JPS6179647A - Manufacture of transparent conductive laminate - Google Patents

Manufacture of transparent conductive laminate

Info

Publication number
JPS6179647A
JPS6179647A JP59201991A JP20199184A JPS6179647A JP S6179647 A JPS6179647 A JP S6179647A JP 59201991 A JP59201991 A JP 59201991A JP 20199184 A JP20199184 A JP 20199184A JP S6179647 A JPS6179647 A JP S6179647A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
layer
sputtering
indium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59201991A
Other languages
Japanese (ja)
Other versions
JPH0315536B2 (en
Inventor
均 御子柴
新宮 公
鈴木 将夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP59201991A priority Critical patent/JPS6179647A/en
Publication of JPS6179647A publication Critical patent/JPS6179647A/en
Publication of JPH0315536B2 publication Critical patent/JPH0315536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [利用分野] 本発明は導電性積層体の製造方法に関し、更に詳しくは
有機高分子成型物上に主としてインジウム酸化物を含む
透明導電層をスパッタリンク法により形成する方法に関
する。
[Detailed Description of the Invention] [Field of Application] The present invention relates to a method for manufacturing a conductive laminate, and more specifically to a method for forming a transparent conductive layer containing mainly indium oxide on an organic polymer molded product by a sputter link method. Regarding.

[従来技術] 高度情報化社会の到来と共に、光とエレクトロニクスの
両方の特徴を利用した部品、機器の進歩は著しい。また
マイクロコンピータの飛躍的普及にともない、コンピー
タ周辺機器の革新はめざましい。これらのコンピータ入
力装置として透明タブレットの開発が進んでいる。この
構成部品の一形態として有機高分子基板を用いた透明電
極が用5いられるが、該目的には、キーボードとしての
使用形態より高度の耐久性及び信頼性が要求される。
[Prior Art] With the arrival of an advanced information society, there has been remarkable progress in parts and equipment that utilize the characteristics of both optics and electronics. Furthermore, with the rapid spread of microcomputers, innovations in computer peripherals have been remarkable. Transparent tablets are being developed as input devices for these computers. A transparent electrode using an organic polymer substrate is used as one form of this component, but this purpose requires higher durability and reliability than when used as a keyboard.

更に、出力装置としての液晶ディスプレイ、エレクトロ
ルミネッセンスディスプレイ等にも該透明電極が用いら
れるが、該目的にも同様に透明電極の耐久性及び信頼性
が要求される。
Further, the transparent electrodes are also used in liquid crystal displays, electroluminescent displays, etc. as output devices, and the durability and reliability of the transparent electrodes are similarly required for these purposes.

透明導電住居としは、金属薄膜(Atl 、Pb等)タ
イプ、金R酸化物薄膜タイプ(ITO,CTo。
Transparent conductive housings include metal thin film (Atl, Pb, etc.) types, gold R oxide thin film types (ITO, CTo, etc.).

3n Oz 、T! Oz等)、多層薄膜タイプ(Ti
Ox /Ag/Ti Qx W) 等1fiあるが、透
明性。
3n Oz, T! (Oz, etc.), multilayer thin film type (Ti
There are 1fi such as Ox /Ag/Ti Qx W), but they are transparent.

導電性、灘械的特性等の基本特性は、金属酸化物薄膜タ
イプが優れている。金屈酸化物薄膜タイプの中でもI 
To (I ndium T in  Qxide)膜
は、透明性、13電性が特に優れており、更に電極のパ
ターン化が容易(エツチング特性が優れている)等の特
長を有し、近年注目を浴びて来た。
The metal oxide thin film type is superior in basic properties such as conductivity and mechanical properties. Among the gold-flexible oxide thin film types, I
To (Indium Tin Qxide) film has been attracting attention in recent years because it has particularly excellent transparency and 13-electroconductivity, and also has features such as easy electrode patterning (excellent etching properties). It's here.

本発明者らは、既に有機高分子成型物上にインジウム・
スズ低級酸化物膜を形成した後、ITO膜に転化せしめ
る方法を提案して来たく公開特許公jul昭53−10
2881.昭53−73397. 昭54−8670等
)。
The present inventors have already developed indium on organic polymer molded products.
We have proposed a method for forming a tin lower oxide film and then converting it into an ITO film.
2881. Showa 53-73397. (Sho 54-8670, etc.)

又、真空蒸着法によりインジウム・スズ低級酸化物膜を
形成した後熱酸化を行なうと結晶質のITo膜に転化さ
れることを見出したく表面Vol。
In addition, we would like to discover that when an indium-tin lower oxide film is formed by vacuum evaporation and then thermally oxidized, it is converted into a crystalline ITo film.

18  No、8  pp、440 )。ところで上述
の結晶質のITO膜は耐久性に優れているが、真空蒸着
法によりインジウム・スズ低級酸化物膜を形成するため
に工業的にいくつかの問題点がある。例えば、(1)蒸
発源が点状であることがら膜厚の均一な範囲が狭く、広
幅なロール状フィルムへの製膜が困難であること、(2
1蒸発材料を連続的に供給するのが困難であり、長時間
に亘って蒸着を行なうことができないこと、(3)二成
分系の蒸発材料を用いた場合、蒸気圧の違いから組成ず
れを起こす場合があること等である。
18 No. 8 pp. 440). By the way, although the above-mentioned crystalline ITO film is excellent in durability, there are some industrial problems because the indium tin lower oxide film is formed by vacuum evaporation. For example, (1) since the evaporation source is point-like, the range of uniform film thickness is narrow and it is difficult to form a film into a wide roll-shaped film;
(1) It is difficult to continuously supply the evaporation material, making it impossible to perform evaporation over a long period of time; (3) When using a two-component evaporation material, composition deviations may occur due to differences in vapor pressure. There are cases where this may occur.

一方、最近の薄膜形成技術の進歩はめざましく、耐熱性
のあまりない有機高分子成型物上に透明導電性層を形成
できる様になった。中でもスパッタリング法は、長時間
に亘って製膜が可能、長時間膜形成を行なっても組成ず
れがない、広幅化が容易等の特長を有し、もっとも利用
されている技術の一つである。そして、上述のITOF
Jをスパッタリング法で形成することも知られている。
On the other hand, recent advances in thin film formation technology have been remarkable, and it has become possible to form transparent conductive layers on organic polymer moldings that do not have much heat resistance. Among these, the sputtering method is one of the most used technologies, as it has the advantages of being able to form films over a long period of time, having no compositional deviation even after long periods of film formation, and being easy to widen the film width. . And the above-mentioned ITOF
It is also known to form J by a sputtering method.

そこで、本発明者らも、スパッタリング法で有機高分子
成型物上にITOI!を形成しその実用性を評価した。
Therefore, the present inventors applied ITOI to an organic polymer molded product using a sputtering method. was developed and its practicality was evaluated.

しかし、スパッタリング法によりITO151を形成し
てなる導電性積層体は、抵抗の経時変化が大きく、又、
透明スイッチとして使用した時の耐久性も著しく悪いと
いう実用上重大な欠点があることがわかった。
However, the conductive laminate formed by forming ITO151 by sputtering has a large change in resistance over time, and
It has been found that there is a serious practical drawback in that the durability is extremely poor when used as a transparent switch.

[発明の目的1 本発明はかかる現状に鑑みなされたもので、耐久性及び
信頼性に優れたスパッタリング法による導電性積層体の
製造法を目的としたものである。
[Object of the Invention 1] The present invention was made in view of the current situation, and its object is to provide a method for manufacturing a conductive laminate using a sputtering method that is excellent in durability and reliability.

[発明の構成] 上述の目的は以下の本発明より達成される。すなわら、
本発明は、有機高分子成型物上に主として蕃÷インジウ
ム酸化物からなる透明導電層をスパッタリング法により
形成する導電性積層体の製造方法において、先ず有機高
分子成型物上に主としてインジウム酸化物を含む波長5
50rvの光吸収率が2〜30%で比抵抗が1,5X1
0−3Ω・cra以上の層を形成し、次いで該層を酸素
雰囲気下の加熱処理により主として結晶質のインジウム
酸化物からなる透明導電層に転化せしめることを特徴と
する透明導電性積層体の製造方法である。
[Structure of the Invention] The above object is achieved by the present invention as described below. In other words,
The present invention relates to a method for manufacturing a conductive laminate in which a transparent conductive layer consisting mainly of indium oxide is formed on an organic polymer molded product by a sputtering method. Including wavelength 5
50rv light absorption rate is 2-30% and specific resistance is 1.5X1
Production of a transparent conductive laminate characterized by forming a layer having a resistance of 0-3 Ω·cra or more, and then converting the layer into a transparent conductive layer mainly consisting of crystalline indium oxide by heat treatment in an oxygen atmosphere. It's a method.

以下、その詳細を発明に到った経過と共に説明する。The details will be explained below along with the process leading up to the invention.

前述の通り従来のスパッタリング法により形成したIT
O膜は実用上大きな問題を有することがわかった。そこ
で本発明者らはこのITO膜の構造をX線で解析したと
ころ非晶質であることが分かった。通常スパッタリング
法により結晶質のITO膜を得るためには300℃程度
の基板温度を必塁とし、耐熱性のあまりない有機高分子
成型物に結晶質のITO膜を形成するのは極めて困難で
ある。
As mentioned above, IT formed by conventional sputtering method
It has been found that the O film has a major practical problem. The present inventors analyzed the structure of this ITO film using X-rays and found that it was amorphous. In order to obtain a crystalline ITO film using the normal sputtering method, a substrate temperature of about 300°C is required, and it is extremely difficult to form a crystalline ITO film on an organic polymer molded product that does not have much heat resistance. .

これに対して本発明者らは、スパッタリング法と加熱処
理との組合せにより対処することを着想し、スパッタリ
ング法で形成されたITO膜を結晶質に転化せしめるこ
とを目的とし、スパッタリング後加熱処理(アニーリン
グ)を行なったが結晶質に転化させることができなかっ
た。
In response to this problem, the present inventors came up with the idea of combining a sputtering method and a heat treatment, and with the aim of converting the ITO film formed by the sputtering method into a crystalline state, the post-sputtering heat treatment ( Annealing) was carried out, but it could not be converted to crystalline material.

そして、この点につき鋭意研究した結果、本発明者らは
スパッタリング法で形成された[To膜の特性の違いに
より結晶質に転化できるものとできないものがあること
を見出した。即ち、第1図に示す如くインジウム・スズ
合金ターゲットを用い、一定の酸素分圧下で堆積速度を
変えてスパッタリングを行なうと、比抵抗及び光吸収率
が異なつたITO膜を形成することができる。これらの
ITO膜の中で膜の光吸収率が2〜30%かつ、比抵抗
が1.5X10’Ω口以上の範囲のものが、酸素雰囲気
上加熱処理により透明性の良い結晶質のITo膜に転化
できることが分かった。光吸収率が2%未満の膜は結晶
質に転化させることができない。又、30%を越えるも
のは透明性の良いITO膜を得ることができない。
As a result of intensive research on this point, the present inventors found that due to differences in the characteristics of the [To film formed by the sputtering method, some films can be converted into crystalline materials and some cannot. That is, by performing sputtering using an indium-tin alloy target and varying the deposition rate under a constant oxygen partial pressure as shown in FIG. 1, ITO films with different resistivities and light absorption rates can be formed. Among these ITO films, those with a light absorption rate of 2 to 30% and a specific resistance of 1.5 x 10'Ω or more can be made into crystalline ITO films with good transparency by heat treatment in an oxygen atmosphere. It turns out that it can be converted into Films with a light absorption rate of less than 2% cannot be converted to crystalline form. Moreover, if it exceeds 30%, it is impossible to obtain an ITO film with good transparency.

従って、上述の通り本発明は有81高分子成型物上に先
ず光吸収率が2〜30%かつ比抵抗が1.5×10−3
Ωc11以上の主としてインジウム酸化物を含む層を形
成し、次いで該層を酸素雰囲気下の加熱処理により主と
して結晶質の酸化インジウムを含む層に転化せしめるこ
とを必須要件とするものである。
Therefore, as mentioned above, the present invention first has a light absorption rate of 2 to 30% and a specific resistance of 1.5 x 10-3 on a polymer molded product.
The essential requirement is to form a layer containing mainly indium oxide with an Ωc of 11 or more, and then converting the layer into a layer containing mainly crystalline indium oxide by heat treatment in an oxygen atmosphere.

何故光吸収率が2%以上の膜のみが結晶質に転化される
のかは明らかでないが以下のように考えられる。すなわ
ち、これらの膜は化学m論的に酸素不足の膜であり膜中
に欠陥も多くインジウムや酸素原子がアニーリング中に
動きやすい状態にあるが、光吸収率が低い膜は化学口論
に近い膜であるため、欠陥がほとんどなくインジウムや
酸素原子が容易に動けない準安定状態にあるためと想像
される。
It is not clear why only films with a light absorption rate of 2% or more are converted into crystalline materials, but it is thought to be as follows. In other words, these films are chemically oxygen-deficient films, and there are many defects in the film, making it easy for indium and oxygen atoms to move during annealing, but films with low light absorption are chemically deficient films. Therefore, it is thought that this is because there are almost no defects and the indium and oxygen atoms are in a metastable state where they cannot easily move.

ここで光吸収率とは波長550nmにおける基板も含め
た透過率T(%)と反射率R(%)及び基板である有機
高分子成型物による吸収と散乱の和B(%)を100か
ら引いたものである。即ち、光吸収率= 100− (
T+R+B)と定義する。
Here, the light absorption rate is the transmittance T (%) including the substrate at a wavelength of 550 nm, the reflectance R (%), and the sum B (%) of absorption and scattering by the organic polymer molded material that is the substrate, subtracted from 100. It is something that That is, light absorption rate = 100- (
T+R+B).

なお、本発明者らが以前提案して来た真空蒸着法による
インジウム・スズ低級酸化物膜の光吸収率は36%、比
抵抗ば4X10−2Ωαであり真空蒸着法では本発明の
スパッタリング法で形成された主としてインジウム酸化
物を含む層と大きく異なる層が形成されることが確めら
れた。主としてインジウム酸化物を含む層を形成するス
パッタリング法には、インジウムを主成分とする合金又
は、酸化インジウムを主成分とする焼結体をターゲット
として用いることができる。前者においては、アルゴン
等の不活性ガス及び酸素ガスを真空槽内に導入して、反
応性スパッタリングを行なう。後者においては、アルゴ
ン等の不活性ガス単独か或いはアルゴン等不活性ガスに
微量の酸素ガスを混合したものを用いてスパッタリング
を行なう。スパッタリングの方式は直流又は高周波二極
スパッタ。
The light absorption rate of the indium-tin lower oxide film produced by the vacuum evaporation method previously proposed by the present inventors is 36%, and the specific resistance is 4×10-2 Ωα. It was confirmed that a layer was formed that was significantly different from the layer that was formed and mainly contained indium oxide. In the sputtering method for forming a layer mainly containing indium oxide, an alloy containing indium as a main component or a sintered body containing indium oxide as a main component can be used as a target. In the former method, reactive sputtering is performed by introducing an inert gas such as argon and oxygen gas into a vacuum chamber. In the latter case, sputtering is performed using an inert gas such as argon alone or a mixture of an inert gas such as argon and a trace amount of oxygen gas. The sputtering method is direct current or high frequency bipolar sputtering.

直流又は高周波マグネトロンスパッタ、イオンビームス
パッタ等公知の方式が適用できる。中でもマグネトロン
方式は基板へのプラズマ衝撃が少く、高速製膜が可能で
好ましい。
Known methods such as direct current or high frequency magnetron sputtering, ion beam sputtering, etc. can be applied. Among these, the magnetron method is preferable because it causes less plasma impact on the substrate and allows high-speed film formation.

いずれの場合もスパッタリング法により形成する主とし
てインジウム酸化物を含む層の光吸収率及び比抵抗が目
的の値となる様にスパッタリング条件を制御しなければ
ならない。スパッタリング条件は装置によって異なる。
In either case, the sputtering conditions must be controlled so that the light absorption rate and resistivity of the layer mainly containing indium oxide formed by the sputtering method reach desired values. Sputtering conditions vary depending on the device.

スパッタリング条件を決める方法としては、前述の様に
、一定の酸素分圧下で堆積速度(即ち、投入電力)を変
えて堆積された膜の特性を調べる方法や投入電力を一定
にしておいて、酸素分圧を変えて堆積された膜の特性を
調べる方法等がある。
As mentioned above, the sputtering conditions can be determined by varying the deposition rate (i.e. input power) under a constant oxygen partial pressure and examining the characteristics of the deposited film, or by keeping the input power constant and increasing the oxygen There are methods to examine the characteristics of a deposited film by changing the partial pressure.

要は、使用するスパッタリング装置において、インジウ
ム酸化物を含む層の光吸収率が2〜30%かつ比抵抗が
1.5X10’Ωm以上になる様なスパッタリング条件
を実験的に求め、インジウム酸化物を含む層の光吸収率
及び比抵抗が上記の値となる様にスパッタリング条件を
制御する。
In short, in the sputtering equipment used, the sputtering conditions are experimentally determined so that the light absorption rate of the layer containing indium oxide is 2 to 30% and the resistivity is 1.5 x 10'Ωm or more. The sputtering conditions are controlled so that the light absorption rate and specific resistance of the layer contained have the above values.

本発明に用いられる透明導電層は主としてインジウム酸
化物を含む層である。インジウム酸化層は本来透明な電
気絶縁体であるが、■微量の不純物を含有する場合、■
わずかに酸素不足になっている場合等に半導体になる。
The transparent conductive layer used in the present invention is a layer mainly containing indium oxide. The indium oxide layer is originally a transparent electrical insulator, but if it contains trace amounts of impurities,
It becomes a semiconductor when there is a slight oxygen deficiency.

好ましい半導体金属酸化物としては、例えば、不純物と
して錫又はフッ素を含む酸化インジウムをあげることが
できる。
Preferred semiconductor metal oxides include, for example, indium oxide containing tin or fluorine as an impurity.

特に好ましくは、酸化錫を2〜20wt%含むインジウ
ム酸化物の層である。
Particularly preferred is an indium oxide layer containing 2 to 20 wt% of tin oxide.

本発明に用いられる主としてインジウム酸化物よりなる
透明導電性層の膜厚は十分な導電性を得るためには、3
0Å以上であることが好ましく、50Å以上であれば更
に好ましい。また、十分に透明度の高い被膜を得るため
には、500Å以下である事が好ましく、400Å以下
がより好ましい。
In order to obtain sufficient conductivity, the thickness of the transparent conductive layer mainly made of indium oxide used in the present invention must be 3.
It is preferably 0 Å or more, and more preferably 50 Å or more. Further, in order to obtain a film with sufficiently high transparency, the thickness is preferably 500 Å or less, more preferably 400 Å or less.

本発明においてスパッタリング法により主としてインジ
ウム酸化物よりなる層を有機高分子成型物上に必要に応
じて中間層を介して形成した後、酸素雰囲気下の加熱処
理を行なう。酸素雰囲気下とは少なくとも前記をスパッ
タリング法で形成したインジウム酸化物WIh結晶質へ
転化せしめるに必要な酸素が存在するものであれば良く
、必要に応じて不活性ガスを導入しても良く、酸素ガス
及び/又はオゾンを含む常圧雰囲気、酸素ガス及び/又
は酸素プラズマを含む低圧雰囲気、或いは酸素ガス及び
/又はオゾンを含む高圧雰囲気等種々の雰囲気があり全
て適用できるが、酸素ガス及び/又はオゾンを含む常圧
雰囲気が好ましく用いられる。又、加熱温度は、100
〜250℃が好ましく、特に130〜200℃が好まし
い。100℃未満では結晶質の酸化インジウムに転化せ
しめることができない。又、250℃を越えると有機高
分子成型物に変形やクラックが発生して好ましくない。
In the present invention, a layer mainly made of indium oxide is formed by sputtering on an organic polymer molded article, with an intermediate layer interposed therebetween if necessary, and then heat treatment is performed in an oxygen atmosphere. The oxygen atmosphere may be one in which at least enough oxygen is present to convert the above into the indium oxide WIh crystalline substance formed by the sputtering method, and an inert gas may be introduced as necessary. Various atmospheres are applicable, such as a normal pressure atmosphere containing gas and/or ozone, a low pressure atmosphere containing oxygen gas and/or oxygen plasma, or a high pressure atmosphere containing oxygen gas and/or ozone. A normal pressure atmosphere containing ozone is preferably used. Also, the heating temperature is 100
-250 degreeC is preferable, and 130-200 degreeC is especially preferable. At temperatures below 100°C, it cannot be converted into crystalline indium oxide. Moreover, if the temperature exceeds 250°C, deformation or cracks will occur in the organic polymer molded product, which is not preferable.

なお、加熱処理時間は、加熱温度1層組成等に応じ実験
的に定める。
Note that the heat treatment time is determined experimentally depending on the heating temperature, single layer composition, etc.

本発明における有機高分子成型物を構成する有機高分子
化合物としては、耐熱性を有する透明な有機高分子化合
物であれば特に限定しないが、通常耐熱性としては、1
00℃以上、好ましくは130℃以上のもであって、例
えば、ポリイミド、ポリエーテルスルホン、ポリスルホ
ン、ポリパラバン酸、ポリヒダントインを始めとし、ポ
リエチレンテレフタレート、ポリエチレン−2,6−ナ
フタレンジカルボキシレート、ポリジアリルフタレート
、ボカーボネート等のポリエステル系樹脂及び芳香族ポ
リアミド、セルローストリアセテート等が挙げられる。
The organic polymer compound constituting the organic polymer molded product in the present invention is not particularly limited as long as it is a transparent organic polymer compound having heat resistance, but usually the heat resistance is 1.
00°C or higher, preferably 130°C or higher, such as polyimide, polyethersulfone, polysulfone, polyparabanic acid, polyhydantoin, polyethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, polydiallyl. Examples include polyester resins such as phthalate and bocarbonate, aromatic polyamides, and cellulose triacetate.

もちろんこれらはホモポリマー。Of course, these are homopolymers.

コポリマーとして、又、単独又はブレンドとしても使用
しうる。
They can be used as copolymers, alone or in blends.

かかる有機高分子化合物の成型物の形状は特に限定され
るものではないが、通常シート状、フィルム状のものが
好ましく、中でもフィルム状のものは巻取り可能であり
、又連続生産が可能である為、特に好ましい。更にフィ
ルム状のものが使用される場合においては、フィルムの
厚さは6〜500μが好ましく、更には12〜125μ
が好ましい。
The shape of the molded product of the organic polymer compound is not particularly limited, but sheet-like or film-like products are usually preferred, and among them, film-like products can be rolled up and can be produced continuously. Therefore, it is particularly preferable. Furthermore, when a film-like material is used, the thickness of the film is preferably 6 to 500μ, more preferably 12 to 125μ.
is preferred.

これらフィルム又はシートは透明性を損わない程度にお
いて顔料を添加したり、又、表面加工例えばサンドマッ
ト加工等をほどこしてもよい。
Pigments may be added to these films or sheets to the extent that transparency is not impaired, or surface treatments such as sand matting may be applied.

又、これらのフィルム又はシートは単独でもラミネート
して用いてもよい。
Further, these films or sheets may be used alone or in a laminated manner.

更に、透明導電性層との密着性を向上させるため透明導
電性層形成前に有機高分子成型物上に中間層を形成して
も良い。中間層としては例えば有機ケイ素化合物、チタ
ンアルキルエステル、ジルコニウムアルキルエステル等
の有機金属化合物の加水分解により生成された層が好ま
しく用いられる。該中間層は、多層構成としても良い。
Furthermore, in order to improve the adhesion with the transparent conductive layer, an intermediate layer may be formed on the organic polymer molded product before forming the transparent conductive layer. As the intermediate layer, a layer produced by hydrolysis of an organometallic compound such as an organosilicon compound, a titanium alkyl ester, or a zirconium alkyl ester is preferably used. The intermediate layer may have a multilayer structure.

該中間層は、有様高分子成型物上に塗布後、乾燥し、加
熱、イオンボンバード或いは紫外線、β線、γ線などの
放射線により硬化させる。
The intermediate layer is coated onto the shaped polymer molding, dried, and cured by heating, ion bombardment, or radiation such as ultraviolet rays, β rays, and γ rays.

また該中間層の塗布には、透明有橢高分子成型物や塗工
液の形状、性質に応じてドクターナイフ。
For coating the intermediate layer, a doctor knife may be used depending on the shape and properties of the transparent transparent polymer molding or coating liquid.

バーコーター、グラビアロールコータ−、カーテンコー
ター、ナイフコーターなどの公知の塗工機械を用いる塗
工法、スプレー法、浸漬法などが用いられる。
A coating method using a known coating machine such as a bar coater, gravure roll coater, curtain coater, knife coater, etc., a spray method, a dipping method, etc. are used.

該中間層の厚さとしては、100〜1000人が好まし
く、特に200〜900人が好ましい。100人未満の
場合には、連続層を形成しないため密着性向上効果がな
い。又、1000人をこえると、クラックや剥離を生じ
たりして好ましくない。
The thickness of the intermediate layer is preferably 100 to 1000 people, particularly preferably 200 to 900 people. If there are fewer than 100 people, no continuous layer is formed and there is no effect of improving adhesion. Moreover, if the number of people exceeds 1000, cracks and peeling may occur, which is not preferable.

又、本発明における導電性積層体はインジウム酸化物よ
りなる透明導電性層上に耐スクラッチ性を向上させると
いういわゆる表面保護の目的のために保′f!層を積層
させてもよい。
Furthermore, the conductive laminate of the present invention is coated on a transparent conductive layer made of indium oxide for the purpose of so-called surface protection to improve scratch resistance. The layers may be stacked.

かかる保r!!L層としては、Ti 02 、3n 0
2 。
It takes a long time! ! As the L layer, Ti 02 , 3n 0
2.

Si 02 、Zr 02 、zno等の透明酸化物。Transparent oxides such as Si02, Zr02, zno, etc.

S! 3 N4 、Ti N等窒化物あるいはアクリロ
ニトリル樹脂、スチレン樹脂、アクリレート樹脂。
S! 3 Nitride such as N4, TiN, acrylonitrile resin, styrene resin, acrylate resin.

ポリエステル樹脂1等の透明な有機化合物組合体或いは
、有機ケイ素化合物、チタンアルキルエステル、ジルコ
ニウムアルキルエステル等の有機金属化合物等を用いる
事ができる。
Transparent organic compound combinations such as polyester resin 1, or organometallic compounds such as organosilicon compounds, titanium alkyl esters, and zirconium alkyl esters can be used.

かかる保護膜の厚さは透明導電性層の特性を低下させな
い範囲で任意に設ける事が可能である。
The thickness of such a protective film can be set arbitrarily within a range that does not deteriorate the characteristics of the transparent conductive layer.

また本発明における導電性積層体は、有機高分子成型物
の両面に必要に応じて中間層を介して透明導電性層を積
層した構成にしても良く或いは、有機高分子成型物の片
面に必要に応じて中間層を介して透明導電性層を積層し
た構成において透明導電性層を積層した面と反対面おい
て、透明性を損わない範囲で接着性1表面硬度、光学特
性等を改善する目的で、例えば前述した中間層と同種の
層や、酸化物層、窒化物層、硫化物層、炭化物層や有機
物居を設けても良い。
Furthermore, the conductive laminate of the present invention may have a structure in which transparent conductive layers are laminated on both sides of the organic polymer molded product via an intermediate layer if necessary, or a transparent conductive layer may be laminated on one side of the organic polymer molded product. In a structure in which a transparent conductive layer is laminated via an intermediate layer, improve adhesion, surface hardness, optical properties, etc. on the side opposite to the side on which the transparent conductive layer is laminated, within a range that does not impair transparency. For this purpose, for example, a layer of the same type as the above-mentioned intermediate layer, an oxide layer, a nitride layer, a sulfide layer, a carbide layer, or an organic layer may be provided.

[効 果] 以上の、本発明によりスパッタリング法を用いて、従来
の真空蒸着法と同等以上の極めて優れた耐久性及び信頼
性を有し、透明タブレット用途に十分利用できる導電性
積層体の製造が可能となった。
[Effects] As described above, by using the sputtering method of the present invention, a conductive laminate can be produced which has extremely excellent durability and reliability equivalent to or higher than conventional vacuum evaporation methods, and which can be fully used for transparent tablet applications. became possible.

本発明はスパッタリング法で導電層を形成するので、従
来の真空蒸着法の問題がなく、品質の均一な広巾の導電
性積層体を連続的に安定して生産することができ、非常
に生産性の良いプロセスが得られた。
Since the conductive layer of the present invention is formed by a sputtering method, there are no problems with conventional vacuum evaporation methods, and a wide conductive laminate of uniform quality can be continuously and stably produced, resulting in extremely high productivity. A good process was obtained.

なお、本発明で得られる導電性積層体は、透明タブレッ
ト用電極として適しているだけでなく、例えば、電子写
真、帯電防止材料9面発熱体、固体ディスプレイ、光メ
モリ−、光電変換素子、光通信、光情報処理、太陽エネ
ルギー利用材料等と広い用途を有する。
The conductive laminate obtained by the present invention is not only suitable as an electrode for transparent tablets, but also for use in, for example, electrophotography, antistatic material, nine-sided heating element, solid-state display, optical memory, photoelectric conversion element, and optical communication. It has a wide range of applications including optical information processing, solar energy utilization materials, etc.

以下、実施例をあげて本発明の効果を更に具体的に説明
する。なお、例中の部は重量部である。
EXAMPLES Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples. Note that parts in the examples are parts by weight.

[実施例1〜4及び比較例1〜2] 100μm厚のポリエチレンテチフタレートフイルムの
両面に、有機ケイ素化合物のブタノール。
[Examples 1 to 4 and Comparative Examples 1 to 2] Butanol, an organosilicon compound, was applied to both sides of a 100 μm thick polyethylene tethyphthalate film.

イソプロパツール混合アルコール系溶液(濃度0.6重
量%)をバーコーターで塗布し、120℃で1分間乾燥
した。乾燥後の薄膜は300人であった。
An isopropanol mixed alcohol solution (concentration 0.6% by weight) was applied using a bar coater and dried at 120° C. for 1 minute. The thickness of the film after drying was 300.

該フィルムを直流マグネトロンスパッタ装置内の基板保
持台に固定し、真空度2 X 10’i T orrま
で真空槽を排気した。その後、Ar10z混合ガス(0
225%)を槽内に導入し、真空度を5×1O−3To
rrに保った後、In/Sn合金(Sn 5重量%)よ
りなるターゲットを用い反応性スパッタリング法により
堆積速度を変えて実施例1〜4及び比較例1のサンプル
の光吸収率及び比抵抗有するインジウム・スズ酸化物膜
を形成した。これらのサンプルを150℃に保った熱風
乾燥器により加熱処理を行なった後、透明導電性膜の結
晶性をX線回折装置(理学型11@製Rotaflex
 )により調べた。更に加熱処理後のサンプルの耐熱性
(90”C1000hr後の抵抗変化)、耐酸性(1N
塩酸に浸漬した時の抵抗変化)を調べた。
The film was fixed on a substrate holder in a DC magnetron sputtering device, and the vacuum chamber was evacuated to a vacuum level of 2×10'i Torr. After that, Ar10z mixed gas (0
225%) into the tank, and the degree of vacuum was set to 5×1O-3To.
After maintaining the temperature at rr, the deposition rate was varied by reactive sputtering using a target made of In/Sn alloy (Sn 5% by weight) to obtain the light absorption rate and specific resistance of the samples of Examples 1 to 4 and Comparative Example 1. An indium tin oxide film was formed. After heat-treating these samples in a hot-air dryer kept at 150°C, the crystallinity of the transparent conductive film was measured using an
). Furthermore, the heat resistance (resistance change after 1000 hours of 90"C) and acid resistance (1N
The resistance change (when immersed in hydrochloric acid) was investigated.

該サンプルのスパッタリング直後の比抵抗及び光吸収率
(550nmでの)、加熱処理後の比抵抗、光吸収率(
550nIIlでの)、結晶性、耐熱性、耐酸性を第1
表に示す。
The specific resistance and light absorption rate (at 550 nm) of the sample immediately after sputtering, and the specific resistance and light absorption rate (at 550 nm) after heat treatment.
550nIIl), crystallinity, heat resistance, and acid resistance are the first
Shown in the table.

なお、比較例2としては加熱処理を行なわない従来のI
TO膜の測定結果を合せて示す。
In addition, as Comparative Example 2, conventional I without heat treatment was used.
The measurement results for the TO film are also shown.

本発明の方法による実施例1〜4ではインジウム・スズ
酸化物膜が酸素雰囲気下の加熱処理により結晶質のIT
O膜に転化されており、極めて優れた耐熱性及び耐酸性
を示した。一方、比較例1では加熱処理後も非晶質であ
り、耐熱性、耐酸性共に著しく劣る。
In Examples 1 to 4 according to the method of the present invention, the indium tin oxide film was heated to a crystalline IT state by heat treatment in an oxygen atmosphere.
It was converted into an O film and exhibited extremely excellent heat resistance and acid resistance. On the other hand, Comparative Example 1 remains amorphous even after heat treatment, and has significantly poor heat resistance and acid resistance.

又、実施例1及び比較例1の加熱処理後のX線回折パタ
ーンをそれぞれ第2図及び第3図に示す。
Further, the X-ray diffraction patterns of Example 1 and Comparative Example 1 after heat treatment are shown in FIGS. 2 and 3, respectively.

なお、実施例2〜4は、実施例1と同一のX線回折パタ
ーンを示し比較例2は比較例1と同一のX線回折パター
ンを示した。
In addition, Examples 2 to 4 showed the same X-ray diffraction pattern as Example 1, and Comparative Example 2 showed the same X-ray diffraction pattern as Comparative Example 1.

(以下余白) 更に、実施例1及び比較例2のサンプルについて、IT
O膜面同志をスペーサーにより 100μ乳間隔になる
様に対向させた透明スイッチを作成した。
(Left below) Furthermore, regarding the samples of Example 1 and Comparative Example 2, IT
A transparent switch was fabricated with the O membrane surfaces facing each other with a spacer at a distance of 100 μm.

先端が7Rのシリコンゴム製のロッド(重さ200SF
 >を連続的にソレノイドで透明スイッチ上に自由落下
させた(ストローク0.5m+)。ロッドが落下する毎
にスイッチが押され、定電流電源により17FLAがス
イッチに流れる。透明スイッチが押された時のパルス上
の波形をシンクロスコープにより観測しながら、スイッ
チ寿命を調べた。波形が観測されなくなった時をスイッ
チの寿命とした。
Silicone rubber rod with 7R tip (weight 200SF)
> was continuously freely dropped onto a transparent switch using a solenoid (stroke 0.5 m+). The switch is pressed every time the rod falls, and 17FLA flows through the switch due to the constant current power supply. The life of the switch was investigated by observing the waveform on the pulse when the transparent switch was pressed using a synchroscope. The life of the switch was defined as the time when the waveform was no longer observed.

実施例1のスイッチ寿命が500万回であるのに対し、
比較例2のスイッチ寿命は30万回であった。
While the switch life of Example 1 is 5 million times,
The switch life of Comparative Example 2 was 300,000 cycles.

[実施例5、比較例3] 100μ而厚のポリエチレンテレフタレートフィルムに
有機ケイ素化合物0.3重量%含有のメタノール、エタ
ノール、イソプロパツール混合アルコール系溶液をグラ
ビアロールコータで両面塗布し、150℃で1分間乾燥
した。乾燥後の膜厚は約400人であった。
[Example 5, Comparative Example 3] A mixed alcoholic solution of methanol, ethanol, and isopropanol containing 0.3% by weight of an organosilicon compound was coated on both sides of a 100μ thick polyethylene terephthalate film using a gravure roll coater, and the film was coated at 150°C. Dry for 1 minute. The film thickness after drying was about 400.

該フィルムを直流マグネトロンスパッタ装置内の基板保
持台に固定し、真空度1 X 10” TOrrになる
まで真空槽を排気した。その後、Arガスを槽内に導入
し、真空度を4 x 1O−3T orrに保った後I
TO(Sn Oz 5重量%)ターゲットを用いて、ス
パッタリング法により実施例5及び比較例3のサンプル
の比抵抗及び光吸収率を有するインジウム・スズ酸化物
膜を形成した。該サンプルを実施例1と同様な方法で加
熱処理を行なった後、実施例1と同様な方法で透明導電
性膜の結晶性を調べた。ITO膜の比抵抗、光吸収率及
び結晶性を第2表に示す。本発明の方法により結晶質の
ITO膜を得ることができ、結晶質のITO膜の特性は
、実施例1と同様であった。
The film was fixed to a substrate holder in a DC magnetron sputtering device, and the vacuum chamber was evacuated until the vacuum level reached 1 x 10" TOrr. Thereafter, Ar gas was introduced into the tank to increase the vacuum level to 4 x 10" Torr. After keeping at 3T orr I
An indium tin oxide film having the specific resistance and light absorption rate of the samples of Example 5 and Comparative Example 3 was formed by sputtering using a TO (SnOz 5% by weight) target. The sample was heat-treated in the same manner as in Example 1, and then the crystallinity of the transparent conductive film was examined in the same manner as in Example 1. Table 2 shows the specific resistance, light absorption rate, and crystallinity of the ITO film. A crystalline ITO film could be obtained by the method of the present invention, and the characteristics of the crystalline ITO film were similar to those in Example 1.

第2表 (以下余白)Table 2 (Margin below)

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は、ITO膜の光吸収率及び比抵
抗の堆積速度依存性を示す。 第2図は実施例1の透明導電性層のX線回折パターンを
示す。第3図は、比較例1の透明GW性層のX線回折パ
ターンを示す。
FIGS. 1(a) and 1(b) show the dependence of the light absorption rate and specific resistance of the ITO film on the deposition rate. FIG. 2 shows the X-ray diffraction pattern of the transparent conductive layer of Example 1. FIG. 3 shows the X-ray diffraction pattern of the transparent GW layer of Comparative Example 1.

Claims (1)

【特許請求の範囲】 1、有機高分子成型物上に主としてインジウム酸化物か
らなる透明導電層をスパッタリング法により形成する導
電性積層体の製造方法において、先ず有機高分子成型物
上に主としてインジウム酸化物を含む波長550mmの
光吸収率が2〜30%で比抵抗が1.5×10^−^3
Ω・cm以上の層を形成し、次いで該層を酸素雰囲気下
の加熱処理により主として結晶質のインジウム酸化物か
らなる透明導電層に転化せしめることを特徴とする透明
導電性積層体の製造方法。 2、加熱処理温度が100〜250℃である特許請求の
範囲第1項記載の透明導電性積層体の製造方法。
[Scope of Claims] 1. In a method for manufacturing a conductive laminate in which a transparent conductive layer mainly made of indium oxide is formed on an organic polymer molded product by a sputtering method, first, a transparent conductive layer mainly made of indium oxide is formed on the organic polymer molded product. The light absorption rate at a wavelength of 550 mm, including objects, is 2 to 30%, and the specific resistance is 1.5 x 10^-^3
1. A method for manufacturing a transparent conductive laminate, which comprises forming a layer having a thickness of Ω·cm or more, and then converting the layer into a transparent conductive layer mainly consisting of crystalline indium oxide by heat treatment in an oxygen atmosphere. 2. The method for producing a transparent conductive laminate according to claim 1, wherein the heat treatment temperature is 100 to 250°C.
JP59201991A 1984-09-28 1984-09-28 Manufacture of transparent conductive laminate Granted JPS6179647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201991A JPS6179647A (en) 1984-09-28 1984-09-28 Manufacture of transparent conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201991A JPS6179647A (en) 1984-09-28 1984-09-28 Manufacture of transparent conductive laminate

Publications (2)

Publication Number Publication Date
JPS6179647A true JPS6179647A (en) 1986-04-23
JPH0315536B2 JPH0315536B2 (en) 1991-03-01

Family

ID=16450130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201991A Granted JPS6179647A (en) 1984-09-28 1984-09-28 Manufacture of transparent conductive laminate

Country Status (1)

Country Link
JP (1) JPS6179647A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144041A (en) * 1986-12-08 1988-06-16 セイコーインスツルメンツ株式会社 Display panel
JPH02194943A (en) * 1989-01-25 1990-08-01 Teijin Ltd Transparent conductive laminate
JPH02276630A (en) * 1989-01-25 1990-11-13 Teijin Ltd Transparent conductive laminate and manufacture thereof
WO2000051139A1 (en) * 1999-02-24 2000-08-31 Teijin Limited Transparent conductive laminate, its manufacturing method, and display comprising transparent conductive laminate
US6603085B2 (en) 2000-03-28 2003-08-05 Toyo Boseki Kabushiki Kaisha Transparent conductive film, transparent conductive sheet and touchpanel
WO2005041216A1 (en) * 2003-10-23 2005-05-06 Bridgestone Corporation Transparent conductive substrate, electrode for dye-sensitized solar cell and dye-sensitized solar cell
EP2053079A2 (en) 2007-10-22 2009-04-29 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US9096921B2 (en) 2008-09-26 2015-08-04 Toyo Boseki Kabushiki Kaisha Transparent conductive film and touch panel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351068B2 (en) 1995-12-20 2002-02-26 Mitsui Chemicals, Inc. Transparent conductive laminate and electroluminescence light-emitting element using same
JP4151821B2 (en) 2002-01-11 2008-09-17 日東電工株式会社 Surface protective film for transparent conductive film and transparent conductive film
JP2010163680A (en) * 2008-12-19 2010-07-29 Hitachi Zosen Corp Method for producing transparent conductive film
JP6023402B2 (en) 2010-12-27 2016-11-09 日東電工株式会社 Transparent conductive film and method for producing the same
US20150086789A1 (en) * 2012-06-07 2015-03-26 Nitto Denko Corporation Transparent conductive film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137957A (en) * 1974-09-27 1976-03-30 Fuji Photo Film Co Ltd
JPS5262381A (en) * 1975-11-19 1977-05-23 Teijin Ltd Transparent electroconductive mat film
JPS59169846A (en) * 1983-03-17 1984-09-25 旭硝子株式会社 Transparent conductive film
JPS6124102A (en) * 1984-07-12 1986-02-01 旭硝子株式会社 Conductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137957A (en) * 1974-09-27 1976-03-30 Fuji Photo Film Co Ltd
JPS5262381A (en) * 1975-11-19 1977-05-23 Teijin Ltd Transparent electroconductive mat film
JPS59169846A (en) * 1983-03-17 1984-09-25 旭硝子株式会社 Transparent conductive film
JPS6124102A (en) * 1984-07-12 1986-02-01 旭硝子株式会社 Conductor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144041A (en) * 1986-12-08 1988-06-16 セイコーインスツルメンツ株式会社 Display panel
JPH02194943A (en) * 1989-01-25 1990-08-01 Teijin Ltd Transparent conductive laminate
JPH02276630A (en) * 1989-01-25 1990-11-13 Teijin Ltd Transparent conductive laminate and manufacture thereof
JP2525475B2 (en) * 1989-01-25 1996-08-21 帝人株式会社 Transparent conductive laminate
WO2000051139A1 (en) * 1999-02-24 2000-08-31 Teijin Limited Transparent conductive laminate, its manufacturing method, and display comprising transparent conductive laminate
US6617056B1 (en) 1999-02-24 2003-09-09 Teijin Ltd. Transparent conductive laminate, its manufacturing method, and display comprising transparent conductive laminate
JP4759143B2 (en) * 1999-02-24 2011-08-31 帝人株式会社 Transparent conductive laminate, method for producing the same, and display element using the same
US6603085B2 (en) 2000-03-28 2003-08-05 Toyo Boseki Kabushiki Kaisha Transparent conductive film, transparent conductive sheet and touchpanel
WO2005041216A1 (en) * 2003-10-23 2005-05-06 Bridgestone Corporation Transparent conductive substrate, electrode for dye-sensitized solar cell and dye-sensitized solar cell
EP2053079A2 (en) 2007-10-22 2009-04-29 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US9096921B2 (en) 2008-09-26 2015-08-04 Toyo Boseki Kabushiki Kaisha Transparent conductive film and touch panel

Also Published As

Publication number Publication date
JPH0315536B2 (en) 1991-03-01

Similar Documents

Publication Publication Date Title
JP2525475B2 (en) Transparent conductive laminate
JP6548910B2 (en) Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element
EP0030732B1 (en) Transparent electrically conductive film and process for production thereof
JP5543907B2 (en) Transparent conductive film and method for producing the same
Kim et al. Preparation of high quality ITO films on a plastic substrate using RF magnetron sputtering
JPS6179647A (en) Manufacture of transparent conductive laminate
TWI651208B (en) Substrate with transparent electrode and method of manufacturing same
JPH0864034A (en) Transparent conductive layered product
WO2004065656A1 (en) Ito thin film, film-forming method of same, transparent conductive film and touch panel
JPS61183809A (en) Transparent conductive laminate body and manufacture thereof
JPH02276630A (en) Transparent conductive laminate and manufacture thereof
JP6713079B2 (en) Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element
JP3511337B2 (en) Transparent conductive laminate and method for producing the same
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film
KR102164629B1 (en) Composite transparent electrodes
JPH06349338A (en) Transparent conductive lamination
JPH07178863A (en) Transparent conductive film and production thereof
JPS60131711A (en) Transparent conductive laminate
US6246071B1 (en) Zirconia-containing transparent and conducting oxides
JPH01100260A (en) Manufacture of laminated body of transparent conductive film
TW202035128A (en) Transparent conductive film
JPS6143805B2 (en)
JP4079457B2 (en) Method for increasing resistance of indium-tin oxide film
JPS61279004A (en) Conducting laminate body
JP7466269B2 (en) Transparent conductive film and crystalline transparent conductive film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term