JP6713079B2 - Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element - Google Patents

Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element Download PDF

Info

Publication number
JP6713079B2
JP6713079B2 JP2019117395A JP2019117395A JP6713079B2 JP 6713079 B2 JP6713079 B2 JP 6713079B2 JP 2019117395 A JP2019117395 A JP 2019117395A JP 2019117395 A JP2019117395 A JP 2019117395A JP 6713079 B2 JP6713079 B2 JP 6713079B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive layer
light control
film
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019117395A
Other languages
Japanese (ja)
Other versions
JP2019194719A (en
Inventor
望 藤野
望 藤野
智剛 梨木
智剛 梨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2019117395A priority Critical patent/JP6713079B2/en
Publication of JP2019194719A publication Critical patent/JP2019194719A/en
Application granted granted Critical
Publication of JP6713079B2 publication Critical patent/JP6713079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電界駆動型調光素子の電極基板として用いられる透明導電性フィルムに関する。さらに、本発明は電極基板として当該透明導電性フィルムを用いた電界駆動型調光素子に関する。 The present invention relates to a transparent conductive film used as an electrode substrate of an electric field drive type light control device. Furthermore, the present invention relates to an electric field drive type light control device using the transparent conductive film as an electrode substrate.

建物や乗り物等の窓ガラスやインテリア材料等に、調光素子が用いられている。特に近年では、冷暖房負荷の低減や、照明負荷の削減、快適性向上等の観点から、調光素子に対する需要や期待が高まっている。 Light control elements are used for window glass and interior materials of buildings and vehicles. Particularly in recent years, from the viewpoints of reducing the heating and cooling load, reducing the lighting load, improving comfort, and the like, demand and expectations for the dimming element have increased.

電界駆動型調光素子は、一対の電極基板間に調光層を備え、電界のオン・オフに伴って調光層による光の透過・散乱状態を制御している。電界駆動型調光素子の調光材料としては、液晶材料や、エレクトロクロミック材料等が用いられる。 The electric field drive type light control device is provided with a light control layer between a pair of electrode substrates, and controls the transmission/scattering state of light by the light control layer according to ON/OFF of the electric field. A liquid crystal material, an electrochromic material, or the like is used as the light control material of the electric field drive type light control element.

電界駆動型調光素子の電極基板としては、ガラス上に透明導電層を備える電極ガラスや、透明フィルム上に透明導電層を備える透明導電性フィルムが用いられる。透明導電性フィルムは、ロールスパッタ等により電極層を成膜することにより、膜厚や特性が均一な電極を長尺で提供可能であり、電極ガラスに比べて大面積化が容易である。また、電極上へ調光層を連続成膜することにより、調光フィルムを長尺で提供することも可能であり、一般的なガラス等への貼り合わせも容易であるあることから、透明導電性フィルムは汎用性に優れている。そのため、合わせガラスの間に調光層を備える調光素子(調光ガラス)においても、電極基板として透明導電性フィルムが広く用いられている(例えば特許文献1)。 As the electrode substrate of the electric field drive type light control device, electrode glass having a transparent conductive layer on glass or a transparent conductive film having a transparent conductive layer on a transparent film is used. The transparent conductive film can provide a long electrode having a uniform film thickness and characteristics by forming an electrode layer by roll sputtering or the like, and can easily have a larger area than electrode glass. Further, by continuously forming a light control layer on the electrode, it is possible to provide a long length of the light control film, and since it is easy to bond to a general glass or the like, a transparent conductive film is used. Film is excellent in versatility. Therefore, a transparent conductive film is widely used as an electrode substrate even in a light control element (light control glass) including a light control layer between laminated glasses (for example, Patent Document 1).

透明導電性フィルムは、透明フィルム基材上に、インジウムスズ複合酸化物(ITO)等の導電性金属酸化物からなる透明導電層を備える。透明導電性フィルムは、フレキシブルディスプレイやタッチパネルの電極としても広く用いられている。ディスプレイやタッチパネルでは、低抵抗化および高光透過率化の観点から、一般に、結晶質の金属酸化物からなる透明導電層を備える透明導電性フィルムが用いられる(例えば特許文献2)。調光素子においても、透明電極の低抵抗化や抵抗変化抑制等の観点から、透明導電性フィルムの導電層を結晶化することが提案されている(例えば特許文献3)。 The transparent conductive film has a transparent conductive layer made of a conductive metal oxide such as indium tin composite oxide (ITO) on a transparent film substrate. Transparent conductive films are also widely used as electrodes for flexible displays and touch panels. In a display or a touch panel, a transparent conductive film including a transparent conductive layer made of a crystalline metal oxide is generally used from the viewpoint of low resistance and high light transmittance (for example, Patent Document 2). Also in the light control element, it has been proposed to crystallize the conductive layer of the transparent conductive film from the viewpoint of lowering the resistance of the transparent electrode and suppressing resistance change (for example, Patent Document 3).

フィルム基材上に形成される透明導電層は、成膜時の基板温度が低いため、成膜直後は非晶質である。透明導電層を成膜後に、100℃以上の高温(一般には150℃程度)で1時間から数日間加熱することにより、透明導電層の結晶化が行われる。 The transparent conductive layer formed on the film substrate is amorphous immediately after film formation because the substrate temperature during film formation is low. After forming the transparent conductive layer, the transparent conductive layer is crystallized by heating at a high temperature of 100° C. or higher (generally about 150° C.) for 1 hour to several days.

WO2008/075773号国際公開パンフレットInternational publication pamphlet of WO2008/075773 特開2007−200823号公報JP, 2007-200823, A 特開平2−32319号公報JP-A-2-32319

上記のように、低抵抗化の観点からは、透明導電層は結晶質であることが好ましい。一方で、電界駆動型調光素子では、電極上に液晶材料やエレクトロクロミック材料を含む調光層が形成されるため、電極と調光層との界面での相互作用や、調光層を塗布形成する際の表面の濡れ性の観点から、透明導電層が非晶質材料であることが求められる場合がある。 As described above, the transparent conductive layer is preferably crystalline from the viewpoint of reducing the resistance. On the other hand, in the electric field drive type light control device, since the light control layer containing the liquid crystal material or the electrochromic material is formed on the electrode, the interaction at the interface between the electrode and the light control layer and the application of the light control layer. The transparent conductive layer may be required to be an amorphous material from the viewpoint of the wettability of the surface when it is formed.

また、結晶質の透明導電層は、湾曲加工によるキズやクラック等が生じやすいことからも、透明導電層が非晶質であることが求められる場合がある。特に窓やインテリア等に利用される調光素子は、様々なサイズに加工する必要がある上に、ディスプレイやタッチパネルに比べて大面積であるため、全ての工程を自動化することが困難である。そのため、透明導電層が結晶質であると、透明導電性フィルムのカッティングや貼り合わせ等の加工時の曲げや擦れ等により、透明導電層にキズやクラックが生じやすく、歩留まりの低下を招く傾向がある。 In addition, since the crystalline transparent conductive layer is apt to have scratches or cracks due to bending, it may be required that the transparent conductive layer is amorphous. In particular, a light control element used for windows, interiors, and the like needs to be processed into various sizes and has a larger area than a display or a touch panel, so that it is difficult to automate all steps. Therefore, when the transparent conductive layer is crystalline, due to bending and rubbing during processing such as cutting and bonding of the transparent conductive film, scratches and cracks are likely to occur in the transparent conductive layer, which tends to cause a decrease in yield. is there.

上記のように、フィルム基材上に形成される透明導電層は、成膜直後は非晶質である。しかし、金属酸化物は、熱力学的には、非晶質よりも結晶質の方が安定であるため、積極的に加熱を行わなくとも、透明導電層は自然環境温度(例えば40℃程度)で経時的に結晶質に転化する傾向がある。 As described above, the transparent conductive layer formed on the film substrate is amorphous immediately after film formation. However, thermodynamically, metal oxides are more stable in crystalline than in amorphous. Therefore, the transparent conductive layer has a natural environmental temperature (for example, about 40° C.) without being actively heated. It tends to be converted to crystalline over time.

透明導電層が結晶化すると表面抵抗が低下し、電界駆動型調光素子の電圧オン時の光の透過・散乱状態が変化するため、素子の動作が不安定になる。また、低温(環境温度)で結晶化が生じた場合、加熱により積極的に結晶化を行う場合に比べて、結晶化の進行が面内で不均一となる。そのため、透明導電層の面内での抵抗のバラツキが生じ、調光素子による光の透過・散乱が面内で不均一になり、意匠性が低下するという問題がある。 When the transparent conductive layer is crystallized, the surface resistance is lowered, and the light transmission/scattering state of the electric field drive type light control device when the voltage is turned on is changed, so that the operation of the device becomes unstable. Further, when crystallization occurs at a low temperature (environmental temperature), the progress of crystallization becomes non-uniform in the plane as compared with the case where crystallization is positively performed by heating. Therefore, there is a problem that the resistance of the transparent conductive layer varies in the plane, the transmission and scattering of light by the light control element becomes non-uniform in the plane, and the designability deteriorates.

非晶質透明導電層は、結晶質透明導電層に比べて比抵抗が大きいため、表面抵抗を低くするためには膜厚を大きくする必要がある。非晶質の透明導電層は膜厚が大きくなると低温でも結晶化し易くなる傾向があり、表面抵抗の低下と非晶質状態の維持とは、相反する関係にある。 Since the amorphous transparent conductive layer has a larger specific resistance than the crystalline transparent conductive layer, it is necessary to increase the film thickness in order to reduce the surface resistance. When the film thickness of the amorphous transparent conductive layer is large, it tends to be crystallized even at a low temperature, and the decrease in surface resistance and the maintenance of the amorphous state are in a contradictory relationship.

上記に鑑み、本発明は、表面抵抗が小さく、かつ経時的に非晶質状態を維持可能な非晶質透明導電層を備え、電界駆動型調光素子に適用可能な透明導電性フィルムの提供を目的とする。 In view of the above, the present invention provides a transparent conductive film having a small surface resistance and including an amorphous transparent conductive layer capable of maintaining an amorphous state with time, and applicable to an electric field drive type light control device. With the goal.

本発明者らが検討の結果、膜厚および比抵抗が所定範囲である場合に、透明導電層が結晶化され難く非晶質状態を維持できることを見出し、本発明に至った。電界駆動型調光素子の電極基板として用いられる透明導電性フィルムに関する。透明導電性フィルムは、透明プラスチックフィルム基材の少なくとも一方の面に、非晶質の透明導電層を備える。 As a result of the study by the present inventors, they found that the transparent conductive layer was hard to be crystallized and could maintain an amorphous state when the film thickness and the specific resistance were within a predetermined range, and thus the present invention was completed. The present invention relates to a transparent conductive film used as an electrode substrate of an electric field drive type light control device. The transparent conductive film has an amorphous transparent conductive layer on at least one surface of a transparent plastic film substrate.

透明導電層は、膜厚が30nm〜100nmであり、比抵抗が6×10−4Ω・cm以下である。透明導電層の表面抵抗は170Ω/□以下が好ましい。 The transparent conductive layer has a film thickness of 30 nm to 100 nm and a specific resistance of 6×10 −4 Ω·cm or less. The surface resistance of the transparent conductive layer is preferably 170Ω/□ or less.

本発明の透明導電性フィルムは、80℃で240時間加熱後の透明導電層の抵抗変化率の絶対値が55%以下であることが好ましい。透明導電性フィルムの全光線透過率は、79%以上が好ましい。透明導電性フィルムの透明導電層側から照射した光の反射光は、色相のbが、−10〜4であることが好ましい。 In the transparent conductive film of the present invention, the absolute value of the resistance change rate of the transparent conductive layer after heating at 80° C. for 240 hours is preferably 55% or less. The total light transmittance of the transparent conductive film is preferably 79% or more. The reflected light of the light emitted from the transparent conductive layer side of the transparent conductive film preferably has a hue b * of -10 to 4.

透明導電層の材料としては、インジウムスズ複合酸化物(ITO)が好ましく用いられる。透明導電層を構成するインジウムスズ複合酸化物は、インジウムとスズの合計100重量部に対するスズの含有量が8〜30重量部であることが好ましい。 As a material for the transparent conductive layer, indium tin composite oxide (ITO) is preferably used. The indium-tin composite oxide forming the transparent conductive layer preferably has a tin content of 8 to 30 parts by weight based on 100 parts by weight of indium and tin in total.

透明導電層は、キャリア密度が、2.90×1020/cm〜4.80×1020/cmであることが好ましい。特に、キャリア密度が上記範囲の非晶質ITOは、膜厚が大きい場合でも結晶化し難いため、80℃で240時間加熱後の抵抗変化を抑制できる傾向がある。 The transparent conductive layer preferably has a carrier density of 2.90×10 20 /cm 3 to 4.80×10 20 /cm 3 . In particular, amorphous ITO having a carrier density in the above range is difficult to crystallize even when the film thickness is large, and therefore there is a tendency to suppress the resistance change after heating at 80° C. for 240 hours.

一実施形態において、透明導電性フィルムは、プラスチックフィルム基材と透明導電層との間に他の層を介することなく、プラスチックフィルム基材と透明導電層とが直接接している。透明プラスチックフィルム基材の透明導電層形成面側の算術平均粗さは、0.5〜5nmが好ましい。透明導電層の算術平均粗さは、0.8〜5.5nmが好ましい。透明プラスチックフィルム基材の単位面積あたりの水分含有量は、15〜200μg/cmが好ましい。 In one embodiment, in the transparent conductive film, the plastic film substrate and the transparent conductive layer are in direct contact with each other without the other layer interposed between the plastic film substrate and the transparent conductive layer. The arithmetic mean roughness of the transparent plastic film substrate on the transparent conductive layer forming surface side is preferably 0.5 to 5 nm. The arithmetic mean roughness of the transparent conductive layer is preferably 0.8 to 5.5 nm. The water content per unit area of the transparent plastic film substrate is preferably 15 to 200 μg/cm 2 .

また、本発明は、上記の透明導電性フィルムの透明導電層上に調光層を備える調光フィルムに関する。さらに、本発明は、導電性基板として上記透明導電性フィルムを用いた電界駆動型調光素子に関する。本発明の電界駆動型調光素子は、一対の電極基板間に、調光層を備える。調光層には、電界の印加の有無により光の透過散乱状態を制御可能な材料が用いられる。 The present invention also relates to a light control film having a light control layer on the transparent conductive layer of the above transparent conductive film. Further, the present invention relates to an electric field drive type light control device using the transparent conductive film as a conductive substrate. The electric field drive type light control device of the present invention includes a light control layer between a pair of electrode substrates. The light control layer is made of a material capable of controlling the transmission/scattering state of light depending on whether or not an electric field is applied.

本発明の透明導電性フィルムは、透明導電層が非晶質であるため、加工時の曲げや擦れによるキズやクラックが生じ難い。また、透明導電層の膜厚が大きいため、透明導電層が非晶質であるにも関わらず、表面抵抗を小さくできる。さらには、自然環境での結晶化が生じ難いため、電界駆動型調光素子の電極基板として用いた場合に、光の透過・散乱の制御が安定であり、信頼性に優れる調光素子が得られる。 Since the transparent conductive layer of the transparent conductive film of the present invention is amorphous, scratches and cracks due to bending and rubbing during processing are unlikely to occur. Further, since the thickness of the transparent conductive layer is large, the surface resistance can be reduced even though the transparent conductive layer is amorphous. Furthermore, since crystallization is less likely to occur in a natural environment, when used as an electrode substrate for an electric field-driven dimming element, a stable dimming element with stable light transmission/scattering control is obtained. To be

透明導電性フィルムの一実施形態を表す模式的断面図である。It is a typical sectional view showing one embodiment of a transparent conductive film. 透明導電層成膜時の酸素導入量と比抵抗(A)および吸光係数(B)との関係を表すグラフである。It is a graph showing the relationship between the amount of oxygen introduced and the specific resistance (A) and the extinction coefficient (B) during the formation of the transparent conductive layer. 電界駆動型調光素子の一実施形態を表す模式的断面図である。It is a schematic cross section showing one embodiment of an electric field drive type light control device. 実施例および比較例の透明導電膜のキャリア密度と比抵抗の関係をプロットしたグラフである。It is the graph which plotted the relationship of the carrier density and specific resistance of the transparent conductive film of an Example and a comparative example.

[透明導電性フィルム]
図1は、透明導電性フィルムの一実施形態を表す模式的断面図である。本発明の電界駆動型調光素子用透明導電性フィルム1は、透明プラスチックフィルム基材11上に、透明導電層21を備える。
[Transparent conductive film]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a transparent conductive film. The transparent conductive film 1 for an electric field drive type light control device of the present invention includes a transparent conductive layer 21 on a transparent plastic film substrate 11.

<透明プラスチックフィルム基材>
透明プラスチックフィルム基材11としては、透明性や耐熱性に優れたプラスチック材料が好適に用いられる。このようなプラスチック材料としては、ポリエチレンテレフタレート等のポリエステル、ポリオレフィン、ノルボルネン系等の環状ポリオレフィン、ポリカーボネート、ポリエーテルスルフォン、ポリアリレート等が挙げられる。
<Transparent plastic film substrate>
As the transparent plastic film substrate 11, a plastic material having excellent transparency and heat resistance is preferably used. Examples of such plastic materials include polyester such as polyethylene terephthalate, polyolefin, cyclic polyolefin such as norbornene, polycarbonate, polyether sulfone and polyarylate.

透明プラスチックフィルム基材11と透明導電層21との密着性を高める観点から、透明導電層を形成する前に、事前に基材の表面にコロナ放電処理、紫外線照射処理、プラズマ処理、スパッタエッチング処理等の適宜な接着処理を施してもよい。 From the viewpoint of enhancing the adhesiveness between the transparent plastic film substrate 11 and the transparent conductive layer 21, before forming the transparent conductive layer, the surface of the substrate is subjected to corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, sputter etching treatment in advance. Appropriate adhesion treatment such as the above may be performed.

透明プラスチックフィルム基材11の透明導電層21形成面側の算術平均粗さRaは、0.5〜5.0nmが好ましく、0.6〜3.5nmがより好ましく、1.0〜3.0nmがさらに好ましく、1.2〜2.5nmが特に好ましい。基材のRaが上記範囲内であれば、その上に形成される透明導電層の表面形状を適切に調整できるため、結晶化が生じ難くかつ低抵抗の透明導電層が得られ易くなる。算術平均粗さRaは、走査型プローブ顕微鏡(AFM)を用いた1μm四方のAFM観察像から求められる。 The arithmetic mean roughness Ra on the transparent conductive layer 21 formation surface side of the transparent plastic film substrate 11 is preferably 0.5 to 5.0 nm, more preferably 0.6 to 3.5 nm, and 1.0 to 3.0 nm. Is more preferable, and 1.2 to 2.5 nm is particularly preferable. When the Ra of the base material is within the above range, the surface shape of the transparent conductive layer formed thereon can be appropriately adjusted, so that a crystallization hardly occurs and a transparent conductive layer having a low resistance is easily obtained. The arithmetic average roughness Ra is obtained from an AFM observation image of 1 μm square using a scanning probe microscope (AFM).

透明プラスチックフィルム基材11の単位面積あたりの水分含有量は、15〜200μg/cmが好ましく、30〜190μg/cmがより好ましく、40〜170μg/cmがさらに好ましい。基材の水分量が上記範囲内であれば、結晶化が生じ難くかつ低抵抗の透明導電層が得られ易くなる。基材の水分が過度に小さいと環境温度での透明導電層の結晶化が生じやすくなる傾向があり、基材の水分量が過度に大きいと透明導電層の比抵抗が高くなる傾向がある。水分含有量(μg/cm)は、JIS K 7251−B法(水分気化法)により求めた水分含有量から、単位面積あたりの水の含有量として算出できる。 Moisture content per unit area of the transparent plastic film substrate 11 is preferably 15~200μg / cm 2, more preferably 30~190μg / cm 2, more preferably 40~170μg / cm 2. When the water content of the base material is within the above range, crystallization is less likely to occur and a low-resistance transparent conductive layer is easily obtained. If the water content of the base material is too low, the transparent conductive layer tends to crystallize at ambient temperature, and if the water content of the base material is too high, the specific resistance of the transparent conductive layer tends to increase. The water content (μg/cm 2 ) can be calculated as the water content per unit area from the water content obtained by the JIS K 7251-B method (water vaporization method).

透明プラスチックフィルム基材11の厚みは特に限定されないが、一般に2〜500μm程度であり、20〜300μm程度が好ましい。なお、透明プラスチックフィルム基材の水分含有率は、材料の特性や保存環境(例えば、温度や湿度)に依存し、単位面積あたりの水分含有量は、厚みに概ね比例する。そのため、単位面積あたりの水分含有量が上記範囲内となるように、透明プラスチックフィルム基材の材料や保存環境および厚みが定められることが好ましい。 Although the thickness of the transparent plastic film substrate 11 is not particularly limited, it is generally about 2 to 500 μm, preferably about 20 to 300 μm. The water content of the transparent plastic film substrate depends on the characteristics of the material and the storage environment (for example, temperature and humidity), and the water content per unit area is approximately proportional to the thickness. Therefore, it is preferable that the material, the storage environment and the thickness of the transparent plastic film substrate are determined so that the water content per unit area falls within the above range.

透明プラスチックフィルム基材11は、易接着層や帯電防止層等を備えていてもよい。また、透明プラスチックフィルム基材11の背面側(透明導電層21形成面と反対側)には、ハードコート層や接着剤層等が設けられていてもよい。 The transparent plastic film substrate 11 may include an easily adhesive layer, an antistatic layer, or the like. Further, a hard coat layer, an adhesive layer, or the like may be provided on the back side of the transparent plastic film substrate 11 (the side opposite to the surface on which the transparent conductive layer 21 is formed).

透明プラスチックフィルム基材11と透明導電層21との間には、アンダーコート層(不図示)が形成されていてもよい。アンダーコート層は、透明性を有し、表面抵抗が1×10Ω/□以上の誘電体層である。アンダーコート層の材料としては、無機物や、アクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマー、有機シラン縮合物等の有機物、あるいは無機物と上記有機物の混合物が挙げられ、真空蒸着法、スパッタ法、イオンプレーティング法等のドライコーティング法、およびウェットコーティング法(塗布法)等により形成できる。 An undercoat layer (not shown) may be formed between the transparent plastic film substrate 11 and the transparent conductive layer 21. The undercoat layer is a dielectric layer having transparency and a surface resistance of 1×10 6 Ω/□ or more. Examples of the material of the undercoat layer include an inorganic material, an acrylic resin, a urethane resin, a melamine resin, an alkyd resin, a siloxane polymer, an organic material such as an organic silane condensate, or a mixture of the inorganic material and the above organic material, a vacuum vapor deposition method, It can be formed by a dry coating method such as a sputtering method or an ion plating method, and a wet coating method (application method).

アンダーコート層は、透明導電層成膜時の下地となり、基材から発生する水分や有機ガスを遮断する作用や、基材の表面平滑化作用を有する。上述のように、基材の水分量や表面粗さを所定範囲内とすることにより、透明導電層の結晶化抑制と低抵抗化を両立できるが、基材上にアンダーコート層が存在すると、これらの作用が失われる場合がある。そのため、本発明の透明導電性フィルムは、透明プラスチックフィルム基材の透明導電層21を形成する側の面、すなわち透明プラスチックフィルム基材11と透明導電層21との間に、アンダーコート層を備えず、透明プラスチックフィルム基材11と透明導電層21とが直接接していることが好ましい。透明プラスチックフィルム基材11と透明導電層21との間にアンダーコート層が存在する場合は、アンダーコート層表面の算術平均粗さRaが上記範囲であることが好ましい。また、アンダーコート層が存在する場合でも、基材から発生する水分等を遮断しないためには、ウェットコーティング法によりアンダーコート層が形成されることが好ましい。 The undercoat layer serves as a base during film formation of the transparent conductive layer, and has an effect of blocking moisture and organic gas generated from the base material and a function of smoothing the surface of the base material. As described above, by setting the water content and the surface roughness of the base material within a predetermined range, both crystallization suppression and low resistance of the transparent conductive layer can be achieved, but when an undercoat layer is present on the base material, These effects may be lost. Therefore, the transparent conductive film of the present invention is provided with an undercoat layer on the surface of the transparent plastic film substrate on which the transparent conductive layer 21 is formed, that is, between the transparent plastic film substrate 11 and the transparent conductive layer 21. Instead, it is preferable that the transparent plastic film substrate 11 and the transparent conductive layer 21 are in direct contact with each other. When the undercoat layer is present between the transparent plastic film substrate 11 and the transparent conductive layer 21, the arithmetic mean roughness Ra of the undercoat layer surface is preferably within the above range. Further, even when the undercoat layer is present, it is preferable to form the undercoat layer by a wet coating method in order not to block moisture and the like generated from the substrate.

<透明導電層>
透明プラスチックフィルム基材11上に透明導電層21を形成することにより、透明導電性フィルムが得られる。透明導電層21は、非晶質の金属酸化物層である。透明導電層21の膜厚は、30〜100nmである。透明導電層21の膜厚が上記範囲であれば、高透明性と低表面抵抗を両立できる。透明導電層21の膜厚は、40〜90nmが好ましく、45〜85nmがより好ましく、50〜80nmがさらに好ましい。
<Transparent conductive layer>
A transparent conductive film is obtained by forming the transparent conductive layer 21 on the transparent plastic film substrate 11. The transparent conductive layer 21 is an amorphous metal oxide layer. The film thickness of the transparent conductive layer 21 is 30 to 100 nm. When the film thickness of the transparent conductive layer 21 is within the above range, both high transparency and low surface resistance can be achieved. The thickness of the transparent conductive layer 21 is preferably 40 to 90 nm, more preferably 45 to 85 nm, further preferably 50 to 80 nm.

透明導電層21の構成材料は特に限定されず、例えばインジウム、錫、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウムおよびタングステンからなる群から選択される1種の金属(又は半金属)の酸化物が用いられる。低抵抗化の観点から、透明導電層を構成する金属酸化物は、複数の金属酸化物の複合体が好ましく、中でも、酸化インジウムを主成分とする複合金属酸化物が好ましい。高透明性と低抵抗とを両立する観点からは、インジウムスズ複合酸化物(ITO)が特に好ましい。 The constituent material of the transparent conductive layer 21 is not particularly limited, and is selected from the group consisting of, for example, indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium and tungsten. An oxide of one kind of metal (or metalloid) is used. From the viewpoint of reducing the resistance, the metal oxide forming the transparent conductive layer is preferably a composite of a plurality of metal oxides, and among them, a composite metal oxide containing indium oxide as a main component is preferable. From the viewpoint of achieving both high transparency and low resistance, indium tin composite oxide (ITO) is particularly preferable.

透明導電層がITOである場合、インジウムとスズの合計100重量部に対するスズの含有量は、8〜30重量部が好ましい。スズ含有量を8重量部以上とすることにより、低抵抗で、かつ非晶質状態を維持しやすい透明導電層が得られる。スズ含有量が30重量部以下であれば、透明導電層の光透過率が高くなる傾向がある。 When the transparent conductive layer is ITO, the content of tin is preferably 8 to 30 parts by weight based on 100 parts by weight of the total of indium and tin. By setting the tin content to 8 parts by weight or more, a transparent conductive layer having a low resistance and easily maintaining an amorphous state can be obtained. When the tin content is 30 parts by weight or less, the light transmittance of the transparent conductive layer tends to increase.

透明導電層21は、比抵抗が6×10−4Ω・cm以下であり、好ましくは5.8×10−4Ω・cm以下である。透明導電層を低抵抗化する観点において、比抵抗は低いほど好ましいが、非晶質の透明導電層の比抵抗は、一般に2.8×10−4Ω・cm以上である。透明導電層の非晶質状態を維持するためには、透明導電層の比抵抗は、3.0×10−4Ω・cm以上が好ましく、3.5×10−4Ω・cm以上がより好ましい。透明導電層21の表面抵抗は、170Ω/□以下が好ましく、150Ω/□以下がより好ましく、120Ω/□以下がさらに好ましく、100Ω/□以下が特に好ましく、90Ω/□以下が最も好ましい。透明導電層の表面抵抗が小さければ、電界印加時の面内電位差が小さくなり、調光素子の電圧印加時における光の透過・散乱状態が面内で均一となる。面内電位の均一性を高める観点から、透明導電層の抵抗は小さいほど好ましいが、表面抵抗を小さくするためには、透明導電層の厚みを大きくする必要があり、透明性が損なわれる場合がある。そのため、透明導電層の表面抵抗は、一般には、20Ω/□以上であり、好ましくは30Ω/□以上である。 The specific resistance of the transparent conductive layer 21 is 6×10 −4 Ω·cm or less, and preferably 5.8×10 −4 Ω·cm or less. From the viewpoint of lowering the resistance of the transparent conductive layer, the lower the specific resistance, the more preferable. However, the specific resistance of the amorphous transparent conductive layer is generally 2.8×10 −4 Ω·cm or more. In order to maintain the amorphous state of the transparent conductive layer, the specific resistance of the transparent conductive layer is preferably 3.0×10 −4 Ω·cm or more, and more preferably 3.5×10 −4 Ω·cm or more. preferable. The surface resistance of the transparent conductive layer 21 is preferably 170Ω/□ or less, more preferably 150Ω/□ or less, further preferably 120Ω/□ or less, particularly preferably 100Ω/□ or less, and most preferably 90Ω/□ or less. When the surface resistance of the transparent conductive layer is small, the in-plane potential difference when an electric field is applied becomes small, and the light transmission/scattering state when a voltage is applied to the light control element becomes uniform in the surface. From the viewpoint of increasing the uniformity of the in-plane potential, the smaller the resistance of the transparent conductive layer, the more preferable, but in order to reduce the surface resistance, it is necessary to increase the thickness of the transparent conductive layer, which may impair the transparency. is there. Therefore, the surface resistance of the transparent conductive layer is generally 20Ω/□ or more, preferably 30Ω/□ or more.

透明導電性フィルム1を80℃で240時間加熱した際に、加熱前後での透明導電層21の抵抗変化率の絶対値は、55%以下が好ましく、50%以下がより好ましく、40%以下が更に好ましく、30%以下が特に好ましく、20%以下が最も好ましい。抵抗変化率は、下記式により求められる。
抵抗変化率(%)={(加熱後の表面抵抗/加熱前の表面抵抗)−1}×100
When the transparent conductive film 1 is heated at 80° C. for 240 hours, the absolute value of the resistance change rate of the transparent conductive layer 21 before and after heating is preferably 55% or less, more preferably 50% or less, and 40% or less. More preferably, 30% or less is particularly preferable, and 20% or less is most preferable. The rate of resistance change is calculated by the following formula.
Resistance change rate (%)={(surface resistance after heating/surface resistance before heating)-1}×100

加熱による抵抗変化が小さければ、透明導電層21の抵抗の経時的な変化が小さく、信頼性に優れる調光素子が得られる。前述のように、金属酸化物は、加熱により結晶化が促進される傾向があり、金属酸化物の結晶化に伴って、透明導電層の抵抗率および表面抵抗は大幅に低下する。そのため、透明導電層21は、80℃で240時間加熱後も非晶質状態を維持していることが好ましい。 If the change in resistance due to heating is small, the change in resistance of the transparent conductive layer 21 with time is small, and a light control element having excellent reliability can be obtained. As described above, the crystallization of the metal oxide tends to be promoted by heating, and the resistivity and the surface resistance of the transparent conductive layer are significantly reduced with the crystallization of the metal oxide. Therefore, it is preferable that the transparent conductive layer 21 maintain an amorphous state even after being heated at 80° C. for 240 hours.

透明導電層が非晶質であるか結晶質であるかは、透明導電性フィルムを酸に浸漬後、端子間抵抗を測定することにより判定できる。酸としては、非晶質の金属酸化物を溶解し、結晶質の金属酸化物を溶解しないものが用いられる。例えば、金属酸化物がITOである場合、濃度5wt%の塩酸に15分間浸漬後、水洗・乾燥し、端子間抵抗を測定すればよい。非晶質のITOは塩酸によりエッチングされて消失するために、塩酸への浸漬により抵抗が増大する。金属酸化物がITOである場合、塩酸への浸漬・水洗・乾燥後に、15mm間の端子間抵抗が10kΩを超える場合に、透明導電層が非晶質であると判定できる。 Whether the transparent conductive layer is amorphous or crystalline can be determined by immersing the transparent conductive film in an acid and then measuring the resistance between terminals. As the acid, an acid that dissolves an amorphous metal oxide but does not dissolve a crystalline metal oxide is used. For example, when the metal oxide is ITO, it may be immersed in hydrochloric acid having a concentration of 5 wt% for 15 minutes, washed with water and dried to measure the resistance between terminals. Since amorphous ITO is etched by hydrochloric acid and disappears, immersion in hydrochloric acid increases the resistance. When the metal oxide is ITO, it can be determined that the transparent conductive layer is amorphous when the resistance between terminals for 15 mm exceeds 10 kΩ after immersion in hydrochloric acid, washing with water, and drying.

透明導電層21の算術平均粗さRaは、0.8〜5.5nmが好ましく、0.9〜4.0nmがより好ましく、1.0〜3.5nmがさらに好ましく、1.1〜3.0nmが特に好ましい。Raが上記範囲内であれば、透明導電層が結晶化し難く、かつ低抵抗となる傾向がある。Raが過度に小さいと環境温度での透明導電層の結晶化が生じやすくなる傾向があり、Raが過度に大きいと透明導電層の比抵抗が高くなる傾向がある。透明導電層の表面粗さは、透明導電層の成膜条件や、成膜下地となる透明プラスチックフィルム基材の表面粗さに依存する。スパッタリング法では、下地の形状を踏襲した薄膜が形成されやすいため、透明導電層がスパッタリング法により成膜される場合、透明導電層のRaは、特に透明プラスチックフィルム基材のRaに依存する。そのため、透明導電層のRaを上記範囲とするためには、透明プラスチックフィルム基材のRaを前述の範囲とすることが好ましい。 The arithmetic mean roughness Ra of the transparent conductive layer 21 is preferably 0.8 to 5.5 nm, more preferably 0.9 to 4.0 nm, further preferably 1.0 to 3.5 nm, and 1.1 to 3. 0 nm is particularly preferred. When Ra is in the above range, the transparent conductive layer is less likely to be crystallized and tends to have low resistance. If Ra is too small, crystallization of the transparent conductive layer tends to occur at ambient temperature, and if Ra is too large, the specific resistance of the transparent conductive layer tends to increase. The surface roughness of the transparent conductive layer depends on the film forming conditions of the transparent conductive layer and the surface roughness of the transparent plastic film substrate which is a film forming base. In the sputtering method, a thin film that follows the shape of the base is likely to be formed. Therefore, when the transparent conductive layer is formed by the sputtering method, Ra of the transparent conductive layer particularly depends on Ra of the transparent plastic film substrate. Therefore, in order to set Ra of the transparent conductive layer in the above range, Ra of the transparent plastic film substrate is preferably set in the above range.

透明導電層21の形成方法は特に限定されず、真空蒸着法、スパッタリング法、イオンプレーティング法等の各種成膜方法を採用できる。中でも、膜厚が均一な金属酸化物薄膜を形成しやすいことから、スパッタリング方が好ましい。スパッタリング法としては、DC電源を用いた標準的なマグネトロンスパッタ法だけでなく、RFスパッタ法、RF+DCスパッタ法、パルススパッタ法、デュアルマグネトロンスパッタ法等の種々のスパッタ方式を採用できる。 The method for forming the transparent conductive layer 21 is not particularly limited, and various film forming methods such as a vacuum vapor deposition method, a sputtering method and an ion plating method can be adopted. Above all, the sputtering method is preferable because it is easy to form a metal oxide thin film having a uniform film thickness. As the sputtering method, not only a standard magnetron sputtering method using a DC power source but also various sputtering methods such as an RF sputtering method, an RF+DC sputtering method, a pulse sputtering method and a dual magnetron sputtering method can be adopted.

スパッタターゲットとしては、金属ターゲット(例えばIn‐Snターゲット)および金属酸化物ターゲット(例えばIn‐SnOターゲット)のいずれも使用できる。膜中の酸素量を一定に保ち、膜質を均一に保持しやすいことから、金属酸化物ターゲットが好ましく用いられる As the sputter target, both a metal target (for example, In—Sn target) and a metal oxide target (for example, In 2 O 3 —SnO 2 target) can be used. A metal oxide target is preferably used because it keeps the amount of oxygen in the film constant and easily keeps the film quality uniform.

透明導電層のスパッタ成膜に際しては、成膜開始前に、スパッタ装置内を排気して、水分や基材から発生する有機ガス等の不純物を取り除いた雰囲気とすることが好ましい。水や有機分子が存在すると、透明導電層の抵抗変化率が大きくなり、信頼性が低下する傾向がある。一方、透明導電層中の水や有機分子は、金属酸化物の結晶化を阻害する作用があるため、微量の水や有機分子の存在下でスパッタ成膜が行われることが好ましい。そのため、スパッタ成膜開始前のスパッタ装置内の真空度(到達真空度)は、8×10−2Pa以下が好ましく、3×10−4Pa〜6×10−2Paがより好ましく、5×10−4〜5×10−3Paがさらに好ましい。 When the transparent conductive layer is formed by sputtering, it is preferable that the inside of the sputtering apparatus be evacuated to remove the impurities such as water and organic gas generated from the substrate before starting the film formation. The presence of water or organic molecules tends to increase the resistance change rate of the transparent conductive layer and reduce the reliability. On the other hand, since water and organic molecules in the transparent conductive layer have an effect of inhibiting crystallization of the metal oxide, it is preferable to perform sputter film formation in the presence of a trace amount of water and organic molecules. Therefore, the degree of vacuum (achievement degree of vacuum) in the sputtering apparatus before the start of sputtering film formation is preferably 8×10 −2 Pa or less, more preferably 3×10 −4 Pa to 6×10 −2 Pa, and 5× 10< -4 >-5*10< -3 >Pa is more preferable.

真空排気したスパッタ装置内に、アルゴン等の不活性ガスおよび酸素を導入しながらスパッタ成膜が行われる。スパッタ成膜時の基板温度は−20℃〜150℃が好ましく、−10℃〜100℃がより好ましく、0℃〜70℃がさらに好ましい。基板温度が高すぎると、基材の熱変形や、熱しわによる外観不良を生じやすい。また、基板温度が高すぎると、金属酸化物が結晶化しやすくなるため、非晶質状態の保持が困難となる場合がある。一方、基材温度が低すぎると、透明導電層の膜質の低下を招く場合がある。 Sputter film formation is performed while introducing an inert gas such as argon and oxygen into the evacuated sputtering apparatus. The substrate temperature during the sputtering film formation is preferably −20° C. to 150° C., more preferably −10° C. to 100° C., and further preferably 0° C. to 70° C. If the substrate temperature is too high, the base material is likely to be deformed by heat or the appearance thereof is poor due to heat wrinkles. On the other hand, if the substrate temperature is too high, the metal oxide is likely to crystallize, which may make it difficult to maintain the amorphous state. On the other hand, when the substrate temperature is too low, the film quality of the transparent conductive layer may be deteriorated.

不活性ガスに対する酸素の導入量は0.1体積%〜10体積%が好ましく、1体積%〜6体積%がより好ましい。また、成膜時の圧力は、0.08Pa〜1Paが好ましく、0.2Pa〜0.8Paがより好ましい。成膜圧力が高すぎると成膜速度が低下する傾向があり、逆に圧力が低すぎると放電が不安定となる傾向がある。 The amount of oxygen introduced into the inert gas is preferably 0.1% by volume to 10% by volume, more preferably 1% by volume to 6% by volume. The pressure during film formation is preferably 0.08 Pa to 1 Pa, and more preferably 0.2 Pa to 0.8 Pa. If the film formation pressure is too high, the film formation rate tends to decrease, and conversely, if the pressure is too low, the discharge tends to be unstable.

スパッタ成膜時の酸素導入量を調整することにより、光透過率が高く、かつ膜厚が大きくても環境温度での結晶化が生じ難い透明導電層を成膜できる。図2は、ITO透明導電層成膜時の酸素導入量と、成膜直後の透明導電層の比抵抗および波長380nmにおける吸光係数の関係を表すグラフである。 By adjusting the amount of oxygen introduced during sputtering film formation, it is possible to form a transparent conductive layer which has a high light transmittance and is hard to be crystallized at ambient temperature even if the film thickness is large. FIG. 2 is a graph showing the relationship between the amount of oxygen introduced during film formation of the ITO transparent conductive layer, the specific resistance of the transparent conductive layer immediately after film formation, and the extinction coefficient at a wavelength of 380 nm.

酸素導入量が少ない場合(図2Aの領域X)は、金属酸化物中の酸素量が化学量論組成よりも少なく多数の酸素欠損が存在し、相対的に金属的組成に近くなる。酸素導入量を増加させると、比抵抗が極小値をとる領域(図2Aの領域Y:ボトム領域)が存在し、さらに酸素導入量を増加させると比抵抗は再び上昇する(図2Aの領域Z:酸素過剰領域)。 When the amount of oxygen introduced is small (region X in FIG. 2A), the amount of oxygen in the metal oxide is smaller than the stoichiometric composition, and a large number of oxygen vacancies are present, which is relatively close to the metallic composition. When the oxygen introduction amount is increased, there is a region where the specific resistance takes a minimum value (region Y in FIG. 2A: bottom region), and when the oxygen introduction amount is further increased, the specific resistance increases again (region Z in FIG. 2A). : Excess oxygen region).

一方、図2Bに示すように、透明導電層の吸光係数は、酸素導入量の増加に伴って単調減少する傾向がある。これは、酸素量が少ない領域では金属酸化物が酸素不足の状態で、多数の酸素欠損を有し、金属的な特性を示すのに対して、酸素量の増大に伴って完全酸化物に近付くためである。 On the other hand, as shown in FIG. 2B, the extinction coefficient of the transparent conductive layer tends to monotonically decrease as the amount of oxygen introduced increases. This is because the metal oxide has a large number of oxygen vacancies in the oxygen-deficient region and has a large number of oxygen vacancies in the region where the oxygen content is low, and the metal oxide approaches a perfect oxide as the oxygen content increases. This is because.

本発明者らの検討によると、導入酸素量の増大に伴い透明導電層の金属酸化物が結晶化し難く非晶質状態を維持できる傾向があることが確認された。これは、酸素欠損が少なく、非晶質状態の金属酸化物の構造が安定しているために、コンフォメーション変化が生じ難く、金属酸化物が非晶質から結晶質に転化するための活性化エネルギーが大きくなるためであると考えられる。 According to the study by the present inventors, it was confirmed that the metal oxide in the transparent conductive layer is less likely to crystallize and the amorphous state tends to be maintained as the amount of introduced oxygen increases. This is because the oxygen deficiency is small and the structure of the metal oxide in an amorphous state is stable, so that it is difficult for the conformational change to occur, and activation for converting the metal oxide from amorphous to crystalline is difficult. It is thought that this is because the energy becomes large.

一方、成膜時の酸素導入量が過度に大きい場合(図2Aの領域Z)、金属酸化物中の酸素欠損が少ないために、キャリア密度が小さく、透明導電層の比抵抗が高くなる傾向がある。また、酸素導入量が過剰であると、加熱による抵抗変化率が大きくなる傾向があり、信頼性が低下する傾向がある。 On the other hand, when the amount of oxygen introduced during film formation is excessively large (region Z in FIG. 2A), the carrier density tends to be low and the specific resistance of the transparent conductive layer tends to be high because oxygen deficiency in the metal oxide is small. is there. If the amount of oxygen introduced is excessive, the rate of resistance change due to heating tends to increase, and reliability tends to decrease.

そのため、本発明においては、成膜直後の透明導電層の比抵抗が極小値となる付近(ボトム領域)の酸素導入量で、透明導電層の成膜を行うことが好ましい。ボトム領域の酸素導入量は、ターゲットの組成や、装置の特性、成膜温度、成膜圧力等により異なる。そのため、酸素導入量の範囲を一概に特定することは困難であるが、酸素導入量以外の条件を一定として、酸素導入量を変化させて成膜を行い、図2Aに示すように酸素導入量と比抵抗との関係を調べることにより、最適な酸素導入量を見出すことができる。 Therefore, in the present invention, it is preferable to form the transparent conductive layer with the amount of oxygen introduced in the vicinity (bottom region) of the minimum value of the specific resistance of the transparent conductive layer immediately after the film formation. The amount of oxygen introduced into the bottom region varies depending on the composition of the target, the characteristics of the apparatus, the film forming temperature, the film forming pressure, and the like. Therefore, it is difficult to unambiguously specify the range of the oxygen introduction amount, but the conditions other than the oxygen introduction amount are kept constant and the oxygen introduction amount is changed to form a film. As shown in FIG. The optimum amount of oxygen introduced can be found by investigating the relationship between and the specific resistance.

基材上に成膜される非晶質透明導電層は、キャリア密度が2.90×1020/cm〜4.80×1020/cmであることが好ましく、3.00×1020/cm〜4.60×1020/cmであることがより好ましく、3.10×1020/cm〜4.50×1020/cmであることがより好ましく3.20×1020/cm〜4.30×1020/cmであることがより好ましい。キャリア密度が上記範囲を下回ると、比抵抗が高くなるとともに、加熱による抵抗変化率が大きくなる傾向がある。一方、キャリア密度が上記範囲を上回ると、環境温度で非晶質膜が結晶質に転化しやすくなる傾向がある。 The amorphous transparent conductive layer formed on the base material preferably has a carrier density of 2.90×10 20 /cm 3 to 4.80×10 20 /cm 3 , and 3.00×10 20. /Cm 3 to 4.60×10 20 /cm 3 is more preferable, and 3.10×10 20 /cm 3 to 4.50×10 20 /cm 3 is more preferable and 3.20×10 3. More preferably, it is 20 /cm 3 to 4.30×10 20 /cm 3 . If the carrier density is below the above range, the specific resistance tends to be high and the rate of resistance change due to heating tends to be high. On the other hand, when the carrier density exceeds the above range, the amorphous film tends to be converted to crystalline at ambient temperature.

キャリア密度を上記範囲とするためには、透明導電層成膜時の酸素導入量を上記のボトム領域で調整すればよい。逆に、透明導電層のキャリア密度が上記範囲内となるように、成膜時の酸素導入量を調整してもよい。 In order to set the carrier density in the above range, the amount of oxygen introduced during film formation of the transparent conductive layer may be adjusted in the above bottom region. Conversely, the amount of oxygen introduced during film formation may be adjusted so that the carrier density of the transparent conductive layer falls within the above range.

<透明導電性フィルムの光学特性>
透明導電性フィルムは、全光線透過率が79%以上であることが好ましい。透明導電層の膜厚が100nm以下であり、かつキャリア密度が上記範囲であれば、透明導電層による光吸収を抑制し、全光線透過率を高めることができる。
<Optical properties of transparent conductive film>
The transparent conductive film preferably has a total light transmittance of 79% or more. When the film thickness of the transparent conductive layer is 100 nm or less and the carrier density is in the above range, light absorption by the transparent conductive layer can be suppressed and the total light transmittance can be increased.

透明導電性フィルムの透明導電層21側から標準光(D65光源)を照射した際の反射光の色相のbは−10〜4が好ましく、−8〜1がより好ましく、−7〜0がさらに好ましい。色相bの符号+は黄色方向、符号−は青色方向を表し、bが大きいと反射光が黄色みがかり、意匠性に劣る。そのため、反射光の色相bは、マイナス側であることが好ましい。 The hue b * of the reflected light when the standard light (D65 light source) is irradiated from the transparent conductive layer 21 side of the transparent conductive film is preferably -10 to 4, more preferably -8 to 1, and -7 to 0. More preferable. The sign + of the hue b * represents the yellow direction, and the sign − of the hue b * represents the blue direction. When b * is large, the reflected light becomes yellowish and the design is poor. Therefore, the hue b * of the reflected light is preferably on the negative side.

反射光の色相は、透明導電層の膜質によっても調整できるが、膜厚による影響が大きい。これは、透明導電層21の表面での反射光と、透明導電層21と透明プラスチックフィルム基材11との界面での反射光との位相の差が、透明導電層の光学膜厚に依存し、これに伴う多重反射干渉の相違によって、反射光の色相が大きく変化するためである。 The hue of reflected light can be adjusted by the film quality of the transparent conductive layer, but the film thickness has a large effect. This is because the phase difference between the reflected light at the surface of the transparent conductive layer 21 and the reflected light at the interface between the transparent conductive layer 21 and the transparent plastic film substrate 11 depends on the optical film thickness of the transparent conductive layer. This is because the hue of reflected light changes significantly due to the difference in multiple reflection interference that accompanies this.

反射光のbを上記範囲とするためには、透明導電層の光学膜厚(波長550nmにおける屈折率と膜厚の積)が、110〜160nmであることが好ましく、120〜155nmであることがより好ましい。透明導電層がITOである場合、非晶質ITOの屈折率は約2.0であるから、反射光のbを上記範囲とするために、膜厚は55nm〜75nm程度が好ましい。 In order for b * of the reflected light to fall within the above range, the optical film thickness (product of the refractive index and the film thickness at a wavelength of 550 nm) of the transparent conductive layer is preferably 110 to 160 nm, and 120 to 155 nm. Is more preferable. When the transparent conductive layer is ITO, the refractive index of amorphous ITO is about 2.0. Therefore, the film thickness is preferably about 55 nm to 75 nm so that b * of the reflected light falls within the above range.

[調光フィルムおよび調光素子]
本発明の透明導電性フィルムは、電界駆動型調光素子の電極基板として用いられる。図3は、電界駆動型調光素子の一実施形態を示す模式的断面図である。調光素子5は、一対の電極基板1,2の間に調光層50を備える。電極基板1,2のそれぞれは、基材11、12上に透明導電層21,22を備え、透明導電層21,22同士が対向するように配置され、その間に調光層50が挟持されている。
[Light control film and light control element]
The transparent conductive film of the present invention is used as an electrode substrate of an electric field drive type light control device. FIG. 3 is a schematic sectional view showing an embodiment of the electric field drive type light control device. The light control element 5 includes a light control layer 50 between the pair of electrode substrates 1 and 2. Each of the electrode substrates 1 and 2 includes transparent conductive layers 21 and 22 on the base materials 11 and 12, and the transparent conductive layers 21 and 22 are arranged so as to face each other, and the light control layer 50 is sandwiched therebetween. There is.

図3に示す形態では、一対の透明導電性フィルム1,2間に調光層50が挟持された調光フィルム70が、ガラス基板31,32の間に配置されている。電界駆動型調光素子は、一方の透明導電性フィルム1として、本発明の透明導電性フィルムを備える。他方の透明導電性フィルムは、本発明の透明導電性フィルムでもよく、他の透明導電性フィルムでもよい。また、一方の電極基板として本発明の透明導電性フィルム1を用いていれば、他方の電極基板は、ガラス基板上に電極層を備える電極ガラスでもよい。 In the form shown in FIG. 3, the light control film 70 in which the light control layer 50 is sandwiched between the pair of transparent conductive films 1 and 2 is arranged between the glass substrates 31 and 32. The electric field drive type light control device includes the transparent conductive film of the present invention as one transparent conductive film 1. The other transparent conductive film may be the transparent conductive film of the present invention or another transparent conductive film. Further, if the transparent conductive film 1 of the present invention is used as one electrode substrate, the other electrode substrate may be electrode glass having an electrode layer on the glass substrate.

調光フィルムは、透明導電性フィルム1の透明導電層21上に、調光層50を形成することにより作製できる。さらに、調光層50上に、他の透明導電性フィルム2を配置して、一対の透明導電性フィルムの透明導電層間に調光層を備える調光フィルム70として提供することもできる。 The light control film can be produced by forming the light control layer 50 on the transparent conductive layer 21 of the transparent conductive film 1. Further, another transparent conductive film 2 may be disposed on the light control layer 50 to provide the light control film 70 including the light control layer between the transparent conductive layers of the pair of transparent conductive films.

調光素子は、一対の電極基板の透明導電層を、電源7と接続することにより形成される。電源7のオン・オフ(あるいは、不図示のスイッチのオン・オフ)等に伴って、透明導電層の間に挟持された調光層への電界のオン・オフ、あるいは電界の大きさが調整され、光の透過状態や散乱状態が制御される。 The light control element is formed by connecting the transparent conductive layers of the pair of electrode substrates to the power supply 7. The power field 7 is turned on/off (or a switch (not shown) is turned on/off), and the electric field to the light control layer sandwiched between the transparent conductive layers is turned on/off or the magnitude of the electric field is adjusted. The light transmission state and light scattering state are controlled.

調光層50は、電界の印加の有無により、光の透過状態および/または散乱状態が変化する調光材料により構成される。このような調光材料としては、電界の有無により分子の配向状態が変化する材料(例えば液晶材料)や、電界の有無により光の吸収状態が変化するエレクトロクロミック材料が用いられる。 The light control layer 50 is made of a light control material whose light transmission state and/or light scattering state changes depending on whether or not an electric field is applied. As such a light control material, a material whose molecular orientation changes depending on the presence or absence of an electric field (for example, a liquid crystal material) and an electrochromic material whose light absorption changes depending on the presence or absence of an electric field are used.

液晶材料が用いられる場合、その材料は特に限定されないが、例えば、多数の空孔を有する透明な樹脂マトリクスの空孔内に、ポリマーの屈折率と同じ常光屈折率を有するネマチック液晶分子が充填された液晶カプセルを有する調光層が用いられる。この調光層は、電界オフ時は、各液晶カプセル内で、ネマチック液晶分子がカプセルの内壁に沿って整列しているため、分子の配向方向が不均一であるために、樹脂マトリクスと液晶カプセルとの界面で光が散乱し、調光素子は不透明となる。 When a liquid crystal material is used, the material is not particularly limited, but for example, the pores of a transparent resin matrix having a large number of pores are filled with nematic liquid crystal molecules having the ordinary refractive index similar to that of the polymer. A light control layer having a liquid crystal capsule is used. When the electric field is turned off, the nematic liquid crystal molecules are aligned along the inner wall of the capsule in each liquid crystal capsule when the electric field is off. Light is scattered at the interface with and the dimmer becomes opaque.

透明導電層21,22の間に電界が印加されると、各液晶カプセル内のネマチック液晶分子は電界の方向と平行に整列する。調光層内のネマチック液晶分子の常光屈折率と樹脂マトリクスの屈折率は同じであるため、樹脂マトリクスと液晶カプセルとの界面での光の散乱は生じず、調光素子は透明となる。 When an electric field is applied between the transparent conductive layers 21 and 22, the nematic liquid crystal molecules in each liquid crystal capsule are aligned parallel to the direction of the electric field. Since the ordinary refractive index of the nematic liquid crystal molecules and the refractive index of the resin matrix in the light control layer are the same, light is not scattered at the interface between the resin matrix and the liquid crystal capsule, and the light control element becomes transparent.

なお、液晶材料として、電界オフ時にコレステリック配向している液晶を用いてもよい。また、電界の有無により分子の配向状態が変化する材料は、液晶材料に限定されず、ポリヨウ化物、炭素繊維、カーボンナノファイバー等の無機繊維、カーボンナノチューブ、フタロシアニン等の二色材料を用いてもよい。 As the liquid crystal material, liquid crystal that is cholesterically aligned when the electric field is off may be used. Further, the material whose molecular orientation changes depending on the presence or absence of an electric field is not limited to a liquid crystal material, and inorganic fibers such as polyiodide, carbon fiber and carbon nanofiber, and dichroic materials such as carbon nanotube and phthalocyanine may be used. Good.

エレクトロクロミック材料は、電界の有無により、可逆的に酸化還元反応を生じる材料であり、酸化還元に伴って、材料による光の吸収率あるいは反射率が変化する。エレクトロクロミック材料としては、無機エレクトロクロミック化合物、および有機エレクトロクロミック化合物のいずれも利用できる。また、エレクトロクロミック材料層に隣接して、電解質層等を設けることにより、エレクトロクロミック化合物の酸化・還元を行うこともできる。 An electrochromic material is a material that reversibly causes a redox reaction depending on the presence or absence of an electric field, and the light absorption rate or reflectance of the material changes with the redox. As the electrochromic material, both an inorganic electrochromic compound and an organic electrochromic compound can be used. Further, the electrochromic compound can be oxidized/reduced by providing an electrolyte layer or the like adjacent to the electrochromic material layer.

図3に示すように、調光フィルム70がガラス基板31,32等と組み合わせて用いられる場合、調光フィルムは、ガラス基板間に単に挟持して配置してもよく、適宜の接着剤を介して貼り合わせられていてもよい。設置作業の容易性や、位置ズレ防止の観点からは、ガラス基板と調光フィルムとが接着剤を介して貼り合わせられることが好ましい。 As shown in FIG. 3, when the light control film 70 is used in combination with the glass substrates 31, 32, etc., the light control film may be simply sandwiched between the glass substrates and arranged with an appropriate adhesive. It may be pasted together. From the viewpoint of ease of installation work and prevention of positional deviation, it is preferable that the glass substrate and the light control film are bonded together via an adhesive.

接着剤としては、粘着剤が好ましく用いられる。透明導電性フィルム1,2の透明プラスチックフィルム基材11,12上に予め粘着剤を付設しておくことで、ガラス基板と透明導電性フィルムとの貼り合わせ、あるいはガラス基板と調光フィルムとの貼り合わせを容易に行うことができる。粘着剤としては、アクリル系粘着剤等の透明性に優れるものが好ましく用いられる。 An adhesive is preferably used as the adhesive. By attaching an adhesive to the transparent plastic film substrates 11 and 12 of the transparent conductive films 1 and 12 in advance, the glass substrate and the transparent conductive film are bonded together or the glass substrate and the light control film are bonded together. The bonding can be easily performed. As the pressure-sensitive adhesive, one having excellent transparency such as an acrylic pressure-sensitive adhesive is preferably used.

以下に、実施例を挙げて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

[実施例、比較例で用いた測定方法]
<基材の水分量>
フィルム基材の水分量は、面積10cmのフィルム基材に含まれる水分量をJIS K 7251−B法(水分気化法)に準じて測定し、1cmあたりの水分量を算出した。なお、基材の透明導電層形成面側にアンダーコート層を備えるものは、アンダーコート層形成後の表面の算術平均粗さおよび水分量を測定した。
[Measuring method used in Examples and Comparative Examples]
<Water content of base material>
Regarding the water content of the film substrate, the water content contained in the film substrate having an area of 10 cm 2 was measured according to JIS K 7251-B method (water vaporization method), and the water content per 1 cm 2 was calculated. In the case of the substrate having the undercoat layer on the transparent conductive layer formation surface side, the arithmetic mean roughness and the water content of the surface after the undercoat layer formation were measured.

<算出平均粗さ>
フィルム基材及び透明導電層の算術平均粗さRaは、走査型プローブ顕微鏡(セイコーインスツルメンツ製 SPI3800)を用いたAFM観察(観察面積:1μm)にて求めた。なお、基材の透明導電層形成面側にアンダーコート層を備えるものは、アンダーコート層形成後の表面の算術平均粗さをフィルム基材の粗さとして測定した。
<Calculated average roughness>
The arithmetic mean roughness Ra of the film substrate and the transparent conductive layer was determined by AFM observation (observation area: 1 μm 2 ) using a scanning probe microscope (SPI3800 manufactured by Seiko Instruments). In the case of a substrate having an undercoat layer on the transparent conductive layer forming surface side, the arithmetic mean roughness of the surface after the undercoat layer was formed was measured as the roughness of the film substrate.

<キャリア密度>
キャリア密度は、ホール効果測定システム(バイオラッド製 HL5500PC)を用いて測定した。
<Carrier density>
The carrier density was measured using a Hall effect measurement system (HL5500PC manufactured by Bio-Rad).

<表面抵抗および比抵抗>
抵抗率計(三菱化学アナリテック製 ロレスタGP MCP−T610)を用い、四探針法により表面抵抗を測定し、表面抵抗と膜厚との積から比抵抗を算出した。透明導電層の膜厚は透過型電子顕微鏡(日立ハイテク製、HF−2000)により、断面観察を行って測定した。
<Surface resistance and resistivity>
The surface resistance was measured by a four-point probe method using a resistivity meter (Loresta GP MCP-T610 manufactured by Mitsubishi Chemical Analytech), and the specific resistance was calculated from the product of the surface resistance and the film thickness. The film thickness of the transparent conductive layer was measured by observing a cross section with a transmission electron microscope (HF-2000, manufactured by Hitachi High-Tech).

<透明導電性フィルムの全光線透過率および反射光色相>
全光線透過率は、ヘイズメーター(スガ試験機製)を用いて、JIS K7105に準じて測定した。反射光のbは、透明導電層側から入射角2度で標準光(D65光源)を照射し、分光光度計(日立ハイテク製 U4100)を用いて測定した波長380〜780nmの反射光スペクトルから算出した。
<Total light transmittance and reflected light hue of transparent conductive film>
The total light transmittance was measured according to JIS K7105 using a haze meter (manufactured by Suga Test Instruments). The b * of the reflected light is obtained by irradiating the standard light (D65 light source) from the transparent conductive layer side at an incident angle of 2 degrees and measuring the reflected light spectrum of wavelength 380 to 780 nm using a spectrophotometer (U4100 manufactured by Hitachi High-Tech). It was calculated.

<加熱試験>
(抵抗変化率)
透明導電性フィルムを、80℃のオーブン内で240時間保持した後に取り出して、表面抵抗を測定した。抵抗変化率は、下記式により求めた。
抵抗変化率(%)={(加熱後の表面抵抗/加熱前の表面抵抗)−1}×100
抵抗変化率の符号+は加熱後に抵抗が上昇していることを意味し、符号−は加熱後に抵抗が低下していることを意味する。
<Heating test>
(Rate change rate)
The transparent conductive film was held in an oven at 80° C. for 240 hours and then taken out to measure the surface resistance. The rate of resistance change was determined by the following formula.
Resistance change rate (%)={(surface resistance after heating/surface resistance before heating)-1}×100
The sign + of the resistance change rate means that the resistance has increased after heating, and the sign − means that the resistance has decreased after heating.

(膜質)
加熱後の透明導電性フィルムを濃度5wt%の塩酸に15分間浸漬した後、水洗・乾燥し、15mm間の端子間抵抗をテスタにて測定した。端子間抵抗が10kΩを超えるもの(すなわち透明導電層の大部分が塩酸に溶解したもの)を非晶質、端子間抵抗が10kΩ以下のものを結晶質とした。
(Film quality)
The transparent conductive film after heating was immersed in hydrochloric acid having a concentration of 5 wt% for 15 minutes, washed with water and dried, and the resistance between terminals for 15 mm was measured with a tester. Amorphous ones having an inter-terminal resistance of more than 10 kΩ (that is, most of the transparent conductive layer dissolved in hydrochloric acid) were made amorphous, and ones having an inter-terminal resistance of 10 kΩ or less were made crystalline.

[実施例1]
ロールスパッタ装置内に、厚み188μmのポリエチレンテレフタレート(PET)フィルム(水分含有量:73μg/cm)のロールをセットし、スパッタ装置内を水分圧が2.0×10−3Paとなるまで排気した。その後、アルゴンガスおよび酸素ガスを導入し、酸化インジウム(90重量%)と酸化スズ(10重量%)の混合焼結ターゲットを用い、基材温度40℃、圧力0.4Paの条件でスパッタ成膜を行い、PETフィルム上に厚み65nmのITO膜を成膜した。なお、スパッタ成膜時の酸素導入量は、透明導電層の表面抵抗が最小となるように調整した(図2のy参照)。酸素導入量は、アルゴン100体積部に対して3.1体積部であった。
[Example 1]
A roll of polyethylene terephthalate (PET) film (water content: 73 μg/cm 2 ) having a thickness of 188 μm was set in the roll sputter device, and the sputter device was evacuated to a water pressure of 2.0×10 −3 Pa. did. After that, argon gas and oxygen gas are introduced, and a sputter deposition is performed under the conditions of a substrate temperature of 40° C. and a pressure of 0.4 Pa, using a mixed sintering target of indium oxide (90% by weight) and tin oxide (10% by weight). Then, an ITO film having a thickness of 65 nm was formed on the PET film. The amount of oxygen introduced during sputtering film formation was adjusted so that the surface resistance of the transparent conductive layer was minimized (see y 0 in FIG. 2). The amount of oxygen introduced was 3.1 parts by volume with respect to 100 parts by volume of argon.

[実施例2〜4]
成膜時のフィルム基材の搬送速度を変更することにより、透明導電層の成膜厚みを表1に示すように変更したこと以外は、実施例1と同様にして透明導電性フィルムを作製した。
[Examples 2 to 4]
A transparent conductive film was produced in the same manner as in Example 1 except that the film thickness of the transparent conductive layer was changed as shown in Table 1 by changing the transport speed of the film substrate during film formation. ..

[実施例5]
成膜時の酸素導入量を、透明導電層の表面抵抗が最小となる酸素導入量(図2のy)よりも10%増加させ、アルゴン100体積部に対して3.4体積部とした(図2のy参照)。それ以外は、実施例1と同様にして透明導電性フィルムを作製した。
[Example 5]
The amount of oxygen introduced at the time of film formation was increased by 10% from the amount of oxygen introduced (y 0 in FIG. 2) at which the surface resistance of the transparent conductive layer was minimum, and was 3.4 parts by volume with respect to 100 parts by volume of argon. (See y 1 in FIG. 2). A transparent conductive film was produced in the same manner as in Example 1 except for the above.

[比較例1]
成膜時の酸素導入量を、実施例5よりもさらに10%増加させた(図2のz参照。それ以外は、実施例1と同様にして透明導電性フィルムを作製した。
[Comparative Example 1]
The amount of oxygen introduced during film formation was further increased by 10% as compared with Example 5 (see z 1 in FIG. 2. Other than that, a transparent conductive film was produced in the same manner as in Example 1.

[比較例2]
成膜時のフィルム基材の搬送速度を変更することにより、透明導電層の成膜厚みを29nmに変更したこと以外は、実施例1と同様にして透明導電性フィルムを作製した。
[Comparative example 2]
A transparent conductive film was produced in the same manner as in Example 1 except that the film thickness of the transparent conductive layer was changed to 29 nm by changing the transport speed of the film substrate during film formation.

[比較例3]
厚み23μmのPETフィルムの一方の面に、アンダーコート層として、メラミン樹脂:アルキド樹脂:有機シラン縮合物の重量比2:2:1の熱硬化型樹脂を、厚みが30nmとなるように形成した。アンダーコート層が形成されたPETフィルム(水分含有量:8μg/cm、算術平均粗さ:0.5nm)のロールをロールスパッタ装置内にセットし、スパッタ装置内を水分圧が2.3×10−4Paとなるまで排気した。その後、アルゴンガスおよび酸素ガスを導入し、酸化インジウム(90重量%)と酸化スズ(10重量%)の混合焼結ターゲットを用い、基材温度140℃、圧力0.4Paの条件でスパッタ成膜を行い、PETフィルム上に厚み20nmのITO膜を成膜した。なお、スパッタ成膜時の酸素導入量は、透明導電層の表面抵抗が最小となる量(図2のy参照)の約半分に調整した。酸素導入量は、アルゴン100体積部に対して1.2体積部であった。
[Comparative Example 3]
A thermosetting resin having a weight ratio of 2:2:1 of melamine resin:alkyd resin:organosilane condensate was formed as an undercoat layer on one surface of a PET film having a thickness of 23 μm so as to have a thickness of 30 nm. .. A roll of a PET film (moisture content: 8 μg/cm 2 , arithmetic average roughness: 0.5 nm) on which an undercoat layer was formed was set in a roll sputtering device, and the water pressure inside the sputtering device was 2.3×. It was evacuated to 10 −4 Pa. After that, argon gas and oxygen gas are introduced, and a sputter deposition is performed under the conditions of a substrate temperature of 140° C. and a pressure of 0.4 Pa using a mixed sintering target of indium oxide (90% by weight) and tin oxide (10% by weight). Then, an ITO film having a thickness of 20 nm was formed on the PET film. The amount of oxygen introduced during sputtering film formation was adjusted to about half of the amount that the surface resistance of the transparent conductive layer was minimum (see y 0 in FIG. 2). The amount of oxygen introduced was 1.2 parts by volume with respect to 100 parts by volume of argon.

[比較例4]
成膜時のフィルムの搬送速度を変更することにより、透明導電層の成膜厚みを40nmに変更したこと以外は、比較例3と同様にして透明導電性フィルムを作製した。
[Comparative Example 4]
A transparent conductive film was produced in the same manner as in Comparative Example 3 except that the film thickness of the transparent conductive layer was changed to 40 nm by changing the transport speed of the film during film formation.

[評価結果]
上記各実施例および比較例の基材の特性、透明導電性フィルムの成膜条件、成膜直後の透明導電層の特性、加熱試験(80℃240時間加熱)後の特性、および透明導電性フィルムの光学特性を、表1に示す。
[Evaluation results]
Characteristics of the substrate of each of the above Examples and Comparative Examples, conditions for forming a transparent conductive film, properties of a transparent conductive layer immediately after film formation, properties after a heating test (heating at 80° C. for 240 hours), and a transparent conductive film. The optical characteristics of are shown in Table 1.

Figure 0006713079
Figure 0006713079

透明導電層成膜時の酸素導入量が過剰の比較例1では、実施例1に比べて透明導電層の比抵抗が高く、80℃240時間の加熱試験後の抵抗上昇が大きくなっていた。透明導電層成膜時の酸素導入量が少ない比較例3,4も、透明導電層の比抵抗が高くなっていた。また、比較例2は、実施例1と同様の条件で透明導電層の成膜が行われたが、透明導電層の膜厚が小さいために、表面抵抗が大幅に上昇していることが分かる。 In Comparative Example 1 in which the amount of oxygen introduced during film formation of the transparent conductive layer was excessive, the specific resistance of the transparent conductive layer was higher than that in Example 1, and the resistance increase after the heating test at 80° C. for 240 hours was large. Also in Comparative Examples 3 and 4 in which the amount of oxygen introduced during the formation of the transparent conductive layer was small, the specific resistance of the transparent conductive layer was high. Further, in Comparative Example 2, the transparent conductive layer was formed under the same conditions as in Example 1, but it can be seen that the surface resistance is significantly increased because the film thickness of the transparent conductive layer is small. ..

比較例3と比較例4は透明導電層の成膜条件が同一であるが、膜厚が20nmの比較例3では加熱試験後も透明導電層が非晶質状態を維持しているのに対して、膜厚が40nmの比較例4では加熱試験後の透明導電層が結晶化していた。そのため、比較例4では、加熱試験後の抵抗率が大幅に低下していた。これらの対比から、透明導電層の膜厚を増加させることにより表面抵抗を低くできるが、非晶質状態の維持が困難となる傾向があることが分かる。 Comparative Example 3 and Comparative Example 4 have the same film forming conditions for the transparent conductive layer, but in Comparative Example 3 having a film thickness of 20 nm, the transparent conductive layer maintains an amorphous state even after the heating test. In Comparative Example 4 having a film thickness of 40 nm, the transparent conductive layer after the heating test was crystallized. Therefore, in Comparative Example 4, the resistivity after the heating test was significantly reduced. From these comparisons, it can be understood that the surface resistance can be lowered by increasing the film thickness of the transparent conductive layer, but it tends to be difficult to maintain the amorphous state.

これに対して、実施例1〜5では、透明導電層成膜時の酸素量をボトム領域(図2Aの領域Y)とすることにより、比抵抗が低くかつ加熱試験後も非晶質状態を維持可能な透明導電性フィルムが得られていることが分かる。 On the other hand, in Examples 1 to 5, by setting the amount of oxygen during the formation of the transparent conductive layer in the bottom region (region Y in FIG. 2A), the specific resistance was low and the amorphous state was maintained even after the heating test. It can be seen that a sustainable transparent conductive film is obtained.

実施例1、実施例5、比較例1および比較例2の透明導電層のキャリア密度に着目すると、成膜時の酸素導入量の増加に伴ってキャリア密度が低下する傾向がみられる。これは、酸素導入量の増加に伴って、膜中の酸素欠損が減少することに起因すると考えられる。 Focusing on the carrier densities of the transparent conductive layers of Example 1, Example 5, Comparative Example 1 and Comparative Example 2, the carrier density tends to decrease as the amount of oxygen introduced during film formation increases. It is considered that this is because oxygen vacancies in the film decrease as the amount of oxygen introduced increases.

図4は、実施例および比較例の透明導電膜(成膜直後)のキャリア密度(横軸)と比抵抗(縦軸)の関係をプロットしたグラフである。成膜時の酸素導入量がボトム領域付近の場合は、キャリア密度の増加に伴って比抵抗が低下する傾向があるが、酸素導入量が少なくキャリア密度が所定値を超えると、比抵抗が急激に高くなることが分かる FIG. 4 is a graph in which the relationship between the carrier density (horizontal axis) and the specific resistance (vertical axis) of the transparent conductive films (immediately after film formation) of Examples and Comparative Examples is plotted. When the amount of oxygen introduced during film formation is near the bottom region, the specific resistance tends to decrease with an increase in carrier density, but when the amount of oxygen introduced is small and the carrier density exceeds a predetermined value, the specific resistance rapidly increases. It turns out to be high

なお、実施例1〜4および比較例2は、透明導電膜の成膜条件は同一で、膜厚が異なるのみであるが、キャリア密度および比抵抗にわずかな差がみられる。これは、上記実施例および比較例ではフィルム基材の搬送速度により膜厚を調整しているため、基材が受ける熱量(成膜ロールからの熱およびプラズマによる熱)が異なり、基材から放出される水分量等が相違することに関連すると推定される。 In addition, in Examples 1 to 4 and Comparative Example 2, the film forming conditions of the transparent conductive film are the same and the film thicknesses are different, but there are slight differences in carrier density and specific resistance. This is because the amount of heat received by the base material (heat from the film forming roll and heat from plasma) is different because the film thickness is adjusted by the transport speed of the film base material in the above Examples and Comparative Examples, and the film is released from the base material. It is presumed that this is related to the difference in the amount of water that is stored.

実施例1〜5および比較例1の透明導電性フィルムは、全光線透過率には大きな差が無いが、反射光色相のbに明確な差がみられた。これは高屈折率の透明導電層の(光学)膜厚の変化に伴って、反射光の多重干渉が変化するためである。これらの結果から、成膜条件を調整することにより、比抵抗が小さくかつ非晶質状態を維持可能な透明導電層が得られることに加えて、膜厚を調整することにより、反射光の色相を調整し、透明性に優れる透明導電性フィルムが得られることが分かる。 The transparent conductive films of Examples 1 to 5 and Comparative Example 1 had no significant difference in total light transmittance, but a clear difference in b * of reflected light hue was observed. This is because the multiple interference of reflected light changes as the (optical) film thickness of the transparent conductive layer having a high refractive index changes. From these results, it is possible to obtain a transparent conductive layer having a small specific resistance and capable of maintaining an amorphous state by adjusting the film forming conditions, and by adjusting the film thickness, it is possible to obtain a hue of reflected light. It is understood that a transparent conductive film having excellent transparency can be obtained by adjusting the above.

1,2 透明導電性フィルム
11,12 透明プラスチックフィルム基材
21,22 透明導電層
31,32 ガラス基板
5 調光素子
50 調光層
70 調光フィルム
7 電源
1, 2 Transparent conductive film 11, 12 Transparent plastic film substrate 21, 22 Transparent conductive layer 31, 32 Glass substrate 5 Light control element 50 Light control layer 70 Light control film 7 Power supply

Claims (12)

一対の電極基板間に調光層を備える電界駆動型調光素子の電極基板として用いられる、電界駆動型調光素子用透明導電性フィルムであって、
透明プラスチックフィルム基材の少なくとも一方の面に、非晶質の透明導電層を備え、
前記透明導電層は、前記透明プラスチックフィルム基材に直接接しているか、または前記透明プラスチックフィルム基材上に設けられたウェットコーティング層に接しており、膜厚が30nm〜100nmであり、かつ比抵抗が6×10−4Ω・cm以下である、電界駆動型調光素子用透明導電性フィルム。
A transparent conductive film for an electric field drive type light control device, which is used as an electrode substrate of an electric field drive type light control device having a light control layer between a pair of electrode substrates,
At least one surface of the transparent plastic film substrate is provided with an amorphous transparent conductive layer,
The transparent conductive layer is in direct contact with the transparent plastic film substrate or in contact with a wet coating layer provided on the transparent plastic film substrate, and has a film thickness of 30 nm to 100 nm and a specific resistance. Is 6×10 −4 Ω·cm or less, a transparent conductive film for an electric field drive type light control device.
前記透明導電層が、インジウムスズ複合酸化物を主成分とする金属酸化物層である、請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the transparent conductive layer is a metal oxide layer containing an indium tin composite oxide as a main component. 前記透明導電層は、インジウムとスズの合計100重量部に対するスズの含有量が8〜30重量部である、請求項2に記載の透明導電性フィルム。 The transparent conductive film according to claim 2, wherein the transparent conductive layer has a tin content of 8 to 30 parts by weight with respect to a total of 100 parts by weight of indium and tin. 前記透明導電層の表面抵抗が170Ω/□以下である、請求項1〜3のいずれか1項に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the transparent conductive layer has a surface resistance of 170 Ω/□ or less. 80℃で240時間加熱後の透明導電層の抵抗変化率の絶対値が55%以下である、請求項1〜4のいずれか1項に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein an absolute value of resistance change rate of the transparent conductive layer after heating at 80° C. for 240 hours is 55% or less. 全光線透過率が79%以上である、請求項1〜5のいずれかに記載の透明導電性フィルム。 The transparent conductive film according to claim 1, which has a total light transmittance of 79% or more. 前記透明導電層側から照射した光の反射光の色相bが−10〜4である、請求項1〜6のいずれか1項に記載の透明導電性フィルム。 The transparent conductive film according to any one of claims 1 to 6, wherein a hue b * of reflected light of light emitted from the transparent conductive layer side is -10 to 4. 前記透明プラスチックフィルム基材の透明導電層形成面側の算術平均粗さが0.5〜5nmである、請求項1〜7のいずれか1項に記載の透明導電性フィルム。 The transparent conductive film according to any one of claims 1 to 7, wherein the transparent plastic film substrate has an arithmetic average roughness of 0.5 to 5 nm on the transparent conductive layer formation surface side. 前記透明導電層の算術平均粗さが0.8〜5.5nmである、請求項1〜8のいずれか1項に記載の透明導電性フィルム。 The transparent conductive film according to any one of claims 1 to 8, wherein the transparent conductive layer has an arithmetic average roughness of 0.8 to 5.5 nm. 前記透明プラスチックフィルム基材の単位面積あたりの水分含有量が15〜200μg/cmである、請求項1〜9のいずれか1項に記載の透明導電性フィルム。 The transparent conductive film according to any one of claims 1 to 9, wherein the transparent plastic film substrate has a water content per unit area of 15 to 200 µg/cm 2 . 請求項1〜10のいずれか1項に記載の透明導電性フィルムの透明導電層上に、電界の印加の有無により光の透過散乱状態を制御する調光層を備える、調光フィルム。 A light control film comprising a transparent conductive layer of the transparent conductive film according to any one of claims 1 to 10, comprising a light control layer that controls a light transmission/scattering state depending on whether or not an electric field is applied. 一対の電極基板間に、電界の印加の有無により光の透過散乱状態を制御する調光層を備え、
前記一対の電極基板の少なくともいずれか一方が、請求項1〜10のいずれか1項に記載の透明導電性フィルムである、電界駆動型調光素子。
Between the pair of electrode substrates, a dimming layer that controls the transmission/scattering state of light depending on whether or not an electric field is applied is provided.
An electric field drive type light control device, wherein at least one of the pair of electrode substrates is the transparent conductive film according to any one of claims 1 to 10.
JP2019117395A 2019-06-25 2019-06-25 Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element Active JP6713079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019117395A JP6713079B2 (en) 2019-06-25 2019-06-25 Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019117395A JP6713079B2 (en) 2019-06-25 2019-06-25 Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015035866A Division JP6548910B2 (en) 2015-02-25 2015-02-25 Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element

Publications (2)

Publication Number Publication Date
JP2019194719A JP2019194719A (en) 2019-11-07
JP6713079B2 true JP6713079B2 (en) 2020-06-24

Family

ID=68469006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019117395A Active JP6713079B2 (en) 2019-06-25 2019-06-25 Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element

Country Status (1)

Country Link
JP (1) JP6713079B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4209341A1 (en) * 2020-09-04 2023-07-12 Dexerials Corporation Conductive layered product, optical device using same, and manufacturing method for conductive layered product
JP2023167059A (en) * 2022-05-11 2023-11-24 Toppanホールディングス株式会社 Dimmer sheet and dimmer sheet manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161398A (en) * 1997-08-12 1999-03-05 Tdk Corp Production of electrode and electrode
JP2004022441A (en) * 2002-06-19 2004-01-22 Konica Minolta Holdings Inc Transparent conductive substrate and its manufacturing method
JP2004152727A (en) * 2002-11-01 2004-05-27 Toyo Metallizing Co Ltd Transparent conductive film
JP2005259628A (en) * 2004-03-15 2005-09-22 Konica Minolta Holdings Inc Method for forming transparent conductive film, transparent conductive film formed thereby, and article having the same
WO2008075772A1 (en) * 2006-12-21 2008-06-26 Hitachi Chemical Co., Ltd. Light control film and light control glass
KR20090076046A (en) * 2008-01-07 2009-07-13 삼성전자주식회사 Liquid crystal display and fabricating method of the same
JP5353402B2 (en) * 2009-04-17 2013-11-27 コニカミノルタ株式会社 Method for manufacturing organic electronics element
JP2013072895A (en) * 2011-09-26 2013-04-22 Seiko Electric Co Ltd Liquid crystal dimmer and driving device for liquid crystal dimming element

Also Published As

Publication number Publication date
JP2019194719A (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6548910B2 (en) Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element
WO2012086484A1 (en) Transparent electroconductive film and manufacturing method therefor
JP6637565B2 (en) Light transmitting conductive film
JP2015213056A (en) Transparent conductive film
CN106062888B (en) Transparent conductive film
JP6713079B2 (en) Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element
KR20180012730A (en) Transparent conductive film
KR20220156824A (en) Transparent conductive film and method for manufacturing the transparent conductive film
JPH0315536B2 (en)
JP3850865B2 (en) Conductive laminate
JP3501820B2 (en) Transparent conductive film with excellent flexibility
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
CN115298757A (en) Light-transmitting conductive film and transparent conductive film
JP7240513B2 (en) transparent conductive film
KR20200098484A (en) Transparent conductive film
WO2023042848A1 (en) Transparent conductive film
WO2021024944A1 (en) Transparent conductive film
JP7451505B2 (en) Method for manufacturing transparent conductive film
WO2021024945A1 (en) Transparent electrically-conductive film
WO2020255947A1 (en) Transparent electroconductive film
KR20200083235A (en) Transparent conductive film and crystalline transparent conductive film
KR102136549B1 (en) Method for preparing conductive film
KR20240019750A (en) transparent conductive film
KR20200102932A (en) Light transmitting conductive film
JP2016169420A (en) Apparatus and method for manufacturing transparent conductive member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200602

R150 Certificate of patent or registration of utility model

Ref document number: 6713079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250