 1 and 2, the resistance change rate of the transparent conductive film constituting the conductive transparent glass substrate is as high as 1.28 to 1.31. From this,
It can be seen that the transparent conductive films formed in Examples 1 to 5 have higher heat resistance in terms of conductivity than the transparent conductive films formed in Comparative Examples 1 and 2. And
As can be seen from the comparison of the initial specific resistance and the light transmittance, the transparent conductive films formed in Examples 1 to 5 are transparent in terms of conductivity and light transmittance. It is better than the conductive film.
【0046】一方、実施例6〜実施例10で得た各導電
性透明高分子基材では、これを構成する透明導電膜の抵
抗変化率が1.37〜1.78の範囲内であるのに対し
て、比較例3〜比較例4で得た各導電性透明高分子基材
では、これを構成する透明導電膜の抵抗変化率が2.3
0〜2.90と高い。このことから、実施例6〜実施例
10で形成した各透明導電膜は、導電性の面からみた耐
熱性が比較例1〜比較例2で形成した各透明導電膜より
も向上していることがわかる。そして、初期比抵抗およ
び光透過率の比較からわかるように、実施例6〜実施例
10で形成した各透明導電膜は導電性および光透過性の
点でも比較例3〜比較例4で形成した各透明導電膜より
向上している。On the other hand, in each of the conductive transparent polymer substrates obtained in Examples 6 to 10, the rate of change in resistance of the transparent conductive film constituting the substrate is in the range of 1.37 to 1.78. On the other hand, in each conductive transparent polymer substrate obtained in Comparative Examples 3 to 4, the resistance change rate of the transparent conductive film constituting the conductive transparent polymer substrate is 2.3.
It is as high as 0 to 2.90. From this, each of the transparent conductive films formed in Examples 6 to 10 has higher heat resistance in terms of conductivity than the transparent conductive films formed in Comparative Examples 1 and 2. I understand. Then, as can be seen from the comparison of the initial specific resistance and the light transmittance, each transparent conductive film formed in Examples 6 to 10 was formed in Comparative Examples 3 to 4 in terms of conductivity and light transmittance. It is better than each transparent conductive film.
【0047】実施例11 ターゲットとして、In2 O3 (ZnO)4 で表される
六方晶層状化合物を含むIn2 O3 とGa(第3元素に
相当)の混合物からなる焼結体(InとZnの原子比I
n/(In+Zn)=0.84,Gaの原子比Ga/
(In+Zn+Ga)=0.02,相対密度90%)を
用い、他の条件は実施例1と同一としてプレスパッタリ
ングおよびスパッタリングを行って、CG#7059の
片面に膜厚100nmの透明導電膜を成膜した。このよ
うにして得られた導電性透明ガラス基材では、透明導電
膜におけるInとZnの原子比In/(In+Zn)は
0.87であり、Gaの原子比Ga/(In+Zn+G
a)はターゲットと同一の0.02であった。また、X
線回折により透明導電膜の結晶性を調べた結果、非晶質
であることが判明した。Example 11 As a target, a sintered body (In and In) containing a mixture of In 2 O 3 and a Ga (corresponding to the third element) containing a hexagonal layered compound represented by In 2 O 3 (ZnO) 4 was used. Zn atomic ratio I
n / (In + Zn) = 0.84, Ga atomic ratio Ga /
(In + Zn + Ga) = 0.02, relative density 90%) was used, and other conditions were the same as in Example 1 to perform pre-sputtering and sputtering to form a transparent conductive film having a film thickness of 100 nm on one surface of CG # 7059. did. In the conductive transparent glass substrate thus obtained, the atomic ratio In / Zn of the transparent conductive film In / (In + Zn) was 0.87, and the atomic ratio Ga was Ga / (In + Zn + G).
a) was 0.02, which was the same as the target. Also, X
As a result of examining the crystallinity of the transparent conductive film by line diffraction, it was found to be amorphous.
【0048】さらに、透明導電膜の初期比抵抗(R0 )
を実施例1と同一手法で測定すると共に、実施例1と同
一条件の耐熱性試験を行って試験時間1000時間後の
比抵抗(R1000)を実施例1と同一手法で測定した。そ
して、実施例1と同一手法で抵抗変化率(比抵抗比)を
求めた。これらの値を表2に示す。また、耐熱性試験後
における導電性透明ガラス基材の可視光透過率を実施例
1と同一手法で測定した。このうち、波長550nmの
光の透過率を表2に併記する。Further, the initial specific resistance (R 0 ) of the transparent conductive film
Was measured by the same method as in Example 1, and a heat resistance test was performed under the same conditions as in Example 1 to measure the specific resistance (R 1000 ) after a test time of 1000 hours by the same method as in Example 1. Then, the resistance change rate (resistivity ratio) was obtained by the same method as in Example 1. These values are shown in Table 2. Further, the visible light transmittance of the conductive transparent glass substrate after the heat resistance test was measured by the same method as in Example 1. Of these, the transmittance of light having a wavelength of 550 nm is also shown in Table 2.
【0049】実施例12〜実施例15 プレスパッタリングの時間を実施例毎に表2に示す時間
に変えた以外は実施例11と同条件でプレスパッタリン
グおよびスパッタリングを行って、CG#7059の片
面に膜厚100nmの透明導電膜をそれぞれ成膜した。
このようにして得られた各導電性透明ガラス基材では、
透明導電膜におけるInとZnの原子比In/(In+
Zn)はいずれも0.87であり、Gaの原子比Ga/
(In+Zn+Ga)はいずれも0.02であった。ま
た、X線回折により各透明導電膜の結晶性を調べた結
果、いずれも非晶質であることが判明した。Example 12 to Example 15 Presputtering and sputtering were performed under the same conditions as in Example 11 except that the time of presputtering was changed to the time shown in Table 2 for each example, and CG # 7059 was coated on one side. A transparent conductive film having a film thickness of 100 nm was formed.
In each conductive transparent glass substrate thus obtained,
In / Zn atomic ratio In / (In + in the transparent conductive film
Zn) is 0.87 in all cases, and the atomic ratio of Ga is Ga /
(In + Zn + Ga) was 0.02 in all cases. In addition, as a result of examining the crystallinity of each transparent conductive film by X-ray diffraction, it was found that all were amorphous.
【0050】さらに、各透明導電膜の初期比抵抗
(R0 )を実施例1と同一手法で測定すると共に、実施
例1と同一条件の耐熱性試験を行って試験時間1000
時間後の比抵抗(R1000)を実施例1と同一手法で測定
した。そして、実施例1と同一手法でそれぞれの抵抗変
化率(比抵抗比)を求めた。これらの値を表2に示す。
また、耐熱性試験後における各導電性透明ガラス基材の
可視光透過率を実施例1と同一手法で測定した。このう
ち、波長550nmの光の透過率を表2に併記する。Further, the initial specific resistance (R 0 ) of each transparent conductive film was measured by the same method as in Example 1, and a heat resistance test under the same conditions as in Example 1 was performed to test for 1000 hours.
The specific resistance (R 1000 ) after the elapse of time was measured by the same method as in Example 1. Then, each resistance change rate (resistivity ratio) was obtained by the same method as in Example 1. These values are shown in Table 2.
Further, the visible light transmittance of each conductive transparent glass substrate after the heat resistance test was measured by the same method as in Example 1. Of these, the transmittance of light having a wavelength of 550 nm is also shown in Table 2.
【0051】比較例5〜比較例6 比較例5ではプレスパッタリングを行わず、比較例6で
はプレスパッタリング時間を2分とし、他の条件はそれ
ぞれ実施例11と同一として、CG#7059の片面に
膜厚100nmの透明導電膜を成膜した。このようにし
て得られた各導電性透明ガラス基材について、それぞれ
の透明導電膜の初期比抵抗(R0 )を実施例1と同一手
法で測定すると共に、実施例1と同一条件の耐熱性試験
を行って試験時間1000時間後の比抵抗(R1000)を
実施例1と同一手法で測定した。そして、実施例1と同
一手法でそれぞれの抵抗変化率(比抵抗比)を求めた。
これらの値を表2に示す。また、耐熱性試験後における
各導電性透明ガラス基材の可視光透過率を実施例1と同
一手法で測定した。このうち、波長550nmの光の透
過率を表2に併記する。Comparative Examples 5 to 6 In Comparative Example 5, pre-sputtering was not performed, in Comparative Example 6, the pre-sputtering time was set to 2 minutes, and the other conditions were the same as those in Example 11, and one side of CG # 7059 was used. A transparent conductive film having a film thickness of 100 nm was formed. Regarding each conductive transparent glass substrate thus obtained, the initial specific resistance (R 0 ) of each transparent conductive film was measured by the same method as in Example 1, and the heat resistance under the same conditions as in Example 1 The test was conducted and the specific resistance (R 1000 ) after 1000 hours of test time was measured by the same method as in Example 1. Then, each resistance change rate (resistivity ratio) was obtained by the same method as in Example 1.
These values are shown in Table 2. Further, the visible light transmittance of each conductive transparent glass substrate after the heat resistance test was measured by the same method as in Example 1. Of these, the transmittance of light having a wavelength of 550 nm is also shown in Table 2.
【0052】実施例16 透明基材としてポリカーボネートフィルム(帝人化成株
式会社製のAM3000。以下、PCフィルムと略記す
る)を用いた以外は実施例11と同条件でプレスパッタ
リングおよびスパッタリングを行って、PCフィルムの
片面に膜厚100nmの透明導電膜を成膜した。このよ
うにして得られた導電性透明高分子基材では、透明導電
膜におけるInとZnの原子比In/(In+Zn)は
0.87であり、Gaの原子比Ga/(In+Zn+G
a)は0.02であった。また、X線回折により透明導
電膜の結晶性を調べた結果、非晶質であることが判明し
た。さらに、透明導電膜の初期比抵抗(R0 )を実施例
1と同一手法で測定すると共に、実施例1と同一条件の
耐熱性試験を行って試験時間1000時間後の比抵抗
(R1000)を実施例1と同一手法で測定した。そして、
実施例1と同一手法で抵抗変化率(比抵抗比)を求め
た。これらの値を表2に示す。また、耐熱性試験後にお
ける導電性透明高分子基材の可視光透過率を実施例1と
同一手法で測定した。このうち、波長550nmの光の
透過率を表2に併記する。Example 16 PC was subjected to pre-sputtering and sputtering under the same conditions as in Example 11 except that a polycarbonate film (AM3000 manufactured by Teijin Chemicals Ltd .; hereinafter abbreviated as PC film) was used as the transparent substrate. A transparent conductive film having a thickness of 100 nm was formed on one surface of the film. In the conductive transparent polymer base material thus obtained, the atomic ratio In / (In + Zn) of In and Zn in the transparent conductive film was 0.87, and the atomic ratio Ga was Ga / (In + Zn + G).
a) was 0.02. Further, as a result of examining the crystallinity of the transparent conductive film by X-ray diffraction, it was found to be amorphous. Further, the initial specific resistance (R 0 ) of the transparent conductive film was measured by the same method as in Example 1, and a heat resistance test was conducted under the same conditions as in Example 1 to obtain a specific resistance (R 1000 ) after a test time of 1000 hours. Was measured by the same method as in Example 1. And
The resistance change rate (resistivity ratio) was obtained by the same method as in Example 1. These values are shown in Table 2. Further, the visible light transmittance of the conductive transparent polymer substrate after the heat resistance test was measured by the same method as in Example 1. Of these, the transmittance of light having a wavelength of 550 nm is also shown in Table 2.
【0053】実施例17〜実施例20 プレスパッタリングの時間を実施例毎に表2に示す時間
に変えた以外は実施例16と同条件でプレスパッタリン
グおよびスパッタリングを行って、PCフィルムの片面
に膜厚100nmの透明導電膜をそれぞれ成膜した。こ
のようにして得られた各導電性透明高分子基材では、透
明導電膜におけるInとZnの原子比In/(In+Z
n)はいずれも0.87であり、Gaの原子比Ga/
(In+Zn+Ga)はいずれも0.02であった。ま
た、X線回折により各透明導電膜の結晶性を調べた結
果、いずれも非晶質であることが判明した。Examples 17 to 20 Presputtering and sputtering were carried out under the same conditions as in Example 16 except that the time for presputtering was changed to the time shown in Table 2 for each example to form a film on one surface of the PC film. A transparent conductive film having a thickness of 100 nm was formed. In each conductive transparent polymer substrate thus obtained, the atomic ratio of In to Zn in the transparent conductive film In / (In + Z
n) is 0.87 in each case, and the atomic ratio of Ga is Ga /
(In + Zn + Ga) was 0.02 in all cases. In addition, as a result of examining the crystallinity of each transparent conductive film by X-ray diffraction, it was found that all were amorphous.
【0054】さらに、各透明導電膜の初期比抵抗
(R0 )を実施例1と同一手法で測定すると共に、実施
例1と同一条件の耐熱性試験を行って試験時間1000
時間後の比抵抗(R1000)を実施例1と同一手法で測定
した。そして、実施例1と同一手法でそれぞれの抵抗変
化率(比抵抗比)を求めた。これらの値を表2に示す。
また、耐熱性試験後における各導電性透明高分子基材の
可視光透過率を実施例1と同一手法で測定した。このう
ち、波長550nmの光の透過率を表2に併記する。Furthermore, the initial specific resistance (R 0 ) of each transparent conductive film was measured by the same method as in Example 1, and a heat resistance test was conducted under the same conditions as in Example 1 to test for 1000 hours.
The specific resistance (R 1000 ) after the elapse of time was measured by the same method as in Example 1. Then, each resistance change rate (resistivity ratio) was obtained by the same method as in Example 1. These values are shown in Table 2.
Further, the visible light transmittance of each conductive transparent polymer substrate after the heat resistance test was measured by the same method as in Example 1. Of these, the transmittance of light having a wavelength of 550 nm is also shown in Table 2.
【0055】比較例7〜比較例8 比較例7ではプレスパッタリングを行わず、比較例8で
はプレスパッタリング時間を2分とし、他の条件はそれ
ぞれ実施例16と同一として、PCフィルムの片面に膜
厚100nmの透明導電膜を成膜した。このようにして
得られた各導電性透明高分子基材について、それぞれの
透明導電膜の初期比抵抗(R0 )を実施例1と同一手法
で測定すると共に、実施例1と同一条件の耐熱性試験を
行って試験時間1000時間後の比抵抗(R1000)を実
施例1と同一手法で測定した。そして、実施例1と同一
手法でそれぞれの抵抗変化率(比抵抗比)を求めた。こ
れらの値を表2に示す。また、耐熱性試験後における各
導電性透明高分子基材の可視光透過率を実施例1と同一
手法で測定した。このうち、波長550nmの光の透過
率を表2に併記する。Comparative Examples 7 to 8 In Comparative Example 7, no pre-sputtering was performed, in Comparative Example 8, the pre-sputtering time was set to 2 minutes, and the other conditions were the same as those in Example 16, and the film was formed on one side of the PC film. A transparent conductive film having a thickness of 100 nm was formed. With respect to each conductive transparent polymer substrate thus obtained, the initial specific resistance (R 0 ) of each transparent conductive film was measured by the same method as in Example 1, and the heat resistance under the same conditions as in Example 1 was measured. The specific resistance (R 1000 ) after 1000 hours of the property test was measured by the same method as in Example 1. Then, each resistance change rate (resistivity ratio) was obtained by the same method as in Example 1. These values are shown in Table 2. Further, the visible light transmittance of each conductive transparent polymer substrate after the heat resistance test was measured by the same method as in Example 1. Of these, the transmittance of light having a wavelength of 550 nm is also shown in Table 2.
【0056】[0056]
【表2】 [Table 2]
【0057】表2から明らかなように、実施例11〜実
施例15で得た各導電性透明ガラス基材では、これを構
成する透明導電膜の抵抗変化率が1.08〜1.19の
範囲内であるのに対して、比較例5〜比較例6で得た各
導電性透明ガラス基材では、これを構成する透明導電膜
の抵抗変化率が1.34〜1.36と高い。このことか
ら、実施例11〜実施例15で形成した各透明導電膜
は、導電性の面からみた耐熱性が比較例5〜比較例6で
形成した各透明導電膜よりも向上していることがわか
る。そして、初期比抵抗および光透過率の比較からわか
るように、実施例11〜実施例15で形成した各透明導
電膜は導電性および光透過性の点でも比較例5〜比較例
6で形成した各透明導電膜より向上している。As is clear from Table 2, in each of the conductive transparent glass substrates obtained in Examples 11 to 15, the transparent conductive film constituting them has a resistance change rate of 1.08 to 1.19. In contrast, in each of the conductive transparent glass substrates obtained in Comparative Examples 5 to 6, the resistance change rate of the transparent conductive film constituting the conductive transparent glass substrate is as high as 1.34 to 1.36. From this, each of the transparent conductive films formed in Examples 11 to 15 has higher heat resistance in terms of conductivity than the transparent conductive films formed in Comparative Examples 5 to 6. I understand. Then, as can be seen from the comparison of the initial specific resistance and the light transmittance, the respective transparent conductive films formed in Examples 11 to 15 were formed in Comparative Examples 5 to 6 in terms of conductivity and light transmittance. It is better than each transparent conductive film.
【0058】一方、実施例16〜実施例20で得た各導
電性透明高分子基材では、これを構成する透明導電膜の
抵抗変化率が1.63〜1.85の範囲内であるのに対
して、比較例7〜比較例8で得た各導電性透明高分子基
材では、これを構成する透明導電膜の抵抗変化率が2.
93〜3.35と高い。このことから、実施例16〜実
施例20で形成した各透明導電膜は、導電性の面からみ
た耐熱性が比較例7〜比較例8で形成した各透明導電膜
よりも向上していることがわかる。そして、初期比抵抗
および光透過率の比較からわかるように、実施例16〜
実施例20で形成した各透明導電膜は導電性および光透
過性の点でも比較例7〜比較例8で形成した各透明導電
膜より向上している。On the other hand, in each of the conductive transparent polymer substrates obtained in Examples 16 to 20, the rate of change in resistance of the transparent conductive film constituting the substrate is in the range of 1.63 to 1.85. On the other hand, in each of the conductive transparent polymer base materials obtained in Comparative Examples 7 to 8, the resistance change ratio of the transparent conductive film constituting the conductive transparent polymer base material is 2.
It is as high as 93-3.35. From this, each of the transparent conductive films formed in Examples 16 to 20 has higher heat resistance in terms of conductivity than the transparent conductive films formed in Comparative Examples 7 to 8. I understand. Then, as can be seen from the comparison of the initial specific resistance and the light transmittance, Examples 16 to
Each of the transparent conductive films formed in Example 20 is also improved in terms of conductivity and light transmittance as compared with each of the transparent conductive films formed in Comparative Examples 7 to 8.
【0059】実施例21 透明基材として2軸延伸ポリエチレンテレフタレートフ
ィルムの長尺物(サイズ:300mm×10m,厚さ
0.1mm。以下、PETロールという)を用い、スパ
ッタリングターゲットとしてIn2 O3 (ZnO)4 で
表される六方晶層状化合物と酸化インジウム(In2 O
3 )とからなる焼結体(InとZnの原子比In/(I
n+Zn)=0.85,相対密度90%)を用いて、以
下の要領で透明導電膜を製造した。まず、PETロール
およびターゲットを連続走行式DCマグネトロンスパッ
タリング装置に装着し、真空槽内を5×10-3Pa以下
まで減圧した。次に、Arガス(純度99.99%)を
真空槽内圧力が1×10-1Paになるように導入し、ス
パッタリング出力を2.6W/cm2 に、基板温度を2
0℃にそれぞれ設定して、シャッターを閉じた状態で
1.0分間プレスパッタリングを行った。この後、Ar
ガス(純度99.99%)とO2 ガス(純度99.99
%)との混合ガス(Arガス:O2 ガス=1000:
2.8(体積比))を真空槽内圧力が1×10-1Paに
なるように導入し、スパッタリング出力を2.6W/c
m2 に、基板温度を20℃にそれぞれ設定して、毎分5
0cmの走行速度でPETロールを別のロールに巻取り
ながらシャッターを開けた状態でスパッタリングを行っ
て、透明導電膜をPEロールの片面に成膜した。Example 21 A long biaxially stretched polyethylene terephthalate film (size: 300 mm × 10 m, thickness 0.1 mm; hereinafter referred to as PET roll) was used as a transparent substrate, and In 2 O 3 (sputtering target was used. ZnO) 4 hexagonal layered compound and indium oxide (In 2 O
3 ) Sintered body (In / Zn atomic ratio In / (I
n + Zn) = 0.85, relative density 90%) was used to manufacture a transparent conductive film in the following manner. First, the PET roll and the target were mounted on a continuous running DC magnetron sputtering device, and the inside of the vacuum chamber was depressurized to 5 × 10 −3 Pa or less. Next, Ar gas (purity 99.99%) was introduced so that the pressure in the vacuum chamber was 1 × 10 −1 Pa, the sputtering output was 2.6 W / cm 2 , and the substrate temperature was 2
Each was set to 0 ° C., and pre-sputtering was performed for 1.0 minute with the shutter closed. After this, Ar
Gas (purity 99.99%) and O 2 gas (purity 99.99%)
%) Mixed gas (Ar gas: O 2 gas = 1000:
2.8 (volume ratio) was introduced so that the pressure in the vacuum chamber was 1 × 10 −1 Pa, and the sputtering output was 2.6 W / c.
m 2 and the substrate temperature set to 20 ° C., 5 min / min
Sputtering was performed while the PET roll was wound on another roll at a running speed of 0 cm and the shutter was opened to form a transparent conductive film on one surface of the PE roll.
【0060】このようにして得られた導電性透明高分子
基材について、成膜開始側の端から0.1mの地点、
0.2mの地点、0.5mの地点、1.0mの地点、
2.0mの地点、および5.0mの地点で透明導電膜の
膜厚をそれぞれ測定したところ、160nm±16nm
の範囲内で一定であった。また、透明導電膜におけるI
nとZnの原子比In/(In+Zn)は、前記の各地
点のいずれにおいてもターゲットと同一の0.85であ
った。X線回折により透明導電膜の結晶性を調べた結
果、前記の各地点のいずれにおいても非晶質であること
が判明した。さらに、前記の各地点における透明導電膜
の電気抵抗を四端子法で測定し(使用機種;三菱油化社
製のロレスタFP)、電気抵抗値のバラツキを標準偏差
により評価した。これらの結果を表3に示す。Regarding the conductive transparent polymer substrate thus obtained, a point 0.1 m from the end on the film formation start side,
0.2m point, 0.5m point, 1.0m point,
When the thickness of the transparent conductive film was measured at a point of 2.0 m and a point of 5.0 m, 160 nm ± 16 nm
It was constant within the range. In addition, I in the transparent conductive film
The atomic ratio In / (In + Zn) of n and Zn was 0.85, which was the same as that of the target at each of the above-mentioned points. As a result of investigating the crystallinity of the transparent conductive film by X-ray diffraction, it was found to be amorphous at each of the above-mentioned points. Further, the electric resistance of the transparent conductive film at each of the above-mentioned points was measured by the four-terminal method (used model: Loresta FP manufactured by Mitsubishi Petrochemical Co., Ltd.), and variations in electric resistance value were evaluated by standard deviation. The results are shown in Table 3.
【0061】実施例22〜実施例23 プレスパッタリングの時間を実施例毎に表3に示す時間
に変えた以外は実施例21と同条件でプレスパッタリン
グおよびスパッタリングを行って、PETロールの片面
にそれぞれ透明導電膜を成膜した。このようにして得ら
れた各導電性透明高分子基材について、実施例21での
測定地点(計6箇所)と同じ地点で透明導電膜の膜厚を
それぞれ測定したところ、160nm±16nmの範囲
内で一定であった。また、各透明導電膜におけるInと
Znの原子比In/(In+Zn)は、前記の各地点の
いずれにおいてもターゲットと同一の0.85であっ
た。X線回折により各透明導電膜の結晶性を調べた結
果、前記の各地点のいずれにおいても非晶質であること
が判明した。Example 22 to Example 23 Presputtering and sputtering were performed under the same conditions as in Example 21 except that the time of presputtering was changed to the time shown in Table 3 for each example, and each side of the PET roll was subjected. A transparent conductive film was formed. For each conductive transparent polymer substrate thus obtained, the film thickness of the transparent conductive film was measured at the same points as the measurement points in Example 21 (total 6 points), and the range was 160 nm ± 16 nm. It was constant within. In addition, the atomic ratio In / (In + Zn) of In and Zn in each transparent conductive film was 0.85, which was the same as that of the target at each of the above-mentioned points. As a result of examining the crystallinity of each transparent conductive film by X-ray diffraction, it was found to be amorphous at each of the above-mentioned points.
【0062】さらに、前記の各地点における透明導電膜
の電気抵抗を実施例21と同一手法で測定し、電気抵抗
値のバラツキを標準偏差によりそれぞれ評価した。これ
らの結果を表3に示す。Furthermore, the electric resistance of the transparent conductive film at each of the above-mentioned points was measured by the same method as in Example 21, and the variation in the electric resistance value was evaluated by the standard deviation. The results are shown in Table 3.
【0063】比較例9〜比較例10 比較例9ではプレスパッタリングを行わず、比較例10
ではプレスパッタリング時間を0.5分とし、他の条件
はそれぞれ実施例21と同一として、PETロールの片
面に透明導電膜を成膜した。このようにして得られた各
導電性透明高分子基材について、実施例21での測定地
点(計6箇所)と同じ地点で透明導電膜の電気抵抗を実
施例21と同一手法で測定し、電気抵抗値のバラツキを
標準偏差によりそれぞれ評価した。これらの結果を表3
に示す。Comparative Examples 9 to 10 In Comparative Example 9, pre-sputtering was not performed, and Comparative Example 10
Then, the pre-sputtering time was set to 0.5 minutes, and the other conditions were the same as in Example 21, and a transparent conductive film was formed on one surface of the PET roll. For each conductive transparent polymer substrate thus obtained, the electrical resistance of the transparent conductive film was measured at the same points as the measurement points (total 6 points) in Example 21 by the same method as in Example 21, The variation of the electric resistance value was evaluated by the standard deviation. These results are shown in Table 3.
Shown in.
【0064】[0064]
【表3】 [Table 3]
【0065】表3から明らかなように、実施例21〜実
施例23で得た各導電性透明高分子基材では、6つの地
点で測定した透明導電膜の電気抵抗値の標準偏差が0.
11〜1.26の範囲内であるのに対して、比較例9〜
比較例10で得た各導電性透明高分子基材では、6つの
地点で測定した透明導電膜の電気抵抗値の標準偏差が
2.10〜2.28と高い。このことから、実施例21
〜実施例23で得た各導電性透明高分子基材では、長手
方向における電気抵抗値のバラツキが比較例9〜比較例
10で得た各導電性透明高分子基材よりも小さいことが
わかる。また、各地点での電気抵抗値の比較からわかる
ように、実施例21〜実施例23で形成した各透明導電
膜の導電性は比較例9〜比較例10で形成した各透明導
電膜よりも向上している。As is clear from Table 3, in each of the conductive transparent polymer base materials obtained in Examples 21 to 23, the standard deviation of the electric resistance values of the transparent conductive films measured at six points was 0.
11 to 1.26, while Comparative Example 9 to
In each conductive transparent polymer substrate obtained in Comparative Example 10, the standard deviation of the electric resistance value of the transparent conductive film measured at six points is as high as 2.10 to 2.28. From this fact, Example 21
-Each conductive transparent polymer substrate obtained in Example 23 has a smaller variation in electric resistance value in the longitudinal direction than each conductive transparent polymer substrate obtained in Comparative Examples 9 to 10. . Further, as can be seen from the comparison of the electric resistance values at each point, the conductivity of each transparent conductive film formed in Examples 21 to 23 is higher than that of each transparent conductive film formed in Comparative Examples 9 to 10. Has improved.
【0066】実施例24 ターゲットとして、In2 O3 (ZnO)4 で表される
六方晶層状化合物を含むIn2 O3 とGa(第3元素に
相当)の混合物からなる焼結体(InとZnの原子比I
n/(In+Zn)=0.87,Gaの原子比Ga/
(In+Zn+Ga)=0.02,相対密度90%)を
用い、他の条件は実施例21と同一としてプレスパッタ
リングおよびスパッタリングを行って、PETロールの
片面に透明導電膜を成膜した。このようにして得られた
導電性透明高分子基材について、成膜開始側の端から
0.1mの地点、0.2mの地点、0.5mの地点、
1.0mの地点、2.0mの地点、および5.0mの地
点で透明導電膜の膜厚をそれぞれ測定したところ、16
0nm±16nmの範囲内で一定であった。また、透明
導電膜におけるInとZnの原子比In/(In+Z
n)は前記の各地点のいずれにおいてもターゲットと同
一の0.87であり、Gaの原子比Ga/(In+Zn
+Ga)は前記の各地点のいずれにおいてもターゲット
と同一の0.02であった。X線回折により透明導電膜
の結晶性を調べた結果、前記の各地点のいずれにおいて
も非晶質であることが判明した。さらに、前記の各地点
における透明導電膜の電気抵抗を四端子法で測定し(使
用機種;三菱油化社製のロレスタFP)、電気抵抗値の
バラツキを標準偏差により評価した。これらの結果を表
4に示す。Example 24 As a target, a sintered body (In and In) containing a mixture of In 2 O 3 containing a hexagonal layered compound represented by In 2 O 3 (ZnO) 4 and Ga (corresponding to the third element) was used. Zn atomic ratio I
n / (In + Zn) = 0.87, Ga atomic ratio Ga /
(In + Zn + Ga) = 0.02, relative density 90%) was used, and other conditions were the same as in Example 21, pre-sputtering and sputtering were performed to form a transparent conductive film on one surface of the PET roll. Regarding the conductive transparent polymer substrate thus obtained, a point 0.1 m, a point 0.2 m, and a point 0.5 m from the end on the film formation start side,
When the film thickness of the transparent conductive film was measured at a point of 1.0 m, a point of 2.0 m, and a point of 5.0 m, respectively, 16
It was constant within the range of 0 nm ± 16 nm. In addition, the atomic ratio of In to Zn in the transparent conductive film In / (In + Z
n) is 0.87, which is the same as the target at each of the above-mentioned points, and the atomic ratio of Ga is Ga / (In + Zn).
+ Ga) was 0.02, which was the same as the target at any of the above points. As a result of investigating the crystallinity of the transparent conductive film by X-ray diffraction, it was found to be amorphous at each of the above-mentioned points. Further, the electric resistance of the transparent conductive film at each of the above-mentioned points was measured by the four-terminal method (used model: Loresta FP manufactured by Mitsubishi Petrochemical Co., Ltd.), and the variation of the electric resistance value was evaluated by the standard deviation. The results are shown in Table 4.
【0067】実施例25〜実施例26 プレスパッタリングの時間を実施例毎に表4に示す時間
に変えた以外は実施例24と同条件でプレスパッタリン
グおよびスパッタリングを行って、PETロールの片面
にそれぞれ透明導電膜を成膜した。このようにして得ら
れた各導電性透明高分子基材について、実施例24での
測定地点(計6箇所)と同じ地点で透明導電膜の膜厚を
それぞれ測定したところ、160nm±16nmの範囲
内で一定であった。また、各透明導電膜におけるInと
Znの原子比In/(In+Zn)は、前記の各地点の
いずれにおいてもターゲットと同一の0.87であり、
Gaの原子比Ga/(In+Zn+Ga)は前記の各地
点のいずれにおいてもターゲットと同一の0.02であ
った。X線回折により各透明導電膜の結晶性を調べた結
果、前記の各地点のいずれにおいても非晶質であること
が判明した。さらに、前記の各地点における透明導電膜
の電気抵抗を実施例24と同一手法で測定し、電気抵抗
値のバラツキを標準偏差によりそれぞれ評価した。これ
らの結果を表4に示す。Example 25 to Example 26 Presputtering and sputtering were carried out under the same conditions as in Example 24 except that the time of presputtering was changed to the time shown in Table 4 for each example, and one side of each PET roll was subjected. A transparent conductive film was formed. For each conductive transparent polymer substrate thus obtained, the film thickness of the transparent conductive film was measured at the same points as the measurement points (total 6 points) in Example 24, and found to be in the range of 160 nm ± 16 nm. It was constant within. Further, the atomic ratio In / (In + Zn) of In and Zn in each transparent conductive film is 0.87, which is the same as the target at each of the above-mentioned points,
The Ga atomic ratio Ga / (In + Zn + Ga) was 0.02, which was the same as that of the target at each of the above-mentioned points. As a result of examining the crystallinity of each transparent conductive film by X-ray diffraction, it was found to be amorphous at each of the above-mentioned points. Furthermore, the electric resistance of the transparent conductive film at each of the above-mentioned points was measured by the same method as in Example 24, and the variation in the electric resistance value was evaluated by the standard deviation. The results are shown in Table 4.
【0068】比較例11〜比較例12 比較例11ではプレスパッタリングを行わず、比較例1
2ではプレスパッタリング時間を0.5分とし、他の条
件はそれぞれ実施例24と同一として、PETロールの
片面に透明導電膜を成膜した。このようにして得られた
各導電性透明高分子基材について、実施例24での測定
地点(計6箇所)と同じ地点で透明導電膜の電気抵抗を
実施例24と同一手法で測定し、電気抵抗値のバラツキ
を標準偏差によりそれぞれ評価した。これらの結果を表
4に示す。Comparative Examples 11 to 12 In Comparative Example 11, pre-sputtering was not performed, and Comparative Example 1
In No. 2, the pre-sputtering time was 0.5 minutes, and the other conditions were the same as in Example 24, and a transparent conductive film was formed on one surface of the PET roll. For each conductive transparent polymer substrate thus obtained, the electrical resistance of the transparent conductive film was measured at the same points as the measurement points (total 6 points) in Example 24 by the same method as in Example 24, The variation of the electric resistance value was evaluated by the standard deviation. The results are shown in Table 4.
【0069】[0069]
【表4】 [Table 4]
【0070】表4から明らかなように、実施例24〜実
施例26で得た各導電性透明高分子基材では、6つの地
点で測定した透明導電膜の電気抵抗値の標準偏差が0.
11〜1.06の範囲内であるのに対して、比較例11
〜比較例12で得た各導電性透明高分子基材では、6つ
の地点で測定した透明導電膜の電気抵抗値の標準偏差が
2.03〜2.40と高い。このことから、実施例24
〜実施例26で得た各導電性透明高分子基材では、長手
方向における電気抵抗値のバラツキが比較例11〜比較
例12で得た各導電性透明高分子基材よりも小さいこと
がわかる。また、各地点での電気抵抗値の比較からわか
るように、実施例24〜実施例26で形成した各透明導
電膜の導電性は比較例11〜比較例12で形成した各透
明導電膜よりも向上している。As is clear from Table 4, in each of the conductive transparent polymer base materials obtained in Examples 24 to 26, the standard deviation of the electric resistance values of the transparent conductive films measured at six points was 0.
11 to 1.06, while Comparative Example 11
-In each conductive transparent polymer base material obtained in Comparative Example 12, the standard deviation of the electric resistance value of the transparent conductive film measured at six points is as high as 2.03 to 2.40. From this fact, Example 24
-Each conductive transparent polymer substrate obtained in Example 26 has smaller variation in electric resistance value in the longitudinal direction than each conductive transparent polymer substrate obtained in Comparative Examples 11 to 12. . Further, as can be seen from the comparison of the electric resistance values at each point, the conductivity of each transparent conductive film formed in Examples 24 to 26 is higher than that of each transparent conductive film formed in Comparative Examples 11 to 12. Has improved.
【0071】[0071]
【発明の効果】以上説明したように、本発明の方法によ
り得られる導電性透明基材は、主要カチオン元素として
インジウム(In)および亜鉛(Zn)を含有する非晶
質酸化物からなる透明導電膜を利用した導電性透明基材
であって、導電性の面からみた耐熱性がより向上したも
のである。そして、この導電性透明基材は実用上十分な
導電性および光透過性を有している。したがって、本発
明によれば高温環境下でも導電性の経時的劣化の少ない
透明導電材料を提供することが可能になる。As described above, the conductive transparent base material obtained by the method of the present invention is a transparent conductive material composed of an amorphous oxide containing indium (In) and zinc (Zn) as main cation elements. It is a conductive transparent substrate using a film, and has further improved heat resistance in terms of conductivity. The conductive transparent substrate has practically sufficient conductivity and light transmittance. Therefore, according to the present invention, it is possible to provide a transparent conductive material whose conductivity does not deteriorate with time even in a high temperature environment.
【図1】実施例1で形成した透明導電膜についてのX線
回折の測定結果を示すグラフである。FIG. 1 is a graph showing the measurement results of X-ray diffraction on the transparent conductive film formed in Example 1.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 14/34 N 8939−4K G02F 1/1343 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C23C 14/34 N 8939-4K G02F 1/1343
Claims (9)
組成物からなる焼結体ターゲットを用いたスパッタリン
グ法により、主要カチオン元素としてインジウム(I
n)および亜鉛(Zn)を含有する非晶質酸化物からな
る透明導電膜を透明基材上に形成するにあたり、 前記透明導電膜の形成に先立って、不活性ガス雰囲気下
で前記ターゲットをプラズマ処理することを特徴とする
導電性透明基材の製造方法。1. A sputtering method using a sintered body target made of a composition containing indium oxide and zinc oxide, wherein indium (I
n) and a transparent conductive film made of an amorphous oxide containing zinc (Zn) are formed on a transparent substrate, prior to the formation of the transparent conductive film, the target is plasma-treated in an inert gas atmosphere. A method for producing a conductive transparent substrate, which comprises treating.
合物を含有する酸化物焼結体からなる、請求項1に記載
の方法。2. The method according to claim 1, wherein the target is an oxide sintered body containing an In—Zn-based hexagonal layered compound.
チオン元素として正三価以上の原子価を有する第3元素
を1種または複数種含み、全カチオン元素に占める前記
第3元素の合量の原子比(全第3元素)/(In+Zn
+全第3元素)が0.2以下である、請求項1または請
求項2に記載の方法。3. The target contains one or more kinds of third elements having a valence of positive trivalence or more as cation elements other than In and Zn, and the atomic ratio of the total amount of the third elements in all the cation elements. (All third elements) / (In + Zn
The method according to claim 1 or 2, wherein + all third elements are 0.2 or less.
り、かつ、このターゲットにおけるInとZnの原子比
In/(In+Zn)が0.55〜0.90の範囲内で
ある、請求項1〜請求項3のいずれか一項に記載の方
法。4. The relative density of the target is 70% or more, and the atomic ratio In / (In + Zn) of In and Zn in this target is in the range of 0.55 to 0.90. The method according to claim 3.
り、かつ、このターゲットにおけるInとZnの原子比
In/(In+Zn)が0.82〜0.90の範囲内で
ある、請求項1〜請求項3のいずれか一項に記載の方
法。5. The target has a relative density of 70% or more, and the atomic ratio In / (In + Zn) of In and Zn in the target is in the range of 0.82 to 0.90. The method according to claim 3.
In/(In+Zn)が0.55〜0.90の範囲内で
ある、請求項1〜請求項5のいずれか一項に記載の方
法。6. The method according to claim 1, wherein the atomic ratio In / (In + Zn) of In and Zn in the transparent conductive film is in the range of 0.55 to 0.90. .
チオン元素として正三価以上の原子価を有する第3元素
を1種または複数種含み、全カチオン元素に占める前記
第3元素の合量の原子比(全第3元素)/(In+Zn
+全第3元素)が0.2以下である、請求項1〜請求項
6のいずれか一項に記載の方法。7. The transparent conductive film contains one or more kinds of a third element having a valence of positive trivalence or more as a cation element other than In and Zn, and a total amount of the third element in all the cation elements is contained. Atomic ratio (all third elements) / (In + Zn
The method according to any one of claims 1 to 6, wherein + total third element) is 0.2 or less.
1〜請求項7のいずれか一項に記載の方法。8. The method according to claim 1, wherein the transparent substrate is made of transparent glass.
1〜請求項7のいずれか一項に記載の方法。9. The method according to claim 1, wherein the transparent substrate is made of a transparent polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13225594A JPH07335046A (en) | 1994-06-14 | 1994-06-14 | Manufacture of conductive transparent substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13225594A JPH07335046A (en) | 1994-06-14 | 1994-06-14 | Manufacture of conductive transparent substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07335046A true JPH07335046A (en) | 1995-12-22 |
Family
ID=15077005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13225594A Withdrawn JPH07335046A (en) | 1994-06-14 | 1994-06-14 | Manufacture of conductive transparent substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07335046A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6221520B1 (en) | 1996-07-26 | 2001-04-24 | Asahi Glass Company Ltd. | Transparent conductive film and process for forming a transparent electrode |
WO2001038599A1 (en) * | 1999-11-25 | 2001-05-31 | Idemitsu Kosan Co., Ltd. | Sputtering target, transparent conductive oxide, and method for preparing sputtering target |
WO2003008661A1 (en) * | 2001-07-17 | 2003-01-30 | Idemitsu Kosan Co., Ltd. | Sputtering target and transparent conductive film |
JP2007115431A (en) * | 2005-10-18 | 2007-05-10 | Idemitsu Kosan Co Ltd | Transparent conductive film, transparent electrode, and electrode base plate and manufacturing method of the same |
JP2011252231A (en) * | 2001-08-02 | 2011-12-15 | Idemitsu Kosan Co Ltd | Sputtering target, transparent conductive film and their manufacturing method |
JPWO2011132418A1 (en) * | 2010-04-22 | 2013-07-18 | 出光興産株式会社 | Deposition method |
US8524123B2 (en) | 2005-09-01 | 2013-09-03 | Idemitsu Kosan Co., Ltd. | Sputtering target, transparent conductive film and transparent electrode |
KR20150103710A (en) * | 2013-01-16 | 2015-09-11 | 닛토덴코 가부시키가이샤 | Production method for transparent conductive film |
US9562282B2 (en) | 2013-01-16 | 2017-02-07 | Nitto Denko Corporation | Transparent conductive film and production method therefor |
US9570210B2 (en) | 2013-01-16 | 2017-02-14 | Nitto Denko Corporation | Transparent conductive film and production method therefor |
US9805837B2 (en) | 2013-01-16 | 2017-10-31 | Nitto Denko Corporation | Transparent conductive film and production method therefor |
JP2021105216A (en) * | 2016-06-06 | 2021-07-26 | 株式会社半導体エネルギー研究所 | Sputtering target |
-
1994
- 1994-06-14 JP JP13225594A patent/JPH07335046A/en not_active Withdrawn
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465117B2 (en) | 1996-07-26 | 2002-10-15 | Asahi Glass Company Ltd. | Transparent conductive film and process for forming a transparent electrode |
US6221520B1 (en) | 1996-07-26 | 2001-04-24 | Asahi Glass Company Ltd. | Transparent conductive film and process for forming a transparent electrode |
WO2001038599A1 (en) * | 1999-11-25 | 2001-05-31 | Idemitsu Kosan Co., Ltd. | Sputtering target, transparent conductive oxide, and method for preparing sputtering target |
US6669830B1 (en) | 1999-11-25 | 2003-12-30 | Idemitsu Kosan Co., Ltd. | Sputtering target, transparent conductive oxide, and process for producing the sputtering target |
WO2003008661A1 (en) * | 2001-07-17 | 2003-01-30 | Idemitsu Kosan Co., Ltd. | Sputtering target and transparent conductive film |
US6998070B2 (en) | 2001-07-17 | 2006-02-14 | Idemitsu Kosan Co., Ltd. | Sputtering target and transparent conductive film |
JP2011252231A (en) * | 2001-08-02 | 2011-12-15 | Idemitsu Kosan Co Ltd | Sputtering target, transparent conductive film and their manufacturing method |
US8920683B2 (en) | 2005-09-01 | 2014-12-30 | Idemitsu Kosan Co., Ltd. | Sputtering target, transparent conductive film and transparent electrode |
US8524123B2 (en) | 2005-09-01 | 2013-09-03 | Idemitsu Kosan Co., Ltd. | Sputtering target, transparent conductive film and transparent electrode |
JP2007115431A (en) * | 2005-10-18 | 2007-05-10 | Idemitsu Kosan Co Ltd | Transparent conductive film, transparent electrode, and electrode base plate and manufacturing method of the same |
JPWO2011132418A1 (en) * | 2010-04-22 | 2013-07-18 | 出光興産株式会社 | Deposition method |
KR20150103710A (en) * | 2013-01-16 | 2015-09-11 | 닛토덴코 가부시키가이샤 | Production method for transparent conductive film |
US9562282B2 (en) | 2013-01-16 | 2017-02-07 | Nitto Denko Corporation | Transparent conductive film and production method therefor |
US9570210B2 (en) | 2013-01-16 | 2017-02-14 | Nitto Denko Corporation | Transparent conductive film and production method therefor |
US9624573B2 (en) | 2013-01-16 | 2017-04-18 | Nitto Denko Corporation | Production method for transparent conductive film |
US9805837B2 (en) | 2013-01-16 | 2017-10-31 | Nitto Denko Corporation | Transparent conductive film and production method therefor |
JP2021105216A (en) * | 2016-06-06 | 2021-07-26 | 株式会社半導体エネルギー研究所 | Sputtering target |
US11309181B2 (en) | 2016-06-06 | 2022-04-19 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering apparatus, sputtering target, and method for forming semiconductor film with the sputtering apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6147812B2 (en) | Film forming system, electrochromic layer manufacturing method, and inorganic electrochromic device manufacturing method | |
EP1068899A1 (en) | Multilayer structure and process for producing the same | |
EP0636702A1 (en) | Methods for producing functional films | |
JPH07335046A (en) | Manufacture of conductive transparent substrate | |
JPH06318406A (en) | Conductive transparent base member and manufacture thereof | |
KR20210029283A (en) | Electrochromic devices | |
JP2000256061A (en) | Transparent conductive material, transparent conductive glass and transparent conductive film | |
JP4067141B2 (en) | Transparent conductive film, method for producing the same, and sputtering target | |
JPH05334924A (en) | Manufacture of transparent conductive film | |
KR100336621B1 (en) | Method of depositing an io or ito thin film on polymer substrate | |
JP4233641B2 (en) | Target for transparent conductive film, transparent conductive glass and transparent conductive film | |
JP2000256059A (en) | Transparent conductive material, transparent conductive glass and transparent conductive film | |
JP2004050643A (en) | Thin film laminated body | |
JPS6179647A (en) | Manufacture of transparent conductive laminate | |
JP2015510043A (en) | Sputtering target and associated sputtering method for forming an airtight barrier layer | |
JP2000108244A (en) | Transparent conductive film, its manufacture, and base having transparent conductive film | |
JPH06293956A (en) | Zinc oxide transparent conductive film, its formation and sputtering target used therefor | |
JP2017193755A (en) | Method of manufacturing transparent conductive film, and transparent conductive film | |
KR102164629B1 (en) | Composite transparent electrodes | |
EP4317522A1 (en) | Transparent conductive film, method for producing transparent conductive film, transparent conductive member, electronic display device, and solar battery | |
JP3925977B2 (en) | Transparent conductive film, method for producing the same, and sputtering target | |
JP4136531B2 (en) | Transparent conductive film and method for producing the same | |
JPH0850815A (en) | Transparent conductor and manufacture thereof | |
JP3506390B2 (en) | Transparent oxide and transparent conductive oxide using the same | |
JPH10237632A (en) | Ito sintered body, its production and formation of ito coating using the ito sintered compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010904 |