JPH0631850A - High gas barrier transparent conductive film - Google Patents

High gas barrier transparent conductive film

Info

Publication number
JPH0631850A
JPH0631850A JP4188091A JP18809192A JPH0631850A JP H0631850 A JPH0631850 A JP H0631850A JP 4188091 A JP4188091 A JP 4188091A JP 18809192 A JP18809192 A JP 18809192A JP H0631850 A JPH0631850 A JP H0631850A
Authority
JP
Japan
Prior art keywords
film
oxide
transparent conductive
conductive film
gas barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4188091A
Other languages
Japanese (ja)
Inventor
Shin Fukuda
福田  伸
Nobuhiro Fukuda
信弘 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP4188091A priority Critical patent/JPH0631850A/en
Publication of JPH0631850A publication Critical patent/JPH0631850A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain transparency and excellent gas barrier properties by forming a thin film layer of a compsn. of a specified metal oxide and boron oxide at least on one face of a polymer film base material and a transparent conductive film wherein indium oxide is a main ingredient at least on one face thereof. CONSTITUTION:A thin film layer 2 with a film thickness of 10-1,000nm (MO+BO thin film) of a compsn. wherein at least one metal oxide (MO) selected from a group of silicon oxide, aluminum oxide and titanium oxide and boron oxide (BO) are incorporated by a molar ratio of BO:MO=0.05-0.2 is formed at least on one face of a polymer film base material 1. In addition, a transparent conductive film 3 wherein indium oxide is a main ingredient is formed by means of a vacuum deposition method etc., at least on one face of the film. As the polymer film for the base material, polyether sulfone and polyimide are pref. As the MO+BO thin film 2, it is pref. that a uniform continuous film with a great thickness of at least 10nm and at most 1,000nm is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子フィルムを基材
とした透明導電性フィルムに関し、さらに詳しくは高ガ
スバリヤー性を有する透明導電性フィルムに関し、さら
には、液晶表示用として好適に使用しうる高ガスバリヤ
ー性を有する透明導電性フィルムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film having a polymer film as a base material, more specifically to a transparent conductive film having a high gas barrier property, and further preferably used for liquid crystal display. And a transparent conductive film having a high gas barrier property.

【0002】[0002]

【従来の技術】従来より液晶表示用透明導電体の基材と
してはガラスが用いられてきたが、近年になり、軽量で
ある、大面積化が容易である、割れない、加工性が優れ
ているという性質をもつ透明導電性フィルムが電極に用
いられる用になってきた。しかし、導電性フィルムを使
用した場合、フィルムを透過する水蒸気や酸素等の気体
が液晶素子の性能劣化を招くことがわかってきた。この
ような問題を解決するために、高分子フィルム基材に気
体に対するバリヤー性を付与する必要が明らかになっ
た。
2. Description of the Related Art Conventionally, glass has been used as a base material for transparent conductors for liquid crystal displays, but in recent years, it has been lightweight, easy to increase in area, unbreakable, and excellent in workability. Transparent conductive films, which have the property of being present, have been used for electrodes. However, it has been found that when a conductive film is used, a gas such as water vapor or oxygen that permeates the film causes performance deterioration of the liquid crystal element. In order to solve such a problem, it has become clear that it is necessary to provide a polymer film substrate with a gas barrier property.

【0003】気体に対するバリヤー性を付与するため、
高分子フィルムの片面もしくは両面に、SiO、SiO
2 、TiO2 、ZrO2 、Al2 3 、Ta2 5 、N
2 3 、等の酸化物や窒化アルミの層を設け、これら
高分子層の少なくとも片面上に酸化インジウムを主成分
とする被膜を形成した透明導電性フィルムが開示されて
いる(例えば、特開昭59−204545、特開昭63
−205094)。しかしながら、これら酸化物や窒化
物の薄膜は、透明性、気体バリヤー性もある程度はもっ
ているが、高分子フィルム上に作成されるため、低温度
で成膜しなければならず高いバリヤー性を得ることがで
きない。また、高ガスバリヤー性を得るためには、包装
材料の分野で用いられるアルミニウム等の金属を蒸着を
施すと、可視光の透過性が全く損なわれてしまうという
欠点があった。
In order to impart a barrier property to gas,
SiO, SiO on one or both sides of the polymer film
2 , TiO 2 , ZrO 2 , Al 2 O 3 , Ta 2 O 5 , N
Disclosed is a transparent conductive film in which a layer of oxide such as b 2 O 3 or aluminum nitride is provided, and a coating film containing indium oxide as a main component is formed on at least one surface of these polymer layers (for example, a special layer is used). JP-A-59-204545, JP-A-63
-205094). However, thin films of these oxides and nitrides have transparency and gas barrier properties to some extent, but since they are formed on a polymer film, they must be formed at a low temperature to obtain high barrier properties. I can't. Further, in order to obtain a high gas barrier property, when a metal such as aluminum used in the field of packaging materials is vapor-deposited, there is a drawback that the visible light transmittance is completely impaired.

【0004】[0004]

【発明が解決しょうとする課題】上記のように、従来の
技術では、透明導電性フィルムにおいて透明性ならびに
完全なガスバリヤー性を同時に成立せすることは困難で
あった。本発明の目的は上記の従来の方法の欠点を解決
し、透明性、および優れたガスバリヤー性を有する透明
導電性フィルムを提供することにある。
As described above, according to the prior art, it is difficult to simultaneously achieve transparency and complete gas barrier property in the transparent conductive film. An object of the present invention is to solve the above-mentioned drawbacks of the conventional methods and provide a transparent conductive film having transparency and excellent gas barrier properties.

【0005】[0005]

【課題を解決するための手段】上記の問題を解決するた
めに鋭意研究を重ねた結果、可視光領域において透過率
が高く、かつ、気体の透過率が著しく低い透明導電性フ
ィルムとして、高分子フィルム基材の少なくとも片面上
に、酸化珪素、酸化アルミニウム、酸化マグネシウム、
酸化チタンの群から選ばれた少なくとも1つ以上の金属
酸化物(MO)と酸化硼素(BO)がモル比で、BO/
MO=0.05〜0.2となされた層(MO+BO薄
膜)を形成したものを見いだし、本発明に到達した。す
なわち、本発明は、高分子フィルム基材の少なくとも片
面上に、酸化珪素、酸化アルミニウム、酸化チタンの群
から選ばれた少なくとも1つ以上の金属酸化物(以下M
Oと略記)に酸化硼素(BOと略記)がモル比で、B
O:MO=0.05〜0.2となされた組成物の10〜
1000nmの膜厚をもつ薄膜層( MO+BO薄膜 )が
形成され、該フィルムの少なくとも一方にインジウム酸
化物を主成分とする透明な導電性膜が形成されてなる高
ガスバリヤー性の透明導電性フィルム、を提供するもの
である。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, as a transparent conductive film having high transmittance in the visible light region and extremely low gas permeability, a polymer On at least one side of the film substrate, silicon oxide, aluminum oxide, magnesium oxide,
At least one metal oxide (MO) selected from the group of titanium oxide and boron oxide (BO) has a molar ratio of BO /
The present invention was accomplished by finding a layer (MO + BO thin film) formed with MO = 0.05 to 0.2. That is, the present invention provides at least one metal oxide selected from the group consisting of silicon oxide, aluminum oxide and titanium oxide (hereinafter referred to as M
O) and boron oxide (abbreviated as BO) in a molar ratio of B
O: 10 of the composition in which MO = 0.05-0.2
A transparent conductive film having a high gas barrier property, in which a thin film layer (MO + BO thin film) having a film thickness of 1000 nm is formed, and a transparent conductive film containing indium oxide as a main component is formed on at least one of the films. Is provided.

【0006】本発明の透明導電性フィルムとしては、種
々の形態がありうるが、例えば、図5〜図8にその一例
を示した。ここで、1は、高分子フィルム基材、2はM
O+BO薄膜層、3 は透明な導電性膜である。本発明に
おいて、基材となる高分子フィルムは、とくに限定しな
いが、透明導電性フィルムの製造工程で100℃〜20
0℃になることを考慮すれば、ある程度の耐熱性を持つ
ことが望ましく、ポリエステル、ポリエーテルスルフォ
ン、ポリカーボネート、ポリイミド、ポリオレフィンフ
ィルム等が挙げられ、特に、ポリエーテルスルフォン、
ポリイミドが好ましい。なお、基材フィルムの厚みは、
特に限定するものではないが、通常5〜1000μm 程
度が使用される。勿論、目的に応じてこれ以外の膜厚も
使用可能である。
The transparent conductive film of the present invention may have various forms, and one example thereof is shown in FIGS. 5 to 8. Here, 1 is a polymer film substrate, 2 is M
O + BO thin film layer, 3 is a transparent conductive film. In the present invention, the polymer film serving as the base material is not particularly limited, but is 100 ° C. to 20 ° C. in the manufacturing process of the transparent conductive film.
Considering that the temperature becomes 0 ° C., it is desirable to have a certain degree of heat resistance, and examples thereof include polyester, polyether sulfone, polycarbonate, polyimide, polyolefin film, and the like. In particular, polyether sulfone,
Polyimide is preferred. The thickness of the base film is
Although not particularly limited, about 5 to 1000 μm is usually used. Of course, other film thicknesses can be used depending on the purpose.

【0007】本発明で用いられるMO+BO薄膜は、1
0nm以上1000nm以下の膜厚で均一な連続膜を形
成とすることが好ましい。これにより、透明性を損なわ
ず、優れた高ガスバリヤー性を発揮する。10nm未満
ではガスバリヤー性が充分でなく、膜厚の増加とともに
ガスバリヤー性は増加するが、100nm以上ではその
性質は飽和傾向を示し、さらに1000nm以上では膜
の密着強度が減少するので、本発明のMO+BO薄膜の
膜厚は、10〜1000nmの範囲が好ましい。さら
に、好ましくは20〜500nmの範囲である。
The MO + BO thin film used in the present invention is 1
It is preferable to form a uniform continuous film with a film thickness of 0 nm or more and 1000 nm or less. As a result, excellent high gas barrier properties are exhibited without impairing transparency. If the thickness is less than 10 nm, the gas barrier property is not sufficient and the gas barrier property increases with an increase in the film thickness, but if the thickness is 100 nm or more, the property tends to be saturated, and if the thickness is 1000 nm or more, the adhesion strength of the film decreases. The thickness of the MO + BO thin film is preferably in the range of 10 to 1000 nm. Furthermore, it is preferably in the range of 20 to 500 nm.

【0008】本発明における膜厚の測定には、触針粗さ
計、繰り返し反射干渉計、マイクロバランス、水晶振動
子を用いる方法等があるが、水晶振動子法では成膜中に
膜厚測定が可能なので所望の膜厚を得るのに適してい
る。MO+BO薄膜中のモル組成比BO/MOの増加に
ともない透明性の低下が見られるため、本発明の膜にお
けるモル組成比BO/MOの範囲としては、0.05〜
0.2が好ましい。より好ましくは、0.05〜0.1
である。
The film thickness measurement in the present invention includes a stylus roughness meter, a repetitive reflection interferometer, a microbalance, and a method using a quartz oscillator. In the quartz oscillator method, the film thickness is measured during film formation. Therefore, it is suitable for obtaining a desired film thickness. Since the transparency decreases as the molar composition ratio BO / MO in the MO + BO thin film increases, the molar composition ratio BO / MO in the film of the present invention ranges from 0.05 to
0.2 is preferable. More preferably 0.05 to 0.1
Is.

【0009】本発明において、MO+BO薄膜を作成す
る手段は特に限定されないが、公知の成膜法であるマグ
ネトロンスパッタ法やイオンビームスパッタ法等の物理
気相蒸着法で作成することができる。また、適宜、真空
蒸着法や電子ビーム蒸着法、イオンプレーティング法を
組み合わせることができる。基材が高分子材料であり、
金属やセラミックスに比べると耐熱性に劣るため、なる
べく低い温度で作成することが重要である。この目的の
ために、基材冷却を行いないつつ、所望の金属酸化物と
BOをターゲットにしアルゴンイオンによりスパッタし
室温で成膜するマグネトロンスパッタ法またはイオンビ
ームスパッタ法が有効である。BOの組成を制御は、ス
パッタ法にいてはターゲット表面における金属酸化物と
BOの占める面積の割合を変化させることによって行う
ことができる。あるいは、反応性ガスとして酸素を使用
した反応性スパッタ法、反応性イオンプレーティング法
等により製造する場合は酸素の流量を制御しながら硼素
を蒸着することによりBOの組成比を制御することが可
能である。また、組成の測定は、X線光電子分光法やX
線マイクロ分析法を用いることができる。
In the present invention, the means for forming the MO + BO thin film is not particularly limited, but it can be formed by a known film forming method such as a physical vapor deposition method such as a magnetron sputtering method or an ion beam sputtering method. Further, a vacuum vapor deposition method, an electron beam vapor deposition method, or an ion plating method can be appropriately combined. The base material is a polymer material,
Since it is inferior in heat resistance to metals and ceramics, it is important to make it at a temperature as low as possible. For this purpose, a magnetron sputtering method or an ion beam sputtering method is effective, in which a desired metal oxide and BO are targeted and sputtering is performed by argon ions to form a film at room temperature without cooling the substrate. The composition of BO can be controlled by changing the ratio of the area occupied by the metal oxide and BO on the target surface in the sputtering method. Alternatively, in the case of manufacturing by a reactive sputtering method using oxygen as a reactive gas or a reactive ion plating method, it is possible to control the composition ratio of BO by depositing boron while controlling the flow rate of oxygen. Is. The composition is measured by X-ray photoelectron spectroscopy or X-ray
Line microanalysis can be used.

【0010】MO+BO薄膜を形成する前に高分子フィ
ルム基材に前処理として、コロナ放電処理、プラズマ処
理、グロー放電処理、逆スパッタ処理、粗面化処理、化
学処理などの表面処理や公知のアンダーコートを施した
することを適宜行うことも好ましい。また、MO+BO
膜は化学的に安定であるが、長期にわたって過酷な条件
で使用される場合には必要に応じてMO+BO膜上に保
護層を形成することが望ましい。保護層には透明な樹脂
を用いればよく、ポリエステル樹脂、アクリル樹脂、ビ
ニル樹脂、ポリカーボネート等が挙げられる。
Before forming the MO + BO thin film, surface treatment such as corona discharge treatment, plasma treatment, glow discharge treatment, reverse sputtering treatment, surface roughening treatment, chemical treatment and the like and known under treatment are performed on the polymer film substrate as pretreatment. It is also preferable to appropriately apply the coating. Also, MO + BO
Although the film is chemically stable, it is desirable to form a protective layer on the MO + BO film if necessary when used under severe conditions for a long period of time. A transparent resin may be used for the protective layer, and examples thereof include polyester resin, acrylic resin, vinyl resin, and polycarbonate.

【0011】なお、特開昭59ー137927にホウ素
を含有するシリカコーティング膜に関する技術が開示さ
れているが、本発明においては、硼素ではなく酸化硼
素が酸化硅素中に均一に分散している点、および、成
膜環境と成膜方法が低温度かつドライである点が異なっ
ている。したがって、作成される膜の構造・物性も異な
っていおり、本発明は、本質的に特開昭59ー1379
27とは全く別のものである。勿論、引例の膜では本願
発明の目的を達成することはできない。酸化インジュウ
ムを主体とする透明導電層の製造方法は特に限定されな
いが、公知の成膜技術である真空蒸着法、電子ビーム蒸
着法、イオンプレーティング法、スパッタ法等で行うこ
とができる。例えば、真空蒸着法で行う場合は、酸化イ
ンジュウムを主体とする原料を、酸素分圧が約10-4
orrに制御されたの真空中で抵抗加熱により蒸発さ
せ、高分子フィルム上に透明導電層を得ることができ
る。
Incidentally, Japanese Unexamined Patent Publication (Kokai) No. 59-137927 discloses a technique relating to a silica coating film containing boron, but in the present invention, boron oxide, not boron, is uniformly dispersed in silicon oxide. , And that the film forming environment and the film forming method are low temperature and dry. Therefore, the structure and the physical properties of the produced film are different, and the present invention is essentially the same as that of JP-A-59-1379.
It is completely different from 27. Of course, the reference film cannot achieve the object of the present invention. The method for producing the transparent conductive layer containing indium oxide as a main component is not particularly limited, but it can be performed by a known film forming technique such as a vacuum vapor deposition method, an electron beam vapor deposition method, an ion plating method, and a sputtering method. For example, when the vacuum deposition method is used, a raw material mainly composed of indium oxide and an oxygen partial pressure of about 10 −4 T
A transparent conductive layer can be obtained on the polymer film by evaporation by resistance heating in a vacuum controlled to orr.

【0012】[0012]

【発明の効果】本発明の高ガスバリヤー性透明導電性フ
ィルムは、上述のごとく構成したので、以下のような優
れた効果を有する。 (1)ガスバリヤー性に優れる。 (2)透明性に優れる。 (3)液晶表示用電極として好適に使用できる。
The high gas barrier transparent conductive film of the present invention, which is constructed as described above, has the following excellent effects. (1) Excellent gas barrier property. (2) Excellent transparency. (3) It can be suitably used as an electrode for liquid crystal display.

【0013】[0013]

【実施例】【Example】

実施例1 基材フィルムとして50μmのPESを用い、反応性マ
グネトロンスパッタ法によりSiO2 とBをターゲット
として、モル組成比BO/MO=0.1の膜を、膜厚1
0nmから1000nmの範囲で作成し、酸化インジュ
ウムを主成分とする導電膜層をその上に20nm作成し
た。表1に作成条件を示す。酸素ガス透過率および可視
光の透過率、膜の密着強度を測定し、結果を図1および
図2に示した。図1はガス透過率とガスバリヤー層の膜
厚の関係を示している。図2は可視光の透過率とガスバ
リヤー層の膜厚の関係を示したのである。表2は膜の密
着強度をスコッチテープテストで行った結果を示したも
のである。また、膜厚50nmにおける酸素の透過率は
0.2cc/m2 /24hr(1気圧)であった。
Example 1 PES of 50 μm was used as a base film, and a film having a molar composition ratio of BO / MO = 0.1 was formed with a film thickness of 1 by targeting SiO 2 and B by a reactive magnetron sputtering method.
It was formed in a range of 0 nm to 1000 nm, and a conductive film layer containing indium oxide as a main component was formed thereon to a thickness of 20 nm. Table 1 shows the preparation conditions. The oxygen gas transmittance, the visible light transmittance, and the adhesion strength of the film were measured, and the results are shown in FIGS. 1 and 2. FIG. 1 shows the relationship between the gas permeability and the film thickness of the gas barrier layer. FIG. 2 shows the relationship between the transmittance of visible light and the film thickness of the gas barrier layer. Table 2 shows the results of the adhesion strength of the film measured by the Scotch tape test. Further, the transmittance of oxygen in the film thickness 50nm was 0.2cc / m 2 / 24hr (1 atm).

【0014】実施例2 基材フィルムとして100μmのPESを用い、反応性
マグネトロンスパッタ法によりSiO2 とBをターゲッ
トとして、モル組成比BO/MOの値を変化させた膜厚
100nmの膜を作成し、可視光の透過率およびヘリウ
ムガスの透過率を測定した。結果を図3および図4に示
す。図3は、モル組成比BO/MOと可視光の透過率の
関係を示したものである。図4は、モル組成比BO/M
Oとヘリウムの透過率の関係を示したものである。
Example 2 Using 100 μm PES as a substrate film, a film having a thickness of 100 nm was prepared by changing the molar composition ratio BO / MO by targeting SiO 2 and B by reactive magnetron sputtering. The visible light transmittance and the helium gas transmittance were measured. The results are shown in FIGS. 3 and 4. FIG. 3 shows the relationship between the molar composition ratio BO / MO and the transmittance of visible light. FIG. 4 shows the molar composition ratio BO / M.
It shows the relationship between the transmittance of O and helium.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】ガス透過率とガスバリヤー層の膜厚の関係を示
す図。
FIG. 1 is a diagram showing a relationship between gas permeability and film thickness of a gas barrier layer.

【図2】可視光の透過率とガスバリヤー層の膜厚との関
係を示す図。
FIG. 2 is a diagram showing the relationship between the transmittance of visible light and the film thickness of a gas barrier layer.

【図3】可視光の透過率とモル組成比BO/MOとの関
係を示す図。
FIG. 3 is a diagram showing a relationship between a visible light transmittance and a molar composition ratio BO / MO.

【図4】ヘリウム透過率とモル組成比BO/MOとの関
係を示す図。
FIG. 4 is a graph showing the relationship between helium transmittance and molar composition ratio BO / MO.

【図5】本発明の導電性フィルムの層構成の一例を示す
模式図。
FIG. 5 is a schematic view showing an example of the layer structure of the conductive film of the present invention.

【図6】本発明の導電性フィルムの層構成の一例を示す
模式図。
FIG. 6 is a schematic view showing an example of the layer structure of the conductive film of the present invention.

【図7】本発明の導電性フィルムの層構成の一例を示す
模式図。
FIG. 7 is a schematic view showing an example of the layer structure of the conductive film of the present invention.

【図8】本発明の導電性フィルムの層構成の一例を示す
模式図。
FIG. 8 is a schematic diagram showing an example of the layer structure of the conductive film of the present invention.

【符号の説明】[Explanation of symbols]

1 高分子フィルム基材層 2 MO+BO薄膜層 3 透明な導電層 1 Polymer Film Base Layer 2 MO + BO Thin Film Layer 3 Transparent Conductive Layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高分子フィルム基材の少なくとも片面上
に、酸化珪素、酸化アルミニウム、酸化チタンの群から
選ばれた少なくとも1つ以上の金属酸化物(以下MOと
略記)に酸化硼素(BOと略記)がモル比で、BO/M
O=0.05〜0.2となされた組成物の10〜100
0nmの膜厚をもつ薄膜層が形成され、該フィルムの少
なくとも一方にインジウム酸化物を主成分とする透明な
導電性膜が形成されてなる高ガスバリヤー性の透明導電
性フィルム。
1. At least one metal oxide selected from the group consisting of silicon oxide, aluminum oxide and titanium oxide (hereinafter abbreviated as MO) and boron oxide (BO) on at least one surface of a polymer film substrate. (Abbreviation) is the molar ratio, BO / M
10-100 of the composition where O = 0.05-0.2
A transparent conductive film having a high gas barrier property, wherein a thin film layer having a film thickness of 0 nm is formed, and a transparent conductive film containing indium oxide as a main component is formed on at least one of the films.
【請求項2】 高分子フィルムがポリエーテルスルフォ
ンである請求項1記載の高ガスバリヤー性の透明導電性
フィルム。
2. The transparent conductive film having a high gas barrier property according to claim 1, wherein the polymer film is polyether sulfone.
JP4188091A 1992-07-15 1992-07-15 High gas barrier transparent conductive film Pending JPH0631850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4188091A JPH0631850A (en) 1992-07-15 1992-07-15 High gas barrier transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4188091A JPH0631850A (en) 1992-07-15 1992-07-15 High gas barrier transparent conductive film

Publications (1)

Publication Number Publication Date
JPH0631850A true JPH0631850A (en) 1994-02-08

Family

ID=16217550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4188091A Pending JPH0631850A (en) 1992-07-15 1992-07-15 High gas barrier transparent conductive film

Country Status (1)

Country Link
JP (1) JPH0631850A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077607A1 (en) * 2002-03-13 2003-09-18 Matsushita Electric Industrial Co., Ltd. Organic luminescence device and its production method
WO2008015756A1 (en) * 2006-08-04 2008-02-07 Tohkai-Giken Co., Ltd Apparatus for mixing powdery material with liquid material and method of producing mixture by using the mixing apparatus
KR101719520B1 (en) 2015-09-16 2017-03-24 한국화학연구원 Multilayer barrier film including fluorocarbon thin film and Method of Manufacturing The Same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077607A1 (en) * 2002-03-13 2003-09-18 Matsushita Electric Industrial Co., Ltd. Organic luminescence device and its production method
WO2008015756A1 (en) * 2006-08-04 2008-02-07 Tohkai-Giken Co., Ltd Apparatus for mixing powdery material with liquid material and method of producing mixture by using the mixing apparatus
KR101719520B1 (en) 2015-09-16 2017-03-24 한국화학연구원 Multilayer barrier film including fluorocarbon thin film and Method of Manufacturing The Same

Similar Documents

Publication Publication Date Title
US5958155A (en) Process for producing thin film
JPH05196803A (en) Method and apparatus for preparing reflection reducing coating on lens
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
JP3128554B2 (en) Method for forming oxide optical thin film and apparatus for forming oxide optical thin film
US20090128939A1 (en) Durability broad band metallic neutral density optical filters and related methods of manufacture
JPS6273202A (en) Production of thin optical film
JPS6135401A (en) Reflection mirror
JPH0631850A (en) High gas barrier transparent conductive film
JP2001121641A (en) Transparent conductive laminate
JPH06234186A (en) Highly gas-barrier transparent electrode film
JP4106931B2 (en) Transparent gas barrier thin film coating film
JP3148368B2 (en) High gas barrier transparent conductive film
JPH06306591A (en) Production of water-repellent hard-coated coating film
JPH07105740A (en) Transparent conductive film
JPH09226047A (en) Transparent gas barrier film
JPS61183810A (en) Transparent electrode
JPH02102036A (en) Article covered with optical film
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
JPH09211204A (en) Film forming method of antireflection film on plastic film
JP3332271B2 (en) Reflecting mirror and manufacturing method thereof
JPH03153859A (en) Surface-modified plastic
US3900609A (en) Method for manufacture of a refracting, light permeable oxide layer
JPH09262927A (en) Reflecting plate
JPS61124902A (en) Formation of heat ray reflecting film