WO2021024945A1 - Transparent electrically-conductive film - Google Patents

Transparent electrically-conductive film Download PDF

Info

Publication number
WO2021024945A1
WO2021024945A1 PCT/JP2020/029479 JP2020029479W WO2021024945A1 WO 2021024945 A1 WO2021024945 A1 WO 2021024945A1 JP 2020029479 W JP2020029479 W JP 2020029479W WO 2021024945 A1 WO2021024945 A1 WO 2021024945A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive layer
thickness
less
base material
Prior art date
Application number
PCT/JP2020/029479
Other languages
French (fr)
Japanese (ja)
Inventor
才将 西森
智剛 梨木
貴文 松本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202080052490.3A priority Critical patent/CN114127865A/en
Priority to KR1020217042756A priority patent/KR20220042312A/en
Publication of WO2021024945A1 publication Critical patent/WO2021024945A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes

Definitions

  • the present invention relates to a transparent conductive film, and more particularly to a transparent conductive film preferably used for optical applications.
  • a transparent conductive film in which a transparent conductive layer made of indium tin oxide composite oxide (ITO) is formed in a desired electrode pattern has been used for optical applications such as touch panels.
  • ITO indium tin oxide composite oxide
  • a transparent conductive film for example, a transparent conductive film including a transparent plastic film and a transparent conductive thin film having a thickness of 200 nm and a total light transmittance of 86% has been proposed (for example, see Example 1 of Patent Document 1).
  • the transparent conductive layer in order to reduce the amount of light absorbed by the transparent conductive layer, it is considered to reduce the thickness of the transparent conductive layer, but if the thickness of the transparent conductive layer is reduced, the surface resistance value becomes large. There is.
  • the thickness of the transparent conductive layer is reduced, the amount of light absorbed by the transparent conductive layer can be reduced, while the amount of light reflected by the transparent conductive layer may be increased. As a result, the total light transmittance There is a problem that it cannot be raised.
  • the present invention is to provide a transparent conductive film in which the thickness of the transparent conductive layer is adjusted to a predetermined range, the reflectance at 550 nm is low, and the surface resistance value is low.
  • a glass base material and a transparent conductive layer are provided in this order, the transparency of the transparent conductive layer at 550 nm is 12% or less, and the lower limit A (nm) of the thickness of the transparent conductive layer is set.
  • a transparent conductive film represented by the following formula (1) and the upper limit B (nm) of the thickness of the transparent conductive layer is represented by the following formula (2).
  • a (nm) 150n-30 (1) (In the above equation (1), n represents an integer of 1 or more.)
  • B (nm) 150n + 10 (2) (In the above equation (2), n represents an integer of 1 or more.)
  • the thickness of the transparent conductive layer is adjusted within a predetermined range.
  • the reflectance of the transparent conductive layer at 550 nm can be lowered.
  • the total light transmittance can be increased.
  • the thickness of the transparent conductive layer is at least 120 nm or more (specifically, when n is 1 in the above formula (1)). Therefore, the surface resistance value can be lowered.
  • the reflectance at 550 nm can be lowered and the surface resistance value can be lowered.
  • FIG. 1 shows a cross-sectional view of an embodiment of the transparent conductive film of the present invention.
  • FIG. 2 shows a simulation model diagram used in a simulation regarding the reflectance with respect to the thickness of the ITO layer.
  • FIG. 3 shows the simulation result of the reflectance with respect to the thickness of the ITO layer.
  • FIG. 4 shows a graph showing the results of the measured reflectance and the simulated reflectance.
  • the vertical direction of the paper surface is the vertical direction (thickness direction)
  • the upper side of the paper surface is the upper side (one side in the thickness direction)
  • the lower side of the paper surface is the lower side (the other side in the thickness direction).
  • the horizontal direction and the depth direction of the paper surface are plane directions orthogonal to the vertical direction. Specifically, it conforms to the direction arrows in each figure.
  • the transparent conductive film 1 has a film shape (including a sheet shape) having a predetermined thickness, extends in a plane direction orthogonal to the thickness direction, and has a flat upper surface and a flat lower surface.
  • the transparent conductive film 1 is, for example, a component such as a touch panel base material or an electromagnetic wave shield provided in an image display device, that is, it is not an image display device. That is, the transparent conductive film 1 is a component for manufacturing an image display device or the like, and is a device that does not include an image display element such as an OLED module, is distributed as a single component, and can be industrially used.
  • the transparent conductive film 1 includes a glass base material 2 and a transparent conductive layer 3 in this order. More specifically, the transparent conductive film 1 includes a glass base material 2 and a transparent conductive layer 3 arranged on the upper surface (one side in the thickness direction) of the glass base material 2.
  • the thickness of the transparent conductive film 1 is, for example, 200 ⁇ m or less, preferably 150 ⁇ m or less, and for example, 20 ⁇ m or more, preferably 30 ⁇ m or more.
  • the glass base material 2 is a transparent base material for ensuring the mechanical strength of the transparent conductive film 1. That is, the glass base material 2 supports the transparent conductive layer 3.
  • the glass base material 2 has a film shape.
  • the glass base material 2 is arranged on the entire lower surface of the transparent conductive layer 3 so as to come into contact with the lower surface of the transparent conductive layer 3.
  • the glass base material 2 has flexibility and is formed of transparent glass.
  • glass examples include non-alkali glass, soda glass, borosilicate glass, aluminosilicate glass and the like.
  • the thickness of the glass substrate 2 is, for example, 150 ⁇ m or less, preferably 120 ⁇ m or less, and more preferably 100 ⁇ m or less. Further, for example, it is 10 ⁇ m or more, preferably 40 ⁇ m or more. When the thickness of the glass base material 2 is not more than the above upper limit, the flexibility is excellent. Further, when the thickness of the glass base material 2 is at least the above lower limit, the mechanical strength is excellent and damage during transportation can be suppressed.
  • the thickness of the glass base material 2 can be measured using a dial gauge (manufactured by PEACOCK, "DG-205").
  • the total light transmittance (JIS K 7375-2008) of the glass base material 2 is, for example, 80% or more, preferably 85% or more.
  • the transparent conductive layer 3 is a transparent layer that is crystalline and exhibits excellent conductivity.
  • the transparent conductive layer 3 has a film shape.
  • the transparent conductive layer 3 is arranged on the entire upper surface of the glass base material 2 so as to be in contact with the upper surface of the glass base material 2.
  • the material of the transparent conductive layer 3 for example, at least one selected from the group consisting of In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, and W.
  • Examples include metal oxides containing the above metals. The metal oxide may be further doped with the metal atoms shown in the above group, if necessary.
  • the transparent conductive layer 3 include indium-containing oxides such as indium tin oxide composite oxide (ITO), and antimony-containing oxides such as antimony tin composite oxide (ATO).
  • ITO indium tin oxide composite oxide
  • ATO antimony tin composite oxide
  • ITO indium tin oxide composite oxide
  • ITO indium tin oxide composite oxide
  • ITO antimony tin composite oxide
  • ITO indium tin oxide composite oxide
  • ATO antimony tin composite oxide
  • the tin oxide (SnO 2 ) content is preferably 0.5% by mass or more, for example, with respect to the total amount of tin oxide and indium oxide (In 2 O 3 ). Is 3% by mass or more, and is, for example, 15% by mass or less, preferably 13% by mass or less.
  • the tin oxide content is at least the above lower limit, the durability of the ITO layer can be further improved.
  • the content of tin oxide is not more than the above upper limit, crystal conversion of the ITO layer can be facilitated, and transparency and stability of resistivity can be improved.
  • the "ITO” in the present specification may be a composite oxide containing at least indium (In) and tin (Sn), and may contain additional components other than these.
  • additional component include metal elements other than In and Sn, and specifically, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W and Fe. , Pb, Ni, Nb, Cr, Ga and the like.
  • the transparent conductive layer 3 is crystalline.
  • the transparent conductive layer 3 is crystalline, the specific resistance and surface resistance value can be lowered.
  • the transparent conductive film 1 is immersed in hydrochloric acid (20 ° C., concentration 5% by mass) for 15 minutes, then washed with water and dried, and then the surface on the transparent conductive layer 3 side. It can be determined by measuring the resistance between terminals between terminals with respect to about 15 mm. In the transparent conductive film 1 after immersion, washing with water, and drying, when the resistance between terminals between 15 mm is 10 k ⁇ or less, the transparent conductive layer 3 is crystalline, while when the resistance exceeds 10 k ⁇ , it is transparent.
  • the conductive layer 3 is amorphous.
  • the specific resistance of the upper surface of the transparent conductive layer 3 is, for example, 2.0 ⁇ 10 -4 ⁇ ⁇ cm or less, preferably 1.8 ⁇ 10 -4 ⁇ ⁇ cm or less, more preferably 1.5 ⁇ 10 ⁇ . It is 4 ⁇ ⁇ cm or less, more preferably 1.2 ⁇ 10 -4 ⁇ ⁇ cm or less.
  • the resistivity can be measured by the 4-terminal method in accordance with JIS K7194.
  • the surface resistance value of the upper surface of the transparent conductive layer 3 is, for example, 20 ⁇ / ⁇ or less, preferably 10 ⁇ / ⁇ or less, and for example, 1 ⁇ / ⁇ or more.
  • the surface resistance value can be measured by the 4-terminal method in accordance with JIS K7194.
  • the total light transmittance (JIS K 7375-2008) of the transparent conductive layer 3 is, for example, 80% or more, preferably 85% or more, and more preferably 87% or more.
  • the thickness of the transparent conductive layer 3 is adjusted within a predetermined range.
  • the lower limit A (nm) of the thickness of the transparent conductive layer 3 is represented by the following formula (1)
  • n represents an integer of 1 or more, and n is preferably 1 or more, preferably 4 or less, and more preferably 3 or less.
  • B (nm) 150n + 10 (2)
  • n represents an integer of 1 or more, and n is preferably 1 or more, preferably 4 or less, and more preferably 3 or less.
  • the lower limit A (nm) of the thickness of the transparent conductive layer 3 is represented by the following formula (3)
  • the upper limit B (nm) of the thickness of the transparent conductive layer 3 is represented by the following formula (4).
  • a (nm) 150n-20 (3)
  • n represents an integer of 1 or more, and n is preferably 1 or more, preferably 4 or less, and more preferably 3 or less.
  • B (nm) 150n (4)
  • n represents an integer of 1 or more, and n is preferably 1 or more, preferably 4 or less, and more preferably 3 or less.
  • the thickness of the transparent conductive layer 3 is adjusted to the above-mentioned predetermined range, the reflectance of the transparent conductive layer 3 at 550 nm can be lowered.
  • the reflectance of the transparent conductive layer 3 at 550 nm is 12% or less, preferably 11% or less, and more preferably 10% or less.
  • the reflectance can be measured by a spectrophotometer.
  • the total light transmittance can be increased.
  • the thickness of the transparent conductive layer 3 is at least 120 nm or more (specifically, when n is 1 in the above formula (1)). Therefore, the surface resistance value can be reduced.
  • the thickness of the transparent conductive layer 3 can be measured using, for example, a scanning fluorescent X-ray analyzer. 4. Method for Producing Transparent Conductive Film
  • the transparent conductive layer 3 is provided on the upper surface of the glass base material 2.
  • a transparent conductive layer 3 is provided on the upper surface of the glass base material 2 while the long glass base material 2 is sent out from the delivery roll and conveyed to the downstream side in the transport direction, and the conductive film is formed by a take-up roll. Take up 1. The details will be described below.
  • a long glass base material 2 wound around a delivery roll is prepared, and the glass base material 2 is conveyed so as to be wound around a take-up roll.
  • the transport speed is, for example, 0.1 m / min or more, preferably 0.2 m / min or more, and for example, 1.0 m / min or less, preferably 0.5 m / min or less.
  • the glass base material 2 can be dust-removed and cleaned by solvent cleaning, ultrasonic cleaning, or the like.
  • the transparent conductive layer 3 is provided on the upper surface of the glass base material 2.
  • the transparent conductive layer 3 is formed on the upper surface of the glass base material 2 by a dry method.
  • the dry method examples include a vacuum deposition method, a sputtering method, an ion plating method, and the like.
  • a sputtering method is used.
  • the transparent conductive layer 3 which is a thin film and has a uniform thickness can be formed.
  • the target and the adherend are placed facing each other in the vacuum chamber, gas is supplied and a voltage is applied from the power source to accelerate gas ions and irradiate the target with the target surface.
  • the target material is ejected from the surface of the adherend, and the target material is laminated on the surface of the adherend.
  • Examples of the sputtering method include a bipolar sputtering method, an ECR (electron cyclotron resonance) sputtering method, a magnetron sputtering method, and an ion beam sputtering method. Preferred is the magnetron sputtering method.
  • examples of the target material include the above-mentioned metal oxides constituting the transparent conductive layer 3, and preferably ITO.
  • the tin oxide concentration of ITO is, for example, 0.5% by mass or more, preferably 3% by mass or more, and for example, 15% by mass or less, preferably 15% by mass or less. , 13% by mass or less.
  • the gas examples include an inert gas such as Ar. Further, if necessary, a reactive gas such as oxygen gas can be used in combination.
  • the introduction ratio of the reactive gas to the inert gas (hereinafter referred to as the amount of the reactive gas introduced) is, for example, 0.1% by volume or more, preferably 1% by volume or more, and more preferably 3% by volume or more. Yes, and for example, it is 10% by volume or less, preferably 5% by volume or less.
  • the atmospheric pressure during sputtering (hereinafter referred to as film formation pressure) is, for example, 1 Pa or less, preferably 0.5 Pa or less, and for example, 0.1 Pa or more.
  • the power supply may be, for example, any of a DC power supply, an AC power supply, an MF power supply, and an RF power supply, or may be a combination thereof.
  • the glass base material 2 is preheated to a high temperature before sputtering.
  • the particles forming the transparent conductive layer 3 on the surface of the glass base material 2 are placed in a high energy state and can be crystallized (azudepo crystallization) at the same time as the film formation by sputtering.
  • the specific resistance of the transparent conductive layer 3 can be lowered.
  • the heating temperature of the glass base material 2 (hereinafter referred to as the base material temperature) is, for example, 350 ° C. or higher, and for example, 600 ° C. or lower, preferably 550 ° C. or lower.
  • the heating time of the glass substrate 2 is, for example, 10 seconds or more, preferably 20 seconds or more, and for example, 120 seconds or less, preferably 60 seconds or less.
  • the transparent conductive layer 3 is formed on the upper surface of the glass base material 2, and the transparent conductive film 1 including the glass base material 2 and the transparent conductive layer 3 in this order can be obtained. 5. Action effect In the transparent conductive film 1, the thickness of the transparent conductive layer 3 is adjusted within a predetermined range.
  • the reflectance of the transparent conductive layer 3 at 550 nm can be lowered (specifically, it can be 12% or less).
  • the thickness of the transparent conductive layer 3 is within the above-mentioned predetermined range, it can be determined by simulation that the above-mentioned reflectance can be lowered.
  • a transparent conductive film 5 for simulation provided with a glass base material 2 and an ITO layer 4 in order is prepared, and an incident angle is observed from the ITO layer 4 side.
  • the reflectance when light is incident at 0 degrees is calculated based on the following equation (5).
  • R is the reflectance
  • n 0 is the refractive index of air at each wavelength
  • n 1 is the refractive index of the ITO film at each wavelength
  • n 2 is the refractive index of glass at each wavelength
  • is each.
  • d indicates the thickness of ITO.
  • the thickness of the glass base material 2 is 50 ⁇ m
  • the refractive index of the glass is 1.52
  • the refractive index of the ITO layer 4 is 1.9
  • the extinction coefficient is 0. ..
  • Such a simulation can be carried out by using, for example, TFCalc (manufactured by Software Spectra).
  • the thickness of the ITO layer 4 is changed in the range of 10 nm to 650 nm and the reflectance at 550 nm at each thickness is obtained, it is shown as shown in FIG.
  • the thickness of the transparent conductive layer 3 is 120 nm or more and 160 nm or less (when n is 1 in the above formula (1) and the above formula (2)), or 270 nm or more and 310 nm or less (the above formula (1)). And n is 2 in the above formula (2), or 420 nm or more and 460 nm or less (when n is 3 in the above formula (1) and the above formula (2)), or 570 nm or more and 610 nm or less (the above formula (1). If n is 4 in 1) and the above formula (2), the reflectance can be lowered to 12% or less, and preferably the thickness of the transparent conductive layer 3 is 130 nm or more and 150 nm or less (the above formula (3)).
  • n is 1 in the above formula (4), or 280 nm or more and 300 nm or less (when n is 2 in the above formula (3) and the above formula (4)), or 430 nm or more and 450 nm or less (the above formula (4). If n is 3 in 3) and the above formula (4), or if it is 580 nm or more and 600 nm or less (when n is 4 in the above formula (3) and the above formula (4)), the reflectance is 10%. It can be lowered below.
  • the reflectance can be lowered, and as a result, the total light transmittance can be increased.
  • the amount of light absorbed by the transparent conductive layer 3 is reduced, and the amount of light reflected by the transparent conductive layer 3 (reflectance) is reduced.
  • the amount of light absorbed by the transparent conductive layer 3 increases as the thickness of the transparent conductive layer 3 increases.
  • the thickness of the transparent conductive layer 3 is at least 120 nm or more (specifically, when n is 1 in the above formula (1)), it is absorbed by the transparent conductive layer 3. There is a lot of light.
  • the total light transmittance can be increased.
  • the thickness of the transparent conductive layer 3 is at least 120 nm or more (specifically, when n is 1 in the above formula (1)), the surface resistance value can be lowered.
  • the transparent conductive film 1 is composed of the glass base material 2 and the transparent conductive layer 3, but an intermediate layer may be interposed between the glass base material 2 and the transparent conductive layer 3.
  • the intermediate layer includes a hard coat layer.
  • the hard coat layer is a protective layer for suppressing the occurrence of scratches on the glass base material 2 when the transparent conductive film 1 is manufactured. Further, the hard coat layer is a scratch-resistant layer for suppressing the occurrence of scratches on the transparent conductive layer 3 when the transparent conductive film 1 is laminated.
  • the hard coat layer is formed from, for example, a hard coat composition.
  • the hard coat composition contains a resin component.
  • the resin component examples include curable resin, thermoplastic resin (for example, polyolefin resin) and the like.
  • the hard coat composition can also contain particles.
  • the particles include inorganic particles such as organic particles such as crosslinked acrylic particles.
  • the thickness of the hard coat layer is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and for example, 10 ⁇ m or less, preferably 3 ⁇ m or less.
  • the thickness of the hard coat layer can be calculated, for example, based on the wavelength of the interference spectrum observed using an instantaneous multi-photometric system (for example, "MCPD2000" manufactured by Otsuka Electronics Co., Ltd.).
  • an optical adjustment layer can be mentioned.
  • the optical adjustment layer is transparent in order to ensure excellent transparency of the transparent conductive film 1 while suppressing the pattern visibility of the transparent conductive layer 3 and suppressing reflection at the interface in the transparent conductive film 1.
  • This is a layer for adjusting the optical properties (for example, refractive index) of the conductive film 1.
  • the optical adjustment layer is formed from, for example, an optical adjustment composition.
  • the optical adjustment composition contains the above resin component and the above particles.
  • the thickness of the optical adjustment layer is, for example, 5 nm or more, preferably 10 nm or more, and for example, 200 nm or less, preferably 100 nm or less.
  • the thickness of the optical adjustment layer can be calculated, for example, based on the wavelength of the interference spectrum observed using an instantaneous multi-photometric system.
  • the transparent conductive film 1 may have a hard coat layer or an optical adjustment layer interposed between the glass base material 2 and the transparent conductive layer 3, and the transparent conductive film 1 may be formed with the glass base material 2.
  • a hard coat layer and an optical adjustment layer may be interposed between the transparent conductive layer 3.
  • the transparent conductive film 1 is composed of a glass base material 2 and a transparent conductive layer 3.
  • Example 1 As a glass base material, a long transparent glass base material (thickness 50 ⁇ m, manufactured by Nippon Electric Glass Co., Ltd., “G-Leaf”) wound in a roll shape was prepared.
  • This transparent glass base material was set on a delivery roll, delivered at a transport speed of 0.27 m / min, passed through a sputtering device (target portion), and wound on a take-up roll.
  • An ITO layer transparent conductive layer
  • An ITO layer transparent conductive layer having a thickness of 128 nm was formed on the upper surface of the glass substrate by the DC sputtering method.
  • Sputtering was carried out in a vacuum atmosphere at an atmospheric pressure (deposition pressure) of 0.13 Pa into which 96% of argon gas and 4% of oxygen gas (that is, 4% by volume of oxygen gas introduced) were introduced.
  • the discharge output was 3 kW.
  • As the target a sintered body of 87.5% by mass of indium oxide and 12.5% by mass of tin oxide was used.
  • an infrared heater heating unit
  • the heater temperature base material temperature
  • the glass base material was heated for 25 seconds.
  • Example 2 Example 3 and Comparative Examples 1 to 7 A transparent conductive film was produced in the same manner as in Example 1 except that the thickness of the ITO layer, the substrate temperature, the film forming pressure, the transport speed, and the amount of oxygen gas introduced were changed according to Table 1. Simulation of reflectance at 2.550 nm As shown in FIG. 2, as a simulation model, a transparent conductive film 5 for simulation, which is provided with a glass base material 2 and an ITO layer 4 in order, is prepared, and from the ITO layer 4 side. , The reflectance when light was incident at an incident angle of 0 degrees was calculated based on the following equation (5).
  • R is the reflectance
  • n 0 is the refractive index of air at each wavelength
  • n 1 is the refractive index of the ITO film at each wavelength
  • n 2 is the refractive index of glass at each wavelength
  • is each.
  • d indicates the thickness of ITO.
  • the thickness of the glass base material 2 is 50 ⁇ m
  • the refractive index of the glass is 1.52
  • the refractive index of the ITO layer 4 is 1.9
  • the extinction coefficient is 0. ..
  • the simulation was carried out using TFCalc (manufactured by Software Spectra).
  • the thickness of the ITO layer 4 was changed in the range of 10 nm to 650 nm, and the reflectance at 550 nm at each thickness was determined. The result is shown in FIG. 3. 3. Evaluation 1) Film thickness of ITO layer The film thickness of the ITO layer of each example and each comparative example was measured using a scanning fluorescent X-ray analyzer (manufactured by Rigaku Co., Ltd.) "ZSX Primus II". The results are shown in Table 1. 2) Surface resistance value The surface resistance value of the ITO layer of each Example and each Comparative Example was measured by the 4-terminal method in accordance with JIS K7194. The results are shown in Table 1.
  • Comparative Examples 1 to 7 in which the thickness of the transparent conductive layer is out of the predetermined range, it can be seen that Comparative Examples 5 to 7 have high reflectance (exceeding 12%).
  • Comparative Examples 1 to 4 have a reflectance of 12% or less, but the thickness of the transparent conductive layer is 12% or less. Since it is less than 120 nm, it can be seen that the surface resistance value is higher than that of Examples 1 to 3.
  • the thickness of the transparent conductive layer is within a predetermined range, the above-mentioned reflectance can be lowered and the surface resistance value can be lowered.
  • the reflectance at 550 nm obtained by actual measurement (hereinafter referred to as measured reflectance) and the reflectance at 550 nm obtained by simulation (hereinafter referred to as simulated reflectance) are compared. ..
  • FIG. 4 is a graph showing the results of the measured reflectance and the simulated reflectance.
  • the transparent conductive film of the present invention is suitably used in optical applications.

Abstract

This transparent electrically-conductive film 1 is provided with a glass substrate 2 and a transparent electrically-conductive layer 3 in this order. The reflectance of the transparent electrically-conductive layer 3 at 550 nm is 12% or less. The thickness of the transparent electrically-conductive layer 3 is within a predetermined range.

Description

透明導電性フィルムTransparent conductive film
 本発明は、透明導電性フィルムに関し、詳しくは、光学用途に好適に用いられる透明導電性フィルムに関する。 The present invention relates to a transparent conductive film, and more particularly to a transparent conductive film preferably used for optical applications.
 従来から、インジウムスズ複合酸化物(ITO)からなる透明導電層を所望の電極パターンに形成した透明導電性フィルムが、タッチパネルなどの光学用途に用いられる。 Conventionally, a transparent conductive film in which a transparent conductive layer made of indium tin oxide composite oxide (ITO) is formed in a desired electrode pattern has been used for optical applications such as touch panels.
 このような透明導電性フィルムとして、例えば、透明プラスチックフィルムと、200nmの厚みを有し、86%の全光線透過率を有する透明導電性薄膜とを備えた透明導電性フィルムが提案されている(例えば、特許文献1の実施例1参照。)。 As such a transparent conductive film, for example, a transparent conductive film including a transparent plastic film and a transparent conductive thin film having a thickness of 200 nm and a total light transmittance of 86% has been proposed ( For example, see Example 1 of Patent Document 1).
特開2010-177161公報JP-A-2010-177161
 近年、透明導電性フィルムには、さらに、高い全光線透過率が求められている。 In recent years, transparent conductive films are required to have a higher total light transmittance.
 全光線透過率を高くするには、透明導電層に吸収される光の量を少なくし、かつ、透明導電層に反射される光の量を少なくすることが検討される。 In order to increase the total light transmittance, it is considered to reduce the amount of light absorbed by the transparent conductive layer and the amount of light reflected by the transparent conductive layer.
 そして、透明導電層に吸収される光の量を少なくするために、透明導電層の厚みを小さくすることが検討されるが、透明導電層の厚みを小さくすると、表面抵抗値が大きくなるという不具合がある。 Then, in order to reduce the amount of light absorbed by the transparent conductive layer, it is considered to reduce the thickness of the transparent conductive layer, but if the thickness of the transparent conductive layer is reduced, the surface resistance value becomes large. There is.
 また、透明導電層の厚みを小さくすれば、透明導電層に吸収される光の量が少なくできる一方、透明導電層に反射される光の量が増える場合があり、結果として、全光線透過率を高くすることができないという不具合がある。 Further, if the thickness of the transparent conductive layer is reduced, the amount of light absorbed by the transparent conductive layer can be reduced, while the amount of light reflected by the transparent conductive layer may be increased. As a result, the total light transmittance There is a problem that it cannot be raised.
 本発明は、透明導電層の厚みが所定の範囲に調整され、550nmにおける反射率が低く、かつ、表面抵抗値が低い透明導電性フィルムを提供することにある。 The present invention is to provide a transparent conductive film in which the thickness of the transparent conductive layer is adjusted to a predetermined range, the reflectance at 550 nm is low, and the surface resistance value is low.
 本発明[1]は、ガラス基材と、透明導電層とを順に備え、前記透明導電層の、550nmにおける反射率が、12%以下であり、前記透明導電層の厚みの下限A(nm)が、下記式(1)で示され、前記透明導電層の厚みの上限B(nm)が、下記式(2)で示される、透明導電性フィルムである。
A(nm)=150n-30  (1)
(上記式(1)中、nは、1以上の整数を示す。)
B(nm)=150n+10  (2)
(上記式(2)中、nは、1以上の整数を示す。)
In the present invention [1], a glass base material and a transparent conductive layer are provided in this order, the transparency of the transparent conductive layer at 550 nm is 12% or less, and the lower limit A (nm) of the thickness of the transparent conductive layer is set. Is a transparent conductive film represented by the following formula (1) and the upper limit B (nm) of the thickness of the transparent conductive layer is represented by the following formula (2).
A (nm) = 150n-30 (1)
(In the above equation (1), n represents an integer of 1 or more.)
B (nm) = 150n + 10 (2)
(In the above equation (2), n represents an integer of 1 or more.)
 本発明の透明導電性フィルムにおいて、透明導電層の厚みが、所定の範囲に調整されている。 In the transparent conductive film of the present invention, the thickness of the transparent conductive layer is adjusted within a predetermined range.
 これにより、透明導電層の、550nmにおける反射率を低くできる。 Thereby, the reflectance of the transparent conductive layer at 550 nm can be lowered.
 具体的には、透明導電層の、550nmにおける反射率が12%以下であるため、全光線透過率を高くできる。 Specifically, since the reflectance of the transparent conductive layer at 550 nm is 12% or less, the total light transmittance can be increased.
 また、透明導電層の厚みは、少なくとも120nm以上(具体的には、上記式(1)において、nが1の場合)である。そのため、表面抵抗値を低くすることができる。 Further, the thickness of the transparent conductive layer is at least 120 nm or more (specifically, when n is 1 in the above formula (1)). Therefore, the surface resistance value can be lowered.
 その結果、透明導電性フィルムにおいて、550nmにおける反射率が低くでき、かつ、表面抵抗値を低くできる。 As a result, in the transparent conductive film, the reflectance at 550 nm can be lowered and the surface resistance value can be lowered.
図1は、本発明の透明導電性フィルムの一実施形態の断面図を示す。FIG. 1 shows a cross-sectional view of an embodiment of the transparent conductive film of the present invention. 図2は、ITO層の厚みに対する反射率に関するシミュレーションで用いるシミュレーションモデル図を示す。FIG. 2 shows a simulation model diagram used in a simulation regarding the reflectance with respect to the thickness of the ITO layer. 図3は、ITO層の厚みに対する反射率のシミュレーション結果を示す。FIG. 3 shows the simulation result of the reflectance with respect to the thickness of the ITO layer. 図4は、実測反射率およびシミュレーション反射率の結果を示したグラフを示す。FIG. 4 shows a graph showing the results of the measured reflectance and the simulated reflectance.
 図1を参照して、本発明の透明導電性フィルムの一実施形態を説明する。 An embodiment of the transparent conductive film of the present invention will be described with reference to FIG.
 図1において、紙面上下方向は、上下方向(厚み方向)であって、紙面上側が、上側(厚み方向一方側)、紙面下側が、下側(厚み方向他方側)である。また、紙面左右方向および奥行き方向は、上下方向に直交する面方向である。具体的には、各図の方向矢印に準拠する。 In FIG. 1, the vertical direction of the paper surface is the vertical direction (thickness direction), the upper side of the paper surface is the upper side (one side in the thickness direction), and the lower side of the paper surface is the lower side (the other side in the thickness direction). Further, the horizontal direction and the depth direction of the paper surface are plane directions orthogonal to the vertical direction. Specifically, it conforms to the direction arrows in each figure.
 1.透明導電性フィルム
 透明導電性フィルム1は、所定の厚みを有するフィルム形状(シート形状を含む)を有し、厚み方向と直交する面方向に延び、平坦な上面および平坦な下面を有する。透明導電性フィルム1は、例えば、画像表示装置に備えられるタッチパネル用基材や電磁波シールドなどの一部品であり、つまり、画像表示装置ではない。すなわち、透明導電性フィルム1は、画像表示装置などを作製するための部品であり、OLEDモジュールなどの画像表示素子を含まず、部品単独で流通し、産業上利用可能なデバイスである。
1. 1. Transparent Conductive Film The transparent conductive film 1 has a film shape (including a sheet shape) having a predetermined thickness, extends in a plane direction orthogonal to the thickness direction, and has a flat upper surface and a flat lower surface. The transparent conductive film 1 is, for example, a component such as a touch panel base material or an electromagnetic wave shield provided in an image display device, that is, it is not an image display device. That is, the transparent conductive film 1 is a component for manufacturing an image display device or the like, and is a device that does not include an image display element such as an OLED module, is distributed as a single component, and can be industrially used.
 具体的には、図1に示すように、透明導電性フィルム1は、ガラス基材2と、透明導電層3とをこの順に備える。透明導電性フィルム1は、より具体的には、ガラス基材2と、ガラス基材2の上面(厚み方向一方面)に配置される透明導電層3とを備える。 Specifically, as shown in FIG. 1, the transparent conductive film 1 includes a glass base material 2 and a transparent conductive layer 3 in this order. More specifically, the transparent conductive film 1 includes a glass base material 2 and a transparent conductive layer 3 arranged on the upper surface (one side in the thickness direction) of the glass base material 2.
 透明導電性フィルム1の厚みは、例えば、200μm以下、好ましくは、150μm以下であり、また、例えば、20μm以上、好ましくは、30μm以上である。 The thickness of the transparent conductive film 1 is, for example, 200 μm or less, preferably 150 μm or less, and for example, 20 μm or more, preferably 30 μm or more.
 2.ガラス基材
 ガラス基材2は、透明導電性フィルム1の機械強度を確保するための透明な基材である。すなわち、ガラス基材2は、透明導電層3を支持している。
2. 2. Glass base material The glass base material 2 is a transparent base material for ensuring the mechanical strength of the transparent conductive film 1. That is, the glass base material 2 supports the transparent conductive layer 3.
 ガラス基材2は、フィルム形状を有する。ガラス基材2は、透明導電層3の下面に接触するように、透明導電層3の下面全面に、配置されている。 The glass base material 2 has a film shape. The glass base material 2 is arranged on the entire lower surface of the transparent conductive layer 3 so as to come into contact with the lower surface of the transparent conductive layer 3.
 ガラス基材2は、可撓性を有し、透明なガラスから形成されている。 The glass base material 2 has flexibility and is formed of transparent glass.
 ガラスとしては、例えば、無アルカリガラス、ソーダガラス、ホウケイ酸ガラス、アルミノケイ酸ガラスなどが挙げられる。 Examples of glass include non-alkali glass, soda glass, borosilicate glass, aluminosilicate glass and the like.
 ガラス基材2の厚みは、例えば、150μm以下、好ましくは、120μm以下、より好ましくは、100μm以下である。また、例えば、10μm以上、好ましくは、40μm以上である。ガラス基材2の厚みが上記上限以下であれば、可撓性に優れる。また、ガラス基材2の厚みが上記下限以上であれば、機械的強度に優れ、搬送時の破損を抑制することができる。 The thickness of the glass substrate 2 is, for example, 150 μm or less, preferably 120 μm or less, and more preferably 100 μm or less. Further, for example, it is 10 μm or more, preferably 40 μm or more. When the thickness of the glass base material 2 is not more than the above upper limit, the flexibility is excellent. Further, when the thickness of the glass base material 2 is at least the above lower limit, the mechanical strength is excellent and damage during transportation can be suppressed.
 ガラス基材2の厚みは、ダイヤルゲージ(PEACOCK社製、「DG-205」)を用いて測定することができる。 The thickness of the glass base material 2 can be measured using a dial gauge (manufactured by PEACOCK, "DG-205").
 ガラス基材2の全光線透過率(JIS K 7375-2008)は、例えば、80%以上、好ましくは、85%以上である。 The total light transmittance (JIS K 7375-2008) of the glass base material 2 is, for example, 80% or more, preferably 85% or more.
 3.透明導電層
 透明導電層3は、結晶質であり、優れた導電性を発現する透明な層である。
3. 3. Transparent Conductive Layer The transparent conductive layer 3 is a transparent layer that is crystalline and exhibits excellent conductivity.
 透明導電層3は、フィルム形状を有する。透明導電層3は、ガラス基材2の上面全面に、ガラス基材2の上面に接触するように、配置されている。 The transparent conductive layer 3 has a film shape. The transparent conductive layer 3 is arranged on the entire upper surface of the glass base material 2 so as to be in contact with the upper surface of the glass base material 2.
 透明導電層3の材料としては、例えば、In、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、Wからなる群より選択される少なくとも1種の金属を含む金属酸化物が挙げられる。金属酸化物には、必要に応じて、さらに上記群に示された金属原子をドープしていてもよい。 As the material of the transparent conductive layer 3, for example, at least one selected from the group consisting of In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, and W. Examples include metal oxides containing the above metals. The metal oxide may be further doped with the metal atoms shown in the above group, if necessary.
 透明導電層3としては、具体的には、例えば、インジウムスズ複合酸化物(ITO)などのインジウム含有酸化物、例えば、アンチモンスズ複合酸化物(ATO)などのアンチモン含有酸化物などが挙げられ、好ましくは、インジウム含有酸化物、より好ましくは、ITOが挙げられる。 Specific examples of the transparent conductive layer 3 include indium-containing oxides such as indium tin oxide composite oxide (ITO), and antimony-containing oxides such as antimony tin composite oxide (ATO). Preferred are indium-containing oxides, more preferably ITO.
 透明導電層3の材料としてITOを用いる場合、酸化スズ(SnO)含有量は、酸化スズおよび酸化インジウム(In)の合計量に対して、例えば、0.5質量%以上、好ましくは、3質量%以上であり、また、例えば、15質量%以下、好ましくは、13質量%以下である。酸化スズの含有量が上記下限以上であれば、ITO層の耐久性をより一層良好にすることができる。酸化スズの含有量が上記上限以下であれば、ITO層の結晶転化を容易にし、透明性や比抵抗の安定性を向上させることができる。 When ITO is used as the material of the transparent conductive layer 3, the tin oxide (SnO 2 ) content is preferably 0.5% by mass or more, for example, with respect to the total amount of tin oxide and indium oxide (In 2 O 3 ). Is 3% by mass or more, and is, for example, 15% by mass or less, preferably 13% by mass or less. When the tin oxide content is at least the above lower limit, the durability of the ITO layer can be further improved. When the content of tin oxide is not more than the above upper limit, crystal conversion of the ITO layer can be facilitated, and transparency and stability of resistivity can be improved.
 本明細書中における「ITO」とは、少なくともインジウム(In)とスズ(Sn)とを含む複合酸化物であればよく、これら以外の追加成分を含んでもよい。追加成分としては、例えば、In、Sn以外の金属元素が挙げられ、具体的には、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W、Fe、Pb、Ni、Nb、Cr、Gaなどが挙げられる。 The "ITO" in the present specification may be a composite oxide containing at least indium (In) and tin (Sn), and may contain additional components other than these. Examples of the additional component include metal elements other than In and Sn, and specifically, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W and Fe. , Pb, Ni, Nb, Cr, Ga and the like.
 透明導電層3は、結晶質である。 The transparent conductive layer 3 is crystalline.
 透明導電層3が、結晶質であれば、比抵抗および表面抵抗値を低くできる。 If the transparent conductive layer 3 is crystalline, the specific resistance and surface resistance value can be lowered.
 透明導電層3の結晶質性は、例えば、透明導電性フィルム1を塩酸(20℃、濃度5質量%)に15分間浸漬し、続いて、水洗および乾燥した後、透明導電層3側の表面に対して15mm程度の間の端子間抵抗を測定することにより判断できる。上記浸漬・水洗・乾燥後の透明導電性フィルム1において、15mm間の端子間抵抗が10kΩ以下である場合、透明導電層3は結晶質であり、一方、上記抵抗が10kΩを超過する場合、透明導電層3は非晶質である。 Regarding the crystalline property of the transparent conductive layer 3, for example, the transparent conductive film 1 is immersed in hydrochloric acid (20 ° C., concentration 5% by mass) for 15 minutes, then washed with water and dried, and then the surface on the transparent conductive layer 3 side. It can be determined by measuring the resistance between terminals between terminals with respect to about 15 mm. In the transparent conductive film 1 after immersion, washing with water, and drying, when the resistance between terminals between 15 mm is 10 kΩ or less, the transparent conductive layer 3 is crystalline, while when the resistance exceeds 10 kΩ, it is transparent. The conductive layer 3 is amorphous.
 透明導電層3の上面の比抵抗は、例えば、2.0×10-4Ω・cm以下、好ましくは、1.8×10-4Ω・cm以下、より好ましくは、1.5×10-4Ω・cm以下、さらに好ましくは、1.2×10-4Ω・cm以下である。比抵抗は、JIS K7194に準拠して、4端子法により測定することができる。 The specific resistance of the upper surface of the transparent conductive layer 3 is, for example, 2.0 × 10 -4 Ω · cm or less, preferably 1.8 × 10 -4 Ω · cm or less, more preferably 1.5 × 10 −. It is 4 Ω · cm or less, more preferably 1.2 × 10 -4 Ω · cm or less. The resistivity can be measured by the 4-terminal method in accordance with JIS K7194.
 透明導電層3の上面の表面抵抗値は、例えば、20Ω/□以下、好ましくは、10Ω/□以下であり、また、例えば、1Ω/□以上である。表面抵抗値は、JIS K7194に準拠して、4端子法により測定することができる。 The surface resistance value of the upper surface of the transparent conductive layer 3 is, for example, 20 Ω / □ or less, preferably 10 Ω / □ or less, and for example, 1 Ω / □ or more. The surface resistance value can be measured by the 4-terminal method in accordance with JIS K7194.
 また、透明導電層3の全光線透過率(JIS K 7375-2008)は、例えば、80%以上、好ましくは、85%以上、より好ましくは、87%以上である。 The total light transmittance (JIS K 7375-2008) of the transparent conductive layer 3 is, for example, 80% or more, preferably 85% or more, and more preferably 87% or more.
 透明導電層3の厚みは、所定の範囲に調整されている。 The thickness of the transparent conductive layer 3 is adjusted within a predetermined range.
 具体的には、透明導電層3の厚みの下限A(nm)は、下記式(1)で示され、透明導電層3の厚みの上限B(nm)は、下記式(2)で示される。
A(nm)=150n-30  (1)
 上記式(1)中、nは、1以上の整数を示し、nは、好ましくは、1以上、また、好ましくは、4以下、より好ましくは、3以下である。
B(nm)=150n+10  (2)
 上記式(2)中、nは、1以上の整数を示し、nは、好ましくは、1以上、また、好ましくは、4以下、より好ましくは、3以下である。
Specifically, the lower limit A (nm) of the thickness of the transparent conductive layer 3 is represented by the following formula (1), and the upper limit B (nm) of the thickness of the transparent conductive layer 3 is represented by the following formula (2). ..
A (nm) = 150n-30 (1)
In the above formula (1), n represents an integer of 1 or more, and n is preferably 1 or more, preferably 4 or less, and more preferably 3 or less.
B (nm) = 150n + 10 (2)
In the above formula (2), n represents an integer of 1 or more, and n is preferably 1 or more, preferably 4 or less, and more preferably 3 or less.
 好ましくは、透明導電層3の厚みの下限A(nm)は、下記式(3)で示され、透明導電層3の厚みの上限B(nm)は、下記式(4)で示される。
A(nm)=150n-20  (3)
 上記式(3)中、nは、1以上の整数を示し、nは、好ましくは、1以上、また、好ましくは、4以下、より好ましくは、3以下である。
B(nm)=150n  (4)
 上記式(4)中、nは、1以上の整数を示し、nは、好ましくは、1以上、また、好ましくは、4以下、より好ましくは、3以下である。
Preferably, the lower limit A (nm) of the thickness of the transparent conductive layer 3 is represented by the following formula (3), and the upper limit B (nm) of the thickness of the transparent conductive layer 3 is represented by the following formula (4).
A (nm) = 150n-20 (3)
In the above formula (3), n represents an integer of 1 or more, and n is preferably 1 or more, preferably 4 or less, and more preferably 3 or less.
B (nm) = 150n (4)
In the above formula (4), n represents an integer of 1 or more, and n is preferably 1 or more, preferably 4 or less, and more preferably 3 or less.
 透明導電層3の厚みが、上記の所定の範囲に調整されているため、透明導電層3の、550nmにおける反射率を低くできる。 Since the thickness of the transparent conductive layer 3 is adjusted to the above-mentioned predetermined range, the reflectance of the transparent conductive layer 3 at 550 nm can be lowered.
 具体的には、透明導電層3の、550nmにおける反射率は、12%以下、好ましくは、11%以下、より好ましくは、10%以下である。反射率は、分光光度計により測定することができる。 Specifically, the reflectance of the transparent conductive layer 3 at 550 nm is 12% or less, preferably 11% or less, and more preferably 10% or less. The reflectance can be measured by a spectrophotometer.
 そして、透明導電層3の、550nmにおける反射率が低いため、全光線透過率を高くすることができる。 And since the reflectance of the transparent conductive layer 3 at 550 nm is low, the total light transmittance can be increased.
 また、透明導電層3の厚みは、少なくとも120nm以上である(具体的には、上記式(1)において、nが1の場合)。そのため、表面抵抗値を小さくすることができる。 Further, the thickness of the transparent conductive layer 3 is at least 120 nm or more (specifically, when n is 1 in the above formula (1)). Therefore, the surface resistance value can be reduced.
 透明導電層3の厚みは、例えば、走査型蛍光X線分析装置を用いて測定することができる。
4.透明導電性フィルムの製造方法
 透明導電性フィルム1を製造するには、例えば、ロールトゥロール工程において、ガラス基材2の上面に、透明導電層3を設ける。具体的には、長尺なガラス基材2を送出ロールから送出して搬送方向下流側に搬送しながら、ガラス基材2の上面に透明導電層3を設け、巻取ロールにて導電性フィルム1を巻き取る。以下、詳述する。
The thickness of the transparent conductive layer 3 can be measured using, for example, a scanning fluorescent X-ray analyzer.
4. Method for Producing Transparent Conductive Film In order to manufacture the transparent conductive film 1, for example, in the roll-to-roll step, the transparent conductive layer 3 is provided on the upper surface of the glass base material 2. Specifically, a transparent conductive layer 3 is provided on the upper surface of the glass base material 2 while the long glass base material 2 is sent out from the delivery roll and conveyed to the downstream side in the transport direction, and the conductive film is formed by a take-up roll. Take up 1. The details will be described below.
 まず、送出ロールに巻回された長尺なガラス基材2を用意し、巻取ロールに巻回されるようにガラス基材2を搬送する。 First, a long glass base material 2 wound around a delivery roll is prepared, and the glass base material 2 is conveyed so as to be wound around a take-up roll.
 搬送速度は、例えば、0.1m/分以上、好ましくは、0.2m/分以上であり、また、例えば、1.0m/分以下、好ましくは、0.5m/分以下である。 The transport speed is, for example, 0.1 m / min or more, preferably 0.2 m / min or more, and for example, 1.0 m / min or less, preferably 0.5 m / min or less.
 その後、必要に応じて、ガラス基材2と透明導電層3との密着性の観点から、ガラス基材2の表面に、例えば、スパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を実施することができる。また、溶剤洗浄、超音波洗浄などによりガラス基材2を除塵、清浄化することができる。 Then, if necessary, from the viewpoint of adhesion between the glass base material 2 and the transparent conductive layer 3, for example, sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical formation, etc. Etching treatment such as oxidation and undercoating treatment can be performed. Further, the glass base material 2 can be dust-removed and cleaned by solvent cleaning, ultrasonic cleaning, or the like.
 次いで、ガラス基材2の上面に透明導電層3を設ける。例えば、乾式方法により、ガラス基材2の上面に透明導電層3を形成する。 Next, the transparent conductive layer 3 is provided on the upper surface of the glass base material 2. For example, the transparent conductive layer 3 is formed on the upper surface of the glass base material 2 by a dry method.
 乾式方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などが挙げられる。好ましくは、スパッタリング法が挙げられる。この方法により、薄膜であり、かつ、厚みが均一である透明導電層3を形成することができる。 Examples of the dry method include a vacuum deposition method, a sputtering method, an ion plating method, and the like. Preferably, a sputtering method is used. By this method, the transparent conductive layer 3 which is a thin film and has a uniform thickness can be formed.
 スパッタリング法は、真空チャンバー内にターゲットおよび被着体(ガラス基材2)を対向配置し、ガスを供給するとともに電源から電圧を印加することによりガスイオンを加速しターゲットに照射させて、ターゲット表面からターゲット材料をはじき出して、そのターゲット材料を被着体表面に積層させる。 In the sputtering method, the target and the adherend (glass base material 2) are placed facing each other in the vacuum chamber, gas is supplied and a voltage is applied from the power source to accelerate gas ions and irradiate the target with the target surface. The target material is ejected from the surface of the adherend, and the target material is laminated on the surface of the adherend.
 スパッタリング法としては、例えば、2極スパッタリング法、ECR(電子サイクロトロン共鳴)スパッタリング法、マグネトロンスパッタリング法、イオンビームスパッタリング法などが挙げられる。好ましくは、マグネトロンスパッタリング法が挙げられる。 Examples of the sputtering method include a bipolar sputtering method, an ECR (electron cyclotron resonance) sputtering method, a magnetron sputtering method, and an ion beam sputtering method. Preferred is the magnetron sputtering method.
 スパッタリング法を採用する場合、ターゲット材料としては、透明導電層3を構成する上述の金属酸化物などが挙げられ、好ましくは、ITOが挙げられる。ITOの酸化スズ濃度は、ITO層の耐久性、結晶化などの観点から、例えば、0.5質量%以上、好ましくは、3質量%以上であり、また、例えば、15質量%以下、好ましくは、13質量%以下である。 When the sputtering method is adopted, examples of the target material include the above-mentioned metal oxides constituting the transparent conductive layer 3, and preferably ITO. From the viewpoint of durability and crystallization of the ITO layer, the tin oxide concentration of ITO is, for example, 0.5% by mass or more, preferably 3% by mass or more, and for example, 15% by mass or less, preferably 15% by mass or less. , 13% by mass or less.
 ガスとしては、例えば、Arなどの不活性ガスが挙げられる。また、必要に応じて、酸素ガスなどの反応性ガスを併用することができる。 Examples of the gas include an inert gas such as Ar. Further, if necessary, a reactive gas such as oxygen gas can be used in combination.
 不活性ガスに対する反応性ガスの導入割合(以下、反応性ガス導入量とする。)は、例えば、0.1体積%以上、好ましくは、1体積%以上、より好ましくは、3体積%以上であり、また、例えば、10体積%以下、好ましくは、5体積%以下である。 The introduction ratio of the reactive gas to the inert gas (hereinafter referred to as the amount of the reactive gas introduced) is, for example, 0.1% by volume or more, preferably 1% by volume or more, and more preferably 3% by volume or more. Yes, and for example, it is 10% by volume or less, preferably 5% by volume or less.
 スパッタリング時の気圧(以下、成膜気圧とする。)は、例えば、1Pa以下であり、好ましくは、0.5Pa以下であり、また、例えば、0.1Pa以上である。 The atmospheric pressure during sputtering (hereinafter referred to as film formation pressure) is, for example, 1 Pa or less, preferably 0.5 Pa or less, and for example, 0.1 Pa or more.
 電源は、例えば、DC電源、AC電源、MF電源およびRF電源のいずれであってもよく、また、これらの組み合わせであってもよい。 The power supply may be, for example, any of a DC power supply, an AC power supply, an MF power supply, and an RF power supply, or may be a combination thereof.
 そして、このスパッタリングでは、スパッタリング前に、ガラス基材2を予め高温に加熱する。これにより、ガラス基材2の表面において透明導電層3を形成する粒子は高いエネルギー状態に置かれ、スパッタリングによる成膜と同時に結晶化(アズデポ結晶化)できる。その結果、透明導電層3の比抵抗を低くできる。 Then, in this sputtering, the glass base material 2 is preheated to a high temperature before sputtering. As a result, the particles forming the transparent conductive layer 3 on the surface of the glass base material 2 are placed in a high energy state and can be crystallized (azudepo crystallization) at the same time as the film formation by sputtering. As a result, the specific resistance of the transparent conductive layer 3 can be lowered.
 ガラス基材2の加熱温度(以下、基材温度とする。)は、例えば、350℃以上であり、また、例えば、600℃以下、好ましくは、550℃以下である。 The heating temperature of the glass base material 2 (hereinafter referred to as the base material temperature) is, for example, 350 ° C. or higher, and for example, 600 ° C. or lower, preferably 550 ° C. or lower.
 ガラス基材2の加熱時間は、例えば、10秒以上、好ましくは、20秒以上であり、また、例えば、120秒以下、好ましくは、60秒以下である。 The heating time of the glass substrate 2 is, for example, 10 seconds or more, preferably 20 seconds or more, and for example, 120 seconds or less, preferably 60 seconds or less.
 これにより、ガラス基材2の上面に透明導電層3を形成され、ガラス基材2と、透明導電層3とを順に備える透明導電性フィルム1が得られる。
5.作用効果
 透明導電性フィルム1において、透明導電層3の厚みが、所定の範囲に調整されている。
As a result, the transparent conductive layer 3 is formed on the upper surface of the glass base material 2, and the transparent conductive film 1 including the glass base material 2 and the transparent conductive layer 3 in this order can be obtained.
5. Action effect In the transparent conductive film 1, the thickness of the transparent conductive layer 3 is adjusted within a predetermined range.
 これにより、透明導電層3の、550nmにおける反射率が低くできる(具体的には、12%以下にできる。)。 As a result, the reflectance of the transparent conductive layer 3 at 550 nm can be lowered (specifically, it can be 12% or less).
 透明導電層3の厚みが、上記した所定の範囲であれば、上記の反射率を低くできることは、シミュレーションによって、求めることができる。 If the thickness of the transparent conductive layer 3 is within the above-mentioned predetermined range, it can be determined by simulation that the above-mentioned reflectance can be lowered.
 具体的には、図2に示すように、シミュレーションのモデルとして、ガラス基材2と、ITO層4とを順に備えたシミュレーション用透明導電性フィルム5を準備し、ITO層4側から、入射角0度で光を入射した場合の反射率を、下記式(5)に基づいて、算出する。 Specifically, as shown in FIG. 2, as a simulation model, a transparent conductive film 5 for simulation provided with a glass base material 2 and an ITO layer 4 in order is prepared, and an incident angle is observed from the ITO layer 4 side. The reflectance when light is incident at 0 degrees is calculated based on the following equation (5).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(上記式(5)において、Rは反射率、nは各波長における空気の屈折率、nは各波長におけるITO膜の屈折率、nは各波長におけるガラスの屈折率、λは各波長で、dはITOの膜厚を示す。)
 なお、上記のシミュレーションにおいて、ガラス基材2の厚みは、50μmとし、ガラスの屈折率は、1.52とし、ITO層4の屈折率は、1.9とし、消衰係数は、0とする。
(In the above formula (5), R is the reflectance, n 0 is the refractive index of air at each wavelength, n 1 is the refractive index of the ITO film at each wavelength, n 2 is the refractive index of glass at each wavelength, and λ is each. In wavelength, d indicates the thickness of ITO.)
In the above simulation, the thickness of the glass base material 2 is 50 μm, the refractive index of the glass is 1.52, the refractive index of the ITO layer 4 is 1.9, and the extinction coefficient is 0. ..
 また、このようなシミュレーションは、例えば、TFCalc(Software Spectra社製)を用いて実施することができる。 Further, such a simulation can be carried out by using, for example, TFCalc (manufactured by Software Spectra).
 そして、ITO層4の厚みを10nm~650nmの範囲で変更し、各厚みにおける550nmにおける反射率を求めると、図3のように示される。 Then, when the thickness of the ITO layer 4 is changed in the range of 10 nm to 650 nm and the reflectance at 550 nm at each thickness is obtained, it is shown as shown in FIG.
 図3によれば、透明導電層3の厚みを、120nm以上160nm以下(上記式(1)および上記式(2)においてnが1の場合)、または、270nm以上310nm以下(上記式(1)および上記式(2)においてnが2の場合)、または、420nm以上460nm以下(上記式(1)および上記式(2)においてnが3の場合)、または、570nm以上610nm以下(上記式(1)および上記式(2)においてnが4の場合)とすれば、反射率を12%以下に低くでき、好ましくは、透明導電層3の厚みを、130nm以上150nm以下(上記式(3)および上記式(4)においてnが1の場合)、または、280nm以上300nm以下(上記式(3)および上記式(4)においてnが2の場合)、または、430nm以上450nm以下(上記式(3)および上記式(4)においてnが3の場合)、または、580nm以上600nm以下(上記式(3)および上記式(4)においてnが4の場合)とすれば、反射率を10%以下に低くできる。 According to FIG. 3, the thickness of the transparent conductive layer 3 is 120 nm or more and 160 nm or less (when n is 1 in the above formula (1) and the above formula (2)), or 270 nm or more and 310 nm or less (the above formula (1)). And n is 2 in the above formula (2), or 420 nm or more and 460 nm or less (when n is 3 in the above formula (1) and the above formula (2)), or 570 nm or more and 610 nm or less (the above formula (1). If n is 4 in 1) and the above formula (2), the reflectance can be lowered to 12% or less, and preferably the thickness of the transparent conductive layer 3 is 130 nm or more and 150 nm or less (the above formula (3)). And n is 1 in the above formula (4), or 280 nm or more and 300 nm or less (when n is 2 in the above formula (3) and the above formula (4)), or 430 nm or more and 450 nm or less (the above formula (4). If n is 3 in 3) and the above formula (4), or if it is 580 nm or more and 600 nm or less (when n is 4 in the above formula (3) and the above formula (4)), the reflectance is 10%. It can be lowered below.
 上記したように、この透明導電性フィルム1では、透明導電層3の厚みが上記した所定の範囲に調整されているため、反射率を低くでき、その結果、全光線透過率を高くできる。 As described above, in the transparent conductive film 1, since the thickness of the transparent conductive layer 3 is adjusted to the above-mentioned predetermined range, the reflectance can be lowered, and as a result, the total light transmittance can be increased.
 詳しくは、全光線透過率を高くするには、透明導電層3に吸収される光の量を少なくし、かつ、透明導電層3に反射される光の量(反射率)を少なくする。 Specifically, in order to increase the total light transmittance, the amount of light absorbed by the transparent conductive layer 3 is reduced, and the amount of light reflected by the transparent conductive layer 3 (reflectance) is reduced.
 透明導電層3に吸収される光の量は、透明導電層3の厚みが大きくなると、多くなる。この透明導電性フィルム1では、透明導電層3の厚みが、少なくとも120nm以上(具体的には、上記式(1)において、nが1の場合)であるため、透明導電層3に吸収される光の量が多い。 The amount of light absorbed by the transparent conductive layer 3 increases as the thickness of the transparent conductive layer 3 increases. In this transparent conductive film 1, since the thickness of the transparent conductive layer 3 is at least 120 nm or more (specifically, when n is 1 in the above formula (1)), it is absorbed by the transparent conductive layer 3. There is a lot of light.
 しかし、この透明導電性フィルム1では、透明導電層3の厚みが上記した所定の範囲に調整されているため、反射率を低くできる。 However, in this transparent conductive film 1, since the thickness of the transparent conductive layer 3 is adjusted to the above-mentioned predetermined range, the reflectance can be lowered.
 そのため、透明導電層3に吸収される光の量が多くても、全光線透過率を高くできる。 Therefore, even if the amount of light absorbed by the transparent conductive layer 3 is large, the total light transmittance can be increased.
 また、透明導電層3の厚みが、少なくとも120nm以上(具体的には、上記式(1)において、nが1の場合)であるため、表面抵抗値を低くできる。 Further, since the thickness of the transparent conductive layer 3 is at least 120 nm or more (specifically, when n is 1 in the above formula (1)), the surface resistance value can be lowered.
 その結果、この透明導電性フィルム1によれば、550nmにおける反射率を低くでき、かつ、表面抵抗値を低くできる。
6.変形例
 上記した説明では、透明導電性フィルム1は、ガラス基材2と、透明導電層3とからなるが、ガラス基材2と透明導電層3と間に中間層を介在させることもできる。
As a result, according to the transparent conductive film 1, the reflectance at 550 nm can be lowered and the surface resistance value can be lowered.
6. Modification Example In the above description, the transparent conductive film 1 is composed of the glass base material 2 and the transparent conductive layer 3, but an intermediate layer may be interposed between the glass base material 2 and the transparent conductive layer 3.
 中間層としては、ハードコート層が挙げられる。 The intermediate layer includes a hard coat layer.
 ハードコート層は、透明導電性フィルム1を製造する際に、ガラス基材2に傷が発生することを抑制するための保護層である。また、ハードコート層は、透明導電性フィルム1を積層した場合に、透明導電層3に擦り傷が発生することを抑制するための耐擦傷層である。 The hard coat layer is a protective layer for suppressing the occurrence of scratches on the glass base material 2 when the transparent conductive film 1 is manufactured. Further, the hard coat layer is a scratch-resistant layer for suppressing the occurrence of scratches on the transparent conductive layer 3 when the transparent conductive film 1 is laminated.
 ハードコート層は、例えば、ハードコート組成物から形成される。 The hard coat layer is formed from, for example, a hard coat composition.
 ハードコート組成物は、樹脂成分を含有する。 The hard coat composition contains a resin component.
 樹脂成分としては、例えば、硬化性樹脂、熱可塑性樹脂(例えば、ポリオレフィン樹脂)などが挙げられる。 Examples of the resin component include curable resin, thermoplastic resin (for example, polyolefin resin) and the like.
 また、ハードコート組成物は、粒子を含有することもできる。 The hard coat composition can also contain particles.
 粒子としては、架橋アクリル系粒子などの有機粒子などの無機粒子などが挙げられる。 Examples of the particles include inorganic particles such as organic particles such as crosslinked acrylic particles.
 ハードコート層の厚みは、耐擦傷性の観点から、例えば、0.1μm以上、好ましくは、0.5μm以上であり、また、例えば、10μm以下、好ましくは、3μm以下である。ハードコート層の厚みは、例えば、瞬間マルチ測光システム(例えば、大塚電子社製、「MCPD2000」)を用いて観測される干渉スペクトルの波長に基づいて算出することができる。 From the viewpoint of scratch resistance, the thickness of the hard coat layer is, for example, 0.1 μm or more, preferably 0.5 μm or more, and for example, 10 μm or less, preferably 3 μm or less. The thickness of the hard coat layer can be calculated, for example, based on the wavelength of the interference spectrum observed using an instantaneous multi-photometric system (for example, "MCPD2000" manufactured by Otsuka Electronics Co., Ltd.).
 また、中間層としては、光学調整層が挙げられる。 Further, as the intermediate layer, an optical adjustment layer can be mentioned.
 光学調整層は、透明導電層3のパターン視認を抑制したり、透明導電性フィルム1内の界面での反射を抑制しつつ、透明導電性フィルム1に優れた透明性を確保するために、透明導電性フィルム1の光学物性(例えば、屈折率)を調整する層である。 The optical adjustment layer is transparent in order to ensure excellent transparency of the transparent conductive film 1 while suppressing the pattern visibility of the transparent conductive layer 3 and suppressing reflection at the interface in the transparent conductive film 1. This is a layer for adjusting the optical properties (for example, refractive index) of the conductive film 1.
 光学調整層は、例えば、光学調整組成物から形成される。 The optical adjustment layer is formed from, for example, an optical adjustment composition.
 光学調整組成物は、上記の樹脂成分および上記の粒子を含有する。 The optical adjustment composition contains the above resin component and the above particles.
 光学調整層の厚みは、例えば、5nm以上、好ましくは、10nm以上であり、また、例えば、200nm以下、好ましくは、100nm以下である。光学調整層の厚みは、例えば、瞬間マルチ測光システムを用いて観測される干渉スペクトルの波長に基づいて算出することができる。 The thickness of the optical adjustment layer is, for example, 5 nm or more, preferably 10 nm or more, and for example, 200 nm or less, preferably 100 nm or less. The thickness of the optical adjustment layer can be calculated, for example, based on the wavelength of the interference spectrum observed using an instantaneous multi-photometric system.
 つまり、透明導電性フィルム1は、ガラス基材2と透明導電層3と間に、ハードコート層または光学調整層を介在させることもでき、また、透明導電性フィルム1は、ガラス基材2と透明導電層3と間に、ハードコート層および光学調整層を介在させることもできる。 That is, the transparent conductive film 1 may have a hard coat layer or an optical adjustment layer interposed between the glass base material 2 and the transparent conductive layer 3, and the transparent conductive film 1 may be formed with the glass base material 2. A hard coat layer and an optical adjustment layer may be interposed between the transparent conductive layer 3.
 好ましくは、透明導電性フィルム1は、ガラス基材2と、透明導電層3とからなる。 Preferably, the transparent conductive film 1 is composed of a glass base material 2 and a transparent conductive layer 3.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
1.透明導電性フィルムの製造
  実施例1
 ガラス基材として、ロール状に巻回された長尺な透明ガラス基材(厚み50μm、日本電気硝子社製、「G-Leaf」)を準備した。
Examples and comparative examples are shown below, and the present invention will be described in more detail. The present invention is not limited to Examples and Comparative Examples. In addition, specific numerical values such as the compounding ratio (content ratio), physical property values, and parameters used in the following description are the compounding ratios corresponding to those described in the above-mentioned "Form for carrying out the invention". Substitute the upper limit value (value defined as "less than or equal to" or "less than") or the lower limit value (value defined as "greater than or equal to" or "excess") such as content ratio), physical property value, and parameters. be able to.
1. 1. Production of transparent conductive film Example 1
As a glass base material, a long transparent glass base material (thickness 50 μm, manufactured by Nippon Electric Glass Co., Ltd., “G-Leaf”) wound in a roll shape was prepared.
 この透明ガラス基材を送出ロールにセットして、搬送速度0.27m/分にて送り出し、スパッタリング装置(ターゲット部)を通過させて、巻取ロールに巻回した。DCスパッタリング法により、厚みが128nmであるITO層(透明導電層)をガラス基材の上面に形成した。スパッタリングは、アルゴンガス96%および酸素ガス4%(すなわち、酸素ガス導入量4体積%)を導入した気圧(成膜気圧)0.13Paの真空雰囲気下で、実施した。放電出力は、3kWとした。ターゲットは、87.5質量%の酸化インジウムおよび12.5質量%の酸化スズの焼結体を用いた。また、スパッタリング前に、スパッタリング装置内で、赤外線ヒータ(加熱部)を作動し、ヒーター温度(基材温度)を500℃に設定し、ガラス基材を25秒加熱した。 This transparent glass base material was set on a delivery roll, delivered at a transport speed of 0.27 m / min, passed through a sputtering device (target portion), and wound on a take-up roll. An ITO layer (transparent conductive layer) having a thickness of 128 nm was formed on the upper surface of the glass substrate by the DC sputtering method. Sputtering was carried out in a vacuum atmosphere at an atmospheric pressure (deposition pressure) of 0.13 Pa into which 96% of argon gas and 4% of oxygen gas (that is, 4% by volume of oxygen gas introduced) were introduced. The discharge output was 3 kW. As the target, a sintered body of 87.5% by mass of indium oxide and 12.5% by mass of tin oxide was used. Further, before sputtering, an infrared heater (heating unit) was operated in the sputtering apparatus, the heater temperature (base material temperature) was set to 500 ° C., and the glass base material was heated for 25 seconds.
 これにより、ガラス基材とITO層とを備え、ロール状に巻回された透明導電性フィルムを製造した。 As a result, a transparent conductive film having a glass base material and an ITO layer and wound in a roll shape was manufactured.
  実施例2、実施例3および比較例1~比較例7
 表1に従って、ITO層の厚み、基材温度、成膜気圧、搬送速度および酸素ガス導入量を変更した以外は、実施例1と同様にして、透明導電性フィルムを製造した。
2.550nmにおける反射率のシミュレーション
 図2に示すように、シミュレーションのモデルとして、ガラス基材2と、ITO層4とを順に備えたシミュレーション用透明導電性フィルム5を準備し、ITO層4側から、入射角0度で光を入射した場合の反射率を、下記式(5)に基づいて、算出した。
Example 2, Example 3 and Comparative Examples 1 to 7
A transparent conductive film was produced in the same manner as in Example 1 except that the thickness of the ITO layer, the substrate temperature, the film forming pressure, the transport speed, and the amount of oxygen gas introduced were changed according to Table 1.
Simulation of reflectance at 2.550 nm As shown in FIG. 2, as a simulation model, a transparent conductive film 5 for simulation, which is provided with a glass base material 2 and an ITO layer 4 in order, is prepared, and from the ITO layer 4 side. , The reflectance when light was incident at an incident angle of 0 degrees was calculated based on the following equation (5).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
(上記式(5)において、Rは反射率、nは各波長における空気の屈折率、nは各波長におけるITO膜の屈折率、nは各波長におけるガラスの屈折率、λは各波長で、dはITOの膜厚を示す。)
 なお、上記のシミュレーションにおいて、ガラス基材2の厚みは、50μmとし、ガラスの屈折率は、1.52とし、ITO層4の屈折率は、1.9とし、消衰係数は、0とする。
(In the above formula (5), R is the reflectance, n 0 is the refractive index of air at each wavelength, n 1 is the refractive index of the ITO film at each wavelength, n 2 is the refractive index of glass at each wavelength, and λ is each. In wavelength, d indicates the thickness of ITO.)
In the above simulation, the thickness of the glass base material 2 is 50 μm, the refractive index of the glass is 1.52, the refractive index of the ITO layer 4 is 1.9, and the extinction coefficient is 0. ..
 また、シミュレーションは、TFCalc(Software Spectra社製)を用いて実施した。 The simulation was carried out using TFCalc (manufactured by Software Spectra).
 そして、ITO層4の厚みを10nm~650nmの範囲で変更し、各厚みにおける550nmにおける反射率を求めた。その結果を、図3に示す。
3.評価
1)ITO層の膜厚
 各実施例および各比較例のITO層の膜厚を走査型蛍光X線分析装置(株式会社リガク社製)「ZSX PrimusII」を用いて測定した。その結果を表1に示す。
2)表面抵抗値
 各実施例および各比較例のITO層の表面抵抗値を、JIS K7194に準拠して、4端子法により測定した。その結果を表1に示す。
3)550nmにおける反射率
 分光光度計(日立ハイテクサイエンス社製)「U4100」により、550nmにおける反射率を測定した。その結果を表1に示す。
4)全光線透過率
 各実施例および各比較例のITO層の全光線透過率を分光光度計(日立ハイテクノロジー社製)「U4100」を用いて測定した。その結果を表1に示す。
4.考察
 表1に示すように、透明導電層の厚みが、120nm以上160nm以下(上記式(1)および上記式(2)においてnが1の場合)である実施例1~実施例3は、反射率(実測値)が低く(12%以下)、かつ、透明導電層の厚みが、120nm以上であるため、表面抵抗値を低くできたとわかる。
Then, the thickness of the ITO layer 4 was changed in the range of 10 nm to 650 nm, and the reflectance at 550 nm at each thickness was determined. The result is shown in FIG.
3. 3. Evaluation 1) Film thickness of ITO layer The film thickness of the ITO layer of each example and each comparative example was measured using a scanning fluorescent X-ray analyzer (manufactured by Rigaku Co., Ltd.) "ZSX Primus II". The results are shown in Table 1.
2) Surface resistance value The surface resistance value of the ITO layer of each Example and each Comparative Example was measured by the 4-terminal method in accordance with JIS K7194. The results are shown in Table 1.
3) Reflectance at 550 nm The reflectance at 550 nm was measured with a spectrophotometer (manufactured by Hitachi High-Tech Science Co., Ltd.) "U4100". The results are shown in Table 1.
4) Total light transmittance The total light transmittance of the ITO layer of each Example and each Comparative Example was measured using a spectrophotometer (manufactured by Hitachi High-Technology Corporation) "U4100". The results are shown in Table 1.
4. Discussion As shown in Table 1, Examples 1 to 3 in which the thickness of the transparent conductive layer is 120 nm or more and 160 nm or less (when n is 1 in the above formulas (1) and (2)) are reflections. Since the rate (actual measurement value) is low (12% or less) and the thickness of the transparent conductive layer is 120 nm or more, it can be seen that the surface resistance value can be lowered.
 一方、透明導電層の厚みが、所定の範囲外である比較例1~比較例7のうち、比較例5~比較例7は、反射率が高い(12%を超過)とわかる。 On the other hand, among Comparative Examples 1 to 7 in which the thickness of the transparent conductive layer is out of the predetermined range, it can be seen that Comparative Examples 5 to 7 have high reflectance (exceeding 12%).
 また、透明導電層の厚みが、所定の範囲外である比較例1~比較例7のうち、比較例1~比較例4は、反射率が12%以下であるものの、透明導電層の厚みが、120nm未満であるため、実施例1~実施例3に比べて、表面抵抗値が高くなったとわかる。 Further, among Comparative Examples 1 to 7 in which the thickness of the transparent conductive layer is out of the predetermined range, Comparative Examples 1 to 4 have a reflectance of 12% or less, but the thickness of the transparent conductive layer is 12% or less. Since it is less than 120 nm, it can be seen that the surface resistance value is higher than that of Examples 1 to 3.
 すなわち、透明導電層の厚みが、所定の範囲であれば、上記の反射率を低くでき、かつ、表面抵抗値を低くできることがわかった。 That is, it was found that if the thickness of the transparent conductive layer is within a predetermined range, the above-mentioned reflectance can be lowered and the surface resistance value can be lowered.
 また、反射率について、実測により得られた550nmにおける反射率(以下、実測反射率とする。)と、シミュレーションにより得られた550nmにおける反射率(以下、シミュレーション反射率とする。)とを比較する。 Further, regarding the reflectance, the reflectance at 550 nm obtained by actual measurement (hereinafter referred to as measured reflectance) and the reflectance at 550 nm obtained by simulation (hereinafter referred to as simulated reflectance) are compared. ..
 図4は、実測反射率およびシミュレーション反射率の結果を示したグラフである。 FIG. 4 is a graph showing the results of the measured reflectance and the simulated reflectance.
 図4によれば、実測反射率およびシミュレーション反射率が、ほぼ一致していることがわかる。 According to FIG. 4, it can be seen that the measured reflectance and the simulated reflectance are almost the same.
 このことから、透明導電層の厚みが、所定の範囲であれば、反射率を低くできることについては、シミュレーションによっても、証明できたとわかる。 From this, it can be seen that it was proved by simulation that the reflectance can be lowered if the thickness of the transparent conductive layer is within a predetermined range.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれるものである。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the present invention that will be apparent to those skilled in the art are included in the claims below.
 本発明の透明導電性フィルムは、光学用途おいて好適に用いられる。 The transparent conductive film of the present invention is suitably used in optical applications.
 1   透明導電性フィルム
 2   ガラス基材
 3   透明導電層
1 Transparent conductive film 2 Glass substrate 3 Transparent conductive layer

Claims (1)

  1.  ガラス基材と、透明導電層とを順に備え、
     前記透明導電層の、550nmにおける反射率が、12%以下であり、
     前記透明導電層の厚みの下限A(nm)が、下記式(1)で示され、
     前記透明導電層の厚みの上限B(nm)が、下記式(2)で示されること特徴とする、透明導電性フィルム。
    A(nm)=150n-30  (1)
    (上記式(1)中、nは、1以上の整数を示す。)
    B(nm)=150n+10  (2)
    (上記式(2)中、nは、1以上の整数を示す。)
    A glass base material and a transparent conductive layer are provided in order,
    The reflectance of the transparent conductive layer at 550 nm is 12% or less.
    The lower limit A (nm) of the thickness of the transparent conductive layer is represented by the following formula (1).
    A transparent conductive film characterized in that the upper limit B (nm) of the thickness of the transparent conductive layer is represented by the following formula (2).
    A (nm) = 150n-30 (1)
    (In the above equation (1), n represents an integer of 1 or more.)
    B (nm) = 150n + 10 (2)
    (In the above equation (2), n represents an integer of 1 or more.)
PCT/JP2020/029479 2019-08-06 2020-07-31 Transparent electrically-conductive film WO2021024945A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080052490.3A CN114127865A (en) 2019-08-06 2020-07-31 Transparent conductive film
KR1020217042756A KR20220042312A (en) 2019-08-06 2020-07-31 transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019144376A JP2021026902A (en) 2019-08-06 2019-08-06 Transparent conductive film
JP2019-144376 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021024945A1 true WO2021024945A1 (en) 2021-02-11

Family

ID=74502707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029479 WO2021024945A1 (en) 2019-08-06 2020-07-31 Transparent electrically-conductive film

Country Status (5)

Country Link
JP (1) JP2021026902A (en)
KR (1) KR20220042312A (en)
CN (1) CN114127865A (en)
TW (1) TW202112697A (en)
WO (1) WO2021024945A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043693A (en) * 2010-08-20 2012-03-01 Nof Corp Transparent conductive film for dye sensitized solar cell
JP2012142500A (en) * 2011-01-05 2012-07-26 Lintec Corp Transparent electrode substrate, method for manufacturing the same, electronic device having the transparent electrode substrate and solar cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177161A (en) 2009-02-02 2010-08-12 Toyobo Co Ltd Transparent conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043693A (en) * 2010-08-20 2012-03-01 Nof Corp Transparent conductive film for dye sensitized solar cell
JP2012142500A (en) * 2011-01-05 2012-07-26 Lintec Corp Transparent electrode substrate, method for manufacturing the same, electronic device having the transparent electrode substrate and solar cell

Also Published As

Publication number Publication date
CN114127865A (en) 2022-03-01
JP2021026902A (en) 2021-02-22
TW202112697A (en) 2021-04-01
KR20220042312A (en) 2022-04-05

Similar Documents

Publication Publication Date Title
JP6412539B2 (en) Light transmissive conductive film and light control film
JP2016157021A (en) Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element
KR20110061564A (en) Method for modifying a transparent electrode film
US10167545B2 (en) Indium tin oxide thin films with both near-infrared transparency and excellent resistivity
KR101165770B1 (en) Method for manufacturing ito thin film with high-transmittance and low-resistance
WO2021024945A1 (en) Transparent electrically-conductive film
JP6713079B2 (en) Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element
WO2021024944A1 (en) Transparent conductive film
JP3850865B2 (en) Conductive laminate
WO2020255947A1 (en) Transparent electroconductive film
WO2021001691A2 (en) Transparent conductive film
JP7240513B2 (en) transparent conductive film
KR20220085596A (en) Transparent conductive film
WO2021187574A1 (en) Production method for transparent conductive film
CN114628061A (en) Transparent conductive film
CN114628060A (en) Transparent conductive film
WO2023042848A1 (en) Transparent conductive film
JP7237171B2 (en) transparent conductive film
KR20200102930A (en) Light transmitting conductive film
KR20200102931A (en) Light transmitting conductive film
JP2021077509A (en) Transparent conductive film
JPWO2019130842A1 (en) Light-transmitting conductive film, its manufacturing method, dimming film, and dimming member
KR20140038636A (en) Touch screen with improved transmittance by forming barrier layer
KR20140038637A (en) Method to improve transmittance of zno transparent electrode by forming seed layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850563

Country of ref document: EP

Kind code of ref document: A1