JPH0790550A - Production of transparent conductive film - Google Patents

Production of transparent conductive film

Info

Publication number
JPH0790550A
JPH0790550A JP22859093A JP22859093A JPH0790550A JP H0790550 A JPH0790550 A JP H0790550A JP 22859093 A JP22859093 A JP 22859093A JP 22859093 A JP22859093 A JP 22859093A JP H0790550 A JPH0790550 A JP H0790550A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
film
transparent
conductive
indium
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22859093A
Other languages
Japanese (ja)
Inventor
Yoshiro Akagi
Hiroshi Taniguchi
Kyoko Ugi
共子 宇城
浩 谷口
与志郎 赤木
Original Assignee
Sharp Corp
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE:To prepare a transparent conductive film excellent in electrical and optical properties by film-forming using an excess oxygen incorporated at the time of film forming a tin added indium oxide (ITO) as the transparent conductive film, and heat-treating to improve (100) crystal orientation. CONSTITUTION:At the time of film-forming ITO on the substrate, the sputtering is executed by incorporating oxygen stoichiometrically excess to indium oxide into a sputtering gas, and the (100) crystal orientation of indium oxide is increased by heat-treating the ITO after film-formed, for instance, at 200-300 deg.C for 5-15 hours. Then, the transparent conductive film excellent in electrical and chemical properties is obtained and is widely used for not only a transparent electrode of a liquid crystal panel but also conductive electronic materials.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、各種ディスプレイや太陽電池用の透明電極、熱線反射ガラス、防曇、防氷、帯電防止ガラス、電磁シールガラスなどに用い得る透明導電膜の製造方法に関するものである。 BACKGROUND OF THE INVENTION The present invention is a transparent electrode for various displays and solar cells, heat-reflecting glass, anti-fog, anti-icing, anti-static glass, a method for manufacturing a transparent conductive film can be used such as an electromagnetic seal glass ones it is.

【0002】 [0002]

【従来の技術】従来より、スズ添加酸化インジウム(以下「ITO膜」と略称する)薄膜は大きな導電性と可視光領域での高い透過性を兼ね備えた膜であり、幅広い分野で使用されており、その工業的利用価値は極めて高い。 BACKGROUND ART Conventionally, indium tin oxide (hereinafter abbreviated as "ITO film") film is a membrane having both high permeability with greater conductivity and visible light regions, it is used in a wide range of fields , its industrial utility value is extremely high.

【0003】一般に、酸化インジウム(In 23 )のイオン構造は図2に示すような格子定数が10.118Å [0003] In general, the ion structure of indium oxide (In 2 O 3) has a lattice constant as shown in FIG. 2 10.118A
のbixbyite型体心立方晶であり、単位格子中に16分子が含まれる。 A bixbyite type body-centered cubic includes 16 molecules in the unit cell. ここで、図中黒丸がインジウム原子を表し、白丸が酸素原子を表し、点線は酸素欠陥位置を示す。 Here, black circles in the figure represent the indium atom, a white circle represents an oxygen atom, the dotted line represents an oxygen defect location. また、電子構造に関して言えば、In 23はエネルギーギャップ値が3.7eVの絶縁体であり、価電子帯は酸素の2p状態からなり伝導帯はインジウムの5 Further, with respect to the electronic structure, an In 2 O 3 is an insulator of the energy gap value is 3.7 eV, the conduction band becomes the valence band from the oxygen 2p states indium 5
sおよび5p状態からなるものと考えられる。 It is considered that consists of s and 5p state. ここで酸化インジウムにスズを添加すると伝導帯に電子が供給され、n型の電気伝導を示し、低抵抗化を実現することができる。 Here electrons are supplied to the conduction band and the addition of tin to indium oxide, shows an n-type electrical conductivity, it is possible to realize a lower resistance.

【0004】また、一般に、ITO膜をスパッタリング法により製造する場合、スパッタガス中にO 2ガスを混入して、その混入量を調節してITO膜の酸素量を制御して良好な導電性と透過率を得ることが行われている。 [0004] Generally, when manufacturing ITO film by sputtering, in the sputtering gas mixed with O 2 gas, and by controlling the amount of oxygen good conductivity of the ITO film by adjusting the mixing amount it has been performed to obtain the transmittance.

【0005】また、導電性を高めるため、特開平2ー5 [0005] In order to enhance the conductivity, Japanese Patent Laid-Open 2-5
4755に示されるように低温でのスパッタリング時にO 2とH 2ガスを混入させる方法もある。 As shown in 4755 is also a method of mixing O 2 and H 2 gas during sputtering at a low temperature.

【0006】 [0006]

【発明が解決しようとする課題】しかしながら、上述した従来の技術では、電気的特性としては不充分であり、 [SUMMARY OF THE INVENTION However, in the conventional technique described above, is insufficient as electrical characteristics,
例えば、今後大画面化が予想される液晶パネル等には、 For example, the liquid crystal panel or the like which is expected in the future large screen,
より低抵抗な透明導電膜が要求されるといった問題点があった。 Lower resistance transparent conductive film has a problem such is required.

【0007】そこで、本発明の目的は、ITO膜の結晶配向性を制御してより低抵抗で高品質な透明導電膜の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a high-quality transparent conductive film with lower resistance by controlling the crystal orientation of the ITO film.

【0008】 [0008]

【課題を解決するための手段】本発明の透明導電膜の製造方法は、スパッタリング法により基板上にスズ添加酸化インジウムを含む透明導電膜の製造方法において、成膜開始時に上記酸化インジウムに対し化学量論的に過剰な酸素をスパッタリングガス中に混入させ酸化インジウムの(100)結晶配向を得るように上記スズ添加酸化インジウムを成膜した後、熱処理を行うことを特徴とする。 The method for producing a transparent conductive film of the present invention According to an aspect of the chemical method of manufacturing a transparent conductive film comprising indium tin oxide on the substrate, with respect to the indium oxide at the beginning by a sputtering method after forming the indium tin oxide as stoichiometrically excess oxygen is mixed into the sputtering gas to obtain a (100) crystalline orientation of the indium oxide, and performing a heat treatment.

【0009】 [0009]

【作用】実用に供される殆どのITO膜はガラス、プラスチックなどの非品質基板上に形成されることが多いが、その場合(100)方向に結晶配向したITO膜が電気的光学的に優れた特性を示す。 [Action] Most of the ITO film to be subjected to practical use glass, are often formed in the non-quality substrate such as a plastic, in which case (100) direction in the crystal orientation and the ITO film is excellent in electrical and optical It shows the characteristics. 図2の結晶構造において酸素欠陥を無視すると蛍石(CaF 2 )型になり、 Ignoring the oxygen defects in the crystal structure of Figure 2 will fluorite (CaF 2) type,
その時(100)面は酸素の稠密面に一致する。 Then (100) plane corresponds to the packed planes of oxygen. インジウムは酸素の約2/3のイオン半径しかないので無視し、基板が非品質の場合、基板からの静電ポテンシャルも無視して考えると、稠密面を基板と平行にする向きに成長が促進されるものと予想される。 Indium is ignored because about two-thirds ionic radius only of oxygen, when the substrate is a non-quality, if neglected even electrostatic potential from the substrate, growth promoting dense surface in a direction parallel to the substrate It is expected to be. この点を考慮して本発明を成し得たものであり、初期作製時に故意に酸素を過剰に供給することにより、酸素欠陥部を埋め(10 Are those obtained form a present invention with this in mind, by excessive supply of oxygen to intentionally during the initial manufacturing, filling the oxygen defect (10
0)結晶配向性を促進させてから、熱処理を施すことにより、低抵抗で高品質なITO膜を得ることができる。 0) by promoting crystal orientation, by heat treatment, it is possible to obtain a high-quality ITO film with a low resistance.

【0010】 [0010]

【実施例】以下、本発明を実施例に基づいて説明する。 EXAMPLES The following description will explain the present invention in the Examples.

【0011】反応性スパッタリング法によりガラス基板上にITO膜を膜厚1500Åに2種類作製した。 [0011] The ITO film of two fabricated thickness 1500Å on a glass substrate by reactive sputtering. ターゲットはSnO 2を5wt%含有するIn 23焼結体ターゲットを用い、成膜条件として基板温度は250℃、 Target using In 2 O 3 sintered body target containing SnO 2 5 wt%, substrate temperature deposition conditions are 250 ° C.,
スパッタ電圧は350V、ガス圧は0.4Paに設定した。 Sputtering voltage is 350 V, the gas pressure was set to 0.4 Pa. そしてスパッタガスとして試料AはO 2を1%含有するArガスを用い、試料BはO 2を10%含有するA And Sample A with Ar gas containing O 2 1% as a sputtering gas, Sample B containing O 2 10% A
rガスを用いた。 Using the r gas. その後、両試料共、成膜後250℃で10時間の熱処理を施した。 Thereafter, both samples both were heat-treated at 250 ° C. for 10 hours after the film formation. ここで、O 2混入量は全圧力に対する割合である。 Here, O 2 mixed amount is a percentage of the total pressure.

【0012】ここで、成膜方法として反応性スパッタリング法を用いたが、電子ビーム蒸着法、または反応性イオンプレーティング法を用いることもでき、基板としてガラス基板以外にプラスチック樹脂基板またはアモルファス基板を用いることもできる。 [0012] Here, although a reactive sputtering method as a deposition method, electron beam deposition, or reactive can also be used an ion plating method, a plastic resin substrate or an amorphous substrate other than a glass substrate as the substrate It can also be used. 成膜条件としては、後述するように結晶配向性が向上するように、基板温度を上げている方が良く基板温度200〜300℃、スパッタ電圧としては200〜500V、ガス圧は0.3〜 The film forming conditions, so as to improve the crystal orientation, as described below, who are the substrate temperature is raised well substrate temperature 200~300 ℃, 0.3~ 200~500V, the gas pressure is as sputtering voltage
0.7Paが望ましい。 0.7Pa is desirable.

【0013】また、スパッタガスとして、Arガス以外にKrガスを用いることもでき、酸化インジウムに対して化学量論的に過剰な酸素を混入するのが良く、結果的にインジウム1原子に対して2原子の酸素が取り込まれることになる。 Further, as a sputtering gas, it can also be used Kr gas other than Ar gas, often to mixing stoichiometric excess of oxygen with respect to indium oxide, consequential Indium 1 atom so that the oxygen of 2 atoms are incorporated.

【0014】また、成膜の熱処理として、N 2雰囲気であることが望ましく、200〜300℃、5〜15時間の熱処理が望ましい。 Further, as the heat treatment of the film formation, it is preferably a N 2 atmosphere, 200 to 300 [° C., is desirable heat treatment for 5 to 15 hours.

【0015】次に、上述した条件により成膜した試料A [0015] Next, the sample A, which was formed by the above-mentioned conditions
及びBの比抵抗を4探針法により測定した。 And it was measured by a four probe method resistivity of B. その結果、 as a result,
試料Aは7×10 -4 Ωcm、試料Bは3×10 -4 Ωcm Sample A 7 × 10 -4 Ωcm, Sample B 3 × 10 -4 Ωcm
であった。 Met. つまり試料Bの方が試料Aより低抵抗になっていることが分かる。 That can be seen that towards the sample B is in the low resistance than Sample A.

【0016】次に、図1に試料Aと試料BのX線回折パターン及び比較として粉末酸化インジウム(In 23 [0016] Then, X-rays diffraction pattern and powders of indium oxide as a comparison of samples A and B in FIG. 1 (In 2 O 3)
のX線回折パターンを示す。 The X-ray diffraction pattern of. ここで、X線回折パターンのX線源はCukα線であり、縦軸はX線回折強度を示し、横軸は2θつまり回折角(回折角をθ)を示す。 Here, X-ray source of X-ray diffraction pattern is Cukα line, the vertical axis represents the X-ray diffraction intensity and the horizontal axis indicates 2θ clogging diffraction angle (the diffraction angle theta). この結果から、試料Bは試料Aと比較して、(400)面からの回折強度が最も強く、つまり、基板面に対して(100)結晶配向が強くなっていることが分かる。 The results, Sample B compared to Sample A, (400) is the strongest diffraction intensity from plane, that is, it can be seen that the substrate surface (100) crystal orientation is stronger.

【0017】 [0017]

【発明の効果】以上説明したように、本発明によれば、 As described in the foregoing, according to the present invention,
透明導電膜であるITO膜の成膜開始時に過剰な酸素を混入して成膜し熱処理をすることにより、(100)結晶配向性を良くすることができ、その結果、電気的に優れた透明導電膜が得られる。 By the film formation and heat treated by mixing the excess oxygen at the start of the formation of the transparent conductive film in which an ITO film, (100) can improve the crystal orientation, as a result, electrically excellent transparency conductive film. このようにして得られた透明導電膜は、液晶パネルの透明電極のみならず、導電性の電子材料として広く応用される。 Such transparent conductive film thus obtained is not only transparent electrodes of the liquid crystal panel, are widely used as electronic materials conductivity.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施例に係るX線回折パターンを示す図である。 1 is a diagram showing an X-ray diffraction pattern according to an embodiment of the present invention.

【図2】酸化インジウムの結晶構造を示す図である。 2 is a diagram showing a crystal structure of indium oxide.

【符号の説明】 DESCRIPTION OF SYMBOLS

試料A 従来技術による試料 試料B 本発明に係る試料 Sample of the sample specimen B present invention by a sample A prior art

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 スパッタリング法により基板上にスズ添加酸化インジウムを含む透明導電膜の製造方法において、 成膜開始時に上記酸化インジウムに対し化学量論的に過剰な酸素をスパッタリングガス中に混入させ酸化インジウムの(100)結晶配向を得るように上記スズ添加酸化インジウムを成膜した後、熱処理を行うことを特徴とする透明導電膜の製造方法。 The manufacturing method of claim 1 transparent conductive film comprising indium tin oxide on a substrate by sputtering, thereby a stoichiometric excess of oxygen with respect to the indium oxide at the start deposited entrained in the sputtering gas oxidation after forming the indium tin oxide to obtain a (100) crystalline orientation of the indium, the production method of the transparent conductive film and performing heat treatment.
JP22859093A 1993-09-14 1993-09-14 Production of transparent conductive film Pending JPH0790550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22859093A JPH0790550A (en) 1993-09-14 1993-09-14 Production of transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22859093A JPH0790550A (en) 1993-09-14 1993-09-14 Production of transparent conductive film

Publications (1)

Publication Number Publication Date
JPH0790550A true true JPH0790550A (en) 1995-04-04

Family

ID=16878750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22859093A Pending JPH0790550A (en) 1993-09-14 1993-09-14 Production of transparent conductive film

Country Status (1)

Country Link
JP (1) JPH0790550A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892590A3 (en) * 1997-07-15 1999-09-08 TDK Corporation Organic electroluminescent device and preparation method
JP2002041243A (en) * 2000-07-21 2002-02-08 Nippon Soda Co Ltd Transparent conductive film
JP2010177161A (en) * 2009-02-02 2010-08-12 Toyobo Co Ltd Transparent conductive film
JP2012136759A (en) * 2010-12-27 2012-07-19 Sharp Corp Ito film, method of manufacturing the ito film, semiconductor light-emitting element, and method of manufacturing the light-emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892590A3 (en) * 1997-07-15 1999-09-08 TDK Corporation Organic electroluminescent device and preparation method
US6188176B1 (en) 1997-07-15 2001-02-13 Tdk Corporation Organic electroluminescent device and preparation method with ITO electrode (111) orientation
JP2002041243A (en) * 2000-07-21 2002-02-08 Nippon Soda Co Ltd Transparent conductive film
JP2010177161A (en) * 2009-02-02 2010-08-12 Toyobo Co Ltd Transparent conductive film
JP2012136759A (en) * 2010-12-27 2012-07-19 Sharp Corp Ito film, method of manufacturing the ito film, semiconductor light-emitting element, and method of manufacturing the light-emitting element

Similar Documents

Publication Publication Date Title
Ishibashi et al. Low resistivity indium–tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films
US5321544A (en) Electrochromic structures and methods
US5458753A (en) Transparent conductive film consisting of zinc oxide and gallium
Maruyama et al. Indium‐tin oxide thin films prepared by chemical vapor deposition
EP1068899A1 (en) Multilayer structure and process for producing the same
US7998372B2 (en) Semiconductor thin film, method for manufacturing the same, thin film transistor, and active-matrix-driven display panel
Minami et al. Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering
Minami et al. Highly conductive and transparent ZnO thin films prepared by rf magnetron sputtering in an applied external dc magnetic field
Joseph et al. Optical and electrical properties of zinc oxide films prepared by spray pyrolysis
Minami et al. Preparation of transparent conducting In4Sn3O12 thin films by DC magnetron sputtering
US5501883A (en) Material for use as a transparent conductive film and method for making a transparent conductive film using the material
US6596135B1 (en) Sputtering target, transparent conductive film, and method for producing the same
US6617056B1 (en) Transparent conductive laminate, its manufacturing method, and display comprising transparent conductive laminate
Enoki et al. The Electrical and Optical Properties of the ZnO‐SnO2 Thin Films Prepared by RF Magnetron Sputtering
Wu et al. Recent developments in RF sputtered cadmium stannate films
Xirouchaki et al. Photoreduction and oxidation of as‐deposited microcrystalline indium oxide
Yu et al. Preparation and properties of ZnO: Ga films prepared by rf magnetron sputtering at low temperature
WO2001038599A1 (en) Sputtering target, transparent conductive oxide, and method for preparing sputtering target
JP2007142195A (en) Semiconductor thin film, manufacturing method thereof, thin-film transistor, and active matrix drive display panel
US20030107098A1 (en) Ultraviolet-transparent conductive film and process for producing the same
Taga et al. Electrical properties of heteroepitaxial grown tin‐doped indium oxide films
JPH07235219A (en) Conductive transparent substrate and its manufacture
JPH08245220A (en) Electrically conductive oxide and electrode using same
US4416517A (en) Electrochromic devices including a mica layer electrolyte
JP2007277075A (en) Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film