JPH07178863A - Transparent conductive film and production thereof - Google Patents

Transparent conductive film and production thereof

Info

Publication number
JPH07178863A
JPH07178863A JP5327438A JP32743893A JPH07178863A JP H07178863 A JPH07178863 A JP H07178863A JP 5327438 A JP5327438 A JP 5327438A JP 32743893 A JP32743893 A JP 32743893A JP H07178863 A JPH07178863 A JP H07178863A
Authority
JP
Japan
Prior art keywords
transparent conductive
film
membrane
oxide
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5327438A
Other languages
Japanese (ja)
Other versions
JP3214586B2 (en
Inventor
Naganari Matsuda
修成 松田
Toru Kotani
徹 小谷
Yozo Yamada
陽三 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP32743893A priority Critical patent/JP3214586B2/en
Publication of JPH07178863A publication Critical patent/JPH07178863A/en
Application granted granted Critical
Publication of JP3214586B2 publication Critical patent/JP3214586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain a transparent conductive film low in resistance and improved in stability by providing a crystalline inorg. substance as the substrate membrane of a transparent conductive membrane. CONSTITUTION:An inorg. substance having crystallinity, for example, cerium oxide is provided as the substrate membrane of a transparent conductive membrane. The transparent conductive membrane has both of transparency and conductive characteristics and, for example, there is a membrane composed of indium oxide, indium oxide-tin oxide(ITO), tin oxide, tin oxide-antimony, zinc oxide or zinc oxide-alminum. This membrane is desirably produced by a dry process such as vacuum vapor deposition or sputtering. In the formation of the substrate membrane composed of the crystalline inorg. substance, for example, a cerium oxide membrane, a sputtering method is most desirable. Since the cerium membrane is good in the matching properties with the transparent conductive membrane, the structure of the transparent conductive membrane is not amorphous and becomes crystalline and a transparent conductive film low in resistance and excellent in stability can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低抵抗で安定性の高い
透明導電フィルム、及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film having low resistance and high stability, and a method for producing the transparent conductive film.

【0002】[0002]

【従来の技術】高分子フィルム上に透明かつ低抵抗な化
合物を付着させた透明導電フィルムは、その導電性を利
用した用途、例えば、液晶ディスプレイ、ELディスプ
レイといったフラットディスプレイや、太陽電池等の透
明電極、ブラウン管の窓の透明静電、或は、電磁シール
ド板、発熱体等の電気、電子分野の用途に広く使用され
ている。又、このような透明導電薄膜の中で、選択透過
性を有するものは、その赤外光反射特性を利用して、太
陽エネルギー利用のためのコレクター用窓材や建物、自
動車等の熱線反射材としても利用されている。
2. Description of the Related Art A transparent conductive film in which a transparent and low-resistance compound is adhered on a polymer film is used for applications utilizing its conductivity, for example, flat displays such as liquid crystal displays and EL displays, and transparent solar cells. It is widely used in the fields of electric and electronic fields such as transparent electrostatics of electrodes and cathode ray tubes, or electromagnetic shield plates and heating elements. In addition, among such transparent conductive thin films, those having selective transmission are those that use the infrared light reflection characteristics to collect collector windows for solar energy, heat ray reflective materials for buildings, automobiles, etc. It is also used as.

【0003】これらの透明導電薄膜としては、一般的に
は、酸化すず(SnO2 )、酸化インジウム(In2
3 )、酸化インジウム・すず(ITO)、或は、酸化亜
鉛(ZnO)を中心としたものが代表的であり、真空蒸
着法、スパッター法、CVD法、スプレー法等により作
成できることが知られている。これらの化合物膜は、適
当な作成条件とすることで、実用可能な特性(表面抵抗
数Ω/□〜数MΩ/□、可視光透過率70〜95%)
をもつ透明導電薄膜とできることが知られている。
As these transparent conductive thin films, tin oxide (SnO 2 ) and indium oxide (In 2 O) are generally used.
3 ), indium oxide / tin (ITO), or zinc oxide (ZnO) is a typical one, and it is known that it can be produced by a vacuum deposition method, a sputtering method, a CVD method, a spray method, or the like. There is. These compound films have practical properties (surface resistance of several Ω / □ to several MΩ / □, visible light transmittance of 70 to 95%) under appropriate preparation conditions.
It is known that a transparent conductive thin film having

【0004】[0004]

【発明が解決しようとする課題】このような従来の透明
導電フィルムは、次のような課題を有していた。プラス
チック基材上に酸化インジウムや酸化錫等の透明導電薄
膜を形成する場合、プラスチック基材は一般的に200
℃以上の高温に耐えられないため、比較的低温、例えば
200℃以下で透明導電膜を形成する必要がある。さら
にプラスチック基材と透明導電薄膜の界面との整合性が
悪いため、200℃以下といった低温で基材上に成長さ
せた透明導電薄膜は、例えば450℃〜500℃の高温
で成長させた膜に比べると、一般に膜の比抵抗が大きい
という欠点を有する。これは、低温で作成された透明導
電薄膜の構造が非晶質であるためといわれている。さら
に、この非晶質構造は準安定状態であるため、抵抗特性
が経時的に変化するという問題がある。また、プラスチ
ック基材との界面の整合性が悪いために薄膜の付着力が
小さいという問題も存在する。
The conventional transparent conductive film as described above has the following problems. When a transparent conductive thin film such as indium oxide or tin oxide is formed on a plastic substrate, the plastic substrate is generally 200
Since it cannot withstand a high temperature of ℃ or more, it is necessary to form the transparent conductive film at a relatively low temperature, for example, 200 ℃ or less. Furthermore, since the interface between the plastic base material and the transparent conductive thin film is poorly matched, a transparent conductive thin film grown on the base material at a low temperature of 200 ° C. or lower is, for example, a film grown at a high temperature of 450 ° C. to 500 ° C. In comparison, there is a drawback that the specific resistance of the film is generally large. This is said to be because the structure of the transparent conductive thin film formed at low temperature is amorphous. Further, since this amorphous structure is in a metastable state, there is a problem that the resistance characteristic changes with time. In addition, there is also a problem that the adhesion of the thin film is small due to the poor matching of the interface with the plastic substrate.

【0005】一方、このような透明導電薄膜を、安定か
つ低抵抗の結晶状態にするためには、成膜時に基板温度
を高くしたり、成膜後に熱処理を行う方法等も提案され
ているが、プラスチック基材上では、基板温度、熱処理
温度を高くするにも限界があり、結晶化させても得られ
る特性は不十分で余り優れたものではなかった。また、
プラスチック基材上への低抵抗で付着力の強い透明導電
薄膜の形成方法として珪素、アルミニウムやチタン化合
物の薄膜を下地膜とする方法が提案されている(特開昭
58-172810)が、低抵抗といってもまだ不十分であり、さ
らに性能の安定性も十分なものではなかった。本発明
は、かかる欠点を改善することを目的として鋭意検討の
結果、透明導電薄膜と整合性の良い下地化合物膜として
酸化セリウムを透明導電膜との界面に介在させることに
より、低温形成膜ながら上記欠点が改善されることを見
出し、本発明として提案するに至ったものである。
On the other hand, in order to bring such a transparent conductive thin film into a stable and low resistance crystalline state, a method of raising the substrate temperature during film formation or performing heat treatment after film formation has been proposed. However, on a plastic substrate, there is a limit to raising the substrate temperature and the heat treatment temperature, and even if it is crystallized, the properties obtained are insufficient and not very excellent. Also,
As a method of forming a transparent conductive thin film having a low resistance and a strong adhesive force on a plastic substrate, a method of using a thin film of silicon, aluminum or a titanium compound as a base film has been proposed (Japanese Patent Laid-Open No. SHO 61-242).
58-172810) was still insufficient in terms of low resistance, and the stability of performance was not sufficient. The present invention has been earnestly studied for the purpose of improving such defects, and as a result, by interposing cerium oxide at the interface with the transparent conductive film as an underlying compound film having good compatibility with the transparent conductive thin film, the above-mentioned low-temperature forming film is formed. The inventors have found that the drawbacks are improved, and have come to propose the present invention.

【0006】[0006]

【課題を解決するための手段】本発明は、低抵抗で安定
性の優れた透明導電フィルムを提供せんとするものであ
る。すなわち、本発明は、プラスチック基材上に透明導
電薄膜を設けた透明導電フィルムにおいて、該透明導電
薄膜の下地膜として結晶性を有する無機物質、例えば酸
化セリウム金等を設けたことを特徴とする透明導電フィ
ルムであり、その製造方法である。
SUMMARY OF THE INVENTION The present invention is intended to provide a transparent conductive film having low resistance and excellent stability. That is, the present invention is characterized in that, in a transparent conductive film in which a transparent conductive thin film is provided on a plastic substrate, an inorganic substance having crystallinity, such as cerium gold, is provided as a base film of the transparent conductive thin film. It is a transparent conductive film and a method for producing the same.

【0007】本発明におけるプラスチック基材とは、有
機高分子を溶融押出しをして、必要に応じ、長手方向、
および、または、幅方向に延伸、冷却、熱固定を施した
フィルムであり、有機高分子としては、ポリエチレン、
ポリプロピレン、ポリエチレンテレフタート、ポリエチ
レン−2、6−ナフタレート、ナイロン6、ナイロン
4、ナイロン66、ナイロン12、ポリ塩化ビニール、
ポリ塩化ビニリデン、ポリビニールアルコール、全芳香
族ポリアミド、ポリアミドイミド、ポリイミド、ポリエ
ーテルイミド、ポリスルフォン、ポリッフェニレンスル
フィド、ポリフェニレンオキサイドなどがあげられる。
また、これらの(有機重合体)有機高分子は他の有機重
合体を少量共重合をしたり、ブレンドしたりしてもよ
い。これらの中で本発明においてもっとも用いられてい
るのは、ポリエチレンテレフタート等である。
The plastic substrate in the present invention means an organic polymer melt-extruded, and if necessary, in the longitudinal direction,
And, or, is a film stretched in the width direction, cooled, heat-fixed, as the organic polymer, polyethylene,
Polypropylene, polyethylene terephthalate, polyethylene-2,6-naphthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyvinyl chloride,
Examples thereof include polyvinylidene chloride, polyvinyl alcohol, wholly aromatic polyamide, polyamideimide, polyimide, polyetherimide, polysulfone, polyphenylene sulfide, and polyphenylene oxide.
Further, these (organic polymer) organic polymers may be copolymerized or blended with a small amount of another organic polymer. Among these, polyethylene terephthalate and the like are most used in the present invention.

【0008】さらにこの有機高分子には、公知の添加
剤、例えば、紫外線吸収剤、帯電防止剤、可塑剤、滑
剤、着色剤などが添加されていてもよく、その透明度は
特に限定するものではないが、透明度を重要視する用途
に使用する場合には、50%以上の透過率をもつものが
好ましい。本発明のプラスチックフィルムは、本発明の
目的を損なわない限りにおいて、薄膜層を積層するに先
行して、該フィルムをコロナ放電処理、グロー放電処
理、その他の表面粗面化処理を施してもよく、また、公
知のアンカーコート処理、印刷、装飾が施されていても
よい。本発明のプラスチックフィルムは、その厚さとし
てはとくに制限はないが、3〜500μmの範囲が好ま
しく、さらに好ましくは8〜300μmの範囲である。
本発明品は、そのままで使用されてもよいが、他の有機
高分子のフィルム、または薄層をラミネートまたはコー
ティングして使用してもよい。
Further, known additives such as an ultraviolet absorber, an antistatic agent, a plasticizer, a lubricant and a coloring agent may be added to the organic polymer, and its transparency is not particularly limited. However, when used in applications where transparency is important, those having a transmittance of 50% or more are preferable. The plastic film of the present invention may be subjected to corona discharge treatment, glow discharge treatment, or other surface roughening treatment prior to laminating the thin film layers, as long as the object of the present invention is not impaired. Also, known anchor coat treatment, printing, and decoration may be applied. The thickness of the plastic film of the present invention is not particularly limited, but it is preferably in the range of 3 to 500 μm, and more preferably in the range of 8 to 300 μm.
The product of the present invention may be used as it is, but may be used by laminating or coating a film or a thin layer of another organic polymer.

【0009】本発明における透明導電薄膜としては、透
明性、及び、導電特性を合わせもつ材料であれば特に制
限はないが、代表的なものとしては、酸化インジウム、
酸化インジウム−酸化スズ(ITO)、酸化スズ、酸化
スズ−アンチモン、酸化亜鉛、酸化亜鉛−アルミニウム
薄膜等がある。これらの化合物薄膜は、適当な作成条件
とすることで、透明性と導電性をあわせもつ(表面抵抗
数Ω/□〜数MΩ/□、可視光透過率60〜95%)
透明導電薄膜となることが知られている。なお、これら
の透明導電薄膜の膜厚としては、80〜8000Å(オ
ングストローム)程度とするのが望ましく、更に望まし
くは100〜5000Åである。本発明における透明導
電薄膜の作成法としては、真空蒸着、スパッター、CV
D、イオンプレーテイング法、スプレー法等が知られて
いる。本発明では、透明導電薄膜の作成法を特に限定す
るものではないが、下地膜をドライプロセスで作成する
ため、透明導電薄膜も同様に、真空蒸着、スパッター法
等のドライプロセスが望ましい。例えばスパッタ法の場
合は化合物タ−ゲットを用いた通常のスパッタ、あるい
は金属タ−ゲットを用いた反応性スパッタなどが用いら
れる。この時、反応性ガスとして酸素、窒素、水蒸気等
を導入したり、オゾン添加、イオンアシスト等の手段を
併用してもよい。また、基板温度については、本発明に
おいては、特に上げずとも、結晶質の良好な特性の透明
導電膜が得られるが、本発明の目的を損なわないかぎり
において、基板温度を上下させるなど作製条件を変更し
てもよい。蒸着、CVD法等の他の作製法においても同
様である。
The transparent conductive thin film in the present invention is not particularly limited as long as it is a material having both transparency and conductive characteristics. Typical examples are indium oxide and
There are indium oxide-tin oxide (ITO), tin oxide, tin oxide-antimony, zinc oxide, zinc oxide-aluminum thin film and the like. These compound thin films have both transparency and conductivity under appropriate production conditions (surface resistance: several Ω / □ to several MΩ / □, visible light transmittance: 60 to 95%).
It is known to be a transparent conductive thin film. The thickness of these transparent conductive thin films is preferably about 80 to 8000 Å (angstrom), more preferably 100 to 5000 Å. The method for producing the transparent conductive thin film in the present invention includes vacuum deposition, sputtering, and CV.
D, ion plating method, spray method and the like are known. In the present invention, the method for forming the transparent conductive thin film is not particularly limited, but since the base film is formed by a dry process, the transparent conductive thin film is preferably dry process such as vacuum deposition or sputtering. For example, in the case of the sputtering method, ordinary sputtering using a compound target or reactive sputtering using a metal target is used. At this time, oxygen, nitrogen, water vapor or the like may be introduced as a reactive gas, or means such as ozone addition or ion assist may be used in combination. Regarding the substrate temperature, in the present invention, a transparent conductive film having good crystalline characteristics can be obtained without particularly raising the temperature, but as long as the object of the present invention is not impaired, the substrate temperature is raised or lowered. May be changed. The same applies to other manufacturing methods such as vapor deposition and CVD.

【0010】本発明において、下地膜である結晶無機物
質例えば酸化セリウム薄膜の作製法としては、真空蒸着
法、スパッター法、イオンプレーテイングなどのPVD
法(物理蒸着法)、或いは、CVD法(化学蒸着法)な
どが適宜用いられるが、膜厚の制御の点からするとスパ
ッタ法がもっとも望ましい。下地膜の膜厚としては、5
0Å以上あればよく、望ましくは、100Å以上500
0Å以下である。なお、酸化セリウム中には、特性が損
なわれない範囲で微量(全成分に対して3%程度)の他
成分を含んでも良い。本発明の下地膜である例えば無機
物質酸化セリウム薄膜は、直接透明導電膜と接触してお
ればよく、酸化セリウム膜の下地膜の更に下については
特に限定はない。例えば酸化珪素、酸化アルミニウム薄
膜などを酸化セリウム膜の更に下にバリア層として設け
てもよいし、また何もつけずに酸化セリウム膜が直接プ
ラスチック基材に接してもよい。本発明においては下地
膜である酸化セリウム薄膜が、直接透明導電膜と接触し
ておれば、該透明導電膜の構造が非晶質ではなく結晶質
になり、低抵抗で安定性の優れた透明導電フィルムを作
製することができる。
In the present invention, as a method for producing a crystalline inorganic substance as a base film, for example, a cerium oxide thin film, a vacuum deposition method, a sputtering method, a PVD method such as ion plating, etc. is used.
A method (physical vapor deposition method), a CVD method (chemical vapor deposition method), or the like is used as appropriate, but the sputtering method is most preferable from the viewpoint of controlling the film thickness. The thickness of the base film is 5
It should be 0 Å or more, preferably 100 Å or more 500
It is less than 0Å. The cerium oxide may contain a small amount (about 3% of all components) of other components as long as the characteristics are not impaired. The underlying film of the present invention, for example, the cerium oxide thin film of an inorganic substance, may be in direct contact with the transparent conductive film, and there is no particular limitation as to what is further below the underlying film of the cerium oxide film. For example, a silicon oxide or aluminum oxide thin film may be provided as a barrier layer further below the cerium oxide film, or the cerium oxide film may be in direct contact with the plastic substrate without attaching anything. In the present invention, if the cerium oxide thin film that is the base film is in direct contact with the transparent conductive film, the structure of the transparent conductive film becomes crystalline rather than amorphous, and it is transparent with low resistance and excellent stability. A conductive film can be produced.

【0011】次に、実施例をあげて説明する。 (実施例1)PETフィルム(東洋紡(株)E510
0:100μm厚)上に透明導電薄膜の下地膜として、
酸化セリウム薄膜(50〜1500Å厚)をつけた。作
成方法は高周波マグネトロンスパッター法であり、ター
ゲットとして酸化セリウムの焼結ターゲット(大きさ
100×400mm)を用いた。作成条件としては、ス
パッター時の真空圧はArガスを導入して、3mTor
r一定とし、スパッター電力(400〜1000W)と
フィルムの送り速度(0.5〜2m/min)を変える
ことで所定の膜厚とした。次に、この上にIn−Sn
(5wt%)金属ターゲットを用いて、DC反応性スパ
ッター法で、ITO膜を成膜した。条件としてはスパッ
ター時の真空圧4mTorr一定とし、スパッター電流
(1〜5A)とフィルムの送り速度(0.5〜2m/m
in)を変えることで200または1000Åの膜厚と
した。酸化度は、ArとO2 の混合ガスを導入すること
で酸化雰囲気をコントロールした。また、基板温度は特
に上げなかった。(表1:実施例1−1〜8)
Next, examples will be described. (Example 1) PET film (Toyobo Co., Ltd. E510)
0: 100 μm thick) as a base film of the transparent conductive thin film,
A cerium oxide thin film (50-1500Å thickness) was applied. The manufacturing method is a high frequency magnetron sputtering method, and a cerium oxide sintered target (size
100 × 400 mm) was used. As for the preparation conditions, the vacuum pressure during sputtering was 3 mTorr with Ar gas introduced.
With a constant r, the sputtering power (400 to 1000 W) and the film feeding speed (0.5 to 2 m / min) were changed to obtain a predetermined film thickness. Next, on this, In-Sn
An ITO film was formed by a DC reactive sputtering method using a (5 wt%) metal target. The conditions are as follows: the vacuum pressure during sputtering is constant at 4 mTorr, the sputtering current (1 to 5 A) and the film feed rate (0.5 to 2 m / m).
in) was changed to a film thickness of 200 or 1000Å. Regarding the degree of oxidation, the oxidizing atmosphere was controlled by introducing a mixed gas of Ar and O 2 . The substrate temperature was not raised. (Table 1: Examples 1-1 to 8)

【0012】(表面抵抗の測定法)抵抗特性の測定には
4端針法を用いた。測定機としては、三菱油化(株)
(Lotest APMCP−T400)を用い測定し
た。
(Measurement Method of Surface Resistance) A four-end needle method was used for measurement of resistance characteristics. As a measuring machine, Mitsubishi Petrochemical Co., Ltd.
(Lotest APMCP-T400) was used for measurement.

【0013】(X線回折の方法)結晶性の測定は高強力
X線回折装置 リガク(株)製 Rotaflex(R
AD−RAC)を用い測定した。X線の発生条件として
は、Cuの管球を用い、励起電圧、電流を 40KV,
140mAとした。得られたサンプルの比抵抗は、8×
10-4Ωcm以下であった。更に、X線回折で結晶性を
チェックすると、2θ=30度と50度付近に酸化イン
ジウムの結晶のピーク(222)(440)が観測さ
れ、結晶質になっていることが解った。(図1)
(Method of X-ray Diffraction) Crystallinity is measured by a high-intensity X-ray diffractometer, Rotaflex (R manufactured by Rigaku Corporation).
It measured using AD-RAC). As the X-ray generation conditions, a Cu tube was used, and the excitation voltage and current were 40 KV,
It was 140 mA. The specific resistance of the obtained sample is 8 ×
It was 10 −4 Ωcm or less. Furthermore, when the crystallinity was checked by X-ray diffraction, it was found that crystalline peaks (222) and (440) of indium oxide were observed near 2θ = 30 ° and 50 °, and the crystals were crystalline. (Fig. 1)

【0014】(比較例1)(実施例1)と同様に、PE
Tフィルム上にITO膜を成膜し、透明導電フィルムを
作成した。この時に、下地膜は形成せず、PETフィル
ム上に直接ITO膜を付けた。スパッター条件は、(実
施例1)と同様にし、薄膜厚を200と1000Åとし
た。(表1:比較例1−1〜2)
(Comparative Example 1) As in (Example 1), PE
An ITO film was formed on the T film to form a transparent conductive film. At this time, the ITO film was directly attached on the PET film without forming the base film. The sputter conditions were the same as in (Example 1), and the thin film thickness was 200 and 1000Å. (Table 1: Comparative Examples 1-1 and 2)

【0015】(比較例2)EB蒸着法を用い、PETフ
ィルム上に透明導電膜の下地膜として酸化珪素、酸化ア
ルミニウム、酸化チタンを所定の膜厚につけ、さらにI
TO膜を実施例1と同様にスパッタ法でつけた。ITO
膜の膜厚は480Åとした。(表1:比較例2−1〜
3) 比較例1、2で得られた透明導電膜をX線回折で結晶性
を調べたが、結晶のピークは観測されず、非晶質である
ことがわかった。また、実施例のサンプルの抵抗特性が
8×10-4Ωcm以下になっているのに対し、比較例の
抵抗特性は15×10-4Ωcm以上であり、劣っている
ことが解った。
(Comparative Example 2) Silicon oxide, aluminum oxide, and titanium oxide were applied as a base film of a transparent conductive film on a PET film by an EB vapor deposition method to a predetermined film thickness, and then I
The TO film was applied by the sputtering method as in Example 1. ITO
The film thickness was 480Å. (Table 1: Comparative examples 2-1 to 2-1)
3) The crystallinity of the transparent conductive films obtained in Comparative Examples 1 and 2 was examined by X-ray diffraction, but no crystal peak was observed and it was found to be amorphous. Further, it was found that the resistance characteristics of the samples of the examples were 8 × 10 −4 Ωcm or less, whereas the resistance characteristics of the comparative examples were 15 × 10 −4 Ωcm or more, which was inferior.

【0016】(実施例2)SnO2 (Sb:5wt%)
の焼結タ−ゲットを用い、高周波スパッター法によっ
て、125μm厚のPETフィルム(東洋紡E510
0)に酸化スズ−アンチモン系透明導電膜(200又は
1000Å厚)を成膜した。作製条件としては、スパッ
ター時の真空圧4mTorr、スパッター電力(1K
W)一定とし、フィルムの送り速度(0.4〜2m/m
in)を変えることで所定の膜厚とした。酸化度は、A
rとO2 の混合ガスを導入することで酸化雰囲気をコン
トロールした。また、この時基板温度は特に上げなかっ
た。このようにして得られたサンプルの比抵抗を実施例
1と同様に測定した。(表2:実施例2−1〜6) また、結晶性も調べたところ、結晶のピークが観測さ
れ、結晶質であることがわかった。
(Example 2) SnO 2 (Sb: 5 wt%)
The 125 μm thick PET film (TOYOBO E510
A tin oxide-antimony-based transparent conductive film (200 or 1000 Å thickness) was formed on the surface (0). The manufacturing conditions are as follows: vacuum pressure during sputtering 4 mTorr, sputtering power (1 K
W) constant, film feed speed (0.4-2 m / m
in) was changed to obtain a predetermined film thickness. The degree of oxidation is A
The oxidizing atmosphere was controlled by introducing a mixed gas of r and O 2 . The substrate temperature was not raised at this time. The specific resistance of the sample thus obtained was measured in the same manner as in Example 1. (Table 2: Examples 2-1 to 6) Further, when the crystallinity was also examined, a crystal peak was observed and it was found to be crystalline.

【0017】(比較例3)(実施例2)と同様に、PE
Tフィルム上に酸化スズ−アンチモン系透明導電膜を成
膜し、透明導電フィルムを作成した。この時に、下地膜
なしでPETフィルム上に直接透明導電膜を付けたサン
プル(比較例3−1〜2)と下地膜として酸化珪素、酸
化アルミニウム、酸化チタン薄膜を所定の膜厚につけ、
さらに透明導電膜をつけたサンプル(比較例3−3〜
5)を作製した。このようにして得られたサンプルの比
抵抗を実施例1と同様に測定した。(表2) その結果、実施例のサンプルの抵抗特性が10×10-4
Ωcm以下になっているのに対し、比較例の抵抗特性は
35×10-4Ωcm以上であり劣っていることが解っ
た。更に、結晶性も調べたが、結晶のピークは観測され
ず、非晶質であることがわかった。次に熱的安定性を調
べるために、実施例1−3と比較例1−2、2−1のサ
ンプルを80℃の恒温槽中に放置した。その結果、実施
例のサンプルは1000時間放置後も安定しているが、
比較例のサンプルは徐々に変化し、1000時間後には
抵抗値が2倍以上に増加した。(図2) 次に同じサンプルについて、打鍵テスト(10000
回)をおこなったところ、実施例のサンプルの抵抗特性
は安定しているが、比較例のサンプルは1.5〜2倍に
も抵抗値が上昇し、安定性が劣ることがわかった。(図
3)
(Comparative Example 3) As in (Example 2), PE
A tin oxide-antimony-based transparent conductive film was formed on the T film to form a transparent conductive film. At this time, a sample (Comparative Examples 3-1 and 2) in which a transparent conductive film was directly attached on a PET film without a base film, and a silicon oxide, aluminum oxide, or titanium oxide thin film as a base film was attached to a predetermined film thickness,
Further, a sample provided with a transparent conductive film (Comparative Example 3-3 to
5) was produced. The specific resistance of the sample thus obtained was measured in the same manner as in Example 1. (Table 2) As a result, the resistance characteristics of the samples of Examples are 10 × 10 −4.
It was found that the resistance characteristic of the comparative example was 35 × 10 −4 Ωcm or more, while it was less than Ωcm. Furthermore, the crystallinity was also examined, but no crystal peak was observed and it was found to be amorphous. Next, in order to examine the thermal stability, the samples of Example 1-3 and Comparative examples 1-2 and 2-1 were left in a constant temperature bath at 80 ° C. As a result, the samples of the examples are stable after being left for 1000 hours,
The sample of the comparative example gradually changed, and the resistance value increased more than double after 1000 hours. (Fig. 2) Next, for the same sample, a keystroke test (10000
It was found that the resistance characteristics of the sample of the example were stable, but the resistance value of the sample of the comparative example increased 1.5 to 2 times, and the stability was poor. (Figure 3)

【0018】[0018]

【発明の効果】すなわち、本発明は、プラスチック基材
上に透明導電薄膜を設けた透明導電フィルムにおいて、
該透明導電薄膜の下地膜として酸化セリウムを設けるこ
とによって低抵抗で安定性の優れた透明導電フィルムを
提供できる。
That is, the present invention provides a transparent conductive film in which a transparent conductive thin film is provided on a plastic substrate,
By providing cerium oxide as a base film of the transparent conductive thin film, a transparent conductive film having low resistance and excellent stability can be provided.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はX線回折による透明導電膜の結晶性測定
の一例を示す。
FIG. 1 shows an example of crystallinity measurement of a transparent conductive film by X-ray diffraction.

【図2】図2は抵抗特性の熱的安定性をみるための放置
試験の結果の一例を示す。
FIG. 2 shows an example of a result of a standing test for checking thermal stability of resistance characteristics.

【図3】図3は抵抗特性の実用安定性をみるための打鍵
試験の結果の一例を示す。
FIG. 3 shows an example of the result of a keystroke test for checking the practical stability of resistance characteristics.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プラスチック基材上に透明導電性薄膜を
設けた透明導電フィルムにおいて、該透明導電薄膜の下
地膜として結晶性の無機物質を設けたことを特徴とする
透明導電フィルム。
1. A transparent conductive film in which a transparent conductive thin film is provided on a plastic substrate, wherein a crystalline inorganic substance is provided as a base film of the transparent conductive thin film.
【請求項2】 請求項1記載の下地膜が酸化セリウムで
あることを特徴とする透明導電フィルム。
2. A transparent conductive film, wherein the base film according to claim 1 is cerium oxide.
【請求項3】 プラスチック基材上に透明導電薄膜を設
けた透明導電フィルムにおいて、該透明導電薄膜の下地
膜として結晶性無機物質を設けることを特徴とする透明
導電フィルムの製造方法。
3. A method for producing a transparent conductive film, comprising: a transparent conductive film having a transparent conductive thin film provided on a plastic substrate, wherein a crystalline inorganic substance is provided as a base film of the transparent conductive thin film.
JP32743893A 1993-12-24 1993-12-24 Transparent conductive film and method for producing the same Expired - Fee Related JP3214586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32743893A JP3214586B2 (en) 1993-12-24 1993-12-24 Transparent conductive film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32743893A JP3214586B2 (en) 1993-12-24 1993-12-24 Transparent conductive film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07178863A true JPH07178863A (en) 1995-07-18
JP3214586B2 JP3214586B2 (en) 2001-10-02

Family

ID=18199176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32743893A Expired - Fee Related JP3214586B2 (en) 1993-12-24 1993-12-24 Transparent conductive film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3214586B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000085047A (en) * 1998-09-16 2000-03-28 Reiko Co Ltd Transparent electromagnetic wave shielding film
WO2012153573A1 (en) * 2011-05-10 2012-11-15 株式会社麗光 Transparent conductive film, transparent conductive laminated body, and touch panel
WO2014112481A1 (en) * 2013-01-16 2014-07-24 日東電工株式会社 Transparent conductive film and production method therefor
WO2014112536A1 (en) * 2013-01-16 2014-07-24 日東電工株式会社 Production method for transparent conductive film
WO2014112535A1 (en) * 2013-01-16 2014-07-24 日東電工株式会社 Transparent conductive film and production method therefor
WO2014112534A1 (en) * 2013-01-16 2014-07-24 日東電工株式会社 Transparent conductive film and production method therefor
JPWO2015115237A1 (en) * 2014-01-28 2017-03-23 株式会社カネカ Substrate with transparent electrode and manufacturing method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000085047A (en) * 1998-09-16 2000-03-28 Reiko Co Ltd Transparent electromagnetic wave shielding film
TWI480164B (en) * 2011-05-10 2015-04-11 Reiko Kk Transparent conductive film and transparent conductive laminated body and touch panel
WO2012153573A1 (en) * 2011-05-10 2012-11-15 株式会社麗光 Transparent conductive film, transparent conductive laminated body, and touch panel
JP5190854B2 (en) * 2011-05-10 2013-04-24 株式会社麗光 Transparent conductive film, transparent conductive laminate, and touch panel
CN104919541A (en) * 2013-01-16 2015-09-16 日东电工株式会社 Transparent conductive film and production method therefor
US9562282B2 (en) 2013-01-16 2017-02-07 Nitto Denko Corporation Transparent conductive film and production method therefor
WO2014112534A1 (en) * 2013-01-16 2014-07-24 日東電工株式会社 Transparent conductive film and production method therefor
JP2014157815A (en) * 2013-01-16 2014-08-28 Nitto Denko Corp Transparent conductive film and manufacturing method thereof
JP2014157814A (en) * 2013-01-16 2014-08-28 Nitto Denko Corp Transparent conductive film and manufacturing method thereof
WO2014112536A1 (en) * 2013-01-16 2014-07-24 日東電工株式会社 Production method for transparent conductive film
WO2014112481A1 (en) * 2013-01-16 2014-07-24 日東電工株式会社 Transparent conductive film and production method therefor
CN104937678A (en) * 2013-01-16 2015-09-23 日东电工株式会社 Production method for transparent conductive film
JP5976846B2 (en) * 2013-01-16 2016-08-24 日東電工株式会社 Transparent conductive film and method for producing the same
WO2014112535A1 (en) * 2013-01-16 2014-07-24 日東電工株式会社 Transparent conductive film and production method therefor
US9570210B2 (en) 2013-01-16 2017-02-14 Nitto Denko Corporation Transparent conductive film and production method therefor
US9805837B2 (en) 2013-01-16 2017-10-31 Nitto Denko Corporation Transparent conductive film and production method therefor
US9624573B2 (en) 2013-01-16 2017-04-18 Nitto Denko Corporation Production method for transparent conductive film
CN104937678B (en) * 2013-01-16 2017-04-26 日东电工株式会社 Production method for transparent electrical conductivity film
CN104919541B (en) * 2013-01-16 2017-05-17 日东电工株式会社 Transparent conductive film and production method therefor
JPWO2015115237A1 (en) * 2014-01-28 2017-03-23 株式会社カネカ Substrate with transparent electrode and manufacturing method thereof
US10270010B2 (en) 2014-01-28 2019-04-23 Kaneka Corporation Substrate with transparent electrode and method for producing same

Also Published As

Publication number Publication date
JP3214586B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
KR100270485B1 (en) Transparent conductive laminate and el element comprising of it
TWI381401B (en) Transparent conductive film and manufacturing method thereof
EP1720175B1 (en) Transparent conductive film and transparent conductive base material utilizing the same
CN101622721B (en) Transparent electrode for solar cell and method for manufacturing same
JP2525475B2 (en) Transparent conductive laminate
US5674599A (en) Deposited multi-layer device
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
JPH0864034A (en) Transparent conductive layered product
US9704610B2 (en) Manganese tin oxide based transparent conducting oxide and transparent conductive film and method for fabricating transparent conductive film using the same
JP4010587B2 (en) Transparent conductive laminate and electroluminescence light emitting device using the same
JPH07178863A (en) Transparent conductive film and production thereof
KR101884643B1 (en) Zinc-doped tine oxide based transparent conducting oxide, multilayered transparent conducting film using the same and method for preparing the same
JPH0315536B2 (en)
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film
JPS61183809A (en) Transparent conductive laminate body and manufacture thereof
JP2002343150A (en) Transparent electric conductive film and its manufacturing method
US20080000388A1 (en) Gas Barrier Transparent Resin Substrate Method for Manufacturing Thereof, and Flexible Display Element Using Barrier Transparent Resin Substrate
JPH04230906A (en) Transparent conductive laminated body
Singh et al. Indium Tin Oxide (ITO) films on flexible substrates for organic light emitting diodes
JPH09226046A (en) Transparent conductive layered body and its manufacture
JP2000243145A (en) Film with transparent electrically conductive film and manufacture thereof
JP4114398B2 (en) Manufacturing method of substrate with ITO film
JPS58206008A (en) Method of forming transparent conductive laminate
JP2001014952A (en) Transparent conductive film and electroluminescence panel
CN216014837U (en) Conductive film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees