JP4538410B2 - Method for manufacturing translucent substrate with transparent conductive film - Google Patents

Method for manufacturing translucent substrate with transparent conductive film Download PDF

Info

Publication number
JP4538410B2
JP4538410B2 JP2005506440A JP2005506440A JP4538410B2 JP 4538410 B2 JP4538410 B2 JP 4538410B2 JP 2005506440 A JP2005506440 A JP 2005506440A JP 2005506440 A JP2005506440 A JP 2005506440A JP 4538410 B2 JP4538410 B2 JP 4538410B2
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
substrate
film
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005506440A
Other languages
Japanese (ja)
Other versions
JPWO2004105055A1 (en
Inventor
広行 神田
康弘 瀬田
竜也 大芦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Publication of JPWO2004105055A1 publication Critical patent/JPWO2004105055A1/en
Application granted granted Critical
Publication of JP4538410B2 publication Critical patent/JP4538410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1258Spray pyrolysis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Liquid Crystal (AREA)

Description

本発明は高透明な導電膜付透光性基板に関する。   The present invention relates to a highly transparent translucent substrate with a conductive film.

薄膜透明導電膜付透光性基板としては、特開平7−242442号公報には、錫ドープ酸化インジウム(ITO)の膜厚が23nmで550nmの透過率が95.1%(図1より400nmの透過率は87.6%と思われる)のものが記載されており、特開平7−242443号公報には、ITOの膜厚が20nmで透過率が400nmで86.8%、500nm92.2%のものが記載されている。一方、透明導電膜付透光性基板の導電膜はnmレベルの極薄膜にすると連続膜にはならないと思われていた。   As a translucent substrate with a thin film transparent conductive film, Japanese Patent Application Laid-Open No. 7-242442 discloses that the thickness of tin-doped indium oxide (ITO) is 23 nm and the transmittance at 550 nm is 95.1% (400 nm from FIG. 1). In Japanese Patent Application Laid-Open No. 7-242443, the ITO film thickness is 20 nm and the transmittance is 400 nm, 86.8%, 500 nm, 92.2%. Are listed. On the other hand, it was thought that the conductive film of a transparent substrate with a transparent conductive film would not be a continuous film if it was an ultrathin film of nm level.

高透明な透明導電膜付透光性基板が求められているが、上記した公報のITO膜でも、可視光域(380〜780nm)において、必ずしも十分に高透明であるとはいえない。
本発明は十分に高透明である透明導電膜付透光性基板を提供することを目的とする。本発明者等は上記課題を解決すべく鋭意研究した結果、透明導電膜付透光性基板の導電膜をnmレベルの極薄膜の連続膜を得ることに成功し本発明を完成するに至った。
Although a highly transparent translucent substrate with a transparent conductive film is required, even the ITO film described in the above publication is not necessarily highly transparent in the visible light region (380 to 780 nm).
It is an object of the present invention to provide a transparent substrate with a transparent conductive film that is sufficiently highly transparent. As a result of intensive studies to solve the above-mentioned problems, the present inventors have succeeded in obtaining a continuous film of an ultra-thin film of a translucent substrate with a transparent conductive film and completed the present invention. .

すなわち、本発明は以下である。
(1)透光性基板上に、パイロゾル法を用いて膜厚が9〜2nmで、かつ、最大表面粗さが1〜20nmの範囲である連続する錫ドープ酸化インジウムの薄膜であって柱状単結晶の集合体である透明導電膜を形成することを特徴とする透明導電膜付透光性基板の製造方法。
(2)前記透明導電膜の平均表面粗さが0.1〜10nmの範囲であることを特徴とする(1)に記載の透明導電膜付透光性基板の製造方法。
(3)前記透明導電膜は、錫ドープ酸化インジウムの薄膜中にスズ原子が均一に分布していることを特徴とする(1)または(2)に記載の透明導電膜付透光性基板の製造方法。
(4)前記透明導電膜を基板上の温度が400〜750℃の範囲で成膜することを特徴とする(1)〜(3)のいずれかに記載の透明導電膜付透光性基板の製造方法。
(5)前記透明導電膜付透光性基板は、波長400nmの光に対する透過率が88%以上であることを特徴とする(1)〜(4)のいずれかに記載の透明導電膜付透光性基板の製造方法。
(6)前記透明導電膜付透光性基板は、波長350nmの光に対する透過率が85%以上であることを特徴とする(1)〜(5)のいずれかに記載の透明導電膜付透光性基板の製造方法。
(7)前記透明導電膜付透光性基板は、全光線透過率が90%以上であることを特徴とする(1)〜(6)のいずれかに記載の透明導電膜付透光性基板の製造方法。
That is, the present invention is as follows.
(1) A continuous tin-doped indium oxide thin film having a film thickness of 9 to 2 nm and a maximum surface roughness of 1 to 20 nm on a light-transmitting substrate using a pyrosol method. A method for producing a light-transmitting substrate with a transparent conductive film, comprising forming a transparent conductive film that is an aggregate of crystals.
(2) The method for producing a transparent substrate with a transparent conductive film according to (1), wherein an average surface roughness of the transparent conductive film is in a range of 0.1 to 10 nm.
(3) The transparent conductive film with a transparent conductive film according to (1) or (2), wherein the transparent conductive film has a uniform distribution of tin atoms in a thin film of tin-doped indium oxide. Production method.
(4) The transparent conductive film-attached transparent substrate with a transparent conductive film according to any one of (1) to (3), wherein the transparent conductive film is formed at a temperature of 400 to 750 ° C. Production method.
(5) The translucent substrate with a transparent conductive film according to any one of (1) to (4), wherein the translucent substrate with a transparent conductive film has a transmittance for light having a wavelength of 400 nm of 88% or more. Manufacturing method of optical substrate.
(6) The transparent substrate with a transparent conductive film according to any one of (1) to (5), wherein the transparent substrate with a transparent conductive film has a transmittance of 85% or more for light having a wavelength of 350 nm. Manufacturing method of optical substrate.
(7) The translucent substrate with a transparent conductive film according to any one of (1) to (6), wherein the translucent substrate with a transparent conductive film has a total light transmittance of 90% or more. Manufacturing method.

本発明において、透光性基板としては、入手しやすく、光透過性やその他の物性面で優れたガラス基板、または樹脂基板が好ましい。ガラス基板は、アルカリガラスと、無アルカリガラスとに大別できる。アルカリガラスは、安価であり、入手が容易なためコスト的メリットが大きいが、アルカリ金属酸化物を13〜14%程度含有し、これらのアルカリ金属からの汚染を防止する対策が必要であること、耐熱性に劣る等の欠点を有する。一方、無アルカリガラスは、アルカリ金属の汚染の心配がなく、耐熱性を有し好ましい。   In the present invention, as the light-transmitting substrate, a glass substrate or a resin substrate that is easily available and excellent in light transmittance and other physical properties is preferable. Glass substrates can be broadly classified into alkali glass and non-alkali glass. Alkaline glass is inexpensive and easy to obtain, so it has great cost merit, but it contains about 13 to 14% alkali metal oxide, and measures to prevent contamination from these alkali metals are necessary. It has drawbacks such as poor heat resistance. On the other hand, the alkali-free glass is preferable because it does not have to worry about alkali metal contamination and has heat resistance.

アルカリガラスとしては、例えばSiO:72重量%、Al:2重量%、CaO:8重量%、MgO:4重量%、NaO:13.5重量%の組成のソーダ石灰ガラス等が知られており、無アルカリガラスとしては、例えばSiO:49重量%、Al:10重量%、B:15重量%、BaO:25重量%の組成のホウケイ酸(7059)ガラスや、SiO:53重量%、Al:11重量%、B:11重量%、CaO:2重量%、MgO:2重量%、BaO:15重量%、ZnO:6重量%の組成のホウケイ酸(AN)ガラス、SiO:54重量%、Al:14重量%、B:15重量%、MgO:25重量%の組成のホウケイ酸(NA−40)ガラス、ホウケイ酸(BLC)ガラス、無アルカリ(OA−10)ガラス等が知られている。 Examples of the alkali glass include soda lime glass having a composition of SiO 2 : 72 wt%, Al 2 O 3 : 2 wt%, CaO: 8 wt%, MgO: 4 wt%, and Na 2 O: 13.5 wt%. As an alkali-free glass, for example, borosilicate (7059) having a composition of SiO 2 : 49 wt%, Al 2 O 3 : 10 wt%, B 2 O 3 : 15 wt%, BaO: 25 wt% is used. ) Glass, SiO 2 : 53 wt%, Al 2 O 3 : 11 wt%, B 2 O 3 : 11 wt%, CaO: 2 wt%, MgO: 2 wt%, BaO: 15 wt%, ZnO: 6 Borosilicate (AN) glass having a composition of wt%, SiO 2 : 54 wt%, Al 2 O 3 : 14 wt%, B 2 O 3 : 15 wt%, MgO: 25 wt% of borosilicate (NA- 40) Glass, broom Acid (BLC) glass, alkali-free (OA-10) glass, and the like are known.

これらのガラス等の基板の表面粗さとしては、平均表面粗さRa≦10nm、最大表面粗さRmax≦50nmが好ましく研磨してもよい。特に、アルカリガラスを用いた基板では、平均表面粗さRa≦10nm、最大表面粗さRmax≦50nm、無アルカリガラスを用いた基板では、平均表面粗さRa≦5、最大表面粗さRmax≦20nmが好ましい。その下限値としては特に規制されるものではないが、通常、平均表面粗さRa≧0.1nm、最大表面粗さRmax≧0.5nm程度である。ガラス基板の表面粗さを上記範囲内に調整する方法としては、ダイヤモンド、酸化セリウム等を用いた鏡面研磨等すればよい。
樹脂として具体的には、ポリカーボネート、ポリエチレンテレフタレート、ポリアリレート等のポリエステル、ポリエーテルスルホン系樹脂、アモルファスポリオレフィン、ポリスチレン、アクリル樹脂等からなるフィルム、シート、または板を例示することができる。特に、透明性および成形性の点から、ポリオレフィン系の透明熱硬化性樹脂からなるものが好ましく、不飽和基を2個以上有する多官能単量体を含有した組成物を重合させてなるポリオレフィン系共重合体がより好ましく用いられる。
As the surface roughness of the substrate such as glass, average surface roughness Ra ≦ 10 nm and maximum surface roughness Rmax ≦ 50 nm may be preferably polished. In particular, the substrate using alkali glass has an average surface roughness Ra ≦ 10 nm and the maximum surface roughness Rmax ≦ 50 nm, and the substrate using alkali-free glass has an average surface roughness Ra ≦ 5 and a maximum surface roughness Rmax ≦ 20 nm. Is preferred. The lower limit is not particularly restricted, but is usually about average surface roughness Ra ≧ 0.1 nm and maximum surface roughness Rmax ≧ 0.5 nm. As a method for adjusting the surface roughness of the glass substrate within the above range, mirror polishing using diamond, cerium oxide or the like may be performed.
Specific examples of the resin include films, sheets, or plates made of polyester such as polycarbonate, polyethylene terephthalate, and polyarylate, polyethersulfone resin, amorphous polyolefin, polystyrene, acrylic resin, and the like. In particular, from the viewpoint of transparency and moldability, a polyolefin-based transparent thermosetting resin is preferable, and a polyolefin-based polymer obtained by polymerizing a composition containing a polyfunctional monomer having two or more unsaturated groups. A copolymer is more preferably used.

不飽和基を2個以上有する上記の多官能単量体の具体例としては、(i)エチレングリコールジ(メタ)アクリレート,ジエチレングリコールジ(メタ)アクリレート,トリエチレングリコールジ(メタ)アクリレート,グリセロールジ(メタ)アクリレート,グリセロールトリ(メタ)アクリレート,トリメチロールプロパンジ(メタ)アクリレート,トリメチロールプロパントリ(メタ)アクリレート,ペンタエリスリトールジ(メタ)アクリレート,ペンタエリスリトールトリ(メタ)アクリレート,ペンタエリスリトールテトラ(メタ)アクリレート等の多価アルコールのジ−,トリ−,テトラ−(メタ)アクリレート類、(ii)p−ジビニルベンゼン,o−ジビニルベンゼン等の芳香族多官能単量体、(iii)(メタ)アクリル酸ビニルエステル,(メタ)アクリル酸アリルエステル等のエステル類、(iv)ブタジエン,ヘキサジエン,ペンタジエン等のジエン類、(v)ジクロロフォスファゼンを原料として重合多官能基を導入したフォスファゼン骨格を有する単量体、(vi)トリアリルイソシアヌレート等の異原子環状骨格を有する多官能単量体等が挙げられる。   Specific examples of the polyfunctional monomer having two or more unsaturated groups include (i) ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, glycerol di (Meth) acrylate, glycerol tri (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra ( Di-, tri-, tetra- (meth) acrylates of polyhydric alcohols such as (meth) acrylate, (ii) aromatic polyfunctional monomers such as p-divinylbenzene, o-divinylbenzene, (iii) (meta Acry Esters such as vinyl acetate, (meth) acrylic acid allyl ester, (iv) dienes such as butadiene, hexadiene, pentadiene, (v) phosphazene skeleton with polyfunctional groups introduced from dichlorophosphazene as a raw material Monomer, (vi) polyfunctional monomer having a heteroatom cyclic skeleton such as triallyl isocyanurate, and the like.

上記の透明熱硬化性樹脂は、耐光性、耐酸化劣化性および帯電防止性の各観点から、各種紫外線吸収剤、酸化防止剤および帯電防止剤を含有したものであることが好ましい。透明熱硬化性樹脂が上記のポリオレフィン系共重合体である場合、当該ポリオレフィン系共重合体は、紫外線吸収性あるいは酸化防止性を有する単量体を使用したものであることが好ましい。このような単量体の好ましい例としては、不飽和二重結合を有するベンゾフェノン系紫外線吸収剤、不飽和二重結合を有するフェニルベンゾエート系紫外線吸収剤、ヒンダードアミノ基を置換基として有する(メタ)アクリル酸単量体等が挙げられる。これらの単量体は、目的とするポリオレフィン系共重合体を得るために使用する単量体の全量に対して0.5〜20wt%の範囲で使用されていることが好ましい。   The transparent thermosetting resin preferably contains various ultraviolet absorbers, antioxidants and antistatic agents from the viewpoints of light resistance, oxidation deterioration resistance and antistatic properties. When the transparent thermosetting resin is the above polyolefin copolymer, the polyolefin copolymer is preferably one using a monomer having ultraviolet absorbing property or antioxidant property. Preferred examples of such a monomer include a benzophenone ultraviolet absorber having an unsaturated double bond, a phenylbenzoate ultraviolet absorber having an unsaturated double bond, and a hindered amino group as a substituent (meta ) Acrylic acid monomer. These monomers are preferably used in a range of 0.5 to 20 wt% with respect to the total amount of monomers used to obtain the target polyolefin-based copolymer.

用いる樹脂基板の表面状態は、表面粗さの二乗平均値が30nm以下で、かつ、当該平坦面上における500μm角の領域内に存在する60nm以上の突起の数が20個以下の面であることが好ましい。なお、上記の平坦面について本発明でいう「表面粗さの二乗平均値」とは、表面の凹凸についてその高さの平均値からのずれの二乗平均値であり、表面の凹凸の大きさの程度を意味する。また、本発明でいう「平坦面上における500μm角の領域内に存在する60nm以上の突起の数」とは、前記の平坦面上に任意に10箇所設定した500μm角の領域の各々に存在する高さ60nm以上の突起の数の平均値を意味する。各領域内の突起の高さおよびその数は、電子顕微鏡,原子間力顕微鏡等を用いて求めることができる。
上述した平坦面を有すものであればいかなる重合方法および成形方法によって得られたものであってもよい。また、その厚みは目的とする用途等に応じて適宜選択可能であるが、当該透明熱硬化性樹脂基板が上述したポリオレフィン系共重合体からなる場合には、その厚みは、機械的特性を考慮して0.1〜1.5mmであることが好ましく、0.1〜1.0mmであることがより好ましい。
The surface state of the resin substrate to be used is a surface in which the root mean square value of the surface roughness is 30 nm or less and the number of projections of 60 nm or more existing in a 500 μm square region on the flat surface is 20 or less. Is preferred. The “surface roughness square mean value” as used in the present invention for the above flat surface is the mean square value of the deviation from the average value of the height of the surface irregularities, and the size of the surface irregularities. Means degree. Further, “the number of protrusions of 60 nm or more existing in a 500 μm square region on the flat surface” as used in the present invention exists in each of the 500 μm square regions arbitrarily set at ten locations on the flat surface. It means an average value of the number of protrusions having a height of 60 nm or more. The height and number of protrusions in each region can be determined using an electron microscope, an atomic force microscope, or the like.
As long as it has a flat surface as described above, it may be obtained by any polymerization method and molding method. In addition, the thickness can be appropriately selected according to the intended use and the like. However, when the transparent thermosetting resin substrate is made of the above-described polyolefin copolymer, the thickness considers mechanical properties. It is preferable that it is 0.1-1.5 mm, and it is more preferable that it is 0.1-1.0 mm.

透光性基板と透明導電膜との間には必要に応じて透明導電膜にアルカリ成分等が侵入するのを防止するために無機酸化物膜を形成することができる。無機酸化物膜として具体的には、ケイ素酸化物(SiO),アルミニウム酸化物(Al),チタン酸化物(TiO),ジルコニウム酸化物(ZrO),イットリウム酸化物(Y),イッテルビウム酸化物(Yb),マグネシウム酸化物(MgO),タンタル酸化物(Ta),セリウム酸化物(CeO)またはハフニウム酸化物(HfO)、有機ポリシラン化合物から形成されるポリシラン膜、MgF膜、CaF膜、SiOとTiOの複合酸化物等からなる膜を例示することができる。 An inorganic oxide film can be formed between the light-transmitting substrate and the transparent conductive film as necessary in order to prevent an alkali component or the like from entering the transparent conductive film. Specifically, as the inorganic oxide film, silicon oxide (SiO x ), aluminum oxide (Al 2 O x ), titanium oxide (TiO x ), zirconium oxide (ZrO x ), yttrium oxide (Y 2 O X), ytterbium oxide (Yb 2 O X), magnesium oxide (MgO X), tantalum oxide (Ta 2 O X), cerium oxide (CeO X) or hafnium oxide (HfO X), the organic polysilane Examples thereof include a polysilane film formed from a compound, an MgF 2 film, a CaF 2 film, a film made of a composite oxide of SiO X and TiO X , and the like.

無機酸化物膜の膜厚は材質によって適宜変更可能であるが、概ね2〜20nmの範囲内である。膜厚があまりに薄いとアルカリ成分等が侵入するのを防止することができない。一方、膜厚があまりに厚いと光透過性が低下する。
無機酸化物膜の表面の平坦性は、当該無機酸化物膜の下地である前述した基板における平坦面の平坦性と同程度に高いことが望ましい。このような平坦性を有する無機酸化物膜は、直流方式、マグネトロン方式、高周波放電方式等のスパッタリング法や、真空蒸着法、イオンプレーティング法、プラズマCVD法、ディップ法、スプレー熱分解法、パイロゾル法等の方法によって形成することができる。いずれの方法によって無機酸化物膜を形成する場合でも、成膜時の基板温度は、前述した基板が実質的に熱変形を起こさない温度とすることが好ましい。
The film thickness of the inorganic oxide film can be appropriately changed depending on the material, but is generally in the range of 2 to 20 nm. When the film thickness is too thin, it is impossible to prevent the alkali component or the like from entering. On the other hand, if the film thickness is too thick, the light transmittance is lowered.
The flatness of the surface of the inorganic oxide film is desirably as high as the flatness of the flat surface of the substrate that is the base of the inorganic oxide film. Such flat inorganic oxide films can be formed by sputtering methods such as direct current method, magnetron method, high frequency discharge method, vacuum deposition method, ion plating method, plasma CVD method, dipping method, spray pyrolysis method, pyrosol. It can be formed by a method such as a method. Regardless of which method is used to form the inorganic oxide film, it is preferable that the substrate temperature at the time of film formation is a temperature at which the substrate does not substantially undergo thermal deformation.

透明導電膜としては、錫ドープ酸化インジウム(ITO)、亜鉛ドープ酸化インジウム(IZO)、アルミニウムドープ酸化亜鉛、FTO、ATO、ZnO、SnO、In等の膜が挙げられ、好ましくはITO膜である。透明導電膜は、光透過率を高める場合薄ければ薄いほどよいが島状構造とならない連続膜である必要があるので、膜厚は12〜2nm、好ましくは10〜2nm、光透過率を高めるためには9〜2nm、さらに光透過率を高めるためには8〜2nmが好ましい。本発明の透明導電膜付透光性基板の光透過率は、波長400nmの光に対する透過率が好ましくは88%以上、さらに好ましくは90%以上、全光線透過率が好ましくは90%以上、さらに好ましくは92%以上、もっと好ましくは93%以上である。また、透明導電膜付透光性基板はより短波長である波長350nmの光に対する透過率も好ましくは85%以上でありこれは大きい方が好ましい。 Examples of the transparent conductive film include films of tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), aluminum-doped zinc oxide, FTO, ATO, ZnO, SnO 2 , In 2 O 3 , and preferably ITO. It is a membrane. The transparent conductive film is required to be a continuous film that is thin as thin as possible to increase the light transmittance, but does not have an island-like structure. Therefore, the film thickness is 12 to 2 nm, preferably 10 to 2 nm, and the light transmittance is increased. For this purpose, 9 to 2 nm is preferable, and for increasing the light transmittance, 8 to 2 nm is preferable. The light transmittance of the light-transmitting substrate with a transparent conductive film of the present invention is preferably 88% or more, more preferably 90% or more, and the total light transmittance is preferably 90% or more, with respect to light having a wavelength of 400 nm. Preferably it is 92% or more, More preferably, it is 93% or more. In addition, the translucent substrate with a transparent conductive film also preferably has a transmittance of 85% or more for light having a shorter wavelength of 350 nm, which is preferably larger.

透明導電膜としてITOを用いた場合、通常InとSnOとを化学量論組成で含有するが、酸素量は多少これから偏倚していてもよい。InO・SnOとすると、Xは1.0〜2.0、Yは1.6〜2.4の範囲が好ましい。Inに対しSnOの混合比は、0.05〜40重量%の範囲が好ましく、さらに、1〜20重量%、さらには5〜12重量%の範囲が好ましい。SnOの比率が高いと熱的安定性が増す。 When ITO is used as the transparent conductive film, it usually contains In 2 O 3 and SnO 2 in a stoichiometric composition, but the amount of oxygen may be slightly deviated from this. When InO X · SnO Y , X is preferably in the range of 1.0 to 2.0 and Y is in the range of 1.6 to 2.4. The mixing ratio of SnO 2 to In 2 O 3 is preferably 0.05 to 40% by weight, more preferably 1 to 20% by weight, and further preferably 5 to 12% by weight. A high ratio of SnO 2 increases thermal stability.

透明導電膜の製造方法としては、基板上に薄膜を成膜する方法であれば特に制限されず、具体的には、スパッター法、電子ビーム法、イオンプレーテイング法、スクリーン印刷法又は化学的気相成長法(CVD法)、スプレー熱分解法、パイロゾル法等を例示することができるが、特にスプレー熱分解法、パイロゾル法を好ましく例示することができる。
より具体的には、スパッター法によれば、金属(例えばインジウム、亜鉛等)及びドープされる金属(例えばスズ、フッ素、フッ素化合物、アルミニウム等)の混合物及び酸素ガス、或いは金属酸化物(例えば酸化インジウム、酸化亜鉛等)を焼結させたもの等をターゲットとして用い、電子ビーム法やイオンプレーテイング法によれば、金属(例えばインジウム、亜鉛等)及びドープされる金属(例えばスズ、フッ素、フッ素化合物、アルミニウム等)の混合物及び酸素ガス、または金属酸化物(例えば酸化インジウム、酸化亜鉛等)を焼結させたもの等を蒸発物質として用いることにより、前記透明導電膜を成膜することができる。
The method for producing the transparent conductive film is not particularly limited as long as it is a method for forming a thin film on a substrate. Specifically, a sputtering method, an electron beam method, an ion plating method, a screen printing method, or a chemical vapor method is used. Examples thereof include a phase growth method (CVD method), a spray pyrolysis method, a pyrosol method, and the like. Particularly, a spray pyrolysis method and a pyrosol method can be preferably exemplified.
More specifically, according to the sputtering method, a mixture of a metal (for example, indium, zinc, etc.) and a metal to be doped (for example, tin, fluorine, fluorine compound, aluminum, etc.) and oxygen gas, or a metal oxide (for example, oxidation) According to an electron beam method or an ion plating method, a metal (for example, indium, zinc, etc.) and a metal to be doped (for example, tin, fluorine, fluorine) are used. The transparent conductive film can be formed by using a mixture of a compound, aluminum, or the like) and oxygen gas, or a sintered metal oxide (for example, indium oxide, zinc oxide, etc.) as an evaporating substance. .

スパッタ法を用いてITOからなる導電膜を形成する場合、好ましくはInにSnOをドープしたターゲットを用いたDCスパッタ、あるいはRFスパッタ法により形成することが好ましい。
スパッタガスとしては特に限定するものではなく、Ar、He、Ne、Kr、Xe等の不活性ガス、あるいはこれらの混合ガスを用いればよい。また、これらのガスに、Oを20%以下含有していてもよい。このようなスパッタガスのスパッタ時における圧力としては、通常0.1〜20Pa程度でよい。
When a conductive film made of ITO is formed by sputtering, it is preferably formed by DC sputtering using a target in which SnO 2 is doped in In 2 O 3 or RF sputtering.
The sputtering gas is not particularly limited, and an inert gas such as Ar, He, Ne, Kr, or Xe, or a mixed gas thereof may be used. Further, these gases, the O 2 may contain 20% or less. The pressure during sputtering of such a sputtering gas is usually about 0.1 to 20 Pa.

成膜時の基板温度としては、好ましくは150〜500℃、特に200〜400℃の範囲が好ましい。
ITO等の導電膜成膜後に所望により加熱処理を行うことができる。加熱処理の温度としては、好ましくは100〜550℃、より好ましくは150〜300℃の範囲が好ましく、その処理時間は、好ましくは0.1〜3時間、より好ましくは0.3〜1時間が好ましい。処理雰囲気としては、大気、窒素、酸素、水素添加窒素雰囲気、有機溶媒添加大気もしくは窒素雰囲気等が好ましい。
The substrate temperature during film formation is preferably in the range of 150 to 500 ° C, particularly 200 to 400 ° C.
Heat treatment can be performed as desired after forming a conductive film such as ITO. The temperature for the heat treatment is preferably in the range of 100 to 550 ° C., more preferably 150 to 300 ° C., and the treatment time is preferably 0.1 to 3 hours, more preferably 0.3 to 1 hour. preferable. The treatment atmosphere is preferably air, nitrogen, oxygen, hydrogenated nitrogen atmosphere, organic solvent-added air or nitrogen atmosphere.

CVD法、スプレー熱分解法、パイロゾル法等に用いるインジウム化合物としては、熱分解して酸化インジウムになる物質が好ましく、具体的には、インジウムトリスアセチルアセトナート(In(CHCOCHCOCH)、インジウムトリスベンゾイルメタネート(In(CCOCHCOC)、三塩化インジウム(InCl)、硝酸インジウム(In(NO)、インジウムトリイソプロポキシド(In(OPr−i))等を例示することができ好ましくはインジウムトリスアセチルアセトナートである。
また、スズ化合物としては、熱分解して酸化第2スズになるものを好ましく用いることができ、具体的には、塩化第2スズ、ジメチルスズジクロライド、ジブチルスズジクロライド、テトラブチルスズ、スタニアスオクトエート(Sn(OCOC15)、ジブチルスズマレエート、ジブチルズズアセテート、ジブチルスズビスアセチルアセトナート等を挙げることができる。
As the indium compound used in the CVD method, spray pyrolysis method, pyrosol method and the like, a substance that is thermally decomposed to become indium oxide is preferable. Specifically, indium trisacetylacetonate (In (CH 3 COCHCOCH 3 ) 3 ) , Indium trisbenzoylmethanate (In (C 6 H 5 COCHCOC 6 H 5 ) 3 ), indium trichloride (InCl 3 ), indium nitrate (In (NO 3 ) 3 ), indium triisopropoxide (In (OPr- i) 3 ) and the like can be exemplified, and indium trisacetylacetonate is preferable.
Further, as the tin compound, those which are thermally decomposed to become stannic oxide can be preferably used. Specifically, stannic chloride, dimethyltin dichloride, dibutyltin dichloride, tetrabutyltin, stannic octoate ( Sn (OCOC 7 H 15 ) 2 ), dibutyltin maleate, dibutylzuzuacetate, dibutyltin bisacetylacetonate and the like.

なお、前記インジウム化合物及びスズ化合物に加えて、第3成分として、Mg、Ca、Sr、Ba等の周期律表第2族元素、Sc、Y等の第3族元素、La、Ce、Nd、Sm、Gd等のランタノイド、Ti、Zr、Hf等の第4族元素、V、Nb、Ta等の第5族元素、Cr、Mo、W等の第6族元素、Mn等の第7族元素、Co等の第9族元素、Ni、Pd、Pt等の第10族元素、Cu、Ag等の第11族元素、Zn、Cd等の第12族元素、B、Al、Ga等の第13族元素、Si、Ge、Pb等の第14族元素、P、As、Sb等の第15族元素、Se、Te等の第16族元素等の単体若しくはこれらの化合物を添加してITO膜を形成することも好ましい。
これらの元素の添加割合は、インジウムに対して、0.05〜20原子%程度が好ましく、添加元素によって添加割合は異なり、目的とする抵抗値にあった元素及び添加量を適宜選定することができる。
In addition to the indium compound and the tin compound, as a third component, a periodic table group 2 element such as Mg, Ca, Sr and Ba, a group 3 element such as Sc and Y, La, Ce, Nd, Lanthanoids such as Sm and Gd, Group 4 elements such as Ti, Zr and Hf, Group 5 elements such as V, Nb and Ta, Group 6 elements such as Cr, Mo and W, Group 7 elements such as Mn Group elements such as Co, Co, Group 10 elements such as Ni, Pd, and Pt, Group 11 elements such as Cu and Ag, Group 12 elements such as Zn and Cd, and Group 13 elements such as B, Al, and Ga An ITO film can be formed by adding a simple substance such as a group element, a group 14 element such as Si, Ge or Pb, a group 15 element such as P, As or Sb, a group 16 element such as Se or Te, or a compound thereof. It is also preferable to form.
The addition ratio of these elements is preferably about 0.05 to 20 atomic% with respect to indium. The addition ratio varies depending on the addition element, and the element and the addition amount that meet the target resistance value can be selected as appropriate. it can.

パイロゾル法またはスプレー熱分解法によりガラス基板上にITO膜を成膜する方法としては、メタノール、エタノール等のアルコール類、アセトン、メチルブチルケトン、アセチルアセトン等ケトン類等の有機溶媒に上位例示したインジウム化合物及びスズ化合物を溶解させて混合溶液とした後、該混合溶液をキャリアガス中に微粒子化して分散させ、予め400〜750℃、好ましくは400〜550℃に加熱したガラス基板と常圧下接触させる方法により製造することができる。該混合溶液の微粒子化は、超音波霧化法、スプレー法等によって行うことができ、均一な粒径の微粒子を安定して発生させることができる超音波霧化法が好ましい。キャリアガスとしては、酸化性ガス、通常、空気が使用される。
上記パイロゾル法を用いた場合、該混合溶液の微粒子と加熱されたガラス基板との接触により、ガラス基板上にITO膜組成を有する結晶核が生成し、その核が成長するにつれて隣接する核と接触し、その接触核は相互に拘束されるため成長は基板面に対して垂直方向が主流となり、その結果配向した柱状単結晶の複合体であるITO膜が得られやすくなり、このITO膜はエッチング性がよい。パイロゾル法でITO膜を成膜した場合には、スズ原子が、基板から膜表面に向かって膜中に均一に分布するのでこの場合は得られた膜を均一なものにするために研磨しなくてもよい。この場合、均一とは、スズ原子が膜表面に偏析していないことであり、スズ/インジウムの原子比において膜表面の値が膜中の平均値の2倍を超えていないことをいう。
As a method for forming an ITO film on a glass substrate by a pyrosol method or a spray pyrolysis method, an indium compound exemplified above as an organic solvent such as alcohols such as methanol and ethanol, and ketones such as acetone, methyl butyl ketone, and acetylacetone And a tin compound is dissolved to form a mixed solution, and then the mixed solution is finely dispersed in a carrier gas and contacted with a glass substrate heated to 400 to 750 ° C., preferably 400 to 550 ° C., under normal pressure. Can be manufactured. The mixed solution can be atomized by an ultrasonic atomization method, a spray method, or the like, and an ultrasonic atomization method capable of stably generating fine particles having a uniform particle diameter is preferable. As the carrier gas, an oxidizing gas, usually air, is used.
When the pyrosol method is used, crystal nuclei having an ITO film composition are formed on the glass substrate by contact between the fine particles of the mixed solution and the heated glass substrate, and contact with adjacent nuclei as the nuclei grow. However, since the contact nuclei are constrained to each other, the growth is mainly in the direction perpendicular to the substrate surface. As a result, an ITO film that is a composite of oriented columnar single crystals can be easily obtained. This ITO film is etched. Good sex. When an ITO film is formed by the pyrosol method, tin atoms are uniformly distributed in the film from the substrate toward the film surface. In this case, polishing is not performed to make the obtained film uniform. May be. In this case, “uniform” means that tin atoms are not segregated on the film surface, and the value of the film surface does not exceed twice the average value in the film in the atomic ratio of tin / indium.

透明導電膜は結晶質導電膜であるのが好ましい。その膜構造は特に制限されるものではなく、塊状結晶が積層した構造であってもよいが、中でも柱状単結晶の集合体であるのが好ましい。透明導電膜は、グレインサイズは、20〜100nmの範囲であるのが好ましい。結晶子の形状は、特に限定されるものではないが、球形または回転楕円形が好ましく、突起、角が少ない方が好ましい。なお、結晶子の形状及び大きさの評価は、透過型顕微鏡(TEM)用いて表面を観察することで行うことができる。また、本発明の透明導電膜は、最大表面粗さRmaxが、好ましくは1〜20nm、さらに好ましくは1〜15nmの範囲、平均表面粗さRaが好ましくは0.1〜10nm、さらに好ましくは0.1〜1nmの範囲である。   The transparent conductive film is preferably a crystalline conductive film. The film structure is not particularly limited, and may be a structure in which massive crystals are stacked, but among them, an aggregate of columnar single crystals is preferable. The transparent conductive film preferably has a grain size in the range of 20 to 100 nm. The shape of the crystallite is not particularly limited, but is preferably a spherical shape or a spheroid shape, and preferably has fewer protrusions and corners. In addition, the shape and size of the crystallite can be evaluated by observing the surface using a transmission microscope (TEM). The transparent conductive film of the present invention has a maximum surface roughness Rmax of preferably 1 to 20 nm, more preferably 1 to 15 nm, and an average surface roughness Ra of preferably 0.1 to 10 nm, more preferably 0. .1 to 1 nm.

以上のように基板上に成膜された導電膜に対して、必要に応じてさらに、UVオゾン照射、あるいは、酸素イオン,窒素イオン,アルゴンイオン等のイオンの照射を行ってもよい。UVオゾン照射の条件は、例えば、光源の主波長2537オングストローム、1849オングストローム、照射槽内の酸素ガス導入量10リットル/分、基板温度10〜30℃、照射時間10分〜5時間である。また、イオン照射の条件は、例えば、照射槽内圧10−6〜10−1Pa、照射ドライブ電圧10〜1000V、照射時間10秒〜1時間である。また、上述したUVオゾン照射およびイオン照射は、所望の表面凹凸を有する導電膜に対して行ってもよい。UVオゾン照射やイオン照射を行った場合には、基板を損傷させることなく、導電膜表面の清浄化を図ることができる。 As described above, the conductive film formed on the substrate may be further irradiated with UV ozone or ions such as oxygen ions, nitrogen ions, and argon ions as necessary. The conditions of UV ozone irradiation are, for example, main wavelengths of 2537 angstroms and 1849 angstroms of the light source, an oxygen gas introduction amount of 10 liters / minute in the irradiation tank, a substrate temperature of 10 to 30 ° C., and an irradiation time of 10 minutes to 5 hours. The ion irradiation conditions are, for example, an irradiation tank internal pressure of 10 −6 to 10 −1 Pa, an irradiation drive voltage of 10 to 1000 V, and an irradiation time of 10 seconds to 1 hour. Moreover, you may perform UV ozone irradiation and ion irradiation which were mentioned above with respect to the electrically conductive film which has a desired surface asperity. When UV ozone irradiation or ion irradiation is performed, the surface of the conductive film can be cleaned without damaging the substrate.

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明の範囲は実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, the scope of the present invention is not limited to an Example.

実施例1(参考例)]
パイロゾル法によりガラス基板にITO膜を作成した。即ち、SiO膜(膜厚10nm)をプレコートしたホウケイ酸(BLC)ガラス研磨基板(260×220×0.4mm)を500℃に加熱したコンベアー炉の中にベルトコンベアーで投入し、原子比で12%のスズ原子を含む、塩化第2スズ−インジウムアセチルアセトナートのアセチルアセトン溶液を霧滴状にして空気をキャリアガスとしてコンベアー炉の中に吹き込み、ガラス基板の表面に接触させで熱分解させることにより膜厚12nmのITO膜を形成させた。得られたITO膜の表面抵抗値は1.7KΩ/□でであった。また原子間力顕微鏡(AFM)で膜表面を観察したところ、平均表面粗さRaは0.7nm、最大表面粗さRmaxは12nmであった。得られたITOガラスの分光特性の透過率を図1に、反射率を図2に示す。
[ Example 1 (Reference Example)]
An ITO film was formed on the glass substrate by the pyrosol method. That is, a borosilicate (BLC) glass polishing substrate (260 × 220 × 0.4 mm) pre-coated with a SiO 2 film (film thickness 10 nm) was placed in a conveyor furnace heated to 500 ° C. by a belt conveyor, and the atomic ratio was Making acetylacetone solution of stannic chloride-indium acetylacetonate containing 12% tin atom in the form of mist droplets, blowing air into the conveyor furnace as carrier gas, and contacting the surface of the glass substrate for thermal decomposition. As a result, an ITO film having a thickness of 12 nm was formed. The resulting ITO film had a surface resistance value of 1.7 KΩ / □. When the film surface was observed with an atomic force microscope (AFM), the average surface roughness Ra was 0.7 nm, and the maximum surface roughness Rmax was 12 nm. The transmittance of spectral characteristics of the obtained ITO glass is shown in FIG. 1, and the reflectance is shown in FIG.

実施例2(参考例)]
ベルトコンベアー速度および薬剤霧化量を調整する以外は実施例1と同様にして、膜厚が10nmのITO膜を形成させた。
得られたITOガラスの分析結果を表1に、分光特性の透過率を図1に、反射率を図2に示す。
[ Example 2 (reference example)]
An ITO film having a film thickness of 10 nm was formed in the same manner as in Example 1 except that the belt conveyor speed and the chemical atomization amount were adjusted.
The analysis results of the obtained ITO glass are shown in Table 1, the transmittance of spectral characteristics is shown in FIG. 1, and the reflectance is shown in FIG.

実施例3
パイロゾル法によりガラス基板にITO膜を作成した。即ち、SiO膜(膜厚10nm)をプレコートしたホウケイ酸(BLC)ガラス研磨基板(260×220×0.4mm)を500℃に加熱したコンベアー炉の中にベルトコンベアーで投入し、原子比で12%のスズ原子を含む、塩化第2スズ−インジウムアセチルアセトナートのアセチルアセトン溶液を霧滴状にして空気をキャリアガスとしてコンベアー炉の中に吹き込み、ガラス基板の表面に接触させで熱分解させることにより膜厚8nmのITO膜を形成させた。AFMで膜表面を観察したところ、平均表面粗さRaは0.8nm、最大表面粗さRmaxは13nmであった。得られたITOガラスの分光特性の透過率を図1に、反射率を図2に示す。
[ Example 3 ]
An ITO film was formed on the glass substrate by the pyrosol method. That is, a borosilicate (BLC) glass polishing substrate (260 × 220 × 0.4 mm) pre-coated with a SiO 2 film (film thickness 10 nm) was placed in a conveyor furnace heated to 500 ° C. by a belt conveyor, and the atomic ratio was Making acetylacetone solution of stannic chloride-indium acetylacetonate containing 12% tin atom in the form of mist droplets, blowing air into the conveyor furnace as carrier gas, and contacting the surface of the glass substrate for thermal decomposition. As a result, an ITO film having a thickness of 8 nm was formed. When the film surface was observed by AFM, the average surface roughness Ra was 0.8 nm, and the maximum surface roughness Rmax was 13 nm. The transmittance of spectral characteristics of the obtained ITO glass is shown in FIG. 1, and the reflectance is shown in FIG.

実施例4
ベルトコンベアー速度および薬剤霧化量を調整する以外は実施例3と同様にして、膜厚が6nmのITO膜を形成させた。
得られたITOガラスの分析結果を表1に、分光特性の透過率を図1に、反射率を図2に、AFMで得られた表面写真を図3に示す。
[ Example 4 ]
An ITO film having a film thickness of 6 nm was formed in the same manner as in Example 3 except that the belt conveyor speed and the chemical atomization amount were adjusted.
The analysis results of the obtained ITO glass are shown in Table 1, the transmittance of spectral characteristics is shown in FIG. 1, the reflectance is shown in FIG. 2, and the surface photograph obtained by AFM is shown in FIG.

Figure 0004538410
Figure 0004538410

実施例1〜4で得られたITOガラスは洗浄してもITO膜が剥離ずアルカリ剥離にも浸食されなかった。 ITO glass obtained in Examples 1 to 4 ITO film be washed is not also eroded alkali peeling without peeling.

実施例5(参考例)]
薬剤を原子比で5%のスズ原子を含む、塩化第2スズ−インジウムアセチルアセトナートのアセチルアセトン溶液にし、ベルトコンベアー速度および薬剤霧化量を調整する以外は実施例1と同様にして、膜厚が10nmのITO膜を形成させた。
得られたITOガラスの全光線透過率は93%であった。膜中の金属原子の組成をESCAを用いて測定したところ、表面から基板に向かって膜中にスズ原子が偏析ずに均一に存在していた。測定結果を図4に示す。
[ Example 5 (reference example)]
A film thickness is obtained in the same manner as in Example 1 except that the chemical agent is an acetylacetone solution of stannic chloride-indium acetylacetonate containing 5% tin atom and the belt conveyor speed and the chemical atomization amount are adjusted. A 10 nm ITO film was formed.
The total light transmittance of the obtained ITO glass was 93%. The composition of the metal atoms in the film was measured using ESCA, tin atoms were present uniformly without segregation in the film from the surface toward the substrate. The measurement results are shown in FIG.

実施例6
ベルトコンベアー速度および薬剤霧化量を調整する以外は実施例5と同様にして、膜厚が8nmのITO膜を形成させた。得られたITOガラスの全光線透過率は93%であった。膜中の金属原子の組成をESCAを用いて測定したところ、表面から基板に向かって膜中にスズ原子が偏析ずに均一に存在していた。測定結果を図4に示す。
[ Example 6 ]
An ITO film having a film thickness of 8 nm was formed in the same manner as in Example 5 except that the belt conveyor speed and the chemical atomization amount were adjusted. The total light transmittance of the obtained ITO glass was 93%. The composition of the metal atoms in the film was measured using ESCA, tin atoms were present uniformly without segregation in the film from the surface toward the substrate. The measurement results are shown in FIG.

本発明の透明導電膜付透光性基板は、高透明であり、デバイスの省光量・省エネ化ができ、液晶ディスプレイ(LCD)、液晶調光装置、LCDレンズ等の電極として好適であり産業上の利用価値は高い。 The translucent substrate with a transparent conductive film of the present invention is highly transparent, can save light and save energy, and is suitable as an electrode for a liquid crystal display (LCD), a liquid crystal light control device, an LCD lens, etc. The utility value of is high.

図1は、実施例1〜4で作成したITOガラスの分光特性(透過率)を示すFIG. 1 shows the spectral characteristics (transmittance) of the ITO glass prepared in Examples 1-4. 図2は、実施例1〜4で作成したITOガラスの分光特性(反射率)を示す。FIG. 2 shows the spectral characteristics (reflectance) of the ITO glass prepared in Examples 1-4. 図3は、実施例3で作成したITOガラスの原子間力顕微鏡で得られた表面写真である。FIG. 3 is a photograph of the surface of the ITO glass prepared in Example 3 obtained with an atomic force microscope. 図4は、実施例5〜6で作成したITOガラスのESCAによるITO膜の深さ方向でのインジウムとスズの含有量の測定結果を示す。FIG. 4 shows the measurement results of the contents of indium and tin in the depth direction of the ITO film by ESCA of the ITO glass prepared in Examples 5 to 6.

Claims (7)

透光性基板上に、パイロゾル法を用いて膜厚が9〜2nmで、かつ、最大表面粗さが1〜20nmの範囲である連続する錫ドープ酸化インジウムの薄膜であって柱状単結晶の集合体である透明導電膜を形成することを特徴とする透明導電膜付透光性基板の製造方法。Aggregation of columnar single crystals on a light-transmitting substrate, which is a continuous tin-doped indium oxide thin film having a thickness of 9 to 2 nm and a maximum surface roughness of 1 to 20 nm using a pyrosol method. A method for producing a transparent substrate with a transparent conductive film, comprising forming a transparent conductive film as a body. 前記透明導電膜の平均表面粗さが0.1〜10nmの範囲であることを特徴とする請求項1に記載の透明導電膜付透光性基板の製造方法。The average surface roughness of the said transparent conductive film is the range of 0.1-10 nm, The manufacturing method of the transparent substrate with a transparent conductive film of Claim 1 characterized by the above-mentioned. 前記透明導電膜は、錫ドープ酸化インジウムの薄膜中にスズ原子が均一に分布していることを特徴とする請求項1または2に記載の透明導電膜付透光性基板の製造方法。The method for producing a transparent substrate with a transparent conductive film according to claim 1, wherein the transparent conductive film has tin atoms uniformly distributed in a thin film of tin-doped indium oxide. 前記透明導電膜を基板上の温度が400〜750℃の範囲で成膜することを特徴とする請求項1〜3のいずれか一項に記載の透明導電膜付透光性基板の製造方法。The method for producing a transparent substrate with a transparent conductive film according to any one of claims 1 to 3, wherein the transparent conductive film is formed at a temperature of 400 to 750 ° C on the substrate. 前記透明導電膜付透光性基板は、波長400nmの光に対する透過率が88%以上であることを特徴とする請求項1〜4のいずれか一項に記載の透明導電膜付透光性基板の製造方法。The translucent substrate with a transparent conductive film according to any one of claims 1 to 4, wherein the translucent substrate with a transparent conductive film has a transmittance of 88% or more for light having a wavelength of 400 nm. Manufacturing method. 前記透明導電膜付透光性基板は、波長350nmの光に対する透過率が85%以上であることを特徴とする請求項1〜5のいずれか一項に記載の透明導電膜付透光性基板の製造方法。The translucent substrate with a transparent conductive film according to any one of claims 1 to 5, wherein the translucent substrate with a transparent conductive film has a transmittance for light having a wavelength of 350 nm of 85% or more. Manufacturing method. 前記透明導電膜付透光性基板は、全光線透過率が90%以上であることを特徴とする請求項1〜6のいずれか一項に記載の透明導電膜付透光性基板の製造方法。The method for producing a transparent substrate with a transparent conductive film according to claim 1, wherein the transparent substrate with a transparent conductive film has a total light transmittance of 90% or more. .
JP2005506440A 2003-05-26 2004-05-26 Method for manufacturing translucent substrate with transparent conductive film Expired - Fee Related JP4538410B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003147265 2003-05-26
JP2003147265 2003-05-26
PCT/JP2004/007543 WO2004105055A1 (en) 2003-05-26 2004-05-26 Light-transmitting substrate with transparent electroconductive film

Publications (2)

Publication Number Publication Date
JPWO2004105055A1 JPWO2004105055A1 (en) 2006-07-20
JP4538410B2 true JP4538410B2 (en) 2010-09-08

Family

ID=33475365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005506440A Expired - Fee Related JP4538410B2 (en) 2003-05-26 2004-05-26 Method for manufacturing translucent substrate with transparent conductive film

Country Status (6)

Country Link
US (1) US20060285213A1 (en)
EP (1) EP1628310A4 (en)
JP (1) JP4538410B2 (en)
KR (1) KR100743417B1 (en)
CN (1) CN1795516B (en)
WO (1) WO2004105055A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7566360B2 (en) 2002-06-13 2009-07-28 Cima Nanotech Israel Ltd. Nano-powder-based coating and ink compositions
US7736693B2 (en) 2002-06-13 2010-06-15 Cima Nanotech Israel Ltd. Nano-powder-based coating and ink compositions
US7601406B2 (en) 2002-06-13 2009-10-13 Cima Nanotech Israel Ltd. Nano-powder-based coating and ink compositions
US7864398B2 (en) 2004-06-08 2011-01-04 Gentex Corporation Electro-optical element including metallic films and methods for applying the same
JP2006024535A (en) * 2004-07-09 2006-01-26 Seiko Epson Corp Manufacturing method for organic thin-film element, manufacturing method for electro-optic device, and manufacturing method for electronic apparatus
DE102004045883A1 (en) * 2004-09-22 2006-04-06 Diehl Bgt Defence Gmbh & Co. Kg Method of producing a mirror from a titanium-based material, and mirrors of such a material
CN101522947A (en) 2005-06-10 2009-09-02 西玛耐诺技术以色列有限公司 Enhanced transparent conductive coatings and methods for making them
JP4971618B2 (en) * 2005-09-30 2012-07-11 ジオマテック株式会社 Display electrode pattern manufacturing method
US8169681B2 (en) 2006-03-03 2012-05-01 Gentex Corporation Thin-film coatings, electro-optic elements and assemblies incorporating these elements
US8274729B2 (en) 2006-03-03 2012-09-25 Gentex Corporation Thin-film coatings, electro-optic elements and assemblies incorporating these elements
US8368992B2 (en) 2006-03-03 2013-02-05 Gentex Corporation Electro-optical element including IMI coatings
KR101275450B1 (en) * 2006-03-03 2013-06-17 젠텍스 코포레이션 Improved thin-film coatings, electro-optic elements and assemblies incorporating these elements
EP2426552A1 (en) * 2006-03-03 2012-03-07 Gentex Corporation Electro-optic elements incorporating improved thin-film coatings
JP5099893B2 (en) * 2007-10-22 2012-12-19 日東電工株式会社 Transparent conductive film, method for producing the same, and touch panel provided with the same
WO2009157175A1 (en) 2008-06-24 2009-12-30 パナソニック電工株式会社 Dye-sensitized solar cell
KR20130088886A (en) 2008-06-24 2013-08-08 닛뽕소다 가부시키가이샤 Transparent conductive film having fto/ito multilayer body
JP5431186B2 (en) * 2010-01-25 2014-03-05 株式会社Nsc Manufacturing method of display device
JP5101719B2 (en) * 2010-11-05 2012-12-19 日東電工株式会社 Transparent conductive film, method for producing the same, and touch panel provided with the same
CN102157609A (en) * 2011-01-21 2011-08-17 南开大学 Method for improving appearance of ZnO transparent conductive film
AU2013238165B2 (en) * 2012-03-30 2016-06-23 Hoya Corporation Method of manufacturing eyeglass lens
JP5498537B2 (en) * 2012-07-06 2014-05-21 日東電工株式会社 Transparent conductive film, method for producing the same, and touch panel provided with the same
JP6129769B2 (en) * 2013-05-24 2017-05-17 富士フイルム株式会社 Transparent conductive film for touch panel, method for manufacturing transparent conductive film, touch panel and display device
CN105452520B (en) * 2014-04-30 2019-04-09 日东电工株式会社 Transparent conducting film
JP5860558B1 (en) * 2015-03-20 2016-02-16 積水化学工業株式会社 Light transmissive conductive film and touch panel having the same
CN111354508B (en) * 2016-07-15 2022-08-19 昇印光电(昆山)股份有限公司 Flexible electrode film and application
US20230127104A1 (en) * 2020-03-19 2023-04-27 Nitto Denko Corporation Transparent electroconductive film
CN113913764B (en) * 2021-09-30 2023-05-16 浙江师范大学 Transparent conductive oxide film with high mobility and preparation method thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389436A (en) * 1986-09-30 1988-04-20 Nippon Soda Co Ltd Electrically conductive glass sheet
JPH07173610A (en) * 1993-08-02 1995-07-11 Agency Of Ind Science & Technol Transparent electric conductive ultrathin film and production thereof
JPH07330336A (en) * 1994-06-08 1995-12-19 Kawai Musical Instr Mfg Co Ltd Method for forming tin (iv) oxide film
JPH1053418A (en) * 1996-08-07 1998-02-24 Kagaku Gijutsu Shinko Jigyodan Tin oxide ternary function thin film and its production
JPH1167460A (en) * 1997-08-12 1999-03-09 Tdk Corp Organic electroluminescent element and its manufacture
JPH11126689A (en) * 1997-10-21 1999-05-11 Tdk Corp Manufacture of organic electroluminescent element and organic el element
JPH11138685A (en) * 1997-11-14 1999-05-25 Fujimori Kogyo Kk Manufacture of transparent conductive sheet
JPH11282383A (en) * 1998-01-13 1999-10-15 Toppan Printing Co Ltd Electrode substrate and its manufacture
JP2000222944A (en) * 1999-01-27 2000-08-11 Nippon Sheet Glass Co Ltd Substrate with ito transparent conductive film, and method of depositing ito transparent conductive film
JP2001035273A (en) * 1999-07-23 2001-02-09 Nippon Soda Co Ltd Adjusting method for sheet resistance value of transparent conductive film and forming method for the transparent conductive film
JP2002041243A (en) * 2000-07-21 2002-02-08 Nippon Soda Co Ltd Transparent conductive film
JP2002047559A (en) * 2000-07-31 2002-02-15 Sumitomo Heavy Ind Ltd Ito film, and film deposition method thereof
JP2002133956A (en) * 2000-10-19 2002-05-10 Nippon Soda Co Ltd Adjusting method for sheet resistance value of transparent conductive film and forming method for transparent conductive film
JP2002170430A (en) * 2000-11-29 2002-06-14 Asahi Glass Co Ltd Base body with conductive film and its manufacturing method
JP2002194287A (en) * 2000-12-27 2002-07-10 Sumitomo Osaka Cement Co Ltd Coating material for forming transparent electroconductive film and transparent electroconductive film and display
JP2002367435A (en) * 2001-06-05 2002-12-20 Oike Ind Co Ltd Transparent conductive laminate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3881974T2 (en) * 1987-07-17 1993-11-11 Lucas Ind Plc Transparent objects.
JPS6453148A (en) * 1987-08-24 1989-03-01 Sharp Kk Inspecting device for liquid crystal display device
FR2708626B1 (en) * 1993-08-02 1998-06-05 Director General Agency Ind Ultrathin transparent and conductive film and process for its production.
JP2000113732A (en) * 1998-06-25 2000-04-21 Asahi Glass Co Ltd Transparent conductive film, its manufacture, substrate with transparent conductive film, and touch panel
CN1273650B (en) * 1998-07-06 2010-06-09 日本写真印刷株式会社 Transparent conductive film for transparent touch panel, transparent touch panel using transparent conductive film, and method of manufacturing transparent conductive film
JP3345638B2 (en) * 1999-11-11 2002-11-18 独立行政法人産業技術総合研究所 Transparent conductive film and method for producing the same
CN1257135A (en) * 1999-12-23 2000-06-21 复旦大学 Metal indium-stannic oxide compound transparent electricity conductive film and preparation process thereof
JP2002328439A (en) * 2001-04-27 2002-11-15 Nippon Sheet Glass Co Ltd Original table glass
WO2003045115A1 (en) * 2001-11-22 2003-05-30 Nippon Soda Co.,Ltd. El device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389436A (en) * 1986-09-30 1988-04-20 Nippon Soda Co Ltd Electrically conductive glass sheet
JPH07173610A (en) * 1993-08-02 1995-07-11 Agency Of Ind Science & Technol Transparent electric conductive ultrathin film and production thereof
JPH07330336A (en) * 1994-06-08 1995-12-19 Kawai Musical Instr Mfg Co Ltd Method for forming tin (iv) oxide film
JPH1053418A (en) * 1996-08-07 1998-02-24 Kagaku Gijutsu Shinko Jigyodan Tin oxide ternary function thin film and its production
JPH1167460A (en) * 1997-08-12 1999-03-09 Tdk Corp Organic electroluminescent element and its manufacture
JPH11126689A (en) * 1997-10-21 1999-05-11 Tdk Corp Manufacture of organic electroluminescent element and organic el element
JPH11138685A (en) * 1997-11-14 1999-05-25 Fujimori Kogyo Kk Manufacture of transparent conductive sheet
JPH11282383A (en) * 1998-01-13 1999-10-15 Toppan Printing Co Ltd Electrode substrate and its manufacture
JP2000222944A (en) * 1999-01-27 2000-08-11 Nippon Sheet Glass Co Ltd Substrate with ito transparent conductive film, and method of depositing ito transparent conductive film
JP2001035273A (en) * 1999-07-23 2001-02-09 Nippon Soda Co Ltd Adjusting method for sheet resistance value of transparent conductive film and forming method for the transparent conductive film
JP2002041243A (en) * 2000-07-21 2002-02-08 Nippon Soda Co Ltd Transparent conductive film
JP2002047559A (en) * 2000-07-31 2002-02-15 Sumitomo Heavy Ind Ltd Ito film, and film deposition method thereof
JP2002133956A (en) * 2000-10-19 2002-05-10 Nippon Soda Co Ltd Adjusting method for sheet resistance value of transparent conductive film and forming method for transparent conductive film
JP2002170430A (en) * 2000-11-29 2002-06-14 Asahi Glass Co Ltd Base body with conductive film and its manufacturing method
JP2002194287A (en) * 2000-12-27 2002-07-10 Sumitomo Osaka Cement Co Ltd Coating material for forming transparent electroconductive film and transparent electroconductive film and display
JP2002367435A (en) * 2001-06-05 2002-12-20 Oike Ind Co Ltd Transparent conductive laminate

Also Published As

Publication number Publication date
KR20060015298A (en) 2006-02-16
US20060285213A1 (en) 2006-12-21
EP1628310A1 (en) 2006-02-22
CN1795516A (en) 2006-06-28
KR100743417B1 (en) 2007-07-30
CN1795516B (en) 2014-10-22
JPWO2004105055A1 (en) 2006-07-20
EP1628310A4 (en) 2009-01-21
WO2004105055A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4538410B2 (en) Method for manufacturing translucent substrate with transparent conductive film
EP2128876B1 (en) Process for producing electroconductor
EP0657562B1 (en) Durable sputtered metal oxide coating
US6436542B1 (en) Multilayer structure and process for producing the same
EP1450588B1 (en) El device
JP3708429B2 (en) Method for manufacturing vapor deposition composition, method for manufacturing optical component having vapor deposition composition and antireflection film
US20110011632A1 (en) Electric conductor and process for its production
EP1033355A1 (en) Target for transparent electroconductive film, transparent electroconductive material, transparent electroconductive glass and transparent electroconductive film
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
EP2184743A1 (en) Conductor layer manufacturing method
JP2004091265A (en) Oxide sintered compact
JPWO2003106732A1 (en) Article coated with titanium compound film, method for producing the article, and sputtering target used for coating the film
TW201246277A (en) Method of manufacturing transparent conductive substrate with surface electrode and method of manufacturing thin film solar cell
JP2004050643A (en) Thin film laminated body
KR20100028535A (en) Low-refractive index film, method for forming the low-refractive index film, and antireflection film
JP2001035273A (en) Adjusting method for sheet resistance value of transparent conductive film and forming method for the transparent conductive film
JPH08264022A (en) Transparent conductive film
US6641937B1 (en) Transparent conductive film and process for producing the film
JP4909492B2 (en) Transparent conductive laminate
JP2002170430A (en) Base body with conductive film and its manufacturing method
JP3369728B2 (en) Laminated transparent conductive substrate
JP7478721B2 (en) Method for manufacturing a substrate with a transparent electrode
CN1460728A (en) Velvet zinc oxide transparent conductive film and its preparation method
JP2004300580A (en) Method for manufacturing vapor deposition composition, and method for manufacturing optical component having vapor deposition composition and reflection preventive film
JPH08227614A (en) Transparent conductor containing zinc-indium oxide and manufacture of thin-film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees