JP2002170430A - Base body with conductive film and its manufacturing method - Google Patents

Base body with conductive film and its manufacturing method

Info

Publication number
JP2002170430A
JP2002170430A JP2000363003A JP2000363003A JP2002170430A JP 2002170430 A JP2002170430 A JP 2002170430A JP 2000363003 A JP2000363003 A JP 2000363003A JP 2000363003 A JP2000363003 A JP 2000363003A JP 2002170430 A JP2002170430 A JP 2002170430A
Authority
JP
Japan
Prior art keywords
film
conductive film
substrate
less
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000363003A
Other languages
Japanese (ja)
Other versions
JP4586263B2 (en
Inventor
Akira Mitsui
彰 光井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000363003A priority Critical patent/JP4586263B2/en
Publication of JP2002170430A publication Critical patent/JP2002170430A/en
Application granted granted Critical
Publication of JP4586263B2 publication Critical patent/JP4586263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings

Landscapes

  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a base body with a conductive film whose surface requires no complicated manufacturing processes such as heat treatment after forming a film and grinding of a film surface, and its manufacturing method. SOLUTION: In the base body with a conductive film, a substrate film mostly composed of a zirconium oxide is formed 1 nm and 150 nm thick. A conductive film mostly composed of oxides of an indium and zinc is formed on the substrate film, wherein average roughness Ra of the conductive film surface is 3.0 nm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は導電膜付き基体およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate with a conductive film and a method for producing the same.

【0002】[0002]

【従来の技術】インジウムと錫との酸化物を主成分とす
る導電膜(以下、ITO膜ともいう)は、LCD(液晶
ディスプレイ)、有機EL(エレクトロルミネッセン
ス)素子などの表示デバイスや太陽電池などの電極用の
透明導電膜として利用されている。ITO膜は、導電性
に優れ、可視光透過率が高く、耐薬品性がある一方で、
ある種の酸には溶けるので、パターニングしやすいとい
う優れた特徴がある。
2. Description of the Related Art A conductive film mainly containing an oxide of indium and tin (hereinafter, also referred to as an ITO film) is used for a display device such as an LCD (Liquid Crystal Display), an organic EL (Electroluminescence) element, a solar cell, and the like. Are used as transparent conductive films for the electrodes. While the ITO film has excellent conductivity, high visible light transmittance, and chemical resistance,
Since it is soluble in certain kinds of acids, it has an excellent feature that it is easy to pattern.

【0003】導電性および耐薬品性の観点から、ITO
膜は結晶質であることが好ましい。しかし、結晶質の膜
は表面に凹凸が生じやすい。ITO膜を有機EL素子な
どに用いる場合、ITO膜表面の凹凸が大きいと、リー
ク電流やダークスポットなどの不具合の原因となる。
[0003] From the viewpoint of conductivity and chemical resistance, ITO
Preferably, the film is crystalline. However, a crystalline film tends to have irregularities on its surface. When an ITO film is used for an organic EL device or the like, a large unevenness on the surface of the ITO film causes a problem such as a leak current or a dark spot.

【0004】10〜150℃の比較的低温でITO膜を
成膜した後、100〜450℃で加熱処理して、ITO
膜の結晶配向を(111)配向とし、有機EL素子のリ
ーク電流やダークスポットを抑制することが提案されて
いる(特開平11−87068号公報)。しかし、成膜
後に熱処理することは製造工程が複雑になり、生産性の
点で好ましくない。また、ITO膜表面の研磨、酸処理
などによりITO膜の表面の凹凸を減らす試みも行われ
ているが、いずれも製造工程が複雑になり、やはり生産
性に劣る。
After forming an ITO film at a relatively low temperature of 10 to 150 ° C., a heat treatment is performed at 100 to 450 ° C. to form an ITO film.
It has been proposed that the crystal orientation of the film be (111) orientation to suppress the leak current and dark spot of the organic EL element (Japanese Patent Laid-Open No. 11-87068). However, heat treatment after film formation complicates the manufacturing process and is not preferable in terms of productivity. Attempts have also been made to reduce the irregularities on the surface of the ITO film by polishing or acid treatment of the surface of the ITO film, but in any case, the manufacturing process becomes complicated and the productivity is also poor.

【0005】[0005]

【発明が解決しようとする課題】本発明は、成膜後の加
熱処理や膜表面の研磨などの複雑な製造工程が不要な、
表面に凹凸が少ない導電膜付き基体およびその製造方法
の提供を目的とする。
SUMMARY OF THE INVENTION The present invention eliminates the need for complicated manufacturing steps such as heat treatment after film formation and polishing of the film surface.
It is an object of the present invention to provide a substrate with a conductive film having few irregularities on the surface and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、基体上に、酸
化ジルコニウムを主成分とする下地膜が1nm以上15
0nm以下の膜厚で形成され、該下地膜上に、インジウ
ムと錫との酸化物を主成分とする導電膜(ITO膜)が
形成され、前記ITO膜表面の平均表面粗さR が3.
0nm以下であることを特徴とする導電膜付き基体を提
供する。
According to the present invention, an acid is provided on a substrate.
The underlayer mainly composed of zirconium fluoride is 1 nm or more and 15
0 nm or less, and an indium oxide film is formed on the base film.
Conductive film (ITO film) whose main component is an oxide of tin and tin
The average surface roughness R of the formed ITO film surface aIs 3.
Substrate with a conductive film, characterized in that the thickness is
Offer.

【0007】本発明は、また、基体上に、酸化ジルコニ
ウムを主成分とする下地膜を1nm以上150nm以下
の膜厚で形成し、次いで該下地膜上に、ITO膜を形成
し、前記ITO膜表面の平均表面粗さRaが3.0nm
以下である導電膜付き基体を得ることを特徴とする導電
膜付き基体の製造方法を提供する。本発明において、I
TO膜表面の平均表面粗さとは、導電膜付き基体の表面
の平均表面粗さの意である。
According to the present invention, there is further provided a base film containing zirconium oxide as a main component with a thickness of 1 nm or more and 150 nm or less on a substrate, and then forming an ITO film on the base film. Average surface roughness Ra of 3.0 nm
The present invention provides a method for producing a substrate with a conductive film, characterized by obtaining the following substrate with a conductive film. In the present invention, I
The average surface roughness of the surface of the TO film means the average surface roughness of the surface of the substrate with a conductive film.

【0008】[0008]

【発明の実施の形態】本発明における基体としては、特
に限定されず、ガラス基板などの無機質の基体や、プラ
スチック基板などの有機質の基体が挙げられる。ガラス
基板としては、ソーダライムシリケートガラス基板など
のアルカリ含有ガラス基板や、ホウケイ酸ガラス基板な
どの無アルカリガラス基板などが挙げられる。無アルカ
リガラス基板の平均表面粗さRaは0.1〜5nm程度
である。アルカリ含有ガラス基板の平均表面粗さRa
0.1〜10nm程度である。なお、本発明において、
平均表面粗さRaは、JIS B0601によって測定
され、カットオフ値は0.8μm、評価長さは2.4μ
mとする。
BEST MODE FOR CARRYING OUT THE INVENTION The substrate in the present invention is not particularly limited, and examples thereof include an inorganic substrate such as a glass substrate and an organic substrate such as a plastic substrate. Examples of the glass substrate include an alkali-containing glass substrate such as a soda lime silicate glass substrate and a non-alkali glass substrate such as a borosilicate glass substrate. The average surface roughness R a of the alkali-free glass substrate is about 0.1 to 5 nm. The average surface roughness R a of the alkali-containing glass substrate is about 0.1 to 10 nm. In the present invention,
The average surface roughness Ra is measured according to JIS B0601, the cutoff value is 0.8 μm, and the evaluation length is 2.4 μm.
m.

【0009】アルカリ含有ガラス基板を用いる場合に
は、ガラス基板に含まれるアルカリイオンがITO膜へ
拡散してITO膜の抵抗値に影響を及ぼすことを防ぐた
め、層(アルカリバリア層)として酸化ケイ素(SiO
2)膜などを形成することが好ましい。アルカリバリア
層が形成されたアルカリ含有ガラス基板の平均表面粗さ
aは0.1〜10nm程度であることが好ましい。
When an alkali-containing glass substrate is used, silicon oxide is used as a layer (alkali barrier layer) in order to prevent alkali ions contained in the glass substrate from diffusing into the ITO film and affecting the resistance value of the ITO film. (SiO
2 ) It is preferable to form a film or the like. The average surface roughness R a of the alkali-containing glass substrate alkali barrier layer is formed is preferably about 0.1 to 10 nm.

【0010】アルカリバリア層のガラス基板への形成方
法は、特に限定されず、熱分解法(原料溶液を塗布後加
熱して膜を形成する方法)、CVD法、スパッタリング
法、蒸着法、イオンプレーティング法などが挙げられ
る。たとえば、SiO2膜の場合、SiO2ターゲット用
いたRF(高周波)スパッタリング法、または、Siタ
ーゲットを用いた、RFもしくはDC(直流)スパッタ
リング法などの成膜法が挙げられる。Siターゲットを
用いる場合、スパッタリングガスはAr−O2混合ガス
を用い、SiO2膜が吸収のない透明な膜になるように
ArとO2のガス比を定めることが好ましい。SiO2
の膜厚は、アルカリバリア性能の観点から、10nm以
上が好ましく、コスト面から500nm以下が適当であ
る。
The method for forming the alkali barrier layer on the glass substrate is not particularly limited, and includes a pyrolysis method (a method of forming a film by applying a raw material solution and then heating), a CVD method, a sputtering method, a vapor deposition method, and an ion plating method. For example. For example, in the case of a SiO 2 film, a film formation method such as an RF (high frequency) sputtering method using a SiO 2 target or an RF or DC (direct current) sputtering method using a Si target is used. When a Si target is used, it is preferable to use an Ar-O 2 mixed gas as a sputtering gas and determine the gas ratio of Ar and O 2 so that the SiO 2 film becomes a transparent film without absorption. The thickness of the SiO 2 film is preferably 10 nm or more from the viewpoint of alkali barrier performance, and is suitably 500 nm or less from the viewpoint of cost.

【0011】本発明における下地膜は、酸化ジルコニウ
ムを主成分とする膜である。下地膜には、Hf、Fe、
Cr、Y、Ca、Siなどの不純物が含まれていてもよ
いが、不純物はその合量が、Zrと不純物元素との総量
に対して10原子%以下、特に、1原子%以下であるこ
とが好ましい。
The underlayer in the present invention is a film containing zirconium oxide as a main component. Hf, Fe,
Although impurities such as Cr, Y, Ca, and Si may be contained, the total amount of the impurities is 10 atomic% or less, particularly 1 atomic% or less based on the total amount of Zr and the impurity element. Is preferred.

【0012】下地膜の膜厚(幾何学的膜厚)は1nm以
上150nm以下である。この膜厚の下地膜が存在する
ことにより、得られる導電膜付き基体の表面の平均表面
粗さRaを3.0nm以下に容易に制御できる。本発明
における下地膜は、その上に成膜されるITO膜の結晶
成長に影響し、ITO膜の結晶配向性を変えることがで
き、得られる導電膜付き基体の表面の平坦性に寄与す
る。
The thickness (geometric thickness) of the underlayer is 1 nm or more and 150 nm or less. By the base film of the film thickness is present, can be easily controlled average surface roughness R a of the surface of the resulting conductive film-coated substrate below 3.0 nm. The base film in the present invention affects the crystal growth of the ITO film formed thereon, can change the crystal orientation of the ITO film, and contributes to the flatness of the surface of the obtained substrate with a conductive film.

【0013】下地膜が比較的薄い場合、下地膜は島状の
不連続な膜になっていると考えられ、この島状の下地膜
が、ITO膜が(400)面に配向しやすいような、核
形成を促進すると考えられる。一方、下地膜が比較的厚
い場合、下地膜は連続膜の状態になっていると考えられ
る。この場合、エピタキシャル的な作用により、ITO
膜が(222)面に配向しやすくなると考えられる。
When the base film is relatively thin, it is considered that the base film is an island-shaped discontinuous film, and the island-shaped base film is such that the ITO film is easily oriented to the (400) plane. It is thought to promote nucleation. On the other hand, when the base film is relatively thick, the base film is considered to be in a continuous film state. In this case, the epitaxial action causes ITO
It is considered that the film is easily oriented to the (222) plane.

【0014】下地膜の膜厚が1nm未満では、ITO膜
表面の平均表面粗さを小さくするという下地膜としての
効果が得られない。下地膜の膜厚が150nm超では、
下地膜としての効果が下がり、平均表面粗さRaが3.
0nm以下の導電膜付き基体を得ることが難しくなる。
なお、以上に述べた下地膜の膜厚は平均膜厚のことであ
り、連続膜になっていない場合も同様とする。
If the thickness of the underlayer is less than 1 nm, the effect as the underlayer of reducing the average surface roughness of the ITO film surface cannot be obtained. If the thickness of the underlying film exceeds 150 nm,
The effect as a base film is reduced, and the average surface roughness Ra is 3.
It becomes difficult to obtain a substrate with a conductive film of 0 nm or less.
The thickness of the base film described above is an average film thickness, and the same applies to a case where a continuous film is not formed.

【0015】下地膜の膜厚が15nm超30nm以下の
場合は、(400)/(222)回折強度比が0.1以
上1.0以下となり、ITO膜表面の平均表面粗さRa
が2.5nm以下となる。下地膜の膜厚が30nm超1
50nm以下の場合は、(400)/(222)回折強
度比が0.1以下となって、ITO膜の(222)面の
配向性が強くなり、ITO膜表面の平均表面粗さRa
3.0nm以下となる。
[0015] When the thickness of the base film of 15nm ultra 30nm or less, (400) / (222) diffraction intensity ratio is 0.1 or more and 1.0 or less, the average surface roughness R a of the ITO film surface
Is 2.5 nm or less. The thickness of the underlayer is more than 30 nm1
For 50nm or less, (400) / (222) by the diffraction intensity ratio becomes 0.1 or less, the stronger the orientation of the (222) plane of the ITO film, the average surface roughness R a of the ITO film surface It becomes 3.0 nm or less.

【0016】下地膜の膜厚が1nm以上15nm以下の
場合、ITO膜の主配向面が(400)となる。すなわ
ち、(400)面の回折強度と(222)面の回折強度
の比、(400)/(222)回折強度比が1.0超と
なり、ITO膜表面の平均表面粗さRaが2.0nm以
下となるので好ましい。さらに、下地膜の膜厚が5nm
以上10nm以下の範囲では、ITO膜表面の平均表面
粗さRaが最も小さくなり、優れた平坦性が得られるの
で、特に好ましい。
When the thickness of the underlayer is 1 nm or more and 15 nm or less, the main orientation plane of the ITO film is (400). That is, (400) diffraction intensity of the plane and (222) plane ratio of the diffraction intensity of the (400) / (222) Average surface roughness R a of the diffraction intensity ratio is 1.0 ultra next, ITO membrane surface 2. It is preferable because it becomes 0 nm or less. Further, the thickness of the base film is 5 nm.
In the range of 10nm inclusive, the average surface roughness R a of the ITO film surface becomes smallest, so excellent flatness can be obtained, particularly preferred.

【0017】下地膜の形成方法は、特に限定されず、熱
分解法、CVD法、スパッタリング法、蒸着法、イオン
プレーティング法などが挙げられる。たとえば、金属Z
rターゲットを用いてRFもしくはDCスパッタリング
法で形成する、または安定化ジルコニアターゲットを用
いてRFスパッタリング法で形成する、などが挙げられ
る。安定化ジルコニアターゲットは、YやCaなどの不
純物が多いので、金属Zrターゲットを用いる方がより
好ましい。
The method for forming the underlayer is not particularly limited, and examples thereof include a thermal decomposition method, a CVD method, a sputtering method, a vapor deposition method, and an ion plating method. For example, metal Z
formed by an RF or DC sputtering method using an r target, or formed by an RF sputtering method using a stabilized zirconia target. Since a stabilized zirconia target has many impurities such as Y and Ca, it is more preferable to use a metal Zr target.

【0018】スパッタリング法としては、成膜速度の観
点からDCスパッタリング法が好ましい。スパッタリン
グガスは、Ar−O2混合ガスを用い、下地膜が吸収の
ない透明な膜になるようにArとO2のガス比を定める
ことが好ましい。
As a sputtering method, a DC sputtering method is preferable from the viewpoint of a film forming speed. As a sputtering gas, an Ar—O 2 mixed gas is preferably used, and the gas ratio of Ar and O 2 is preferably determined so that the underlying film becomes a transparent film without absorption.

【0019】本発明におけるITO膜としては、In2
3とSnO2とからなる膜が挙げられ、その組成として
は、(In23+SnO2)の総量に対してSnO2が1
〜20質量%含まれていることが好ましい。ITO膜の
膜厚は、抵抗値、透過率などの観点から100nm以上
500nm以下であることが好ましい。比抵抗値は4×
10-4Ωcm以下であることが好ましく、シート抵抗値
としては20Ω/□以下であることが好ましい。
In the present invention, as the ITO film, In 2
A film composed of O 3 and SnO 2 may be mentioned, and the composition thereof is such that SnO 2 is 1 to the total amount of (In 2 O 3 + SnO 2 ).
Preferably, it is contained in an amount of up to 20% by mass. The thickness of the ITO film is preferably 100 nm or more and 500 nm or less from the viewpoint of resistance value, transmittance, and the like. The specific resistance value is 4 ×
The sheet resistance is preferably 10 −4 Ωcm or less, and the sheet resistance value is preferably 20 Ω / □ or less.

【0020】ITO膜の形成方法は、特に限定されず、
熱分解法、CVD法、スパッタリング法、蒸着法、イオ
ンプレーティング法などが挙げられる。たとえば、IT
Oターゲットを用い、RFまたはDCスパッタリング法
で形成する方法が挙げられる。スパッタリングガスは、
Ar−O2混合ガスを用い、ITO膜の比抵抗が最小に
なるようにArとO2のガス比を定めるのが好ましい。
The method of forming the ITO film is not particularly limited.
Examples include a thermal decomposition method, a CVD method, a sputtering method, an evaporation method, and an ion plating method. For example, IT
A method in which an O target is used and RF or DC sputtering is used. The sputtering gas is
It is preferable to use an Ar-O 2 mixed gas and determine the gas ratio between Ar and O 2 so that the specific resistance of the ITO film is minimized.

【0021】スパッタリング時の成膜温度は、100℃
以上500℃以下で行うことが好ましい。100℃より
低いと、ITO膜が非晶質になりやすく、膜の耐薬品性
が低下する。500℃より高いと、結晶性が促進され、
膜表面の凹凸が大きくなる。
The film forming temperature during sputtering is 100 ° C.
It is preferable to carry out at a temperature of at least 500 ° C. If the temperature is lower than 100 ° C., the ITO film tends to be amorphous, and the chemical resistance of the film is reduced. When the temperature is higher than 500 ° C., crystallinity is promoted,
Irregularities on the film surface increase.

【0022】本発明の導電膜付き基体は、LCD、無機
EL素子、有機EL素子などの表示デバイスの電極や、
太陽電池の電極として好適である。特に、ホール注入電
極と、電子注入電極と、これらの電極間に有機発光層と
を有する有機EL素子において、ホール注入電極として
本発明の導電膜付き基体を用いてなる有機EL素子は好
適な例のひとつである。
The substrate with a conductive film of the present invention can be used for electrodes of display devices such as LCDs, inorganic EL elements, and organic EL elements,
It is suitable as an electrode of a solar cell. In particular, in an organic EL device having a hole injection electrode, an electron injection electrode, and an organic light emitting layer between these electrodes, an organic EL device using the substrate with a conductive film of the present invention as the hole injection electrode is a preferable example. It is one of.

【0023】[0023]

【実施例】[例1]洗浄したソーダライムシリケートガ
ラス基板(平均表面粗さRaは0.5nm)をスパッタ
リング装置にセットし、基板を250℃に加熱し、スパ
ッタリング成膜の際も基板温度を250℃に保持した。
この基板の上にアルカリバリア層として、SiO2膜を
RFスパッタリング法で成膜した。このとき、ターゲッ
トには、直径150mmの円盤状のSiターゲットを用
いた。スパッタリングガスには、Ar−O2混合ガスを
用いた。ArとO2のガス比は、Ar:O2=70:30
(体積比)とし、全圧を0.6Paとした。0.5kW
で放電し、成膜を行った。膜厚は20nmとした。この
SiO2膜付き基板のSiO2膜表面の平均表面粗さRa
は0.5nmであった。
[Example 1] A washed soda lime silicate glass substrate (average surface roughness Ra : 0.5 nm) was set in a sputtering apparatus, and the substrate was heated to 250 ° C. Was kept at 250 ° C.
On this substrate, an SiO 2 film was formed as an alkali barrier layer by an RF sputtering method. At this time, a disk-shaped Si target having a diameter of 150 mm was used as the target. An Ar—O 2 mixed gas was used as a sputtering gas. The gas ratio of Ar to O 2 is Ar: O 2 = 70: 30
(Volume ratio), and the total pressure was 0.6 Pa. 0.5kW
And a film was formed. The film thickness was 20 nm. The average surface roughness R a of the SiO 2 film surface of the SiO 2 film-coated substrate
Was 0.5 nm.

【0024】次に、SiO2膜上に、下地膜としてZr
2膜をDCスパッタリング法で成膜した。このとき、
ターゲットには、直径150mmの円盤状のZrターゲ
ットを用いた。スパッタリングガスには、Ar−O2
合ガスを用いた。ArとO2のガス比は、Ar:O2=7
0:30(体積比)とし、全圧を0.6Paとした。
0.3kWで放電し、成膜を行った。膜厚は8nmとし
た。
Next, Zr is formed on the SiO 2 film as a base film.
An O 2 film was formed by a DC sputtering method. At this time,
As the target, a disk-shaped Zr target having a diameter of 150 mm was used. The sputtering gas was used Ar-O 2 mixed gas. The gas ratio of Ar to O 2 is Ar: O 2 = 7
0:30 (volume ratio) and the total pressure was 0.6 Pa.
Discharge was performed at 0.3 kW to form a film. The film thickness was 8 nm.

【0025】ついで、下地膜に接して、ITO膜をスパ
ッタリング法で成膜した。ターゲットは、直径150m
mの円盤状のITOターゲットを用いた。ITOターゲ
ットの組成は、(In23+SnO2)の総量に対して
SnO2が10質量%のものを用いた。スパッタリング
ガスには、Ar−O2混合ガスを用いた。ArとO2のガ
ス比は、Ar:O2=99.5:0.5(体積比)と
し、全圧を0.6Paとした。0.3kWで放電し、成
膜を行った。膜厚は150nmとした。得られたITO
膜の組成はターゲットの組成と同じであった。また、導
電性を四端針法により測定したところ、ITO膜の比抵
抗値は2.5×10-4Ω・cm(シート抵抗値は16.
7Ω/□)であった。
Next, an ITO film was formed by a sputtering method in contact with the base film. The target is 150m in diameter
A m-disk shaped ITO target was used. The composition of the ITO target was such that SnO 2 was 10% by mass based on the total amount of (In 2 O 3 + SnO 2 ). The sputtering gas was used Ar-O 2 mixed gas. The gas ratio between Ar and O 2 was Ar: O 2 = 99.5: 0.5 (volume ratio), and the total pressure was 0.6 Pa. Discharge was performed at 0.3 kW to form a film. The film thickness was 150 nm. The obtained ITO
The composition of the film was the same as the composition of the target. When the conductivity was measured by a four-point probe method, the specific resistance of the ITO film was 2.5 × 10 −4 Ω · cm (the sheet resistance was 16.
7Ω / □).

【0026】得られた導電膜付き基体について、θ/2
θ法によるX線回折測定を行った。測定条件は、Cuタ
ーゲットの線源を用い、管電圧40kV、管電流20m
A、サンプリング幅0.02度、走査速度4度/分、発
散スリット1.0度、散乱スリット1.0度、受光スリ
ット0.15mmとした。バックグラウンドを差し引い
た後のピーク高さより求めた回折強度において、得られ
た(400)面の回折強度と(222)面の回折強度の
比、(400)/(222)回折強度比は2.0であっ
た。このことから、このITO膜は、(400)面に配
向していることがわかった。また、AFM(原子間力顕
微鏡)により、得られた導電膜付き基体の表面の凹凸の
状態を測定した結果、平均表面粗さRaは1.4nmで
あった。このとき、カットオフ値は0.8μm、評価長
さは2.4μmとした。
With respect to the obtained substrate with a conductive film, θ / 2
X-ray diffraction measurement was performed by the θ method. The measurement conditions were as follows: a Cu source radiation source, a tube voltage of 40 kV and a tube current of 20 m
A, the sampling width was 0.02 °, the scanning speed was 4 ° / min, the divergence slit was 1.0 °, the scattering slit was 1.0 °, and the light receiving slit was 0.15 mm. In the diffraction intensity obtained from the peak height after subtracting the background, the ratio of the obtained diffraction intensity of the (400) plane to the diffraction intensity of the (222) plane, and the ratio of the (400) / (222) diffraction intensity is 2. It was 0. From this, it was found that this ITO film was oriented in the (400) plane. Moreover, as a result of measuring the state of irregularities on the surface of the obtained substrate with a conductive film by AFM (atomic force microscope), the average surface roughness Ra was 1.4 nm. At this time, the cutoff value was 0.8 μm, and the evaluation length was 2.4 μm.

【0027】[例2]例1におけるZrO2膜(下地
膜)の膜厚を45nmとした以外は例1と同様にして導
電膜付き基体を作製した。例1と同様にX線回折測定を
した結果、(400)/(222)回折強度比は0.0
4であった。このことから、このITO膜は、(22
2)面に配向していることがわかった。また、AFMに
より例1と同様に表面の凹凸の状態を測定した結果、平
均表面粗さRaは1.8nmであった。
Example 2 A substrate with a conductive film was produced in the same manner as in Example 1 except that the thickness of the ZrO 2 film (underlying film) in Example 1 was changed to 45 nm. As a result of performing X-ray diffraction measurement in the same manner as in Example 1, the (400) / (222) diffraction intensity ratio was 0.0
It was 4. From this, this ITO film is (22
2) It was found that they were oriented in the plane. The surface roughness was measured by AFM in the same manner as in Example 1. As a result, the average surface roughness Ra was 1.8 nm.

【0028】[例3(比較例)]ZrO2膜(下地膜)
を形成しない以外は例1と同様にして導電膜付基体を作
製した。AFMにより例1と同様に表面の凹凸の状態を
測定した結果、平均表面粗さRaは5.0nmであっ
た。
Example 3 (Comparative Example) ZrO 2 film (underlying film)
A substrate with a conductive film was prepared in the same manner as in Example 1 except that no was formed. The surface roughness was measured by AFM in the same manner as in Example 1, and as a result, the average surface roughness Ra was 5.0 nm.

【0029】[0029]

【発明の効果】本発明によれば、成膜後の加熱処理やI
TO膜表面の研磨、酸処理などの複雑な製造工程を経る
ことなく、表面に凹凸が少なく優れた平坦性を有する導
電膜付基体を得ることができる。本発明の導電膜付きは
優れた平坦性を有するため、有機EL素子の電極に好適
であり、リーク電流やダークスポットを抑制できる。
According to the present invention, heat treatment after film formation and I
A substrate with a conductive film having few irregularities on the surface and excellent flatness can be obtained without going through complicated manufacturing steps such as polishing and acid treatment of the surface of the TO film. Since the conductive film-attached film of the present invention has excellent flatness, it is suitable for an electrode of an organic EL device, and can suppress a leak current and a dark spot.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02F 1/1343 G02F 1/1343 5G323 H01B 13/00 503 H01B 13/00 503B Fターム(参考) 2H090 HA04 HB02X HC01 HC03 JB02 JB03 2H092 HA04 MA04 MA05 NA16 NA19 4F100 AA17C AA20 AA27B AA33C AG00 AT00A BA03 BA07 BA10A BA10C EH66 GB41 JG01 JG01C JK15 YY00B YY00C 4G059 AA08 AB11 AC12 GA01 GA04 GA12 5G307 FA01 FA02 FB01 FC03 5G323 BA02 BB05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02F 1/1343 G02F 1/1343 5G323 H01B 13/00 503 H01B 13/00 503B F term (reference) 2H090 HA04 HB02X HC01 HC03 JB02 JB03 2H092 HA04 MA04 MA05 NA16 NA19 4F100 AA17C AA20 AA27B AA33C AG00 AT00A BA03 BA07 BA10A BA10C EH66 GB41 JG01 JG01C JK15 YY00B YY00C 4G059 AA08 AB11 AC12 GA01 GA01 FA03 GA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基体上に、酸化ジルコニウムを主成分とす
る下地膜が1nm以上150nm以下の膜厚で形成さ
れ、該下地膜上に、インジウムと錫との酸化物を主成分
とする導電膜が形成され、前記導電膜表面の平均表面粗
さRaが3.0nm以下であることを特徴とする導電膜
付き基体。
An underlayer mainly composed of zirconium oxide is formed on a substrate in a thickness of 1 nm to 150 nm, and a conductive film mainly composed of an oxide of indium and tin is formed on the underlayer. There are formed, a conductive film substrate with an average surface roughness R a of the conductive film surface is equal to or less than 3.0 nm.
【請求項2】前記下地膜が1nm以上15nm以下の膜
厚である請求項1に記載の導電膜付き基体。
2. The substrate with a conductive film according to claim 1, wherein said base film has a thickness of 1 nm or more and 15 nm or less.
【請求項3】基体上に、酸化ジルコニウムを主成分とす
る下地膜を1nm以上150nm以下の膜厚で形成し、
次いで該下地膜上に、インジウムと錫との酸化物を主成
分とする導電膜を形成し、前記導電膜表面の平均表面粗
さRaが3.0nm以下である導電膜付き基体を得るこ
とを特徴とする導電膜付き基体の製造方法。
3. A base film containing zirconium oxide as a main component is formed on a substrate to a thickness of 1 nm or more and 150 nm or less.
Then, a conductive film containing an oxide of indium and tin as a main component is formed on the base film to obtain a substrate with a conductive film having an average surface roughness Ra of 3.0 nm or less on the conductive film surface. A method for producing a substrate with a conductive film, comprising:
JP2000363003A 2000-11-29 2000-11-29 Substrate with conductive film and method for producing the same Expired - Fee Related JP4586263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000363003A JP4586263B2 (en) 2000-11-29 2000-11-29 Substrate with conductive film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000363003A JP4586263B2 (en) 2000-11-29 2000-11-29 Substrate with conductive film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002170430A true JP2002170430A (en) 2002-06-14
JP4586263B2 JP4586263B2 (en) 2010-11-24

Family

ID=18834182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000363003A Expired - Fee Related JP4586263B2 (en) 2000-11-29 2000-11-29 Substrate with conductive film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4586263B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105055A1 (en) * 2003-05-26 2004-12-02 Nippon Soda Co., Ltd. Light-transmitting substrate with transparent electroconductive film
JP2005302356A (en) * 2004-04-07 2005-10-27 Nippon Soda Co Ltd Transparent conductive film and transparent conductive film formation material
JP2006147235A (en) * 2004-11-17 2006-06-08 Central Glass Co Ltd Film with indium tin oxide transparent conductive membrane
JP2007287450A (en) * 2006-04-14 2007-11-01 Nippon Soda Co Ltd Transparent conductive substrate
JP2008518800A (en) * 2004-11-03 2008-06-05 ショット アクチエンゲゼルシャフト Articles with barrier coatings and methods for making such articles
JP2009166324A (en) * 2008-01-15 2009-07-30 Dainippon Printing Co Ltd Indium oxide film laminate and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330916A (en) * 1997-06-03 1998-12-15 Mitsubishi Chem Corp Electrically conductive laminated body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330916A (en) * 1997-06-03 1998-12-15 Mitsubishi Chem Corp Electrically conductive laminated body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105055A1 (en) * 2003-05-26 2004-12-02 Nippon Soda Co., Ltd. Light-transmitting substrate with transparent electroconductive film
JPWO2004105055A1 (en) * 2003-05-26 2006-07-20 日本曹達株式会社 Translucent substrate with transparent conductive film
JP4538410B2 (en) * 2003-05-26 2010-09-08 日本曹達株式会社 Method for manufacturing translucent substrate with transparent conductive film
JP2005302356A (en) * 2004-04-07 2005-10-27 Nippon Soda Co Ltd Transparent conductive film and transparent conductive film formation material
JP4683525B2 (en) * 2004-04-07 2011-05-18 日本曹達株式会社 Transparent conductive film and transparent conductive film forming material
JP2008518800A (en) * 2004-11-03 2008-06-05 ショット アクチエンゲゼルシャフト Articles with barrier coatings and methods for making such articles
JP2006147235A (en) * 2004-11-17 2006-06-08 Central Glass Co Ltd Film with indium tin oxide transparent conductive membrane
JP2007287450A (en) * 2006-04-14 2007-11-01 Nippon Soda Co Ltd Transparent conductive substrate
JP2009166324A (en) * 2008-01-15 2009-07-30 Dainippon Printing Co Ltd Indium oxide film laminate and its manufacturing method

Also Published As

Publication number Publication date
JP4586263B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP6101214B2 (en) Substrate with transparent electrode and manufacturing method thereof
KR20070084121A (en) Substratum with conductive film and process for producing the same
US20070241364A1 (en) Substrate with transparent conductive film and patterning method therefor
WO2015037182A1 (en) Transparent conductive substrate and method for manufacturing transparent conductive substrate
JP6979938B2 (en) Conductive transparent aluminum-doped zinc oxide sputtered film
TW503405B (en) Method of manufacturing substrate having transparent conductive film, substrate having transparent conductive film manufactured using the method, and touch panel using the substrate
JP4586263B2 (en) Substrate with conductive film and method for producing the same
JP2009295545A (en) Transparent conductive film and method for manufacturing the same
Zhinong et al. Properties of indium tin oxide films deposited on unheated polymer substrates by ion beam assisted deposition
JP2010020951A (en) Method for manufacturing transparent conductive film
JP4114398B2 (en) Manufacturing method of substrate with ITO film
JP2009193674A (en) Method for manufacturing transparent conductive film, and transparent conductive film manufactured according to it
KR20150080849A (en) Composite transparent electrodes
JP3943612B2 (en) Conductive transparent substrate and method for producing the same
JP2010225384A (en) Substrate with transparent electrode, and method for manufacturing the same
JPH08132554A (en) Transparent conductive film
KR101008237B1 (en) Method of forming transparent conducting film
KR101174357B1 (en) Method for manufacturing transparency electrode using multi-component metal oxide
KR20080006812A (en) Bi-layer ito film deposition method and bi-layer ito film prepared by the same
JP2002041243A (en) Transparent conductive film
JPH08133771A (en) Glass substrate for liquid crystal display element and its production
Amaral et al. On the Role of Tin Doping in InO x Thin Films Deposited by Radio Frequency-Plasma Enhanced Reactive Thermal Evaporation
KR20230154505A (en) Manufacturing method of translucent planar heating element using phase transformation of metal layer
Jung et al. High Temperature Durability Amorphous ITO: Yb Films Deposited by Magnetron Co-Sputtering
JP2004299985A (en) Film deposition method and flat display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees