JPWO2019130842A1 - Light-transmitting conductive film, its manufacturing method, dimming film, and dimming member - Google Patents
Light-transmitting conductive film, its manufacturing method, dimming film, and dimming member Download PDFInfo
- Publication number
- JPWO2019130842A1 JPWO2019130842A1 JP2019502042A JP2019502042A JPWO2019130842A1 JP WO2019130842 A1 JPWO2019130842 A1 JP WO2019130842A1 JP 2019502042 A JP2019502042 A JP 2019502042A JP 2019502042 A JP2019502042 A JP 2019502042A JP WO2019130842 A1 JPWO2019130842 A1 JP WO2019130842A1
- Authority
- JP
- Japan
- Prior art keywords
- light
- transmitting conductive
- film
- conductive film
- dimming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 230000008859 change Effects 0.000 claims abstract description 62
- 238000010438 heat treatment Methods 0.000 claims abstract description 50
- 238000004458 analytical method Methods 0.000 claims abstract description 15
- 230000000930 thermomechanical effect Effects 0.000 claims abstract description 9
- 239000010408 film Substances 0.000 claims description 317
- 230000001681 protective effect Effects 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 14
- 239000012788 optical film Substances 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 90
- 239000012790 adhesive layer Substances 0.000 description 25
- 229920001187 thermosetting polymer Polymers 0.000 description 23
- 239000011521 glass Substances 0.000 description 19
- 238000004544 sputter deposition Methods 0.000 description 18
- 239000000203 mixture Substances 0.000 description 16
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000002346 layers by function Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 9
- -1 polyethylene terephthalate Polymers 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920002799 BoPET Polymers 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 8
- 229910001887 tin oxide Inorganic materials 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000037303 wrinkles Effects 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 229920006254 polymer film Polymers 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 238000013007 heat curing Methods 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- GVFOJDIFWSDNOY-UHFFFAOYSA-N antimony tin Chemical compound [Sn].[Sb] GVFOJDIFWSDNOY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B9/00—Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
- E06B9/24—Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/42—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
- H01B3/421—Polyesters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Civil Engineering (AREA)
- Architecture (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
光透過性導電フィルムは、第1方向と、第1方向と直交する第2方向とに延び、基材フィルムと、光透過性導電層とを備える。光透過性導電フィルムを、20℃から160℃まで昇温した後20℃まで降温する熱機械分析工程を実施したときに、下記式に示される面内寸法変化率Rが、0.55%以下である。R = (ΔL12+ΔL22)1/2ただし、ΔL1は、前記第1方向における前記分析工程前後の寸法変化率(%)を示し、ΔL2は、前記第2方向における前記分析工程前後の寸法変化率(%)を示す。The light-transmitting conductive film extends in a first direction and a second direction orthogonal to the first direction, and includes a base film and a light-transmitting conductive layer. When the thermomechanical analysis step of heating the light-transmitting conductive film from 20 ° C. to 160 ° C. and then lowering the temperature to 20 ° C. is carried out, the in-plane dimensional change rate R represented by the following formula is 0.55% or less. Is. R = (ΔL12 + ΔL22) 1/2 However, ΔL1 indicates the dimensional change rate (%) before and after the analysis step in the first direction, and ΔL2 is the dimensional change rate (%) before and after the analysis step in the second direction. ) Is shown.
Description
本発明は、光透過性導電フィルム、その製造方法、ならびに、それを備える調光フィルムおよび調光部材に関する。 The present invention relates to a light transmissive conductive film, a method for producing the same, and a light control film and a light control member provided with the same.
近年、冷暖房負荷の低減や意匠性などから、スマートウインドウなどに代表される調光装置の需要が高まっている。調光装置は、建築物や乗物の窓ガラス、間仕切り、インテリアなどの種々の用途に用いられている。 In recent years, there has been an increasing demand for dimming devices such as smart windows due to the reduction of heating / cooling load and design. The dimmer is used for various purposes such as window glass of buildings and vehicles, partitions, and interiors.
調光装置に用いられる調光フィルムとしては、例えば、特許文献1に、2つの透明導電性樹脂基材と、2つの透明導電性樹脂基材に挟持された調光層とを備えるフィルムが提案されている(例えば、特許文献1参照。)。
As a light control film used in a light control device, for example,
特許文献1の調光フィルムは、電界の印加によって調光層を通過する光の吸収・散乱を調整することにより、調光を可能にしている。このような調光フィルムの透明導電性樹脂基材には、ポリエステルフィルムなどの支持基材に、インジウムスズ複合酸化物(ITO)からなる透明電極を積層させたフィルムが採用されている。
The dimming film of
調光フィルムは、大型のガラス(例えば、1〜10m2の窓ガラス)などに貼着して用いられることがある。具体的には、ガラスに、熱硬化性または熱溶融性の接着剤などを介して、そのガラスと略同一サイズの調光フィルムを配置し、加熱硬化または加熱溶融することにより、調光フィルムをガラスに貼着する。The light control film may be used by being attached to a large glass (for example, a window glass of 1 to 10 m 2 ). Specifically, a light control film having substantially the same size as the glass is placed on the glass via a thermosetting or heat meltable adhesive, and the light control film is formed by heat curing or heat melting. Stick it on the glass.
しかしながら、貼着後の調光フィルムは、加熱のため、加熱前の状態よりも収縮する不具合が生じる。その結果、ガラス(特に、周端部)に、調光フィルムが貼着されない箇所を生じる。この貼着されない箇所は、対象となるガラスの面積が大きくなるほど、顕著に目立つ。 However, since the light control film after sticking is heated, there is a problem that it shrinks more than the state before heating. As a result, there are places where the light control film is not attached to the glass (particularly the peripheral end). This non-attached portion becomes more conspicuous as the area of the target glass increases.
本発明は、対象物に貼着されない面積を低減することができる光透過性導電フィルム、その製造方法、調光フィルム、および、調光部材を提供することにある。 An object of the present invention is to provide a light transmissive conductive film capable of reducing the area not attached to an object, a method for producing the same, a light control film, and a light control member.
本発明[1]は、第1方向と、前記第1方向と直交する第2方向とに延びる光透過性導電フィルムであって、基材フィルムと、光透過性導電層とを備え、前記光透過性導電フィルムを、20℃から160℃まで昇温した後20℃まで降温する熱機械分析工程を実施したときに、下記式に示される面内寸法変化率Rが、0.55%以下である、光透過性導電フィルムを含んでいる。 The present invention [1] is a light-transmitting conductive film extending in a first direction and a second direction orthogonal to the first direction, comprising a base film and a light-transmitting conductive layer, and the light. When the thermomechanical analysis step of heating the transmissive conductive film from 20 ° C. to 160 ° C. and then lowering the temperature to 20 ° C. was carried out, the in-plane dimensional change rate R represented by the following formula was 0.55% or less. Includes a light-transmitting conductive film.
R = (ΔL1 2+ΔL2 2)1/2
(ただし、ΔL1は、前記第1方向における前記分析工程前後の寸法変化率(%)を示し、ΔL2は、前記第2方向における前記分析工程前後の寸法変化率(%)を示す。)
本発明[2]は、ΔL1の絶対値、および、ΔL2の絶対値が、両方とも、0.50以下である、[1]に記載の光透過性導電フィルムを含んでいる。R = (ΔL 1 2 + ΔL 2 2 ) 1/2
(However, ΔL 1 indicates the dimensional change rate (%) before and after the analysis step in the first direction, and ΔL 2 indicates the dimensional change rate (%) before and after the analysis step in the second direction.)
The present invention [2] includes the light-transmitting conductive film according to [1], wherein both the absolute value of ΔL 1 and the absolute value of ΔL 2 are 0.50 or less.
本発明[3]は、ΔL1、および、ΔL2の少なくとも一方が、正の値である、[1]または[2]に記載の光透過性導電フィルムを含んでいる。The present invention [3] includes the light-transmitting conductive film according to [1] or [2], wherein at least one of ΔL 1 and ΔL 2 has a positive value.
本発明[4]は、ΔL1、および、ΔL2が、両方とも、正の値である、[3]に記載の光透過性導電フィルムを含んでいる。The present invention [4] includes the light-transmitting conductive film according to [3], wherein ΔL 1 and ΔL 2 are both positive values.
本発明[5]は、前記基材フィルムは、大気環境下で加熱処理がなされたフィルムである、[1]〜[4]のいずれか一項に記載の光透過性導電フィルムを含んでいる。 In the present invention [5], the base film contains the light-transmitting conductive film according to any one of [1] to [4], which is a film that has been heat-treated in an air environment. ..
本発明[6]は、前記基材フィルムは、ポリエステル系フィルムである、[1]〜[5]のいずれか一項に記載の光透過性導電フィルムを含んでいる。 In the present invention [6], the base film includes the light-transmitting conductive film according to any one of [1] to [5], which is a polyester-based film.
本発明[7]は、第1の光透過性導電フィルムと、調光機能層と、第2の光透過性導電フィルムとを順に備え、前記第1の光透過性導電フィルムおよび/または前記第2の光透過性導電フィルムは、[1]〜[6]のいずれか一項に記載の光透過性導電フィルムである、調光フィルムを含んでいる。 The present invention [7] comprises, in order, a first light-transmitting conductive film, a dimming functional layer, and a second light-transmitting conductive film, the first light-transmitting conductive film and / or the first. The light transmissive conductive film of No. 2 includes a light control film which is the light transmissive conductive film according to any one of [1] to [6].
本発明[8]は、保護部材と、前記保護部材に貼着される[7]に記載の調光フィルムとを備える、調光部材を含んでいる。 The present invention [8] includes a dimming member including a protective member and the dimming film according to [7] attached to the protective member.
本発明[9]は、[1]〜[6]のいずれか一項に記載の光透過性導電フィルムを製造する方法であって、基材フィルムを大気環境下で加熱する工程、および、次いで、前記基材フィルムを40℃未満の状態で、前記基材フィルムに光透過性導電層を設ける工程を備える、光透過性導電フィルムの製造方法を含んでいる。 The present invention [9] is a method for producing a light-transmitting conductive film according to any one of [1] to [6], wherein the base film is heated in an air environment, and then The present invention includes a method for producing a light-transmitting conductive film, comprising a step of providing a light-transmitting conductive layer on the base film in a state where the base film is below 40 ° C.
本発明の光透過性導電フィルムは、20℃−160℃−20℃の熱機械分析工程を実施したときの面内寸法変化率Rが、0.55%以下である。 The light-transmitting conductive film of the present invention has an in-plane dimensional change rate R of 0.55% or less when a thermomechanical analysis step of 20 ° C.-160 ° C.-20 ° C. is carried out.
そのため、本発明の光透過性導電フィルムを、対象物に対して加熱によって貼着しても、光透過性導電フィルムは、加熱前の状態に近いサイズを維持することができる。そのため、対象物に貼着されない面積を低減することができ、所望のサイズの光透過性導電フィルムを対象物に貼着することができる。 Therefore, even if the light-transmitting conductive film of the present invention is attached to an object by heating, the light-transmitting conductive film can maintain a size close to that before heating. Therefore, the area that is not attached to the object can be reduced, and a light-transmitting conductive film of a desired size can be attached to the object.
本発明の調光フィルムおよび調光部材は、本発明の光透過性導電フィルムを備えるため、光透過性導電フィルムが対象物に貼着されない面積を低減することができる。 Since the light control film and the light control member of the present invention include the light transmissive conductive film of the present invention, the area where the light transmissive conductive film is not attached to the object can be reduced.
本発明の製造方法は、対象物に貼着されない面積を低減することができる光透過性導電フィルムを得ることができる。 The manufacturing method of the present invention can obtain a light-transmitting conductive film capable of reducing the area that is not attached to an object.
図1Aにおいて、紙厚方向は、前後方向(第1方向)であり、紙面手前側が前側(第1方向一方側)、紙面奥側が後側(第1方向他方側)である。図1Aにおいて、紙面左右方向は、左右方向(幅方向、第1方向に直交する第2方向)であり、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。図1Aにおいて、紙面上下方向は、上下方向(厚み方向、第1方向および第2方向に直交する第3方向)であって、紙面上側が、上側(厚み方向一方側、第3方向一方側)、紙面下側が、下側(厚み方向他方側、第3方向他方側)である。具体的には、各図の方向矢印に準拠する。 In FIG. 1A, the paper thickness direction is the front-rear direction (first direction), the front side of the paper surface is the front side (one side of the first direction), and the back side of the paper surface is the rear side (the other side of the first direction). In FIG. 1A, the left-right direction of the paper surface is the left-right direction (width direction, the second direction orthogonal to the first direction), the left side of the paper surface is the left side (one side of the second direction), and the right side of the paper surface is the right side (the other side of the second direction). ). In FIG. 1A, the vertical direction of the paper surface is the vertical direction (thickness direction, the third direction orthogonal to the first direction and the second direction), and the upper side of the paper surface is the upper side (one side in the thickness direction, one side in the third direction). The lower side of the paper surface is the lower side (the other side in the thickness direction, the other side in the third direction). Specifically, it conforms to the direction arrows in each figure.
<一実施形態>
1.光透過性導電フィルム
本発明の一実施形態である光透過性導電フィルム1は、例えば、調光素子の例としての調光フィルム、調光部材、調光装置などに用いられるフィルム(すなわち、調光用光透過性導電フィルム)である。光透過性導電フィルム1は、図1に示すように、所定の厚みを有するフィルム形状(シート形状を含む)をなし、上下方向(厚み方向)と直交する所定方向(前後方向および左右方向、すなわち、面方向)に延び、平坦な上面(厚み方向一方面)および平坦な下面(厚み方向他方面)を有する。光透過性導電フィルム1は、例えば、調光フィルム4(後述、図3参照)、調光部材6(後述、図4D参照)および調光装置(後述)などの一部品であり、つまり、調光フィルム4などではない。すなわち、光透過性導電フィルム1は、調光フィルム4などを作製するための部品であり、調光機能層5などを含まず、部品単独で流通し、産業上利用可能なデバイスである。<One Embodiment>
1. 1. Light-transmitting conductive film The light-transmitting
具体的には、光透過性導電フィルム1は、基材フィルム2と、光透過性導電層3とを順に備える。つまり、光透過性導電フィルム1は、基材フィルム2と、基材フィルム2の上側に配置される光透過性導電層3とを備える。好ましくは、光透過性導電フィルム1は、基材フィルム2と、光透過性導電層3とのみからなる。以下、各層について詳述する。
Specifically, the light-transmitting
2.基材フィルム
基材フィルム2は、光透過性導電フィルム1の最下層であって、光透過性導電フィルム1の機械的強度を確保する支持材である。また、基材フィルム2は、光透過性および可撓性を有する支持材である。基材フィルム2は、光透過性導電層3を支持する。2. 2. Base film The
基材フィルム2は、フィルム形状(シート形状を含む)を有する。
The
基材フィルム2は、例えば、高分子フィルムからなる。高分子フィルムの材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、例えば、ポリメタクリレートなどの(メタ)アクリル樹脂(アクリル樹脂および/またはメタクリル樹脂)、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンポリマーなどのオレフィン樹脂、例えば、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリスチレン樹脂、ノルボルネン樹脂などが挙げられる。これら高分子フィルムは、単独使用または2種以上併用することができる。基材フィルム2は、光透過性、耐熱性、機械的強度などの観点から、好ましくは、ポリエステル樹脂から形成されるポリエステル系フィルムが挙げられ、より好ましくは、ポリエチレンテレフタレートフィルムが挙げられる。
The
基材フィルム2は、耐熱性、機械的強度がより一層優れる観点から、好ましくは、延伸フィルムであり、より好ましくは、二軸延伸フィルムである。
The
基材フィルム2は、好ましくは、後述するように、大気環境下で加熱処理されたフィルムであり、より好ましくは、大気環境下で加熱処理された二軸延伸フィルムである。このような基材フィルム2を用いれば、基材フィルム2内部に存在する応力が緩和されるため、光透過性導電フィルム1を加熱により対象物に貼着した場合に、光透過性導電フィルム1の過度の収縮を抑制することができる。
The
基材フィルム2の全光線透過率(JIS K−7105)は、例えば、80%以上、好ましくは、85%以上であり、また、例えば、100%以下、好ましくは、95%以下である。
The total light transmittance (JIS K-7105) of the
基材フィルム2のヘイズ(JIS K−7105)は、例えば、2.0%以下、好ましくは、1.8%以下、より好ましくは、1.5%以下、さらに好ましくは、1.2%以下であり、また、例えば、0.1%以上である。
The haze (JIS K-7105) of the
基材フィルム2の厚みは、例えば、2μm以上、好ましくは、50μm以上、より好ましくは、100μm以上であり、また、例えば、300μm以下、好ましくは、250μm以下である。基材フィルム2の厚みが上記下限以上であれば、光透過性導電層3の形成時に、高分子フィルムに含有する水分をより多く光透過性導電層3に付与できるため、光透過性導電層3の結晶化を抑制することができる。そのため、光透過性導電層3の非晶質性を維持することができる。また、基材フィルム2の厚みが上記下限以上であれば、光透過性導電フィルム1の強度に優れる。
The thickness of the
基材フィルム2の厚みは、例えば、膜厚計を用いて測定することができる。
The thickness of the
基材フィルム2の下面には、セパレータなどが備えられていてもよい。
A separator or the like may be provided on the lower surface of the
3.光透過性導電層
光透過性導電層3は、必要により後の工程でエッチングによりパターニングすることができる透明性の導電層である。3. 3. Light-transmitting conductive layer The light-transmitting
光透過性導電層3は、フィルム形状(シート形状を含む)を有しており、基材フィルム2の上面全面に、基材フィルム2の上面に接触するように、配置されている。
The light-transmitting
光透過性導電層3の材料としては、例えば、In、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、Wからなる群より選択される少なくとも1種の金属を含む金属酸化物が挙げられる。金属酸化物には、必要に応じて、さらに上記群に示された金属原子をドープしていてもよい。
As the material of the light transmissive
光透過性導電層3としては、例えば、インジウムスズ複合酸化物(ITO)などのインジウム系導電性酸化物、例えば、アンチモンスズ複合酸化物(ATO)などのアンチモン系導電性酸化物などが挙げられる。光透過性導電層3は、優れた導電性および光透過性を確保できる観点から、インジウム系導電性酸化物を含有し、より好ましくは、インジウムスズ複合酸化物(ITO)を含有する。すなわち、光透過性導電層3は、好ましくは、インジウム系導電性酸化物層であり、より好ましくは、ITO層である。
Examples of the light-transmitting
光透過性導電層3の材料としてITOを用いる場合、酸化スズ(SnO2)含有量は、酸化スズおよび酸化インジウム(In2O3)の合計量に対して、例えば、0.5質量%以上、好ましくは、3質量%以上、より好ましくは、8質量%以上、さらに好ましくは、10質量%超であり、また、例えば、25質量%以下、好ましくは、15質量%以下、より好ましくは、13質量%以下である。酸化スズの含有量が上記下限以上であれば、光透過性導電層3の優れた導電性を実現しつつ、結晶化をより確実に抑制できる。また、酸化スズの含有量が上記上限以下であれば、光透過性や導電性の安定性を向上させることができる。When ITO is used as the material of the light transmissive
本明細書中における「ITO」とは、少なくともインジウム(In)とスズ(Sn)とを含む複合酸化物であればよく、これら以外の追加成分を含んでもよい。追加成分としては、例えば、In、Sn以外の金属元素が挙げられ、具体的には、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W、Fe、Pb、Ni、Nb、Cr、Gaなどが挙げられる。 The term "ITO" in the present specification may be any composite oxide containing at least indium (In) and tin (Sn), and may contain additional components other than these. Examples of the additional component include metal elements other than In and Sn, and specifically, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W and Fe. , Pb, Ni, Nb, Cr, Ga and the like.
光透過性導電層3は、結晶質または非晶質(アモルファス)のいずれであってもよいが、好ましくは、非晶質であり、より具体的には、好ましくは、非晶質ITO層である。光透過性導電層3が非晶質であれば、耐クラック性、耐擦傷性に優れるため、加工性に優れる。すなわち、光透過性導電フィルム1を、貼着する対象物(例えば、後述するガラスなどの保護部材)に貼着加工する際に、光透過性導電フィルム1に発生するクラックや傷の発生を抑制することができる。そのため、貼着された光透過性導電フィルム1の外観や特性を良好に維持することができる。
The light-transmitting
光透過性導電層3が非晶質または結晶質であることは、例えば、光透過性導電層3がITO層である場合は、20℃の塩酸(濃度5質量%)に15分間浸漬した後、水洗・乾燥し、15mm程度の間の端子間抵抗を測定することで判断できる。本明細書においては、光透過性導電フィルム1を塩酸(20℃、濃度:5質量%)に浸漬・水洗・乾燥した後に、光透過性導電層における15mm間の端子間抵抗が10kΩ以上である場合、光透過性導電層が非晶質であるものとする。
The fact that the light-transmitting
光透過性導電層3の表面抵抗値は、例えば、1Ω/□以上、好ましくは、10Ω/□以上であり、また、例えば、200Ω/□以下、好ましくは、100Ω/□以下、より好ましくは、85Ω/□以下である。光透過性導電層3の表面抵抗値が上記範囲であれば、大型の調光装置として用いた場合であっても、良好な電気駆動を実現できる。
The surface resistance value of the light transmissive
光透過性導電層3の比抵抗値は、例えば、6×10−4Ω・cm以下、好ましくは、5.5×10−4Ω・cm以下、より好ましくは、5×10−4Ω・cm以下、さらに好ましくは、4.8×10−4Ω・cm以下であり、また、例えば、3×10−4Ω・cm以上、好ましくは、3.5×10−4Ω・cm以上、より好ましくは、4.0×10−4Ω・cm以上である。光透過性導電層3の比抵抗値が上記上限以下であれば、大型の調光装置として用いた場合でも、良好な電気駆動を実現できる。また、比抵抗値が上記下限以上であれば、光透過性導電層3の非晶質性をより確実に維持できる。The specific resistance value of the light transmissive
光透過性導電層3の厚みは、例えば、10nm以上、好ましくは、30nm以上、より好ましくは、50nm以上であり、また、例えば、200nm以下、好ましくは、150nm以下、より好ましくは、100nm以下である。光透過性導電層3の厚みは、例えば、透過型電子顕微鏡を用いた断面観察により測定することができる。
The thickness of the light-transmitting
4.光透過性導電フィルムの製造方法
次に、光透過性導電フィルム1を製造する方法について説明する。4. Method for Producing Light Transmissive Conductive Film Next, a method for manufacturing the light transmissive
光透過性導電フィルム1の製造方法は、例えば、基材フィルム2を大気環境下で加熱する前加熱工程と、次いで、基材フィルム2を40℃未満の状態で、基材フィルム2に光透過性導電層3を設ける導電層配置工程とを備える。光透過性導電フィルム1の製造方法は、好ましくは、図2に参照されるように、ロールトゥロール方式により実施される。
The method for producing the light-transmitting
前加熱工程では、まず、基材フィルム2を用意する。例えば、ロールトゥロール方式の場合は、搬送方向(例えば、第1方向)に長尺で、ロール状に巻回された基材フィルム2を用いる。
In the preheating step, first, the
好ましくは、機械的強度、耐熱性、光透過性の観点から、二軸延伸基材フィルム2を用意する。
Preferably, the biaxially stretched
続いて、基材フィルム2を大気環境下で加熱する。すなわち、光透過性導電層3を設ける前に、基材フィルム2を加熱する。基材フィルム2の加熱は、好ましくは、ロールトゥロール方式で実施され、例えば、大気環境下において、長尺のロール状に巻回された基材フィルム2を繰り出し、加熱しながら搬送した後、再び長尺のロール状に巻回する。
Subsequently, the
この加熱処理により、基材フィルム2に内在している応力を解放することができ、光透過性導電フィルム1の貼着時の熱収縮を抑制することができる。特に、二軸延伸フィルムは、その製造時において、延伸によって、強い内部応力が印加されているため、基材フィルム2としての二軸延伸フィルムの熱収縮をより確実に抑制にすることができる。
By this heat treatment, the stress inherent in the
また、大気環境下での加熱のため、真空下での加熱と比べて、基材フィルム2に発生するシワや傷を抑制して、光透過性導電フィルム1の外観を良好に維持することができる。すなわち、ロール状の基材フィルム2をロールから繰り出す際または巻き取る際に、積層される基材フィルム2の間に大気を介在させることができるため、基材フィルム2の密着や摩擦を抑制し、シワや傷を抑制することができる。また、基材フィルム2を搬送する際に、搬送ロール(例えば、ガイドロール)と基材フィルム2との間にも大気を介在させることができるため、搬送ロールとの過度な密着を抑制し、シワや傷を抑制することもできる。これらの抑制は、大面積で使用されることが多い調光装置における外観に対して特に効果的である。
Further, since the film is heated in an atmospheric environment, it is possible to suppress wrinkles and scratches generated on the
加熱温度は、例えば、100℃以上、好ましくは、130℃以上、より好ましくは、150℃以上であり、また、例えば、220℃以下、好ましくは、200℃以下、より好ましくは、180℃以下である。加熱温度は、基材フィルム2を加熱するための加熱設備(例えば、IRヒーターや加熱ロール)の設定温度である。
The heating temperature is, for example, 100 ° C. or higher, preferably 130 ° C. or higher, more preferably 150 ° C. or higher, and for example, 220 ° C. or lower, preferably 200 ° C. or lower, more preferably 180 ° C. or lower. is there. The heating temperature is a set temperature of a heating facility (for example, an IR heater or a heating roll) for heating the
加熱時間は、例えば、0.3分以上、好ましくは、0.5分以上、より好ましくは、1分以上であり、また、例えば、10分以下、好ましくは、5分以下である。加熱時間が上記上限以下であれば、基材フィルム2からの過剰な析出物(オリゴマーなど)が発生することを抑制して、基材フィルム2の透明性低下や高ヘイズ化を抑制することができる。また、加熱時間が上記下限以上であれば、基材フィルム2の残留応力を十分に解放することができ、光透過性導電フィルム1の貼着時の熱収縮をより確実に抑制することができる。
The heating time is, for example, 0.3 minutes or more, preferably 0.5 minutes or more, more preferably 1 minute or more, and for example, 10 minutes or less, preferably 5 minutes or less. When the heating time is not more than the above upper limit, it is possible to suppress the generation of excess precipitates (oligomers, etc.) from the
導電層配置工程では、例えば、乾式により、基材フィルム2の上面に光透過性導電層3を形成する。
In the conductive layer arranging step, for example, the light-transmitting
乾式としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などが挙げられる。好ましくは、スパッタリング法が挙げられる。 Examples of the dry method include a vacuum deposition method, a sputtering method, and an ion plating method. Preferably, a sputtering method is used.
スパッタリング法は、真空装置のチャンバー(成膜室)内にターゲットおよび被着体(基材フィルム2)を対向配置し、ガスを供給するとともに電圧を印加することによりガスイオンを加速しターゲットに照射させて、ターゲット表面からターゲット材料をはじき出して、そのターゲット材料を被着体表面に積層させる。 In the sputtering method, the target and the adherend (base film 2) are placed facing each other in the chamber (deposition chamber) of the vacuum apparatus, and the gas ion is accelerated by applying a voltage while supplying gas to irradiate the target. Then, the target material is ejected from the target surface, and the target material is laminated on the surface of the adherend.
スパッタリング法としては、例えば、2極スパッタリング法、ECR(電子サイクロトロン共鳴)スパッタリング法、マグネトロンスパッタリング法、イオンビームスパッタリング法などが挙げられる。好ましくは、マグネトロンスパッタリング法が挙げられる。 Examples of the sputtering method include a bipolar sputtering method, an ECR (electron cyclotron resonance) sputtering method, a magnetron sputtering method, and an ion beam sputtering method. Preferred is the magnetron sputtering method.
スパッタリング法に用いる電源は、例えば、直流(DC)電源、交流中周波(AC/MF)電源、高周波(RF)電源、直流電源を重畳した高周波電源のいずれであってもよい。 The power source used in the sputtering method may be, for example, a direct current (DC) power source, an alternating current medium frequency (AC / MF) power source, a high frequency (RF) power source, or a high frequency power source on which a direct current power source is superimposed.
ターゲットとしては、光透過性導電層3を構成する上述の金属酸化物が挙げられる。例えば、光透過性導電層3の材料としてITOを用いる場合、ITOからなるターゲットを用いる。ターゲットにおける酸化スズ(SnO2)含有量は、酸化スズおよび酸化インジウム(In2O3)の合計量に対して、例えば、0.5質量%以上、好ましくは、3質量%以上、より好ましくは、8質量%以上、さらに好ましくは、10質量%超であり、また、例えば、25質量%以下、好ましくは、15質量%以下、より好ましくは、13質量%以下である。Examples of the target include the above-mentioned metal oxides constituting the light-transmitting
スパッタリング時は、好ましくは、真空下で実施され、その気圧は、例えば、1.0Pa以下、好ましくは、0.5Pa以下、より好ましくは、0.2Pa以下であり、また、例えば、0.01Pa以上である。 Sputtering is preferably carried out under vacuum and its atmospheric pressure is, for example, 1.0 Pa or less, preferably 0.5 Pa or less, more preferably 0.2 Pa or less, and for example 0.01 Pa. That is all.
スパッタリング時の導入ガスとしては、例えば、Arなどの不活性ガスが挙げられる。また、この方法では、酸素ガスなどの反応性ガスを併用する。反応性ガスの流量の、不活性ガスの流量に対する比(反応性ガスの流量(sccm)/不活性ガスの流量(sccm))は、例えば、0.1/100以上5/100以下である。 Examples of the gas introduced during sputtering include an inert gas such as Ar. Further, in this method, a reactive gas such as oxygen gas is used in combination. The ratio of the flow rate of the reactive gas to the flow rate of the inert gas (flow rate of the reactive gas (sccm) / flow rate of the inert gas (sccm)) is, for example, 0.1/100 or more and 5/100 or less.
光透過性導電層3を形成する際における基材フィルム2の温度は、40℃未満、好ましくは、20℃以下、より好ましくは、10℃以下、さらに好ましくは、5℃以下であり、とりわけ好ましくは、0℃未満であり、最も好ましくは、−3℃以下であり、また、例えば、−40℃以上、好ましくは、−20℃以上である。基材フィルム2の温度が上記上限を超過すれば、基材フィルム2が搬送方向の張力により搬送方向に延伸してしまい、得られる光透過性導電フィルム1の基材フィルム2に応力が大きく残存する。その結果、光透過性導電フィルム1を対象物に貼着した際に、大幅に熱収縮するおそれがある。
The temperature of the
基材フィルム2を冷却するには、例えば、基材フィルム2の下面を、冷却装置(例えば、冷却ロール)などに接触させる。
To cool the
ロールトゥロール方式においては、例えば、成膜ロールやニップロールを冷却して、冷却ロールとすることができる。上記基材フィルム2の温度は、冷却装置の設定温度とする。
In the roll-to-roll method, for example, the film-forming roll or the nip roll can be cooled to form a cooling roll. The temperature of the
スパッタリング時の雰囲気(チャンバー内)は、含水していることが好ましく、スパッタ気圧(全圧)に対する、水分ガスの比(水分ガスの分圧(Pa)/スパッタリング気圧(Pa))は、例えば、0.006以上、好ましくは、0.008以上、より好ましくは、0.01以上であり、また、例えば、0.3以下、好ましくは、0.1以下、より好ましくは、0.07以下、さらに好ましくは、0.05以下である。含水量を上記範囲内とすれば、光透過性導電層3に微量の水を含ませることができ、光透過性導電層3の結晶化を抑制することができる。
The atmosphere during sputtering (inside the chamber) is preferably water-containing, and the ratio of water gas to the sputtering pressure (total pressure) (partial pressure of water gas (Pa) / sputtering pressure (Pa)) is, for example, 0.006 or more, preferably 0.008 or more, more preferably 0.01 or more, and for example, 0.3 or less, preferably 0.1 or less, more preferably 0.07 or less, More preferably, it is 0.05 or less. When the water content is within the above range, the light-transmitting
これによって、基材フィルム2と、光透過性導電層3とを備える光透過性導電フィルム1を得る。このときの光透過性導電層3は、非晶質である。
As a result, the light-transmitting
得られる光透過性導電フィルム1において、その総厚みは、例えば、2μm以上、好ましくは、20μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下である。
The total thickness of the obtained light-transmitting
光透過性導電フィルム1の面内寸法変化率Rは、0.55%以下であり、好ましくは、0.30%以下である。
The in-plane dimensional change rate R of the light-transmitting
面内寸法変化率Rは、光透過性導電フィルム1を、20℃から160℃まで昇温した後20℃まで降温する熱機械分析工程(前記分析工程、以下、「TMA」とも略する。)を実施したときにおける斜め方向(第1方向および第2方向の両方向に交差する方向)の寸法変化率であって、具体的には、下記式で示される。
The in-plane dimensional change rate R is a thermomechanical analysis step of heating the light transmissive
R = (ΔL1 2+ΔL2 2)1/2
式中、ΔL1は、前後方向(第1方向)におけるTMA前後の寸法変化率(%)を示し、具体的には、下記式で示される。R = (ΔL 1 2 + ΔL 2 2 ) 1/2
In the formula, ΔL 1 indicates the dimensional change rate (%) before and after TMA in the front-back direction (first direction), and is specifically shown by the following formula.
ΔL1={(L1 ´−L1)/L1}×100 (%)
L1は、TMAを実施する前の20℃における前後方向長さを示し、L1´は、TMAを実施した後の20℃における前後方向長さを示す。ΔL 1 = {(L 1 ′ −L 1 ) / L 1 } × 100 (%)
L 1 indicates the anteroposterior length at 20 ° C. before TMA is performed, and L 1 ′ indicates the anteroposterior length at 20 ° C. after TMA is performed.
式中、ΔL2は、左右方向(第2方向)におけるTMA前後の寸法変化率(%)を示し、具体的には、下記式で示される。In the formula, ΔL 2 indicates the dimensional change rate (%) before and after TMA in the left-right direction (second direction), and is specifically represented by the following formula.
ΔL2={(L2 ´−L2)/L2}×100 (%)
L2は、TMAを実施する前の20℃における左右方向長さを示し、L2´は、TMAを実施した後の20℃における左右方向長さを示す。 ΔL 2 = {(L 2 ' -L 2) / L 2} × 100 (%)
L 2 indicates the left-right length at 20 ° C. before TMA is performed, and L 2 ′ indicates the left-right length at 20 ° C. after TMA is performed.
寸法変化率ΔL1の絶対値は、例えば、0.50以下、好ましくは、0.30以下である。また、寸法変化率ΔL1は、例えば、−0.50以上、好ましくは、0を超過し、また、例えば、0.50以下、好ましくは、0.30以下である。The absolute value of the dimensional change rate ΔL 1 is, for example, 0.50 or less, preferably 0.30 or less. The dimensional change rate ΔL 1 is, for example, −0.50 or more, preferably more than 0, and for example, 0.50 or less, preferably 0.30 or less.
寸法変化率ΔL2の絶対値は、例えば、0.50以下、好ましくは、0.30以下である。また、寸法変化率ΔL2は、例えば、0を超過し、好ましくは、0.10以上であり、また、例えば、0.50以下、好ましくは、0.30以下である。The absolute value of the dimensional change rate ΔL 2 is, for example, 0.50 or less, preferably 0.30 or less. Further, the dimensional change rate ΔL 2 exceeds 0, preferably 0.10 or more, and is, for example, 0.50 or less, preferably 0.30 or less.
寸法変化率ΔL1の絶対値、および、寸法変化率ΔL2の絶対値が、それぞれ、上記範囲であれば、光透過性導電フィルム1を加熱により対象物に貼着した場合に、光透過性導電フィルム1の過度の収縮を防止することができ、加熱前の状態に近いサイズを維持することができる。特に、寸法変化率ΔL1の絶対値、および、寸法変化率ΔL2の絶対値が、両方とも、上記範囲であれば、貼着された光透過性導電フィルム1を、加熱前の状態に近いサイズをより確実に維持、または、それよりも大きくすることができる。When the absolute value of the dimensional change rate ΔL 1 and the absolute value of the dimensional change rate ΔL 2 are in the above ranges, the light transmissive when the light transmissive
また、寸法変化率ΔL1および寸法変化率ΔL2は、正の値または負の値のいずれであってもよいが、好ましくは、寸法変化率ΔL1および寸法変化率ΔL2の少なくとも一方は、正の値であり、より好ましくは、寸法変化率ΔL1および寸法変化率ΔL2は、両方とも、正の値である。なお、上記寸法変化率が、正の値である場合、TMA後の光透過性導電フィルム1の寸法変化は、膨張を示す。Further, the dimensional change rate ΔL 1 and the dimensional change rate ΔL 2 may be either a positive value or a negative value, but preferably at least one of the dimensional change rate ΔL 1 and the dimensional change rate ΔL 2 is It is a positive value, and more preferably, the dimensional change rate ΔL 1 and the dimensional change rate ΔL 2 are both positive values. When the dimensional change rate is a positive value, the dimensional change of the light-transmitting
各寸法変化率の少なくとも一方が、正の値であれば、光透過性導電フィルム1を加熱により対象物に貼着した場合に、貼着された光透過性導電フィルム1を、加熱前の状態に近いサイズをより確実に維持することができる。特に、各寸法変化率が、両方とも、正の値であれば、貼着された光透過性導電フィルム1は、加熱により膨張し、加熱前の寸法よりも大きいサイズにすることができる。そのため、対象物一方面全面に確実に光透過性導電フィルム1を貼着することができる。
If at least one of the dimensional change rates is a positive value, when the light-transmitting
TMAにおいて、光透過性導電フィルム1に印加する荷重は、19.6mNであり、測定時の光透過性導電フィルム1(測定サンプル)の大きさは、長辺(荷重が印加する方向)20mm、短辺3mmとする。その他の条件は、実施例に準ずる。
In TMA, the load applied to the light-transmitting
なお、ロールトゥロール方式の場合、例えば、基材フィルム2を搬送する搬送方向(MD方向)を前後方向(第1方向)とし、搬送方向と直交する直交方向(TD方向)を左右方向(第2方向)とする(図2参照)。
In the case of the roll-to-roll method, for example, the transport direction (MD direction) for transporting the
また、光透過性導電フィルム1を、JIS C 2151に準じて、20℃から150℃まで昇温した後20℃まで降温する加熱工程(以下、単に、「前記加熱工程」とも称する。)を実施したときに、前後方向における加熱前後の寸法変化率ΔM1の絶対値は、例えば、0.50%以下、好ましくは、0.30%未満である。また、寸法変化率ΔM1は、例えば、例えば、−0.50%以上、好ましくは、−0.30%以上であり、また、例えば、0.50%以下、好ましくは、0%未満である。Further, a heating step (hereinafter, also simply referred to as “the heating step”) is carried out in which the light transmissive
寸法変化率ΔM1は、前記加熱工程を実施する前の20℃における前後方向長さをM1、前記加熱工程を実施した後の20℃における前後方向長さをM1´として、下記式にて示される。Dimensional change .DELTA.M 1 is, M 1 a front-rear length at 20 ° C. before carrying out said heating step, the front-rear length at 20 ° C. after performing the heating step as M 1 ', the following formula Is shown.
ΔM1={(M1 ´−M1)/M1}×100 (%)
また、前記加熱工程を実施したときに、左右方向における加熱前後の寸法変化率ΔM2の絶対値は、例えば、0.50%以下、好ましくは、0.30%未満、より好ましくは、0.10%以下である。また、寸法変化率ΔM2は、例えば、−0.50%以上、好ましくは、−0.30%以上であり、また、例えば、0.50%以下、好ましくは、0%未満である。ΔM 1 = {(M 1 ′ −M 1 ) / M 1 } × 100 (%)
Further, when the heating step is performed, the absolute value of the dimensional change rate ΔM 2 before and after heating in the left-right direction is, for example, 0.50% or less, preferably less than 0.30%, more preferably 0. It is 10% or less. The dimensional change rate ΔM 2 is, for example, −0.50% or more, preferably −0.30% or more, and for example, 0.50% or less, preferably less than 0%.
寸法変化率ΔM2は、前記加熱工程を実施する前の20℃における左右方向長さをM2、前記加熱工程を実施した後の20℃における左右方向長さをM2´として、下記式にて示される。Dimensional change .DELTA.M 2 is, M 2 in the lateral direction length in 20 ° C. before carrying out said heating step, the lateral direction length in 20 ° C. after performing the heating step as M 2 ', the following formula Is shown.
ΔM2={(M2 ´−M2)/M2}×100 (%)
また、寸法変化率ΔM1および寸法変化率ΔM2の絶対値の少なくとも一方が、好ましくは、0.30%未満である。より好ましくは、ΔM1の絶対値およびΔM2の絶対値が、両方とも、0.30%未満である。ΔM 2 = {(M 2 ′ −M 2 ) / M 2 } × 100 (%)
Further, at least one of the absolute values of the dimensional change rate ΔM 1 and the dimensional change rate ΔM 2 is preferably less than 0.30%. More preferably, the absolute value of ΔM 1 and the absolute value of ΔM 2 are both less than 0.30%.
JIS C 2151に準じる方法は、光透過性導電フィルム1に、引張荷重などの荷重を印加しない状態で、光透過性導電フィルム1を加熱する方法である。
The method according to JIS C 2151 is a method of heating the light-transmitting
寸法変化率ΔM1および寸法変化率ΔM2は、正の値または負の値のいずれであってもよいが、好ましくは、寸法変化率ΔM1および寸法変化率ΔM2の少なくとも一方は、負の値であり、より好ましくは、寸法法変化率ΔM1および寸法法変化率ΔM2は、両方とも、負の値である。寸法変化率が負の値である場合、前記加熱工程後の光透過性導電フィルム1の寸法変化は、収縮を示す。The dimensional change rate ΔM 1 and the dimensional change rate ΔM 2 may be either positive or negative values, but preferably at least one of the dimensional change rate ΔM 1 and the dimensional change rate ΔM 2 is negative. It is a value, and more preferably, the dimensional change rate ΔM 1 and the dimensional change rate ΔM 2 are both negative values. When the dimensional change rate is a negative value, the dimensional change of the light-transmitting
光透過性導電フィルム1のヘイズ(JIS K−7105)は、例えば、2.0%以下、好ましくは、1.8%以下、より好ましくは、1.5%以下、さらに好ましくは、1.2%以下であり、また、例えば、0.1%以上である。光透過性導電フィルム1のヘイズが上記範囲内であれば、調光用光透過性導電フィルムとして好適に利用できる。
The haze (JIS K-7105) of the light transmissive
この光透過性導電フィルム1は、必要に応じてエッチングを実施して、光透過性導電層3を、所定形状にパターニングすることができる。
The light-transmitting
5.調光フィルムの製造方法
次に、光透過性導電フィルム1を用いて調光フィルム4を製造する方法について図3を参照して説明する。5. Method for manufacturing a light control film Next, a method for manufacturing a
調光フィルム4の製造方法は、例えば、光透過性導電フィルム1を2つ製造する工程と、次いで、調光機能層5を2つの光透過性導電フィルム1によって挟む工程とを備える。
The method for manufacturing the
まず、光透過性導電フィルム1を2つ製造する。なお、1つの光透過性導電フィルム1を切断加工して、2つの光透過性導電フィルム1を用意することもできる。
First, two light-transmitting
2つの光透過性導電フィルム1は、第1の光透過性導電フィルム1A、および、第2の光透過性導電フィルム1Bである。
The two light-transmitting
次いで、例えば、湿式により、第1の光透過性導電フィルム1Aにおける光透過性導電層3の上面(表面)に調光機能層5を形成する。
Next, for example, the
例えば、液晶組成物またはその溶液を、第1の光透過性導電フィルム1Aにおける光透過性導電層3の上面に塗布して、塗膜を形成する。液晶組成物は、調光用途に使用できるものであれば限定的でなく、公知のものが挙げられ、例えば、特開平8−194209号公報に記載の液晶分散樹脂が挙げられる。
For example, the liquid crystal composition or a solution thereof is applied to the upper surface of the light-transmitting
続いて、第2の光透過性導電フィルム1Bを塗膜の上面に、第2の光透過性導電フィルム1Bの光透過性導電層3と塗膜とが接触するように、積層する。これによって、2つの光透過性導電フィルム1、つまり、第1の光透過性導電フィルム1Aおよび第2の光透過性導電フィルム1Bによって、塗膜を挟み込む。
Subsequently, the second light-transmitting
その後、塗膜に対して、必要に応じて適宜の処理(例えば、熱乾燥処理、光硬化処理)を施して、調光機能層5を形成する。調光機能層5は、第1の光透過性導電フィルム1Aの光透過性導電層3と、第2の光透過性導電フィルム1Bの光透過性導電層3との間に配置される。
After that, the coating film is subjected to an appropriate treatment (for example, heat drying treatment, photocuring treatment) as necessary to form the dimming
これによって、第1の光透過性導電フィルム1Aと、調光機能層5と、第2の光透過性導電フィルム1Bとを順に備える調光フィルム4を得る。
As a result, a
6.調光部材の製造方法
次に、調光フィルム4を用いて調光部材6を製造する方法について図4A−Dを参照して説明する。6. Method for Manufacturing Dimming Member Next, a method for manufacturing the dimming member 6 using the
調光部材6の製造方法は、例えば、保護部材7に熱硬化性接着剤層8を形成する工程と、熱硬化性接着剤層8に調光フィルム4を配置する工程と、熱硬化性接着剤層8を加熱硬化する工程とを備える。
The method for manufacturing the light control member 6 includes, for example, a step of forming a thermosetting adhesive layer 8 on the
まず、図4Aに示すように、保護部材7を用意する。保護部材7は、調光フィルム4を貼着する対象物であって、例えば、窓ガラス、間仕切り、インテリアなどが挙げられる。具体的には、保護部材7は、適宜の機械的強度および厚みを有する硬質性の透明板が用いられ、例えば、ガラス板、強化プラスチック板(例えば、ポリカーボネート系樹脂)などが挙げられる。
First, as shown in FIG. 4A, the
続いて、図4Bに示すように、保護部材7に熱硬化性接着剤層8を形成する。例えば、液状の熱硬化性接着組成物を、保護部材7の上面(表面)の全面に塗布する。
Subsequently, as shown in FIG. 4B, the thermosetting adhesive layer 8 is formed on the
熱硬化性接着組成物としては、例えば、エポキシ系熱硬化性接着組成物、アクリル系熱硬化性接着組成物などが挙げられる。なお、熱硬化性接着組成物は、熱硬化後に調光フィルム4と保護部材7との貼付を維持できる限り任意の樹脂を採用でき、上記例示に限定されない。
Examples of the thermosetting adhesive composition include an epoxy-based thermosetting adhesive composition and an acrylic-based thermosetting adhesive composition. As the thermosetting adhesive composition, any resin can be used as long as the adhesion between the
塗布方法としては、例えば、アプリケータを用いる方法、ポッティング、キャストコート、スピンコート、ロールコートなどが挙げられる。 Examples of the coating method include a method using an applicator, potting, cast coating, spin coating, roll coating and the like.
次いで、図4Cに示すように、熱硬化性接着剤層8に調光フィルム4を配置する。すなわち、調光フィルム4を、熱硬化性接着剤層8を介して、保護部材7の上面に配置する。
Next, as shown in FIG. 4C, the
この際、調光フィルム4は、保護部材7と略同一サイズとなるように配置する。具体的には、調光フィルム4を、保護部材7と略同一サイズ(同一前後方向長さおよび同一左右方向長さ)となるように切断し、続いて、保護部材7の周端縁と調光フィルム4の周端縁とが上下方向に投影したときに一致するように、調光フィルム4を熱硬化性接着剤層8の上面に配置する。
At this time, the
次いで、図4Dに示すように、熱硬化性接着剤層8を加熱硬化する。 Next, as shown in FIG. 4D, the thermosetting adhesive layer 8 is heat-cured.
加熱温度は、例えば、80℃以上、好ましくは、100℃以上であり、また、例えば、180℃以下、好ましくは、160℃以下である。 The heating temperature is, for example, 80 ° C. or higher, preferably 100 ° C. or higher, and for example, 180 ° C. or lower, preferably 160 ° C. or lower.
加熱時間は、例えば、5分以上、好ましくは、20分以上、より好ましくは、30分以上であり、また、例えば、600分以下、好ましくは、300分以下である。 The heating time is, for example, 5 minutes or more, preferably 20 minutes or more, more preferably 30 minutes or more, and for example, 600 minutes or less, preferably 300 minutes or less.
加熱硬化は、大気環境下または真空環境下で実施してもよく、また、適度な圧力を印加してもよい。 The heat curing may be carried out in an air environment or a vacuum environment, or an appropriate pressure may be applied.
その後、保護部材7に貼着された調光フィルム4を、室温(5〜35℃)に冷却する。
Then, the
これにより、熱硬化性接着剤層8が熱硬化されて、接着剤層8aが形成される。その結果、調光フィルム4は、接着剤層8aを介して、保護部材7に貼着(固着)される。
As a result, the thermosetting adhesive layer 8 is thermally cured to form the
このとき、光透過性導電フィルム1、ひいては、調光フィルム4は、加熱前の状態に近い平面視サイズを維持するか、または、膨張する。なお、調光フィルム4が膨張する場合は、仮想線で示すように、調光フィルム4の端部(はみ出し部9)が、保護部材7の端縁から面方向側方にはみ出す。すなわち、調光フィルム4の周端縁は、保護部材7の周端縁よりも外側方に位置する。
At this time, the light-transmitting
これによって、図4Dに示すように、保護部材7と、その上面に設けられる接着剤層8aと、接着剤層8aの上面に配置される調光フィルム4とを備える調光部材6を得る。
As a result, as shown in FIG. 4D, a dimming member 6 including a
その後、調光フィルム4が、膨張した場合は、必要に応じて、次いで、図4Dの仮想線に示すように、調光フィルム4を切断する。すなわち、調光フィルム4の端部を上下方向に切断し、調光フィルム4のはみ出し部9を除去する。これにより、保護部材7と、調光フィルム4とが略同一サイズである調光部材6が得られる。
After that, when the
調光部材6は、配線(図示せず)、電源(図示せず)および制御装置(図示せず)を装着することにより、例えば、電気駆動型の調光装置(図示せず)として用いられる。電気駆動型としては、電界駆動型および電流駆動型が挙げられる。一例として、電界駆動型の調光装置では、配線および電源によって、第1の光透過性導電フィルム1Aにおける光透過性導電層3と、第2の光透過性導電フィルム1Bにおける光透過性導電層3とに電圧が印加され、それによって、それらの間において電界が発生する。そして、制御装置に基づいて、上記した電界が制御されることによって、それらの間に位置する調光機能層5が、配向状態または不規則状態となって、光を透過させる、または、遮断(もしくは散乱)する。
The dimming member 6 is used, for example, as an electrically driven dimming device (not shown) by mounting a wiring (not shown), a power supply (not shown), and a control device (not shown). .. Examples of the electric drive type include an electric field drive type and a current drive type. As an example, in an electric field-driven dimmer, the light-transmitting
この光透過性導電フィルム1および調光フィルム4は、20℃−160℃−20℃の熱機械分析工程(TMA)を実施したときに、面内寸法変化率Rが、0.55%以下である。そのため 光透過性導電フィルム1を、保護部材7(対象物)に対して加熱によって貼着しても、光透過性導電フィルム1は、加熱前の状態に近いサイズを維持することができる。そのため、保護部材7に貼着されない面積を低減することができ、所望のサイズの光透過性導電フィルム1を対象物に貼着することができる。
The light transmissive
このメカニズムは定かではないが、光透過性導電フィルム1を保護部材7に対して熱硬化性接着剤を介して加熱によって貼着した場合と、光透過性導電フィルム1に、引張荷重を印加して加熱するTMAを実施した場合とで、光透過性導電フィルム1の膨張・収縮が同様の挙動を示すことによるものと推察される。
Although this mechanism is not clear, when the light-transmitting
調光フィルム4を用いた調光部材6は、保護部材7の上面(貼着面)において、調光フィルム4が貼着されていない面積が低減されている。そのため、保護部材7の大面積で、(特に端部において)調光機能を有することができる。
In the dimming member 6 using the
7.変形例
図1に示す実施形態では、基材フィルム2の上面に光透過性導電層3が直接配置されているが、例えば、図示しないが、基材フィルム2の上面および/または下面に、機能層を設けることができる。7. Modification Example In the embodiment shown in FIG. 1, the light-transmitting
すなわち、例えば、光透過性導電フィルム1は、基材フィルム2と、基材フィルム2の上面に配置される機能層と、機能層の上面に配置される光透過性導電層3とを備えることができる。また、例えば、光透過性導電フィルム1は、基材フィルム2と、基材フィルム2の上面に配置される光透過性導電層3と、基材フィルム2の下面に配置される機能層とを備えることができる。また、例えば、基材フィルム2の上側および下側に、機能層と光透過性導電層3とをこの順に備えることもできる。
That is, for example, the light-transmitting
機能層としては、易接着層、アンダーコート層、ハードコート層などが挙げられる。易接着層は、基材フィルム2と光透過性導電層3との密着性を向上させるために設けられる層である。アンダーコート層は、光透過性導電フィルム1の反射率や光学色相を調整するために設けられる層である。ハードコート層は、光透過性導電フィルム1の耐擦傷性を向上するために設けられる層である。これらの機能層は、1種単独であってもよく、2種以上併用してもよい。
Examples of the functional layer include an easy-adhesion layer, an undercoat layer, and a hardcoat layer. The easy-adhesion layer is a layer provided to improve the adhesion between the
図4Dに示す実施形態では、保護部材7の上面に接着剤層8aと調光フィルム4とを備える調光部材6を示しているが、例えば、図示しないが、調光フィルム4の上面に、さらに、接着剤層8aおよび保護部材7を順に備えていてもよい。
In the embodiment shown in FIG. 4D, the dimming member 6 having the
また、調光フィルム4を保護部材7に貼着する前に、あらかじめ調光フィルム4の光透過性導電層3の外周部に配線を配置してもよい。
Further, before attaching the
また、図4A−Dでは、調光部材6の製造方法は、熱硬化性接着剤層8を用いて保護部材7に調光フィルム4を貼着しているが、接着剤層としては、加熱によって接着可能であればよく、熱硬化性接着層に限定されない。例えば、図示しないが、熱溶融性接着剤を用いて保護部材7に調光フィルム4を貼着してもよい。すなわち、調光部材6の製造方法は、例えば、保護部材7に熱溶融性接着剤層を形成する工程と、熱溶融性接着剤層に調光フィルム4を配置する工程と、熱溶融性接着剤層を加熱溶融する工程とを備えていてもよい。
Further, in FIGS. 4A-D, in the method of manufacturing the light control member 6, the
熱溶融性接着剤層を形成する方法としては、例えば、熱溶融性接着組成物からなるシートを保護部材7の上面の全面に積層する。
As a method of forming the heat-meltable adhesive layer, for example, a sheet made of the heat-meltable adhesive composition is laminated on the entire upper surface of the
熱溶融性接着組成物としては、例えば、エチレン酢酸ビニル系組成物、ポリオレフィン系組成物、ポリアミド系組成物、ポリエステル系組成物、ポリプロピレン系組成物、ポリウレタン系組成物などの熱可塑性樹脂組成物などが挙げられる。これらは1種単独であってもよく、2種以上併用していてもよい。このような熱溶融性接着組成物は、例えば、ホットメルト接着剤として用いられている。 Examples of the heat-meltable adhesive composition include thermoplastic resin compositions such as ethylene-vinyl acetate-based compositions, polyolefin-based compositions, polyamide-based compositions, polyester-based compositions, polypropylene-based compositions, and polyurethane-based compositions. Can be mentioned. These may be used alone or in combination of two or more. Such a heat-meltable adhesive composition is used, for example, as a hot-melt adhesive.
熱溶融性接着剤層の加熱温度は、例えば、上記した熱硬化性接着剤層8の加熱温度と同様である。 The heating temperature of the thermosetting adhesive layer is, for example, the same as the heating temperature of the thermosetting adhesive layer 8 described above.
<その他の実施形態>
上記した一実施形態では、光透過性導電フィルム1として、調光用光透過性導電フィルム)を例示したが、例えば、光透過性導電フィルムは、調光用以外の用途にも適用することができる。<Other Embodiments>
In the above-described embodiment, the light-transmitting
具体的には、光透過性導電フィルムは、例えば、画像表示装置(LCD、有機EL)などの光学装置に備えられる。好ましくは、光透過性導電フィルムは、タッチパネル用基材として用いられる。タッチパネルの形式としては、光学方式、超音波方式、静電容量方式、抵抗膜方式などの各種方式が挙げられ、特に静電容量方式のタッチパネルに好適に用いられる。 Specifically, the light-transmitting conductive film is provided in, for example, an optical device such as an image display device (LCD, organic EL). Preferably, the light-transmitting conductive film is used as a base material for a touch panel. Examples of the touch panel type include various methods such as an optical method, an ultrasonic method, a capacitance method, and a resistance film method, and are particularly preferably used for a capacitance type touch panel.
以下、本発明に関し、実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、実施例に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples as long as the gist of the present invention is not exceeded, and various modifications and modifications are made based on the technical idea of the present invention. Is possible. In addition, specific numerical values such as the compounding ratio (content ratio), physical property values, and parameters used in the following description are the compounding ratios corresponding to those described in the above-mentioned "Form for carrying out the invention". Content ratio), physical property values, parameters, etc. can be replaced with the upper limit (numerical value defined as "less than or equal to" or "less than") or lower limit (numerical value defined as "greater than or equal to" or "excess"). it can.
実施例1
光透過性の基材フィルムとして、第1方向(搬送方向、MD)に長尺なポリエチレンテレフタレート(PET)フィルム(厚み188μm、二軸延伸フィルム)を用意した。Example 1
As a light-transmitting base film, a long polyethylene terephthalate (PET) film (thickness 188 μm, biaxially stretched film) was prepared in the first direction (conveyance direction, MD).
PETフィルムをロールトゥロール方式にて、大気下で170℃にて1分間加熱した(前加熱)。 The PET film was heated in the air at 170 ° C. for 1 minute by a roll-to-roll method (preheating).
次いで、加熱したPETフィルムをロールトゥロール型スパッタリング装置に設置し、DCマグネトロンスパッタリング法により、厚み65nmの非晶質ITOからなる光透過性導電層を形成した。なお、スパッタリングの条件として、PETフィルムの温度を、−5℃に設定した。スパッタリング時の雰囲気を、ArおよびO2を導入した気圧0.2Paとした真空雰囲気(流量比はAr:O2=100:3.3)とし、その含水量(水分ガス/全圧)は、0.05とした。ターゲットとして、12質量%の酸化スズと88質量%の酸化インジウムとの焼結体を用いた。Next, the heated PET film was placed in a roll-to-roll sputtering apparatus, and a light-transmitting conductive layer made of amorphous ITO having a thickness of 65 nm was formed by a DC magnetron sputtering method. As a sputtering condition, the temperature of the PET film was set to −5 ° C. The atmosphere during sputtering was a vacuum atmosphere (flow rate ratio: Ar: O 2 = 100: 3.3) with an atmospheric pressure of 0.2 Pa in which Ar and O 2 were introduced, and the water content (moisture gas / total pressure) was It was set to 0.05. As a target, a sintered body of 12% by mass of tin oxide and 88% by mass of indium oxide was used.
実施例2
PETフィルムの厚みを50μmとし、スパッタリングにおけるPETフィルムの温度を0℃に設定し、スパッタリング時の雰囲気をArおよびO2を導入した気圧0.4Paとした真空雰囲気(流量比はAr:O2=100:3.0)とし、ターゲットとして、10質量%の酸化スズと90質量%の酸化インジウムとの焼結体を用い、光透過性導電層の厚みを25nmとした以外は、実施例1と同様にして、光透過性導電フィルムを製造した。Example 2
The thickness of the PET film was 50 μm, the temperature of the PET film in sputtering was set to 0 ° C., and the atmosphere during sputtering was a vacuum atmosphere with Ar and O 2 introduced at a pressure of 0.4 Pa (flow ratio is Ar: O 2 =). 100: 3.0), and the same as in Example 1 except that a sintered body of 10% by mass of tin oxide and 90% by mass of indium oxide was used as a target and the thickness of the light-transmitting conductive layer was 25 nm. In the same manner, a light-transmitting conductive film was produced.
比較例1
PETフィルムに前加熱を実施しなかった以外は、実施例1と同様にして、光透過性導電フィルムを製造した。Comparative Example 1
A light-transmitting conductive film was produced in the same manner as in Example 1 except that the PET film was not preheated.
比較例2
スパッタリングにおけるPETフィルムの温度を140℃に設定し、含水量を0.005に設定し、光透過性導電層の形成後にさらに大気下で170℃、2分の条件で後加熱を実施した以外は、実施例2と同様にして、光透過性導電フィルムを製造した。Comparative Example 2
Except that the temperature of the PET film in sputtering was set to 140 ° C., the water content was set to 0.005, and after the formation of the light-transmitting conductive layer, post-heating was further carried out in the atmosphere at 170 ° C. for 2 minutes. , A light-transmitting conductive film was produced in the same manner as in Example 2.
(評価)
(1)厚み
PETフィルム(基材フィルム)の厚みは、膜厚計(尾崎製作所社製、装置名「デジタルダイアルゲージ DG−205」)を用いて測定した。ITO層(光透過性導電層)の厚みは、透過型電子顕微鏡(日立製作所製、装置名「HF−2000」)を用いた断面観察により測定した。 (Evaluation)
(1) Thickness The thickness of the PET film (base film) was measured using a film thickness meter (manufactured by Ozaki Seisakusho Co., Ltd., device name "Digital Dial Gauge DG-205"). The thickness of the ITO layer (light transmissive conductive layer) was measured by cross-sectional observation using a transmission electron microscope (manufactured by Hitachi, Ltd., device name "HF-2000").
(2)熱機械分析(TMA)による寸法変化の測定
各実施例および各比較例の光透過性導電フィルムを、長辺20mm、短辺3mmの短冊に切り出し、測定サンプルとした。なお、MD方向(第1方向)の寸法変化を測定する場合は、MD方向が長辺、TD方向(MD方向と直交する方向、第2方向)が短辺となるように、また、TD方向の寸法変化を測定する場合は、TD方向が長辺、MD方向が短辺となるように、それぞれ切断した。これにより、各方向の寸法変化を計測するための測定サンプルを作製した。(2) Measurement of Dimensional Change by Thermomechanical Analysis (TMA) The light-transmitting conductive films of each Example and each Comparative Example were cut into strips having a long side of 20 mm and a short side of 3 mm and used as measurement samples. When measuring the dimensional change in the MD direction (first direction), the MD direction is the long side, the TD direction (the direction orthogonal to the MD direction, the second direction) is the short side, and the TD direction. When measuring the dimensional change of, the cut was made so that the TD direction was the long side and the MD direction was the short side. As a result, a measurement sample for measuring the dimensional change in each direction was prepared.
測定サンプルを熱機械分析装置(エスアイアイ・テクノロジー社製、「TMA/SS71000」)にセットして、MD方向およびTD方向のそれぞれについて、20℃から160℃に昇温し、さらに20℃に降温したときの寸法変化率を測定した。 The measurement sample is set in a thermomechanical analyzer (“TMA / SS71000” manufactured by SII Technology Co., Ltd.), the temperature is raised from 20 ° C to 160 ° C in each of the MD direction and the TD direction, and the temperature is further lowered to 20 ° C. The dimensional change rate at that time was measured.
すなわち、昇温前の20℃におけるMD方向長さをL1、昇温後の20℃におけるMD方向長さをL1 ´として、MD方向の寸法変化率ΔL1(%)を「{(L1 ´−L1)/L1}×100(%)」の式により算出した。また、昇温前の20℃におけるTD方向長さをM2、昇温後の20℃におけるTD方向長さをL2 ´として、TD方向の寸法変化率ΔL2(%)を「{(L2 ´−L2)/L2}×100(%)」の式により算出した。さらに、測定サンプル全体の面内寸法変化率Rを「{(ΔL1)2+(ΔL2)2}1/2」の式により算出した。That is, the MD direction length at 20 ° C. before the temperature rise is L 1 , the MD direction length at 20 ° C. after the temperature rise is L 1 ′ , and the dimensional change rate ΔL 1 (%) in the MD direction is “{(L). was calculated by the equation of 1 '-L 1) / L 1 } × 100 (%) ". Further, the TD direction length at 20 ° C. before the temperature rise is M 2 , the TD direction length at 20 ° C. after the temperature rise is L 2 ′ , and the dimensional change rate ΔL 2 (%) in the TD direction is “{(L). 2 '-L 2) / L 2 } was calculated by the equation of × 100 (%) ". Further, the in-plane dimensional change rate R of the entire measurement sample was calculated by the formula "{(ΔL 1 ) 2 + (ΔL 2 ) 2 } 1/2 ".
なお、熱機械分析の条件は、下記の通りとした。 The conditions for thermomechanical analysis were as follows.
測定モード :引っ張り法
荷重 :19.6mN
昇温速度 :10℃/min
測定雰囲気 :Air(流量200ml/min)
チャッキング距離:10mm
(3)JIS C 2151による寸法変化率の測定
各実施例および各比較例の光透過性導電フィルムを、MD方向(第1方向)10cm、TD方向(MD方向と直交する方向、第2方向)10cmに切断して、サンプルを作製した。このときの温度は、20℃であった。Measurement mode: Tension method Load: 19.6mN
Temperature rise rate: 10 ° C / min
Measurement atmosphere: Air (flow rate 200 ml / min)
Chucking distance: 10 mm
(3) Measurement of Dimensional Change Rate by JIS C 2151 The light-transmitting conductive film of each Example and each Comparative Example is 10 cm in the MD direction (first direction) and in the TD direction (direction orthogonal to the MD direction, second direction). A sample was prepared by cutting into 10 cm. The temperature at this time was 20 ° C.
JIS C 2151に準じて、サンプルを熱風オーブンで150℃で30分間加熱した後、20℃まで降温させた。この高温処理後の寸法変化率を、MD方向およびTD方向のそれぞれについて、測定した。 According to JIS C 2151, the sample was heated in a hot air oven at 150 ° C. for 30 minutes and then lowered to 20 ° C. The dimensional change rate after this high temperature treatment was measured in each of the MD direction and the TD direction.
すなわち、昇温前の20℃におけるMD方向の長さをM1、昇温後の20℃におけるMD方向長さをM1 ´として、MD方向の寸法変化率ΔM1(%)を「{(M1 ´−M1)/M1}×100(%)」の式により算出した。また、昇温前の20℃におけるTD方向長さをM2、昇温後の20℃におけるTD方向長さをM2 ´として、TD方向の寸法変化率ΔM2(%)を「{(M2 ´−M2)/M2}×100(%)」の式により算出した。That is, the length in the MD direction at 20 ° C. before the temperature rise is M 1 , the length in the MD direction at 20 ° C. after the temperature rise is M 1 ′ , and the dimensional change rate ΔM 1 (%) in the MD direction is “{(. It was calculated by the equation of M 1 '-M 1) / M 1} × 100 (%) ". Further, the TD direction length at 20 ° C. before the temperature rise is M 2 , the TD direction length at 20 ° C. after the temperature rise is M 2 ′ , and the dimensional change rate ΔM 2 (%) in the TD direction is “{(M). 2 '-M 2) / M 2 } was calculated by the equation of × 100 (%) ".
(4)ガラスへの貼着試験
市販のガラス板(前後方向長さ30cm×左右方向長さ25cm)の一方面全面に、熱硬化性樹脂(アクリル系接着剤)を塗布した。次いで、ガラス板と同一サイズの実施例および各比較例の光透過性導電フィルムを用意し、各光透過性導電フィルムを、ガラス板の周端縁と光透過性導電フィルムの周端縁とが一致するように、熱硬化性接着剤の上面に配置し、その後、大気環境下で、150℃で60分、加熱した。これにより、ガラス板に光透過性導電フィルムを貼着した。(4) Adhesion test to glass A thermosetting resin (acrylic adhesive) was applied to the entire surface of a commercially available glass plate (length 30 cm in the front-rear direction x length 25 cm in the left-right direction). Next, the light-transmitting conductive films of Examples and Comparative Examples having the same size as the glass plate are prepared, and each light-transmitting conductive film has a peripheral edge of the glass plate and a peripheral edge of the light-transmitting conductive film. They were placed on top of the thermocurable adhesive so that they match, and then heated at 150 ° C. for 60 minutes in an air environment. As a result, the light-transmitting conductive film was attached to the glass plate.
ガラスの一方面全面が、光透過性導電性フィルム1に完全に被覆されており、かつ、光透過性導電性フィルムの端部のはみ出しが実用上支障がないレベルであった場合を〇と評価し、ガラスの一方面の端縁が僅かに露出していたが、実用上支障がないレベルであった場合を△と評価し、ガラスの一方面の端縁が大きく露出しており、実用上支障があるレベルであった場合を×と評価した。
The case where the entire surface of one surface of the glass is completely covered with the light-transmitting
なお、実施例1において、貼着した光透過性導電フィルムは、ガラス板よりも僅かに縦方向および横方向よりも膨張していたため、膨張したフィルム端部を切断することにより、ガラス板全体に、ガラス板と同サイズの光透過性導電フィルムを貼着することができることが分かる。 In Example 1, the attached light-transmitting conductive film was slightly expanded in the vertical direction and the horizontal direction as compared with the glass plate. Therefore, by cutting the expanded film end, the entire glass plate was covered. , It can be seen that a light-transmitting conductive film having the same size as the glass plate can be attached.
(5)非晶質性
実施例および各比較例の光透過性導電フィルムを、大気環境下、80℃、20時間の条件で加熱した。その後、加熱した光透過性導電フィルムを、塩酸(濃度:5質量%)に15分間浸漬した後、水洗・乾燥し、各導電層の15mm程度の間の二端子間抵抗を測定した。15mm間の二端子間抵抗が10kΩを超過した場合を、非晶質と判断して、〇と評価した。10kΩを超過しなかった場合を、結晶質と判断して、×と評価した。結果を表1に示す。(5) Amorphous The light-transmitting conductive films of Examples and Comparative Examples were heated at 80 ° C. for 20 hours in an air environment. Then, the heated light-transmitting conductive film was immersed in hydrochloric acid (concentration: 5% by mass) for 15 minutes, washed with water and dried, and the resistance between the two terminals between about 15 mm of each conductive layer was measured. When the resistance between the two terminals between 15 mm exceeded 10 kΩ, it was judged to be amorphous and evaluated as 〇. When it did not exceed 10 kΩ, it was judged to be crystalline and evaluated as x. The results are shown in Table 1.
(6)外観
各実施例および各比較例の光透過性導電フィルムの表面を肉眼で観察した。フィルム表面に、シワやスジが完全に観察されなかった場合を◎と評価し、シワやスジがわずかに観察されたが、調光装置として支障が生じないレベルであった場合を〇と評価し、やや大きいシワやスジが観察されたが、調光装置として大きな支障が生じないレベルであった場合を△と評価し、調光装置として使用できないレベルのシワやスジが観察された場合を×と評価した。結果を表1に示す。(6) Appearance The surface of the light-transmitting conductive film of each Example and each Comparative Example was observed with the naked eye. When wrinkles and streaks were not completely observed on the film surface, it was evaluated as ◎, and when wrinkles and streaks were slightly observed, it was evaluated as 〇 when it was at a level that did not cause any trouble as a dimming device. , Slightly large wrinkles and streaks were observed, but the case where the level did not cause a big problem as a dimming device was evaluated as △, and the case where wrinkles and streaks at a level that could not be used as a dimming device were observed was ×. I evaluated it. The results are shown in Table 1.
なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 The above invention has been provided as an exemplary embodiment of the present invention, but this is merely an example and should not be construed in a limited manner. Modifications of the present invention that will be apparent to those skilled in the art are included in the claims below.
本発明の光透過性導電フィルムは、各種の工業製品に適用することができ、例えば、調光部材に備えられる調光フィルムや、画像表示装置に備えられるタッチパネル用基材などに好適に用いられる。 The light-transmitting conductive film of the present invention can be applied to various industrial products, and is preferably used, for example, as a light control film provided in a light control member, a touch panel base material provided in an image display device, or the like. ..
1 光透過性導電フィルム
2 基材フィルム
3 光透過性導電層
4 調光フィルム
5 調光機能層
6 調光部材
7 保護部材1 Light-transmitting
Claims (9)
基材フィルムと、光透過性導電層とを備え、
前記光透過性導電フィルムを、20℃から160℃まで昇温した後20℃まで降温する熱機械分析工程を実施したときに、下記式に示される面内寸法変化率Rが、0.55%以下であることを特徴とする、光透過性導電フィルム。
R = (ΔL1 2+ΔL2 2)1/2
(ただし、ΔL1は、前記第1方向における前記分析工程前後の寸法変化率(%)を示し、ΔL2は、前記第2方向における前記分析工程前後の寸法変化率(%)を示す。)A light-transmitting conductive film extending in a first direction and a second direction orthogonal to the first direction.
A base film and a light-transmitting conductive layer are provided.
When the thermomechanical analysis step of heating the light-transmitting conductive film from 20 ° C. to 160 ° C. and then lowering the temperature to 20 ° C. was carried out, the in-plane dimensional change rate R represented by the following formula was 0.55%. A light-transmitting conductive film characterized by the following.
R = (ΔL 1 2 + ΔL 2 2 ) 1/2
(However, ΔL 1 indicates the dimensional change rate (%) before and after the analysis step in the first direction, and ΔL 2 indicates the dimensional change rate (%) before and after the analysis step in the second direction.)
前記第1の光透過性導電フィルムおよび/または前記第2の光透過性導電フィルムは、請求項1〜6のいずれか一項に記載の光透過性導電フィルムであることを特徴とする、調光フィルム。A first light-transmitting conductive film, a dimming function layer, and a second light-transmitting conductive film are provided in this order.
The adjustment, wherein the first light-transmitting conductive film and / or the second light-transmitting conductive film is the light-transmitting conductive film according to any one of claims 1 to 6. Optical film.
前記保護部材に貼着される請求項7に記載の調光フィルムと
を備えることを特徴とする、調光部材。Protective material and
A dimming member comprising the dimming film according to claim 7, which is attached to the protective member.
基材フィルムを大気環境下で加熱する工程、および、
次いで、前記基材フィルムを40℃未満の状態で、前記基材フィルムに光透過性導電層を設ける工程
を備えることを特徴とする、光透過性導電フィルムの製造方法。The method for producing a light-transmitting conductive film according to any one of claims 1 to 6.
The process of heating the base film in an air environment, and
Next, a method for producing a light-transmitting conductive film, which comprises a step of providing a light-transmitting conductive layer on the base material film in a state where the base film is below 40 ° C.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017253851 | 2017-12-28 | ||
JP2017253851 | 2017-12-28 | ||
PCT/JP2018/041351 WO2019130842A1 (en) | 2017-12-28 | 2018-11-07 | Light-transmitting conductive film, method for producing same, light control film, and light control member |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019130842A1 true JPWO2019130842A1 (en) | 2020-11-19 |
JP7269873B2 JP7269873B2 (en) | 2023-05-09 |
Family
ID=67067036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019502042A Active JP7269873B2 (en) | 2017-12-28 | 2018-11-07 | LIGHT-TRANSMITTING CONDUCTIVE FILM, MANUFACTURING METHOD THEREOF, LIGHT-MODULATING FILM, AND LIGHT-MODULATING MEMBER |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7269873B2 (en) |
KR (1) | KR102618094B1 (en) |
CN (1) | CN111602211B (en) |
TW (1) | TWI788465B (en) |
WO (1) | WO2019130842A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017080959A (en) * | 2015-10-26 | 2017-05-18 | 積水化学工業株式会社 | Optically-transparent conductive film, and production method of annealed optically-transparent conductive film |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8059331B2 (en) | 2006-12-21 | 2011-11-15 | Hitachi Chemical Co., Ltd. | Light control film and light control glass |
JP5652079B2 (en) * | 2010-09-17 | 2015-01-14 | 凸版印刷株式会社 | Transparent conductive laminate and method for producing the same |
WO2013133451A1 (en) | 2012-03-09 | 2013-09-12 | 帝人デュポンフィルム株式会社 | Laminate for transparent electroconductive film base material |
JP6207846B2 (en) * | 2013-03-04 | 2017-10-04 | 富士フイルム株式会社 | Transparent conductive film and touch panel |
JP5957133B2 (en) * | 2014-11-20 | 2016-07-27 | 日東電工株式会社 | Transparent conductive film with protective film |
JP6470040B2 (en) * | 2014-12-26 | 2019-02-13 | 日東電工株式会社 | Transparent conductive film, transparent conductive film laminate, and touch panel |
JP6548910B2 (en) * | 2015-02-25 | 2019-07-24 | 日東電工株式会社 | Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element |
CN106715534B (en) * | 2015-03-19 | 2018-10-19 | 三菱瓦斯化学株式会社 | Polyimide resin |
JP6760066B2 (en) * | 2015-06-11 | 2020-09-23 | 東レ株式会社 | Biaxially oriented polyester film |
WO2017010521A1 (en) | 2015-07-16 | 2017-01-19 | 株式会社カネカ | Transparent electrode film, dimming element, and method for manufacturing transparent electrode film |
JP2017049310A (en) * | 2015-08-31 | 2017-03-09 | 富士フイルム株式会社 | Dimmer |
-
2018
- 2018-11-07 JP JP2019502042A patent/JP7269873B2/en active Active
- 2018-11-07 KR KR1020207014860A patent/KR102618094B1/en active IP Right Grant
- 2018-11-07 WO PCT/JP2018/041351 patent/WO2019130842A1/en active Application Filing
- 2018-11-07 CN CN201880084006.8A patent/CN111602211B/en active Active
- 2018-11-20 TW TW107141162A patent/TWI788465B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017080959A (en) * | 2015-10-26 | 2017-05-18 | 積水化学工業株式会社 | Optically-transparent conductive film, and production method of annealed optically-transparent conductive film |
Also Published As
Publication number | Publication date |
---|---|
KR102618094B1 (en) | 2023-12-27 |
KR20200098500A (en) | 2020-08-20 |
TW201931632A (en) | 2019-08-01 |
CN111602211A (en) | 2020-08-28 |
TWI788465B (en) | 2023-01-01 |
CN111602211B (en) | 2022-03-25 |
WO2019130842A1 (en) | 2019-07-04 |
JP7269873B2 (en) | 2023-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6637565B2 (en) | Light transmitting conductive film | |
TWI755384B (en) | Liquid crystal light-adjusting member, light-transmitting conductive film, and liquid crystal light-adjusting element | |
TWI834697B (en) | Translucent conductive film and dimmable film | |
WO2021187572A1 (en) | Transparent conductive film and method for producing transparent conductive film | |
JP6490262B2 (en) | Film with light transmissive conductive layer, light control film and light control device | |
JP2018041059A (en) | Liquid-crystal light-adjusting member, translucent conductive film, and liquid-crystal light-adjusting element | |
KR102328764B1 (en) | A liquid crystal light control member, a light transmissive conductive film, and a liquid crystal light control element | |
JPWO2019130841A1 (en) | Light-transmitting conductive film, its manufacturing method, dimming film, and dimming member | |
JP7102637B2 (en) | Method for manufacturing a light-transmitting conductive sheet | |
WO2018207622A1 (en) | Film with light-transmitting conductive layer, light control film and light control device | |
JPWO2019130842A1 (en) | Light-transmitting conductive film, its manufacturing method, dimming film, and dimming member | |
TW201917740A (en) | Method for manufacturing laminate of inorganic substance layer capable of inhibiting the inorganic substance layer from breakage during the manufacturing process | |
KR20190042438A (en) | Method for producing an inorganic layer laminate | |
WO2023042848A1 (en) | Transparent conductive film | |
JP7336305B2 (en) | transparent conductive film | |
WO2021241118A1 (en) | Optically transparent electroconductive sheet, touch sensor, light control element, photoelectric conversion element, heat ray control member, antenna, electromagnetic wave shield member, and image display device | |
JP2024012228A (en) | transparent conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230424 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7269873 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |