JPH07173610A - Transparent electric conductive ultrathin film and production thereof - Google Patents
Transparent electric conductive ultrathin film and production thereofInfo
- Publication number
- JPH07173610A JPH07173610A JP19796294A JP19796294A JPH07173610A JP H07173610 A JPH07173610 A JP H07173610A JP 19796294 A JP19796294 A JP 19796294A JP 19796294 A JP19796294 A JP 19796294A JP H07173610 A JPH07173610 A JP H07173610A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- substrate
- film
- transition metal
- vapor deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Physical Vapour Deposition (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、透明導電性超薄膜及び
その製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive ultrathin film and a method for manufacturing the same.
【0002】[0002]
【従来の技術】透明導電性超薄膜は、液晶を用いた表示
器の電極、ガラスの防曇用発熱体などに広く利用されて
いる。2. Description of the Related Art Ultra-thin transparent conductive ultra-thin films are widely used for electrodes of displays using liquid crystals, anti-fog heating elements for glass, and the like.
【0003】一般に、透明導電性超薄膜は、透明性及び
導電性を有することが基本的な特性として要求される。
従って、上記特性を有する物質である酸化スズ、酸化イ
ンジウム等が上記薄膜の原材料として従来より用いられ
ている。Generally, a transparent conductive ultrathin film is required to have transparency and conductivity as basic characteristics.
Therefore, tin oxide, indium oxide, etc., which are substances having the above characteristics, have been conventionally used as raw materials for the thin film.
【0004】しかしながら、酸化スズ等は腐食し易く、
耐環境性に欠けるため、例えば外気と触れるような部位
などに上記薄膜を使用することができない。従って、そ
の用途は極めて限られたものになる。However, tin oxide is easily corroded,
Due to lack of environment resistance, the thin film cannot be used, for example, in a portion that comes into contact with outside air. Therefore, its application is extremely limited.
【0005】[0005]
【発明が解決しようとする課題】従って、本発明は、特
に耐環境性に優れた透明導電性超薄膜を提供することを
目的とする。Therefore, it is an object of the present invention to provide a transparent conductive ultrathin film which is particularly excellent in environmental resistance.
【0006】[0006]
【課題を解決するための手段】本発明者は、上記従来技
術の問題点に鑑み鋭意研究を重ねた結果、遷移金属を含
む特定の薄膜が優れた透明性、導電性及び耐環境性を有
することを見出した。すなわち、本発明は、下記の透明
導電性超薄膜及びその製造方法を提供するものである。As a result of intensive studies conducted by the present inventor in view of the above problems of the prior art, a specific thin film containing a transition metal has excellent transparency, conductivity and environment resistance. I found that. That is, the present invention provides the following transparent conductive ultra-thin film and its manufacturing method.
【0007】1. 基体上に形成された、遷移金属の少
なくとも1種を含む膜厚1〜200nmの透明導電性超
薄膜。1. A transparent conductive ultrathin film having a film thickness of 1 to 200 nm, which is formed on a substrate and contains at least one kind of transition metal.
【0008】2. 気化した遷移金属の少なくとも1種
を、真空中で励起状態の基体上に蒸着させて当該遷移金
属の薄膜を形成することを特徴とする透明導電性超薄膜
の製造方法。2. A method for producing a transparent conductive ultrathin film, which comprises depositing at least one vaporized transition metal on a substrate in an excited state in vacuum to form a thin film of the transition metal.
【0009】以下、本発明について詳細に説明する。The present invention will be described in detail below.
【0010】本発明において、基体としては、薄膜を形
成できる限り大きさ、形状、材質などは特に限定されな
いが、ガラス、セラミックス、有機高分子等が例示され
る。In the present invention, the substrate is not particularly limited in size, shape and material as long as a thin film can be formed, but glass, ceramics, organic polymers and the like are exemplified.
【0011】ガラスとしては、ケイ酸ガラス、ホウケイ
酸ガラス、アルカリガラスなどの酸化物ガラスが例示さ
れ、セラミックスとしては、アルミナ、マグネシア、ジ
ルコニア等の結晶質酸化物が例示され、有機高分子とし
ては、ポリイミド、ポリエチレン、ポリビニルなどが例
示でき、好ましくはポリメチルメタクリレート、カプト
ンなどが挙げられる。特に好ましい基体材料としては、
ホウケイ酸ガラスが挙げられる。該基体は、液晶を用い
た表示器の電極、ガラスの防曇用発熱体などの用途に
は、透明性を有するものが好ましい。透明性を有する基
体とは、その透光性が10〜100%、好ましくは50
〜100%のものである。該透光性は可視光の透過率の
測定値を基準とする。薄膜が、帯電防止膜などの透明性
を必要としない用途に用いられる場合には、基体は透明
でなくてもよい。Examples of the glass include oxide glasses such as silicate glass, borosilicate glass and alkali glass, examples of the ceramics include crystalline oxides such as alumina, magnesia and zirconia, and examples of the organic polymer include organic polymers. , Polyimide, polyethylene, polyvinyl, etc. can be exemplified, and polymethyl methacrylate, Kapton, etc. are preferable. As a particularly preferred substrate material,
Borosilicate glass is mentioned. It is preferable that the substrate has transparency for applications such as an electrode of a display device using a liquid crystal and a heating element for antifogging of glass. A transparent substrate has a light-transmitting property of 10 to 100%, preferably 50.
~ 100%. The translucency is based on the measured value of the transmittance of visible light. The substrate may not be transparent when the thin film is used in applications that do not require transparency, such as antistatic films.
【0012】本発明の透明導電性超薄膜は、遷移金属か
ら構成される。この遷移金属は、共立出版(株)の化学
大事典の周期律表において、IB、IIB、IIIB〜VII
B、VIIIBの各族の元素を意味し、これらに含まれれば
特に限定されないが、好ましくはチタニウム、バナジウ
ム、クロミウム、マンガン、鉄、コバルト、ニッケル、
ジルコニウム、ニオブ、モリブデン、ロジウム、パラジ
ウム、銀、ハフニウム、タンタル、タングステン、イリ
ジウム、白金、金、ランタニド及びアクチニドに属する
金属などが好ましく、特にチタニウム及び金が好まし
い。該遷移金属は、金属単体として薄膜中に存在する場
合もあるが、基体表面の励起に炭素、窒素、酸素、水素
などのイオンビームを用いた場合には、その一部又は全
部が炭化物、窒化物、酸化物、水素化物等の形態で存在
する場合もある。薄膜の膜厚は、通常1〜200nm程
度、好ましくは1〜100nm程度である。膜厚が5〜
100nmの範囲内にあると、導電性及び透明性の両方
を有するため特に好ましい。また、膜厚が10〜50n
mの範囲内にあると上記特性が特に優れるため、好まし
い。The transparent conductive ultrathin film of the present invention is composed of a transition metal. This transition metal is represented by IB, IIB, IIIB to VII in the periodic table of the Chemical Encyclopedia of Kyoritsu Shuppan Co., Ltd.
It means an element of each group of B and VIIIB and is not particularly limited as long as it is included in these, but preferably titanium, vanadium, chromium, manganese, iron, cobalt, nickel,
Zirconium, niobium, molybdenum, rhodium, palladium, silver, hafnium, tantalum, tungsten, iridium, platinum, gold, metals belonging to lanthanide and actinide are preferable, and titanium and gold are particularly preferable. The transition metal may be present in the thin film as a simple metal, but when an ion beam of carbon, nitrogen, oxygen, hydrogen, etc. is used to excite the surface of the substrate, a part or all of the transition metal is a carbide or a nitride. It may exist in the form of a substance, an oxide, a hydride or the like. The thickness of the thin film is usually about 1 to 200 nm, preferably about 1 to 100 nm. Film thickness is 5
Within the range of 100 nm, it is particularly preferable because it has both conductivity and transparency. Also, the film thickness is 10 to 50 n
Within the range of m, the above-mentioned characteristics are particularly excellent, which is preferable.
【0013】本発明の透明導電性超薄膜は、非晶質構造
を有する場合が多いが、製造条件により結晶質の占める
割合が多くなることもある。非晶質であっても結晶質で
あってもその特性にはほとんど影響しない。本発明の透
明導電性超薄膜の透光性は、30〜95%程度、好まし
くは50〜95%程度であり、導電性は通常0.1〜1
00kΩ/□程度、好ましくは1〜10kΩ/□程度で
ある。本発明の透明導電性超薄膜は、酸性水溶液への浸
漬、塩水噴霧等によってもその機能を失わない程度の耐
環境性を有する。The transparent conductive ultrathin film of the present invention often has an amorphous structure, but the proportion of crystalline material may increase depending on the manufacturing conditions. Whether it is amorphous or crystalline, its characteristics are hardly affected. The translucency of the transparent conductive ultrathin film of the present invention is about 30 to 95%, preferably about 50 to 95%, and the conductivity is usually 0.1 to 1%.
It is about 00 kΩ / □, preferably about 1 to 10 kΩ / □. The transparent conductive ultrathin film of the present invention has environmental resistance to the extent that its function is not lost even when it is immersed in an acidic aqueous solution or sprayed with salt water.
【0014】次に、本発明の製造方法について説明す
る。まず、薄膜を形成させる基体の表面状態を励起状態
にする。薄膜が形成される基体表面を励起させるには、
基体にイオンビーム、プラズマ、電子ビーム、レーザー
などを照射すればよいが、基体表面が励起状態になる限
り、他の励起状態形成手段を用いてもよい。照射条件
は、基体の種類、遷移金属の種類、所望の膜厚等によっ
て適宜設定すればよい。本発明にいう「励起状態」と
は、具体的には基体表面が励起源を照射する前と比べ
て、より大きな熱運動エネルギーを持つ状態もしくはよ
り大きな内部エネルギーを持つ状態になることをいう。
イオンビーム、プラズマ、電子ビーム、レーザー等は、
単独で基体表面に照射しても良く、2種以上を組み合わ
せて照射してもよい。Next, the manufacturing method of the present invention will be described. First, the surface state of the substrate on which the thin film is formed is set to the excited state. To excite the substrate surface on which the thin film is formed,
The substrate may be irradiated with an ion beam, plasma, electron beam, laser or the like, but other excited state forming means may be used as long as the surface of the substrate is in an excited state. The irradiation conditions may be appropriately set depending on the type of substrate, the type of transition metal, the desired film thickness, and the like. The “excited state” as referred to in the present invention specifically means that the surface of the substrate is in a state having a larger thermal kinetic energy or a state having a larger internal energy as compared with that before the irradiation of the excitation source.
Ion beam, plasma, electron beam, laser, etc.
The surface of the substrate may be irradiated alone or in combination of two or more kinds.
【0015】基体表面の励起は、蒸着中にイオンビー
ム、プラズマ、電子ビーム、レーザーなどを連続的また
は間欠的に照射して励起状態を保つのが好ましい。間欠
的に照射する場合、その照射頻度は1Hz以上であれば
よく、10Hz以上であれば好ましい。The surface of the substrate is preferably excited by continuously or intermittently irradiating with an ion beam, plasma, electron beam, laser or the like during vapor deposition. In the case of intermittent irradiation, the irradiation frequency may be 1 Hz or higher, preferably 10 Hz or higher.
【0016】イオンビームに用いるイオンとしては、ヘ
リウム、ネオン、アルゴン、クリプトン等の不活性ガス
のイオン、あるいは炭素、窒素、酸素、水素などのイオ
ンが挙げられる。特に、炭素又は窒素のイオンビームを
用いる場合には、これらが遷移金属と反応して炭化物又
は窒化物を形成し、薄膜の耐環境性を更に向上させるこ
とができるため好ましい。イオンビーム中に電子を混入
し、全体として電気的に中性又は陰性になっていてもよ
い。イオンビームの加速電圧は、通常約10V以上、好
ましくは10V〜100kVであればよい。Examples of ions used for the ion beam include ions of an inert gas such as helium, neon, argon and krypton, and ions of carbon, nitrogen, oxygen, hydrogen and the like. In particular, when an ion beam of carbon or nitrogen is used, these react with a transition metal to form a carbide or a nitride, which is preferable because the environment resistance of the thin film can be further improved. Electrons may be mixed in the ion beam to be electrically neutral or negative as a whole. The acceleration voltage of the ion beam may be about 10 V or higher, preferably 10 V to 100 kV.
【0017】プラズマとして、高周波方式、直流方式な
どが例示される。Examples of the plasma include a high frequency system and a direct current system.
【0018】レーザーとして、YAGレーザー、炭酸ガ
スレーザー、エキシマレーザーが例示される。Examples of the laser include YAG laser, carbon dioxide gas laser and excimer laser.
【0019】本発明の方法では、励起状態の基体表面に
気化させた金属を蒸着させ、透明導電性超薄膜を形成さ
せる。蒸着は、特に限定されず、真空蒸着法、レーザー
アブレーション法、イオンプレーティング法、イオンビ
ームデポジション法、CVD法などの公知の蒸着方法が
適用できる。In the method of the present invention, a vaporized metal is vapor-deposited on the surface of a substrate in an excited state to form a transparent conductive ultrathin film. The vapor deposition is not particularly limited, and known vapor deposition methods such as a vacuum vapor deposition method, a laser ablation method, an ion plating method, an ion beam deposition method, and a CVD method can be applied.
【0020】本発明の蒸着方法で、真空中にメタン、エ
タンなどの炭化水素ガス、エタノールなどの有機物、ヘ
リウム、アルゴンなどの不活性ガスあるいは窒素、水素
などを導入した状態で遷移金属の蒸着を行えば、薄膜形
成をより促進することができる。In the vapor deposition method of the present invention, a transition metal is vapor-deposited in a state where a hydrocarbon gas such as methane or ethane, an organic substance such as ethanol, an inert gas such as helium or argon, or nitrogen or hydrogen is introduced into a vacuum. If it is performed, thin film formation can be further promoted.
【0021】[0021]
【発明の効果】本発明の透明導電性超薄膜の製造方法に
よれば、気化した遷移金属を、真空中で励起状態にある
基体上に蒸着させるため、従来の金属酸化物からなる薄
膜とは異なる性質を持つ薄膜を得ることができる。According to the method for producing a transparent conductive ultra-thin film of the present invention, a vaporized transition metal is vapor-deposited on a substrate in an excited state in a vacuum. Thin films with different properties can be obtained.
【0022】本発明の透明導電性超薄膜は、遷移金属か
ら構成された、膜厚1〜200nmという非常に薄い膜
であるため、優れた透明性及び導電性を有するととも
に、優れた耐環境性をも発揮することができる。従っ
て、上記薄膜は、その使用中に容易に酸化されたり、塩
分に侵されたりすることはなく、良好な透明性及び導電
性を発揮することができる。Since the transparent conductive ultrathin film of the present invention is a very thin film composed of a transition metal and having a film thickness of 1 to 200 nm, it has excellent transparency and conductivity and excellent environmental resistance. Can also be demonstrated. Therefore, the thin film is not easily oxidized or corroded by salt during use, and can exhibit good transparency and conductivity.
【0023】また、本発明の製造方法において、蒸着中
に絶えることなく連続的に基体を励起状態に維持する
と、薄膜は基体と強く密着し、また、薄膜表面は、他の
製造方法で製造された薄膜よりも平滑となる。従って、
本発明により耐環境性、透明性、電気伝導性に優れた薄
膜を製造することができる。Further, in the manufacturing method of the present invention, when the substrate is continuously kept in an excited state during the vapor deposition, the thin film strongly adheres to the substrate, and the thin film surface is manufactured by another manufacturing method. Smoother than a thin film. Therefore,
According to the present invention, a thin film having excellent environment resistance, transparency and electric conductivity can be manufactured.
【0024】このような特性を持つ本発明の透明導電性
超薄膜は、従来の薄膜よりも一層幅広い用途に用いるこ
とが可能となり、液晶表示素子用電極材料、防曇用発熱
体はもとより、外気にさらされるブラウン管の帯電防止
用コーティングなどの用途にも有用である。The transparent conductive ultra-thin film of the present invention having such characteristics can be used in a wider range of applications than conventional thin films, and can be used not only for electrode materials for liquid crystal display elements and anti-fogging heating elements, but also for the outside air. It is also useful for applications such as antistatic coating of CRTs exposed to light.
【0025】[0025]
【実施例】以下、本発明の実施例及び比較例を示し、本
発明の特徴とするところをより一層明確にする。EXAMPLES Examples and comparative examples of the present invention will be shown below to further clarify the features of the present invention.
【0026】耐環境性の評価は、0.5%塩化ナトリウ
ム水溶液の噴霧を1時間行い、その後、透明性及び電気
伝導性の値の劣化が10%以下であると、耐環境性に優
れていると判定した。また、上記の値の劣化が測定誤差
範囲内であり、更に、0.1規定の塩酸水溶液での浸漬
試験によっても、劣化が測定誤差範囲内であれば、耐環
境性が特に優れているものと規定する。To evaluate the environment resistance, a 0.5% sodium chloride aqueous solution is sprayed for 1 hour, and then, if the deterioration of the transparency and the electric conductivity is 10% or less, the environment resistance is excellent. It was judged that there was. Further, if the deterioration of the above value is within the measurement error range and further the deterioration is within the measurement error range even by the immersion test with 0.1N hydrochloric acid aqueous solution, the environmental resistance is particularly excellent. Stipulate.
【0027】実施例1 真空中において、溶融石英の基体に対し、窒素のイオン
ビームを照射した。イオンビームの加速電圧は10k
V、イオンビームの電流密度は、0.1mA/cm2で
あった。イオンビームの照射と同時に基体上に電子ビー
ム加熱法によってチタニウムを蒸着した。このときの蒸
着速度は毎秒0.5nm、蒸着時間は20秒間、蒸着膜
厚は10nmであった。Example 1 In a vacuum, a fused silica substrate was irradiated with a nitrogen ion beam. Ion beam acceleration voltage is 10k
The V and ion beam current densities were 0.1 mA / cm 2 . Simultaneously with the irradiation of the ion beam, titanium was vapor-deposited on the substrate by the electron beam heating method. At this time, the vapor deposition rate was 0.5 nm per second, the vapor deposition time was 20 seconds, and the vapor deposition film thickness was 10 nm.
【0028】得られたチタニウム含有薄膜の表面の電気
抵抗は5kΩ/□であり、導電性を有することが確認さ
れた。また、その透光性は85%であることから、上記
薄膜が透明導電性薄膜であることが確認された。更に、
上記薄膜について、塩化ナトリウム水溶液噴霧試験及び
塩酸水溶液浸漬試験を行ったところ、その透明性及び導
電性の変化はなく、耐環境性に特に優れていることも確
認された。The obtained titanium-containing thin film had an electric resistance of 5 kΩ / □ on the surface, and it was confirmed that the thin film had conductivity. In addition, since its translucency is 85%, it was confirmed that the thin film was a transparent conductive thin film. Furthermore,
When the thin film was subjected to a sodium chloride aqueous solution spray test and a hydrochloric acid aqueous solution immersion test, it was confirmed that there was no change in its transparency and conductivity and that it was particularly excellent in environmental resistance.
【0029】上記薄膜の密着性を評価するために、薄膜
の上にエポキシ樹脂を塗布し、直径3mmの平らな頂部
を持つスタッドを基体に垂直に接着した後、スタッドを
基体の垂直方向に引っ張ったところ、3Nの力で引っ張
っても薄膜は剥離しなかった。従って、この薄膜は、基
体に強く密着していることが明らかである。上記薄膜の
表面を原子間力走査プローブ顕微鏡によって表面粗さを
評価したところ、その表面粗さは2nm以下であった。In order to evaluate the adhesion of the thin film, an epoxy resin was applied on the thin film, and a stud having a flat top with a diameter of 3 mm was vertically bonded to the substrate, and then the stud was pulled in the vertical direction of the substrate. When the film was pulled with a force of 3N, the thin film did not peel off. Therefore, it is clear that this thin film strongly adheres to the substrate. When the surface roughness of the surface of the thin film was evaluated by an atomic force scanning probe microscope, the surface roughness was 2 nm or less.
【0030】比較例1 比較のため、基体を励起しないで、窒素雰囲気中での蒸
着により窒化チタニウム超薄膜の形成を試みた。5×1
0-5Torrの窒素分圧下で、0.5nm/秒の蒸着速
度により、チタニウムを石英基体上に40秒間供給し
た。この試料を調べたところ、チタニウムを石英基体上
に40秒間供給した。この試料を原子間力走査プローブ
顕微鏡で調べたところ、島状構造をしており、電気伝導
性はなかった。また、1日間大気中に放置したところ酸
化され酸化チタニウムとなった。従って、基体を励起し
なければ、所望の効果が得られないことが明らかであ
る。Comparative Example 1 For comparison, an attempt was made to form an ultrathin titanium nitride film by vapor deposition in a nitrogen atmosphere without exciting the substrate. 5 x 1
Under a nitrogen partial pressure of 0 −5 Torr, titanium was supplied onto the quartz substrate for 40 seconds at a deposition rate of 0.5 nm / second. When this sample was examined, titanium was supplied onto the quartz substrate for 40 seconds. When this sample was examined by an atomic force scanning probe microscope, it had an island structure and had no electrical conductivity. When left in the air for one day, it was oxidized to titanium oxide. Therefore, it is clear that the desired effect cannot be obtained without exciting the substrate.
【0031】実施例2 真空中において、酸化アルミニウム単結晶の基体に対
し、炭素のイオンビームを照射した。イオンビームの加
速電圧は10kV、イオンビームの電流密度は0.1m
A/cm2であった。イオンビームの照射と同時に基体
上に電子ビーム加熱法によってバナジウムを蒸着した。
このときの蒸着速度は毎秒1nm、蒸着時間は20秒
間、蒸着膜厚は20nmであった。また、このとき同時
にエキシマレーザーを50mJ、100Hzで照射し
た。Example 2 An aluminum oxide single crystal substrate was irradiated with a carbon ion beam in a vacuum. Ion beam acceleration voltage is 10 kV, ion beam current density is 0.1 m
It was A / cm 2 . Simultaneously with the irradiation of the ion beam, vanadium was vapor-deposited on the substrate by the electron beam heating method.
At this time, the vapor deposition rate was 1 nm per second, the vapor deposition time was 20 seconds, and the vapor deposition film thickness was 20 nm. At the same time, an excimer laser was irradiated at 50 mJ and 100 Hz.
【0032】得られたバナジウム含有薄膜の表面の電気
抵抗は6kΩ/□であり、導電性を有することが確認さ
れた。また、その透光性は75%であることから、上記
薄膜が透明導電性薄膜であることが確認された。更に、
上記薄膜について、塩化ナトリウム水溶液噴霧試験及び
塩酸水溶液浸漬試験を行ったところ、その透明性及び導
電性の変化はなく、耐環境性に特に優れていることも確
認された。The surface resistance of the obtained vanadium-containing thin film was 6 kΩ / □, and it was confirmed that the thin film had conductivity. In addition, since its translucency is 75%, it was confirmed that the thin film was a transparent conductive thin film. Furthermore,
When the thin film was subjected to a sodium chloride aqueous solution spray test and a hydrochloric acid aqueous solution immersion test, it was confirmed that there was no change in its transparency and conductivity and that it was particularly excellent in environmental resistance.
【0033】実施例3 真空中において、透明なアクリル樹脂平板の基体に対
し、炭素及び水素のイオンビームを照射した。イオンビ
ームの加速電圧は10kV、イオンビームの電流密度は
0.01mA/cm2であった。イオンビームの照射と
同時に基体上に電子ビーム加熱法によって金を蒸着し
た。このときの蒸着速度は毎秒0.1nm、蒸着時間は
100秒間、蒸着膜厚は10nmであった。Example 3 In a vacuum, a transparent acrylic resin plate substrate was irradiated with carbon and hydrogen ion beams. The acceleration voltage of the ion beam was 10 kV, and the current density of the ion beam was 0.01 mA / cm 2 . Simultaneously with the irradiation of the ion beam, gold was deposited on the substrate by the electron beam heating method. At this time, the vapor deposition rate was 0.1 nm per second, the vapor deposition time was 100 seconds, and the vapor deposition film thickness was 10 nm.
【0034】得られた金含有薄膜の表面の電気抵抗は1
kΩ/□であり、導電性を有することが確認された。ま
た、その透光性は70%であることから、上記薄膜が透
明導電性薄膜であることが確認された。更に、上記薄膜
について、塩化ナトリウム水溶液噴霧試験及び塩酸水溶
液浸漬試験を行ったところ、その透明性及び導電性の変
化はなく、耐環境性に特に優れていることも確認され
た。The electric resistance of the surface of the obtained gold-containing thin film is 1
It was kΩ / □, and it was confirmed to have conductivity. In addition, since its translucency is 70%, it was confirmed that the thin film was a transparent conductive thin film. Furthermore, when the above thin film was subjected to a sodium chloride aqueous solution spray test and a hydrochloric acid aqueous solution immersion test, it was confirmed that there was no change in its transparency and conductivity and that it was particularly excellent in environmental resistance.
【0035】実施例4 真空中において、酸化マグネシウムの基体に対し、YA
Gレーザーを100mWの強度で照射した。レーザーの
照射と同時に基体上に電子ビーム加熱法によってジルコ
ニウムを蒸着した。蒸着速度は毎秒0.5nm、蒸着時
間は100秒間、蒸着膜厚は50nmであった。また、
蒸着中の真空容器内に、窒素ガスを導入し、その圧力を
1×10-4Torrとした。これによって形成された、
窒化ジルコニウム薄膜の表面抵抗は3kΩ/□であり、
導電性を有することが確認された。また、その透光性は
70%であることから、上記薄膜が透明導電性薄膜であ
ることが確認された。更に、上記薄膜について、塩化ナ
トリウム水溶液噴霧試験及び塩酸水溶液浸漬試験を行っ
たところ、その透明性及び導電性の変化はなく、耐環境
性に特に優れていることも確認された。Example 4 YA was applied to a magnesium oxide substrate in vacuum.
The G laser was irradiated at an intensity of 100 mW. Simultaneously with laser irradiation, zirconium was vapor-deposited on the substrate by an electron beam heating method. The vapor deposition rate was 0.5 nm per second, the vapor deposition time was 100 seconds, and the vapor deposition film thickness was 50 nm. Also,
Nitrogen gas was introduced into the vacuum container during vapor deposition, and the pressure was set to 1 × 10 −4 Torr. Formed by this,
The surface resistance of the zirconium nitride thin film is 3 kΩ / □,
It was confirmed to have conductivity. In addition, since its translucency is 70%, it was confirmed that the thin film was a transparent conductive thin film. Furthermore, when the above thin film was subjected to a sodium chloride aqueous solution spray test and a hydrochloric acid aqueous solution immersion test, it was confirmed that there was no change in its transparency and conductivity and that it was particularly excellent in environmental resistance.
【0036】実施例5 真空中において、ホウケイ酸ガラスの基体に対し、10
kVで加速したアルゴンイオンを、0.05mA/cm
2の電流密度で照射した。イオンビームの照射と同時に
基体上に電子ビーム加熱法によってハフニウムを蒸着し
た。蒸着速度は毎秒0.5nm、蒸着時間は100秒
間、蒸着膜厚は50nmであった。このときの真空度は
1×10-4Torrであったが、そのうちの5×10-5
Torrは、窒素の導入による分圧であった。これによ
って形成された、窒化ハフニウム薄膜の表面抵抗は10
kΩ/□であり、導電性を有することが確認された。ま
た、その透光性は55%であることから、上記薄膜が透
明導電性薄膜であることが確認された。更に、上記薄膜
について、塩化ナトリウム水溶液噴霧試験及び塩酸水溶
液浸漬試験を行ったところ、その透明性及び導電性の変
化はなく、耐環境性に特に優れていることも確認され
た。Example 5 10 parts per borosilicate glass substrate in vacuum
Argon ions accelerated at kV are 0.05 mA / cm
Irradiation was performed at a current density of 2 . Hafnium was vapor-deposited on the substrate simultaneously with the irradiation of the ion beam by the electron beam heating method. The vapor deposition rate was 0.5 nm per second, the vapor deposition time was 100 seconds, and the vapor deposition film thickness was 50 nm. The vacuum degree at this time was 1 × 10 −4 Torr, of which 5 × 10 −5
Torr was the partial pressure due to the introduction of nitrogen. The surface resistance of the hafnium nitride thin film formed by this is 10
It was kΩ / □, and it was confirmed to have conductivity. In addition, since its translucency is 55%, it was confirmed that the thin film was a transparent conductive thin film. Furthermore, when the above thin film was subjected to a sodium chloride aqueous solution spray test and a hydrochloric acid aqueous solution immersion test, it was confirmed that there was no change in its transparency and conductivity and that it was particularly excellent in environmental resistance.
【0037】実施例6 真空中において、アルカリガラスの基体に対し、20k
Vで加速したヘリウムイオンを、0.1mA/cm2の
電流密度で照射した。イオンビームの照射と同時に基体
上に電子ビーム加熱法によってタングステンを蒸着し
た。蒸着速度は毎秒0.5nm、蒸着時間は100秒
間、蒸着膜厚は20nmであった。このときの真空度は
1×10-4Torrであったが、そのうちの5×10-5
Torrは、メタンガスの導入による分圧であった。こ
れによって形成された、炭化タングステン薄膜の表面抵
抗は40kΩ/□であり、導電性を有することが確認さ
れた。また、その透光性は70%であることから、上記
薄膜が透明導電性薄膜であることが確認された。更に、
上記薄膜について、塩化ナトリウム水溶液噴霧試験及び
塩酸水溶液浸漬試験を行ったところ、その透明性及び導
電性の変化はなく、耐環境性に特に優れていることも確
認された。Example 6 In a vacuum, 20k was applied to an alkali glass substrate.
Helium ions accelerated by V were irradiated at a current density of 0.1 mA / cm 2 . Simultaneously with the irradiation of the ion beam, tungsten was vapor-deposited on the substrate by the electron beam heating method. The vapor deposition rate was 0.5 nm per second, the vapor deposition time was 100 seconds, and the vapor deposition film thickness was 20 nm. The vacuum degree at this time was 1 × 10 −4 Torr, of which 5 × 10 −5
Torr was the partial pressure due to the introduction of methane gas. The surface resistance of the tungsten carbide thin film formed by this was 40 kΩ / □, and it was confirmed to have conductivity. In addition, since its translucency is 70%, it was confirmed that the thin film was a transparent conductive thin film. Furthermore,
When the thin film was subjected to a sodium chloride aqueous solution spray test and a hydrochloric acid aqueous solution immersion test, it was confirmed that there was no change in its transparency and conductivity and that it was particularly excellent in environmental resistance.
【手続補正書】[Procedure amendment]
【提出日】平成6年8月10日[Submission date] August 10, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0030[Name of item to be corrected] 0030
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0030】比較例1 比較のため、基体を励起しないで、窒素雰囲気中での蒸
着により窒化チタニウム超薄膜の形成を試みた。5×1
0−5Torrの窒素分圧下で、0.5nm/秒の蒸着
速度により、チタニウムを石英基体上に40秒間供給し
た。この試料を原子間力走査プローブ顕微鏡で調べたと
ころ、島状構造をしており、電気伝導性はなかった。ま
た、1日間大気中に放置したところ酸化され酸化チタニ
ウムとなった。従って、基体を励起しなければ、所望の
効果が得られないことが明らかである。Comparative Example 1 For comparison, an attempt was made to form an ultrathin titanium nitride film by vapor deposition in a nitrogen atmosphere without exciting the substrate. 5 x 1
Under a nitrogen partial pressure of 0 −5 Torr, titanium was supplied onto the quartz substrate for 40 seconds at a deposition rate of 0.5 nm / second. When this sample was examined by an atomic force scanning probe microscope, it had an island structure and had no electrical conductivity. When left in the air for one day, it was oxidized to titanium oxide. Therefore, it is clear that the desired effect cannot be obtained without exciting the substrate.
Claims (2)
も1種を含む膜厚1〜200nmの透明導電性超薄膜。1. A transparent conductive ultrathin film having a film thickness of 1 to 200 nm, which is formed on a substrate and contains at least one kind of transition metal.
空中で励起状態の基体上に蒸着させて当該遷移金属の薄
膜を形成することを特徴とする透明導電性超薄膜の製造
方法。2. A method for producing a transparent conductive ultrathin film, which comprises depositing at least one vaporized transition metal on a substrate in an excited state in vacuum to form a thin film of the transition metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19796294A JPH07173610A (en) | 1993-08-02 | 1994-07-29 | Transparent electric conductive ultrathin film and production thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-210929 | 1993-08-02 | ||
JP21092993 | 1993-08-02 | ||
JP19796294A JPH07173610A (en) | 1993-08-02 | 1994-07-29 | Transparent electric conductive ultrathin film and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07173610A true JPH07173610A (en) | 1995-07-11 |
Family
ID=26510677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19796294A Pending JPH07173610A (en) | 1993-08-02 | 1994-07-29 | Transparent electric conductive ultrathin film and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07173610A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999003111A1 (en) * | 1997-07-08 | 1999-01-21 | Glas Platz | Electrical device, electrical appliance or lighting device |
WO2004105055A1 (en) * | 2003-05-26 | 2004-12-02 | Nippon Soda Co., Ltd. | Light-transmitting substrate with transparent electroconductive film |
JP2005290585A (en) * | 2004-03-31 | 2005-10-20 | Taiwan Textile Research Inst | Temperature-controlling fibrous product and method for producing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04206212A (en) * | 1990-11-29 | 1992-07-28 | Nitto Denko Corp | Manufacture of laminated body |
-
1994
- 1994-07-29 JP JP19796294A patent/JPH07173610A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04206212A (en) * | 1990-11-29 | 1992-07-28 | Nitto Denko Corp | Manufacture of laminated body |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999003111A1 (en) * | 1997-07-08 | 1999-01-21 | Glas Platz | Electrical device, electrical appliance or lighting device |
WO2004105055A1 (en) * | 2003-05-26 | 2004-12-02 | Nippon Soda Co., Ltd. | Light-transmitting substrate with transparent electroconductive film |
JPWO2004105055A1 (en) * | 2003-05-26 | 2006-07-20 | 日本曹達株式会社 | Translucent substrate with transparent conductive film |
KR100743417B1 (en) * | 2003-05-26 | 2007-07-30 | 닛뽕소다 가부시키가이샤 | Light transmitting substrate with transparent conductive film |
JP4538410B2 (en) * | 2003-05-26 | 2010-09-08 | 日本曹達株式会社 | Method for manufacturing translucent substrate with transparent conductive film |
JP2005290585A (en) * | 2004-03-31 | 2005-10-20 | Taiwan Textile Research Inst | Temperature-controlling fibrous product and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5030331A (en) | Process for preparing iridium oxide film | |
US5804255A (en) | Method of forming transparent and conductive ultrathin films | |
KR100968389B1 (en) | Method for forming transparent electrode | |
JP2001240960A (en) | Article coated with photocatalytic film, method of manufacturing for the article, and sputtering target used for depositing the film | |
US20040151835A1 (en) | Method for forming a coating film, consisting of carbon nanotubes, on the surface of a substrate | |
JPWO2003106732A1 (en) | Article coated with titanium compound film, method for producing the article, and sputtering target used for coating the film | |
JPH07173610A (en) | Transparent electric conductive ultrathin film and production thereof | |
US20070114670A1 (en) | Corrosion-resistant aluminum conductive material and process for producing the same | |
JPH06234186A (en) | Highly gas-barrier transparent electrode film | |
JPH08249929A (en) | Transparent electrode film for input panel of coordinate data input apparatus | |
US6641937B1 (en) | Transparent conductive film and process for producing the film | |
JPS59180526A (en) | Electrochromic display element | |
JPH0874033A (en) | Electrode for liquid crystal display | |
Seki et al. | Evolution of water vapor from indium-tin-oxide thin films fabricated by various deposition processes | |
JP2939873B2 (en) | Manufacturing method of gas detection element | |
RU1836487C (en) | Method of metal hydride film applying in vacuum, application of metal hydride film, produced by the method of item 1, and application of substratum with metal hydride film, produced by the method of item 1 | |
JPH0790550A (en) | Production of transparent conductive film | |
JPH0631850A (en) | High gas barrier transparent conductive film | |
JPH0926606A (en) | Nonlinear optical thin film and its production | |
JPH09196879A (en) | Tin oxide thin film sensor for sensing hydrogen and its manufacture | |
JPH08136940A (en) | Electrode film for liquid crystal display element | |
JP3148368B2 (en) | High gas barrier transparent conductive film | |
JPH11349308A (en) | Production of functional carbonaceous material | |
JP2002358873A (en) | Surface treatment method of carbon matter material for field electron emission material | |
JP2001279440A (en) | Co CONTAINING OXIDE FILM DEPOSITION METHOD |