JPH07332750A - Gas transferring method and gas transferring apparatus - Google Patents

Gas transferring method and gas transferring apparatus

Info

Publication number
JPH07332750A
JPH07332750A JP12721394A JP12721394A JPH07332750A JP H07332750 A JPH07332750 A JP H07332750A JP 12721394 A JP12721394 A JP 12721394A JP 12721394 A JP12721394 A JP 12721394A JP H07332750 A JPH07332750 A JP H07332750A
Authority
JP
Japan
Prior art keywords
gas
chamber
air chamber
air
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12721394A
Other languages
Japanese (ja)
Inventor
Takashi Yoshida
崇 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP12721394A priority Critical patent/JPH07332750A/en
Publication of JPH07332750A publication Critical patent/JPH07332750A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/009Influencing flow of fluids by means of vortex rings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Duct Arrangements (AREA)

Abstract

PURPOSE:To make arrival of gas at a target place accurate in gas transfer wherein the gas to be transferred is made to arrive at the target place, by blowing the gas into a space from an outlet port toward the target place. CONSTITUTION:As a method of transferring gas, the gas G to be transferred, which is blown from an outlet part 2, is advanced in a space O toward a target place M in a state of a ring shape and in a state that, as a cross-sectional shape orthogonal to the peripheral direction of the ring shape, ring-forming gas assumes the form of an eddy ring R whirling around the central part in a cross section. Further, as an apparatus to be used for the method of transferring the gas, its constitution is provided with a gas chamber forming the outlet port 2, a supply means for feeding the gas G to the gas chamber and an operation means for pulsatively changing a chamber pressure in the gas chamber to a positive pressure side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被搬送気体を吹出口か
ら目標箇所に向けて空間中へ吹き出すことにより、その
被搬送気体を目標箇所に到達させる気体搬送方法、及
び、その気体搬送方法に使用する気体搬送装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas transfer method for delivering a transfer target gas to a target position by blowing out the transfer target gas into a space from a blowout port to the target position, and a gas transfer method therefor. The present invention relates to a gas transfer device used for.

【0002】[0002]

【従来の技術】従来、吹き出しによる気体搬送では、図
13に示すように、吹出口2から吹き出した被搬送気体
Gを、その中心流線が目標箇所Mに向かってほぼ直線的
に描かれる状態(温度要因等により多少湾曲する場合も
ある)で空間中を進行させる搬送形態(すなわち、単純
な噴流による気体搬送)、あるいは、図14に示すよう
に、吹出口2から吹き出した被搬送気体Gを、その中心
流線が螺旋状となるように旋回させながら空間中を目標
箇所Mに向け進行させる搬送形態(例えば、実公昭51
−48546号公報や実公昭52−27272号公報を
参照)が採用されていた。
2. Description of the Related Art Conventionally, in the gas transfer by blowing, as shown in FIG. 13, the transferred gas G blown from the outlet 2 has a central streamline drawn substantially linearly toward a target point M. A transport mode of advancing in the space (may be curved to some extent due to a temperature factor or the like) (that is, gas transport by a simple jet flow), or as shown in FIG. Is moved so as to move toward the target point M in the space while being swirled so that its central streamline becomes a spiral shape (for example, Jitsuko Sho 51
(See Japanese Patent Publication No. -48546 and Japanese Utility Model Publication No. 52-27272).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の図13
に示す如き単純噴流による気体搬送では、噴流が吹き出
し空間Oにおける周囲気体を誘引混合して拡散する傾向
が強く、また、図14に示す如き旋回流による気体搬送
にしても、図13の単純噴流とは中心流線が直線状であ
るか螺旋状であるかの違いだけで、本質的には一様に延
びる中心流線が描かれる噴流であることから、やはり周
囲気体を誘引混合して拡散する傾向が強く、このため、
これら従来のいずれの搬送形態にしても、吹き出し時点
における被搬送気体Gの特質・性状を保った状態で、そ
の被搬送気体Gを的確に目標箇所Mに到達させるのが難
しい問題があった。
However, the above-mentioned FIG.
In the gas transport by the simple jet as shown in FIG. 13, the jet has a strong tendency to attract and mix the ambient gas in the blowing space O, and even if the gas is transported by the swirl flow as shown in FIG. 14, the simple jet in FIG. Is a jet flow that draws a central streamline that extends uniformly, only by the difference in whether the central streamline is a straight line or a spiral line. Because of the strong tendency to
In any of these conventional transportation modes, there is a problem that it is difficult to accurately reach the target location M of the transported gas G while maintaining the characteristics and properties of the transported gas G at the time of blowing.

【0004】そして、吹き出しによる気体搬送の一例と
して、温調空気を被空調箇所に向けて吹き出すスポット
空調において上記従来の搬送形態を採用した場合、上記
の誘引混合、及び、それによる拡散で吹き出し温調空気
の温度が周囲温度と平均化される、いわゆる混合熱損失
を生じ、これにより、冷暖房効果の低下やエネルギ浪費
を招き、また、別の一例として、特殊な気体を所定箇所
に送給することに上記従来の搬送形態を採用した場合に
は、上記の誘引混合・拡散のため所定箇所で受ける特殊
気体の濃度が低下する、あるいは、周囲に悪影響を与え
る、あるいはまた、特殊気体の逸散ロスが多くて歩留り
が悪くなるといった問題を生じる。
As an example of gas transfer by blowing, when the above-mentioned conventional transfer mode is adopted in spot air conditioning in which temperature-controlled air is blown toward a location to be air-conditioned, the blown temperature is caused by the above-mentioned induced mixing and diffusion thereof. The temperature of the conditioned air is averaged with the ambient temperature, resulting in so-called mixed heat loss, which causes a reduction in heating and cooling effects and waste of energy, and as another example, delivers a special gas to a predetermined location. In particular, when the above-mentioned conventional transport mode is adopted, the concentration of the special gas received at a predetermined location due to the above-mentioned induced mixing / diffusion decreases, or it adversely affects the surroundings, or the special gas escapes. There is a problem that the loss is large and the yield is poor.

【0005】ちなみに、前記の図13や図14に示す従
来の搬送形態において所定量の被搬送気体Gを搬送する
にあたり、吹出口2を大口径化して吹き出し風速を小さ
くすれば、上記の如き誘引混合、及び、それによる拡散
は抑制されるが、吹き出し風速を小さくすると、吹き出
し空間中の僅かな横風によっても、進行方向が変向され
る、また、吹き出し気流そのものが乱されるといった影
響を受け易くなり、この意味で、やはり被搬送気体Gを
的確に目標箇所Mに到達させるのが難しい。
By the way, in carrying the predetermined amount of the gas to be carried G in the conventional carrying modes shown in FIGS. 13 and 14, if the blowout port 2 is made large in diameter to reduce the blowing air velocity, the above-mentioned attraction is obtained. Mixing and diffusion due to it are suppressed, but if the blowing air velocity is reduced, even a slight crosswind in the blowing space will change the direction of travel and disturb the blowing airflow itself. In this sense, it is difficult to accurately bring the transported gas G to the target location M.

【0006】本発明の第1の目的は、吹出口から吹き出
す被搬送気体を、その特質・性状をよく保った状態で的
確に目標箇所に到達させる点にある。
A first object of the present invention is to allow the conveyed gas blown from the blow-out port to accurately reach the target location while maintaining its characteristics and properties well.

【0007】また、本発明の第2の目的は、吹き出しに
よる気体搬送を用いて、空調における空調効果の向上、
及び、消費エネルギの節減を図る点にある。
A second object of the present invention is to improve the air-conditioning effect in air-conditioning by using gas transfer by blowing.
In addition, it is to reduce energy consumption.

【0008】また、本発明の第3の目的は、上記第1又
は第2の目的の達成に好適な気体搬送装置を提供する点
にある。
A third object of the present invention is to provide a gas transfer device suitable for achieving the above first or second object.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

〔第1特徴構成〕本発明の第1特徴構成は、被搬送気体
を吹出口から目標箇所に向けて空間中へ吹き出すことに
より、その被搬送気体を前記目標箇所に到達させる気体
搬送方法に係り、前記吹出口から吹き出した被搬送気体
を、環状であって、かつ、その環状の周方向に対し直交
する断面の形態として環状形成気体が断面中心部周りで
渦流状に回転する渦輪の状態で、前記目標箇所に向けて
空間中を進行させる点にある。
[First Characteristic Configuration] The first characteristic structure of the present invention relates to a gas conveying method for causing the conveyed gas to reach the target location by blowing the conveyed gas toward the target location into the space. In the state of a vortex ring in which the carrier gas blown from the outlet is annular and the annular forming gas is swirled around the center of the cross section in the form of a cross section orthogonal to the circumferential direction of the ring. The point is to proceed in space toward the target location.

【0010】〔第2特徴構成〕本発明の第2特徴構成
は、上記第1特徴構成による気体搬送方法の好適な実施
態様を特定するものであり、前記被搬送気体を温調空気
とし、かつ、前記目標箇所を被空調箇所として、前記の
渦輪の状態で搬送する温調空気により前記目標箇所を空
調する点にある。
[Second Characteristic Configuration] A second characteristic structure of the present invention specifies a preferred embodiment of the gas conveying method according to the first characteristic structure, in which the gas to be conveyed is temperature controlled air, and The target location is an air-conditioned location, and the target location is air-conditioned by the temperature-controlled air conveyed in the vortex ring state.

【0011】〔第3特徴構成〕本発明の第3特徴構成
は、上記第1又は2特徴構成による気体搬送方法に使用
する気体搬送装置に係り、前記吹出口を形成した気室
と、その気室に被搬送気体を供給する供給手段と、前記
気室の室圧を陽圧側へパルス的に変化させる操作手段を
設けた点にある。
[Third Characteristic Configuration] A third characteristic configuration of the present invention relates to a gas conveying device used in the gas conveying method according to the first or second characteristic configuration, and relates to an air chamber having the blowout port and its air The point is that a supply means for supplying the transported gas to the chamber and an operation means for changing the chamber pressure of the air chamber to the positive pressure side in a pulsed manner are provided.

【0012】〔第4特徴構成〕本発明の第4特徴構成
は、上記第3特徴構成による気体搬送装置の実施におい
て好適な構成を特定するものであり、前記操作手段によ
る室圧のパルス的変化を所定の時間間隔で繰り返し行わ
せる制御手段を設けた点にある。
[Fourth Characteristic Configuration] A fourth characteristic structure of the present invention is to identify a preferable structure in the implementation of the gas transfer device according to the third characteristic structure, and a pulse change of the room pressure by the operating means. The point is that a control means is provided for repeatedly performing the process at a predetermined time interval.

【0013】〔第5特徴構成〕本発明の第5特徴構成
は、上記第3又は4特徴構成による気体搬送装置の実施
において好適な構成を特定するものであり、前記操作手
段は、前記室圧の陽圧側へのパルス的変化の直後に、前
記室圧を陰圧側へパルス的に変化させる構成としてある
点にある。
[Fifth Characteristic Configuration] A fifth characteristic configuration of the present invention is to identify a preferable configuration in the implementation of the gas transfer device according to the third or fourth characteristic configuration, wherein the operating means is the chamber pressure. Immediately after the pulse-like change to the positive pressure side, the chamber pressure is changed to the negative pressure side in a pulsed manner.

【0014】〔第6特徴構成〕本発明の第6特徴構成
は、上記第3、4又は5特徴構成による気体搬送装置の
実施において好適な構成を特定するものであり、前記操
作手段は、前記気室の容積を変化させて前記室圧を変化
させる構成としてある点にある。
[Sixth Characteristic Configuration] A sixth characteristic configuration of the present invention is to identify a preferable configuration in the implementation of the gas transfer device according to the third, fourth or fifth characteristic configuration, and the operating means is the above-mentioned. The point is that the chamber pressure is changed by changing the volume of the air chamber.

【0015】〔第7特徴構成〕本発明の第7特徴構成
は、上記第6特徴構成による気体搬送装置の実施におい
て好適な構成を特定するものであり、前記操作手段は、
前記気室における弾性変位可能な室壁形成体を打撃し
て、前記気室の容積を変化させる構成としてある点にあ
る。
[Seventh Characteristic Configuration] A seventh characteristic structure of the present invention is to identify a preferable structure in the implementation of the gas transfer device according to the sixth characteristic structure.
The point is that the volume of the air chamber is changed by striking the elastically displaceable chamber wall forming body in the air chamber.

【0016】〔第8特徴構成〕本発明の第8特徴構成
は、上記第6特徴構成による気体搬送装置の実施におい
て好適な構成を特定するものであり、前記操作手段は、
前記気室における弾性変位可能な室壁形成体に対し衝撃
波を放射して、前記気室の容積を変化させる構成として
ある点にある。
[Eighth Characteristic Configuration] An eighth characteristic structure of the present invention is to specify a preferable structure in the implementation of the gas transfer device according to the sixth characteristic structure.
This is because the shock wave is emitted to the elastically displaceable chamber wall forming body in the air chamber to change the volume of the air chamber.

【0017】〔第9特徴構成〕本発明の第9特徴構成
は、前記第3又は4特徴構成による気体搬送装置の実施
において好適な構成を特定するものであり、前記供給手
段は、前記気室に対し被搬送気体を加圧供給する構成と
し、前記操作手段は、前記供給手段による気体加圧供給
を制御して前記室圧を変化させる構成としてある点にあ
る。
[Ninth Characteristic Configuration] A ninth characteristic configuration of the present invention is to identify a preferable configuration in the implementation of the gas transfer device according to the third or fourth characteristic configuration, wherein the supply means is the air chamber. On the other hand, the transported gas is pressurized and supplied, and the operation means is configured to change the chamber pressure by controlling the pressurized gas supply by the supply means.

【0018】〔第10特徴構成〕本発明の第10特徴構
成は、前記第4特徴構成による気体搬送装置の実施にお
いて好適な構成を特定するものであり、前記供給手段
は、前記気室に対し被搬送気体を加圧供給する構成と
し、前記操作手段、及び、前記制御手段は、前記供給手
段により加圧供給する被搬送気体を作動流体として自励
発振して、その発振により前記気室への気体加圧供給を
繰り返し断続操作する流体素子利用の発振回路で構成し
てある点にある。
[Tenth Characteristic Configuration] A tenth characteristic configuration of the present invention is to identify a preferable configuration in the implementation of the gas transfer device according to the fourth characteristic configuration, wherein the supply means is provided for the air chamber. The carrier gas is pressurized and supplied, and the operating means and the control means self-oscillate as the working gas pressurized and supplied by the supply means as a working fluid, and oscillate into the air chamber. It is composed of an oscillating circuit using a fluid element that repeatedly performs intermittent operation of gas pressure supply.

【0019】[0019]

【作用】[Action]

〔第1特徴構成の作用〕気流についての種々の実験の結
果、環状であって、かつ、その環状の周方向に対し直交
する断面の形態として環状形成気体が断面中心部周りで
渦流状に回転する「渦輪」(一般には、煙草の煙の渦輪
として知られる)については、空間中における進行速度
を大きくしても、環状の輪郭が長時間にわたって明瞭に
保たれ、傾向として、先述の図13に示す如き単純噴流
や図14に示す如き旋回流に比べ、周囲気体の誘引混
合、及び、それによる拡散が少なく、換言すれば、保形
性が高いことが確認された。
[Operation of First Characteristic Configuration] As a result of various experiments on the air flow, the annular forming gas is swirled around the center of the cross section in the form of a cross section that is annular and orthogonal to the circumferential direction of the ring. With respect to the “vortex ring” (generally known as the swirl ring of cigarette smoke), even if the traveling speed in space is increased, the annular contour is clearly maintained for a long time, which tends to occur as shown in FIG. It was confirmed that compared with the simple jet flow as shown in Fig. 14 and the swirling flow as shown in Fig. 14, the induced mixing of the ambient gas and the diffusion due to it were less, in other words, the shape retention was high.

【0020】そして、このように保形性が高いことか
ら、吹き出し空間中の横風によって乱されることも少な
く、また、誘引混合、及び、拡散の問題を伴わずに進行
速度を大きくできることから、大きな進行速度の付与に
より直進性を高くして、横風の影響による進行方向の変
向も少なくし得ることが確認された。
Since the shape retaining property is high as described above, it is less likely to be disturbed by the crosswind in the blowing space, and the advancing speed can be increased without the problems of attracting mixing and diffusion. It was confirmed that the straightness can be enhanced by giving a large traveling speed, and the deflection of the traveling direction due to the influence of cross wind can be reduced.

【0021】すなわち、本発明の第1特徴構成において
は、吹出口から吹き出した被搬送気体を、上記の如き
「渦輪」の状態で目標箇所に向けて空間中を進行させる
ことにより、周囲気体の誘引混合、及び、それによる拡
散が少ない状態で、また、横風に対しても乱れや進行方
向の変向といった影響を受けることの少ない状態で、そ
の被搬送気体を目標箇所へ到達させる。
That is, in the first characteristic configuration of the present invention, the transported gas blown out from the air outlet is advanced in the space toward the target location in the state of the "vortex ring" as described above, thereby The carried gas is allowed to reach the target location in a state where the induced mixing and the diffusion due to the induced mixing are small, and the influence of the turbulence and the change of the traveling direction is less affected by the cross wind.

【0022】〔第2特徴構成の作用〕本発明の第2特徴
構成においては、被搬送気体を温調空気とし、かつ、目
標箇所を被空調箇所として、前記の第1特徴構成による
気体搬送方法を実施することにより、吹出口から吹き出
した温調空気を前記の渦輪の状態で空間中を進行させて
被空調箇所に到らせ、これをもって、その被空調箇所を
空調する。
[Operation of Second Characteristic Configuration] In the second characteristic configuration of the present invention, the gas to be transported is temperature-controlled air, and the target location is an air-conditioned location, and the gas transport method according to the first characteristic construction described above. By performing the above, the temperature-controlled air blown out from the air outlet advances in the space in the state of the vortex ring to reach the air-conditioned location, and the air-conditioned location is air-conditioned.

【0023】すなわち、吹き出した温調空気を前記の渦
輪の状態で空間中を進行させることにより、誘引混合、
及び、それによる拡散が少ない状態で、また、吹き出し
空間における横風に対しても乱れや進行方向の変向とい
った影響を受けることの少ない状態で、その温調空気を
被空調箇所に到達させる。
In other words, the temperature-controlled air blown out is advanced in the space in the state of the vortex ring so as to induce the induced mixing,
Further, the temperature-controlled air is allowed to reach the air-conditioned location in a state in which the temperature-controlled air is diffused in a small amount and is less affected by a turbulence in the blowing space and a change in the traveling direction.

【0024】〔第3特徴構成の作用〕一方、前記の如き
渦輪の形成については(図3参照)、これも種々の実験
の結果、吹出口2を形成した気室3の室圧をパルス的に
陽圧側に変化させると、気室内部の気体Gが突発的に吹
出口2から勢い良く吐出され、その吐出気体Gが前述の
渦輪R、すなわち、環状であって、かつ、その環状の周
方向に対し直交する断面の形態として環状形成気体が断
面中心部周りで渦流状に回転(具体的には環状内側から
吐出先方周りで環状外側に到る方向へ回転)する渦輪R
を形成することが確認された。
[Operation of Third Characteristic Configuration] On the other hand, regarding the formation of the vortex ring as described above (see FIG. 3), as a result of various experiments, the chamber pressure of the air chamber 3 in which the air outlet 2 is formed is pulsed. When the pressure G is changed to the positive pressure side, the gas G in the air chamber is suddenly and vigorously discharged from the air outlet 2, and the discharged gas G has the above-described vortex ring R, that is, the annular shape and the annular circumference. As a cross section orthogonal to the direction, the vortex ring R in which the annular forming gas rotates in a vortex around the center of the cross section (specifically, in the direction from the inner ring to the outer ring around the discharge tip).
Was confirmed to be formed.

【0025】これは、上記気室3の室圧をパルス的に陽
圧側に変化させると、その瞬間、気室内部の気体Gが吹
出口2から勢い良く吐出されるが、室圧の陽圧側への変
化がパルス的なものであって内部気体の吐出が極短時間
で断たれるため、また、推論ではあるが吐出の慣性によ
り吹出口部が吐出直後に陰圧傾向となることが作用し
て、吐出気体Gがその吐出後、前述の渦輪Rを形成する
と考えられる。
This is because when the chamber pressure of the air chamber 3 is changed to the positive pressure side in a pulsed manner, the gas G in the air chamber is expelled from the outlet 2 at that moment, but the positive pressure side of the chamber pressure is reached. Is a pulse-like change, and the discharge of the internal gas is interrupted in an extremely short time.Also, it is speculated that the outlet inertia tends to be negative pressure immediately after the discharge due to the inertia of the discharge. Then, it is considered that the discharge gas G forms the above-mentioned vortex ring R after the discharge.

【0026】そして、このように形成された渦輪Rは、
吐出の際に付与される吐出方向への運動量をもって空間
中を進行することも確認された。
The vortex ring R formed in this way is
It was also confirmed that the particles travel in the space with the momentum in the discharging direction given during discharging.

【0027】すなわち、本発明の第3特徴構成は、上記
の現象を利用して被搬送気体の渦輪を形成するものであ
り、供給手段により被搬送気体を気室に供給し、そし
て、その気室の室圧を操作手段により陽圧側へパルス的
に変化させることで、気室内の被搬送気体を吹出口から
前記の渦輪として空間中へ吐出させ、かつ、その渦輪の
状態で吐出被搬送気体を搬送目標箇所に向け空間中進行
させる。
That is, the third characteristic structure of the present invention is to form the vortex ring of the transported gas by utilizing the above phenomenon, the transported gas is supplied to the air chamber by the supply means, and By changing the chamber pressure of the chamber in a pulsed manner to the positive pressure side by the operating means, the carrier gas in the air chamber is discharged into the space as the above-mentioned vortex ring from the outlet, and is discharged in the state of the vortex ring. Is moved toward the target location in the space.

【0028】〔第4特徴構成の作用〕本発明の第4特徴
構成においては、前記室圧のパルス的変化を所定の時間
間隔で繰り返し行わせることにより、被搬送気体からな
る前記の渦輪を吹出口から空間中へ繰り返し送出する。
[Operation of Fourth Characteristic Configuration] In the fourth characteristic configuration of the present invention, the vortex ring made of the gas to be conveyed is blown by causing the pulse-like change of the chamber pressure to be repeated at predetermined time intervals. It is repeatedly sent from the outlet into the space.

【0029】〔第5特徴構成の作用〕本発明の第5特徴
構成においては、前記室圧の陽圧側へのパルス的変化の
直後、その室圧を陰圧側へパルス的に変化させることに
より、被搬送気体の吐出直後における吹出口部の陰圧傾
向を助長し、これにより、吹出口からの吐出後における
前記渦輪の形成において、その渦流(断面中心部周りで
の渦流状回転)の強度を高くする。
[Operation of Fifth Characteristic Configuration] In the fifth characteristic configuration of the present invention, immediately after the pulse-like change of the chamber pressure to the positive pressure side, the chamber pressure is changed to the negative pressure side in a pulsed manner. The negative pressure tendency of the blowout port immediately after the discharge of the transported gas is promoted, and thus the strength of the vortex (the vortex-like rotation around the center of the cross section) is increased in the formation of the vortex ring after the discharge from the blowout port. Make it higher

【0030】〔第6特徴構成の作用〕本発明の第6特徴
構成においては、気室の容積を瞬間的に縮小させること
により、前記室圧を陽圧側へパルス的に変化させて、気
室内の被搬送気体を吹出口から前記の渦輪として吐出さ
せる。
[Operation of Sixth Characteristic Configuration] In the sixth characteristic configuration of the present invention, by instantaneously reducing the volume of the air chamber, the chamber pressure is pulsedly changed to the positive pressure side, and The carrier gas is discharged from the outlet as the vortex ring.

【0031】なお、この第6特徴構成により前記の第4
特徴構成を実施する場合には、気室の容積を瞬間的に縮
小させることと、その後に気室の容積を拡大復帰させる
こととを繰り返すことにより、前記室圧の陽圧側へのパ
ルス的変化、すなわち、前記渦輪の吐出を繰り返すこと
ができる。
It should be noted that the fourth feature described above is provided by the sixth characteristic configuration.
In the case of implementing the characteristic configuration, by instantaneously reducing the volume of the air chamber and then expanding and restoring the volume of the air chamber, the pulse pressure change of the chamber pressure to the positive pressure side is repeated. That is, the discharge of the vortex ring can be repeated.

【0032】また、この第6特徴構成において前記の第
5特徴構成を実施する場合には、気室の容積を瞬間的に
縮小させた直後に、その気室の容積を瞬間的に拡大させ
ることにより、前記室圧の陽圧側へのパルス的変化の直
後、すなわち、被搬送気体の吐出の直後に、その室圧を
陰圧側へパルス的に変化させることができる。
When the fifth characteristic structure is implemented in the sixth characteristic structure, the volume of the air chamber is instantaneously expanded immediately after the volume of the air chamber is instantaneously reduced. Thus, immediately after the pulse-like change of the chamber pressure to the positive pressure side, that is, immediately after the discharge of the transported gas, the chamber pressure can be changed to the negative pressure side in a pulse-like manner.

【0033】〔第7特徴構成の作用〕本発明の第7特徴
構成においては、弾性変位可能とした室壁形成体を打撃
して、この室壁形成体を室内側へ瞬間的に弾性変位させ
ることで、気室の容積を瞬間的に縮小させ、これによ
り、気室の室圧を陽圧側へパルス的に変化させる。
[Operation of Seventh Characteristic Configuration] In the seventh characteristic configuration of the present invention, the elastically displaceable chamber wall forming body is hit to elastically displace the chamber wall forming body toward the room. As a result, the volume of the air chamber is instantaneously reduced, and thereby the chamber pressure of the air chamber is changed to the positive pressure side in a pulsed manner.

【0034】なお、この第7特徴構成により前記の第4
特徴構成を実施する場合には、打撃を所定の時間間隔で
繰り返すことにより、前記室圧の陽圧側へのパルス的変
化を繰り返すことができる。
It should be noted that, by the seventh characteristic construction, the fourth
In the case of implementing the characteristic configuration, it is possible to repeat the pulse-like change of the room pressure to the positive pressure side by repeating the impact at a predetermined time interval.

【0035】また、この第7特徴構成において前記の第
5特徴構成を実施する場合には、打撃により室壁形成体
を室内側へ瞬間的に弾性変位させるに続いて、その室壁
形成体を弾性により室外側へ自由復帰変位させること
で、前記室圧の陽圧側へのパルス的変化の直後に、その
室圧を陰圧側へパルス的に変化させることができる。
Further, in the case of implementing the fifth characteristic configuration in the seventh characteristic configuration, the chamber wall forming element is momentarily elastically displaced toward the indoor side by striking, and then the chamber wall forming element is moved. By performing free return displacement to the outside of the chamber by elasticity, the chamber pressure can be pulsed to the negative pressure side immediately after the pulsed change of the chamber pressure to the positive pressure side.

【0036】〔第8特徴構成の作用〕本発明の第8特徴
構成による気体搬送装置では、弾性変位可能とした室壁
形成体に対し衝撃波を放射して、その室壁形成体に衝撃
力を付与することにより、この室壁形成体を室内側へ瞬
間的に弾性変位させ、これにより、気室の容積を瞬間的
に縮小させて、気室の室圧を陽圧側へパルス的に変化さ
せる。
[Operation of Eighth Characteristic Configuration] In the gas carrying device according to the eighth characteristic structure of the present invention, a shock wave is radiated to the elastically displaceable chamber wall forming body, and an impact force is applied to the chamber wall forming body. By applying this, the chamber wall forming body is momentarily elastically displaced to the indoor side, thereby instantaneously reducing the volume of the air chamber and changing the chamber pressure of the air chamber to the positive pressure side in a pulsed manner. .

【0037】なお、この第8特徴構成により前記の第4
特徴構成を実施する場合には、衝撃波放射を所定の時間
間隔で繰り返すことにより、前記室圧の陽圧側へのパル
ス的変化を繰り返すことができる。
It should be noted that, by the eighth characteristic construction, the fourth
In the case of implementing the characteristic configuration, it is possible to repeat the pulse-like change of the chamber pressure to the positive pressure side by repeating the shock wave radiation at a predetermined time interval.

【0038】また、この第8特徴構成において前記の第
5特徴構成を実施する場合には、衝撃波放射により室壁
形成体を室内側へ瞬間的に弾性変位させるに続いて、そ
の室壁形成体を弾性により室外側へ自由復帰変位させる
ことで、前記室圧の陽圧側へのパルス的変化の直後に、
その室圧を陰圧側へパルス的に変化させることができ
る。
Further, in the case of implementing the fifth characteristic configuration in the eighth characteristic configuration, the chamber wall forming element is momentarily elastically displaced toward the indoor side by shock wave radiation, and then the chamber wall forming element is displaced. By freely displacing to the outside of the room by elasticity, immediately after the pulse-like change of the room pressure to the positive pressure side,
The chamber pressure can be changed in a pulsed manner to the negative pressure side.

【0039】〔第9特徴構成の作用〕本発明の第9特徴
構成においては、気室に対する被搬送気体の加圧供給を
急激に開始する、ないし、その加圧供給量を急激に増大
させることにより、気室に対する被搬送気体の供給に伴
い、その気室の室圧を陽圧側へパルス的に変化させ、こ
れにより、気室内の被搬送気体を吹出口から前記の渦輪
として吐出させる。
[Operation of Ninth Characteristic Configuration] In the ninth characteristic configuration of the present invention, the pressurized supply of the transported gas to the air chamber is suddenly started or the pressurized supply amount thereof is rapidly increased. Thus, the supply pressure of the gas to be transported to the air chamber causes the chamber pressure of the air chamber to be changed to the positive pressure in a pulsed manner, whereby the gas to be transported in the air chamber is discharged from the outlet as the vortex ring.

【0040】なお、この第9特徴構成により前記の第4
特徴構成を実施する場合には、加圧供給の急激な開始と
停止を繰り返す、ないし、加圧供給量の急激な増大と減
少を繰り返すことにより、室圧の陽圧側へのパルス的変
化、すなわち、前記渦輪の吐出を繰り返すことができ
る。
It should be noted that, by the ninth characteristic construction, the fourth
In the case of implementing the characteristic configuration, the rapid start and stop of the pressurized supply are repeated, or the abrupt increase and decrease of the pressurized supply are repeated, so that the pulse pressure change of the room pressure to the positive pressure side, that is, The discharge of the vortex ring can be repeated.

【0041】〔第10特徴構成の作用〕本発明の第10
特徴構成においては、気室への供給対象である被搬送気
体を作動流体として流体素子利用の発振回路を自励発振
させ、この自励発振により気室への気体加圧供給を繰り
返し断続する気体供給制御を行わせる。
[Operation of Tenth Characteristic Configuration] The tenth aspect of the present invention
In the characteristic configuration, the oscillation circuit using the fluid element is caused to self-oscillate by using the carrier gas to be supplied to the air chamber as the working fluid, and the gas that intermittently repeatedly pressurizes and supplies the gas to the air chamber by this self-excited oscillation. Control the supply.

【0042】そして、この繰り返しの断続における加圧
供給の開始ごとに、その加圧供給の開始により、気室に
対する被搬送気体の供給に伴い、その気室の室圧を陽圧
側へパルス的に変化させ、これにより、気室内の被搬送
気体を吹出口から前記の渦輪として繰り返し吐出させ
る。
Every time the pressurization supply is started in this repeated interruption, the pressurization supply is started so that the chamber pressure of the air chamber is pulsed to the positive pressure side as the carrier gas is supplied to the air chamber. This is changed, and thereby, the transported gas in the air chamber is repeatedly discharged from the outlet as the vortex ring.

【0043】[0043]

【発明の効果】【The invention's effect】

〔第1特徴構成の効果〕本発明の第1特徴構成による気
体搬送方法では、吹き出し空間における周囲気体の誘引
混合、及び、それによる拡散が少ないことにより、ま
た、吹き出し空間中の横風に対しても乱れや進行方向の
変向といった影響を受けることが少ないことにより、先
述の図13に示す単純噴流による搬送や図14に示す旋
回流による搬送に比べ、吹き出し時点における被搬送気
体の特質・性状を良く保った状態で、その被搬送気体を
より的確に目標箇所に到達させることができる。
[Effect of First Characteristic Configuration] In the gas transfer method according to the first characteristic configuration of the present invention, the induced mixing of the ambient gas in the blowing space and the resulting diffusion are small, and the crosswind in the blowing space is also reduced. Since it is less likely to be affected by turbulence and change in direction of travel, the characteristics and properties of the gas to be transported at the time of blowing are compared to the transport by the simple jet shown in FIG. 13 or the swirl flow shown in FIG. With the above condition being maintained well, the transported gas can reach the target location more accurately.

【0044】そして、一例として、吹き出しによる気体
搬送で特殊気体を所定箇所に送給する場合等では、単純
噴流や旋回流による従来の搬送で生じていた問題、すな
わち、周囲気体の誘引混合のため、所定箇所で受ける特
殊気体の濃度が所望値よりも低くなるといったこと、ま
た、誘引混合による拡散や横風の影響による乱れ・変向
のため、周囲に特殊気体による悪影響を与える、あるい
は、特殊気体の逸散ロスが多くて歩留りが悪くなるとい
ったことを効果的に抑止し得る。
As an example, in the case where a special gas is delivered to a predetermined location by gas delivery by blowing, there is a problem that has occurred in the conventional delivery by a simple jet flow or a swirling flow, that is, because of the attractive mixing of ambient gas. , The concentration of the special gas received at a predetermined location becomes lower than the desired value, and because of the turbulence and diversion due to the diffusion due to the induced mixing and the influence of the cross wind, the special gas adversely affects the surroundings, or the special gas It is possible to effectively prevent that the yield loss is deteriorated due to a large amount of dissipation loss.

【0045】〔第2特徴構成の効果〕本発明の第2特徴
構成による気体搬送方法では、誘引混合、及び、それに
よる拡散で吹き出し温調空気の温度が周囲温度と平均化
される混合熱損失を効果的に防止でき、また、横風の影
響による温調空気の逸散も効果的に防止でき、これらの
ことから、冷暖房効果を高く確保し得るとともに、消費
エネルギの節減が可能となる。
[Effects of Second Characteristic Configuration] In the gas conveying method according to the second characteristic configuration of the present invention, the heat loss of mixing in which the temperature of the blown temperature-controlled air is averaged with the ambient temperature by the induced mixing and the diffusion caused thereby. Can be effectively prevented, and the temperature-controlled air can be effectively prevented from being dissipated due to the influence of cross wind. Therefore, it is possible to secure a high cooling and heating effect and save energy consumption.

【0046】〔第3特徴構成の効果〕本発明の第3特徴
構成による気体搬送装置では、被搬送気体を確実に前記
の渦輪の状態にして空間中へ送出でき、これにより、前
述の第1又は2特徴構成による気体搬送方法を的確に実
施して、これら気体搬送方法の効果を確実に得ることが
できる。
[Effects of Third Characteristic Configuration] In the gas carrier device according to the third characterizing structure of the present invention, the carrier gas can be reliably sent into the space in the state of the vortex ring. Alternatively, it is possible to accurately carry out the gas transporting method according to the two characteristic configurations and to reliably obtain the effects of these gas transporting methods.

【0047】〔第4特徴構成の効果〕本発明の第4特徴
構成による気体搬送装置では、搬送の目標箇所に対し渦
輪を所定時間間隔で次々に到達させて、その目標箇所に
対し被搬送気体を継続的に送給できる。
[Effect of Fourth Characteristic Configuration] In the gas conveying device according to the fourth characteristic structure of the present invention, the vortex ring is made to sequentially reach the target position of the transfer at a predetermined time interval, and the target gas is transferred to the target gas position. Can be sent continuously.

【0048】なお、上記の所定時間間隔をどのように決
定するかは任意であるが、この時間間隔の変更により、
被搬送気体の単位時間当たり搬送量を変更することも可
能である。
It should be noted that how to determine the above-mentioned predetermined time interval is arbitrary, but by changing this time interval,
It is also possible to change the transport amount of the transported gas per unit time.

【0049】〔第5特徴構成の効果〕本発明の第5特徴
構成による気体搬送装置では、前記渦輪の形成において
渦流の強度を高くし得ることで、その渦輪の保形性を高
めることができ、これにより、誘引混合、及び、それに
よる拡散を一層少なくして、また、横風の影響を一層受
け難いものとして、目標箇所への渦輪の到達性を一層高
めることができる。
[Effect of Fifth Characteristic Configuration] In the gas transfer device according to the fifth characteristic configuration of the present invention, since the strength of the vortex flow can be increased in forming the vortex ring, the shape retention of the vortex ring can be enhanced. As a result, it is possible to further reduce the amount of the induced mixing and the diffusion thereof, and to further reduce the influence of the crosswind, thereby further improving the reachability of the vortex ring to the target location.

【0050】〔第6特徴構成の効果〕本発明の第6特徴
構成による気体搬送装置では、気室そのものの容積を変
化させて気室の室圧を変化させるから、他部での発生圧
力を気室内に導いて気室の室圧を変化させる形態に比
べ、圧力の伝播遅れや導圧過程での圧損の影響を受ける
ことなく、気室の室圧を応答性良くかつ精度良くパルス
的に変化させることができ、これにより、所望の形態の
前記渦輪を正確かつ安定的に形成することができる。
[Effect of Sixth Characteristic Configuration] In the gas transfer device according to the sixth characteristic configuration of the present invention, since the volume of the air chamber itself is changed to change the chamber pressure of the air chamber, the pressure generated in other parts is changed. Compared with the form in which the chamber pressure of the air chamber is changed by introducing it into the air chamber, the chamber pressure of the air chamber is pulsed with good response and accuracy without being affected by pressure propagation delay or pressure loss in the pressure guiding process. The vortex ring of a desired shape can be accurately and stably formed.

【0051】〔第7特徴構成の効果〕本発明の第7特徴
構成による気体搬送装置では、室圧をパルス的に変化さ
せるについて、室壁形成体の打撃という簡便な手法を用
いることから、装置構成を簡略なものとすることができ
る。
[Effect of Seventh Characteristic Configuration] In the gas transfer apparatus according to the seventh characteristic configuration of the present invention, since the simple method of striking the chamber wall forming body is used for changing the chamber pressure in a pulsed manner, The structure can be simplified.

【0052】〔第8特徴構成の効果〕本発明の第8特徴
構成による気体搬送装置では、室壁形成体に対する機械
的接触を伴わずに、その室壁形成体を弾性変位させるか
ら、室壁形成体を瞬間的に弾性変位させて室圧をパルス
的に変化させるにあたり、機械的接触による装置劣化を
回避した形態として高い装置耐久性を得ることができ
る。
[Effect of Eighth Characteristic Configuration] In the gas transfer device according to the eighth characteristic structure of the present invention, since the chamber wall forming body is elastically displaced without mechanical contact with the chamber wall forming body, When the formed body is momentarily elastically displaced to change the chamber pressure in a pulsed manner, high device durability can be obtained as a form in which device deterioration due to mechanical contact is avoided.

【0053】〔第9特徴構成の効果〕本発明の第9特徴
構成による気体搬送装置では、気室に対する被搬送気体
の供給を利用して気室の室圧をパルス的に変化させるか
ら、室圧を変化させるための圧力源とする専用手段を別
途に設けるに比べ、装置構成を簡略にすることができ
る。
[Effect of Ninth Characteristic Configuration] In the gas transfer device according to the ninth characterizing structure of the present invention, the supply of the gas to be transferred to the air chamber is used to change the chamber pressure of the air chamber in a pulsed manner. The device configuration can be simplified as compared with the case where a dedicated means as a pressure source for changing the pressure is separately provided.

【0054】〔第10特徴構成の効果〕本発明の第10
特徴構成による気体搬送装置では、前記の第9特徴構成
と同様、気室に対する被搬送気体の供給を利用して気室
の室圧をパルス的に変化させるから、また、気室への供
給対象である被搬送気体を作動流体に利用した発振回路
により、室圧のパルス的変化を繰り返す制御を行うか
ら、室圧を変化させるための圧力源とする専用手段を別
途に設けたり、また、室圧のパルス的変化を繰り返す制
御を、マイコン等の電子回路や電気回路、あるいは、被
搬送気体とは異なる専用流体を作動流体とする流体回路
を用いて行うに比べ、装置構成を簡略にすることができ
る。
[Effect of Tenth Characteristic Configuration] The tenth aspect of the present invention
In the gas transfer device according to the characteristic configuration, as in the case of the ninth characteristic configuration, the supply of the gas to be transferred to the air chamber is used to change the chamber pressure of the air chamber in a pulsed manner. An oscillating circuit that uses the gas to be transported as the working fluid controls the pulse pressure of the chamber pressure repeatedly.Therefore, a dedicated means for providing a pressure source for changing the chamber pressure may be provided separately, or Simplify the device configuration compared to performing control that repeats pulse pressure changes using an electronic circuit or electric circuit such as a microcomputer or a fluid circuit that uses a dedicated fluid different from the carrier gas as the working fluid. You can

【0055】[0055]

【実施例】【Example】

〔第1実施例〕図1は、吹き出し装置1における吹出口
2から被搬送気体Gを目標箇所Mに向けて空間Oへ吹き
出すことにより、その被搬送気体Gを目標箇所Mに到達
させる気体搬送を示し、吹出口2から吹き出した被搬送
気体Gは渦輪Rの状態で空間O中を進行させて目標箇所
Mに到達させる。
[First Embodiment] FIG. 1 is a gas carrier for causing the transported gas G to reach the target location M by blowing the transported gas G toward the target location M from the outlet 2 of the blowing device 1. The transported gas G blown out from the outlet 2 advances in the space O in the state of the vortex ring R and reaches the target point M.

【0056】また、吹出口2からは上記の渦輪Rを所定
の時間間隔で繰り返し送出し、これにより、目標箇所M
に対し渦輪Rを次々に到達させて被搬送気体Gを継続的
に送給する。
Further, the vortex ring R is repeatedly sent out from the outlet 2 at a predetermined time interval, whereby the target point M
On the other hand, the vortex ring R is made to reach one after another and the transported gas G is continuously fed.

【0057】渦輪Rは図2に示す如く、環状であって、
かつ、その環状の周方向に対し直交する断面の形態とし
て、環状形成気体(すなわち、吐出した被搬送気体G)
が断面中心部周りで渦流状に回転するものであり、その
回転向きは環状形状の内側から吐出先方周り(すなわ
ち、目標箇所M側周り)で環状形状の外側に到り、続い
て、環状形状の外側から吐出先方とは反対側周り(すな
わち、吹出口2側周り)で環状形状の内側に戻る方向で
ある。
The vortex ring R is annular as shown in FIG.
In addition, as a form of a cross section orthogonal to the annular circumferential direction, an annular forming gas (that is, the discharged carried gas G)
Rotates in a vortex shape around the center of the cross section, and the direction of rotation is from the inside of the annular shape to the outside of the annular shape around the discharge tip (that is, around the target point M side), and then to the annular shape. From the outside to the inside of the annular shape around the side opposite to the discharge destination (that is, around the outlet 2 side).

【0058】空間O中における渦輪Rの進行は、吹出口
2からの吐出の際に付与される吐出方向への運動量をも
って行われ、渦輪Rは環状形状の中心軸芯が目標箇所M
に向く姿勢をほぼ保った状態で空間O中を進行する。
The movement of the vortex ring R in the space O is carried out with a momentum in the discharge direction given when the vortex ring R is discharged from the outlet 2, and the vortex ring R has an annular center axis centered at the target point M.
It advances in the space O in a state in which it keeps a posture facing toward.

【0059】渦輪Rの吐出形成については(図3参
照)、上記の吹き出し装置1において、吹出口2を形成
した気室3に対し供給手段Sとしての気体供給路4から
被搬送気体Gを供給し、そして、適当な操作手段により
気室3の室圧を陽圧側へパルス的に変化させることで、
気室3内の被搬送気体Gを吹出口2から空間O中へ突発
的に吐出させて渦輪Rを形成し、これを所定の時間間隔
で繰り返すことにより渦輪Rを繰り返し送出する。
Regarding the discharge formation of the vortex ring R (see FIG. 3), in the blowing device 1, the carrier gas G is supplied from the gas supply passage 4 as the supply means S to the air chamber 3 in which the outlet 2 is formed. Then, by changing the chamber pressure of the air chamber 3 in a pulsed manner to the positive pressure side by an appropriate operating means,
The conveyed gas G in the air chamber 3 is suddenly discharged from the outlet 2 into the space O to form a vortex ring R, and the vortex ring R is repeatedly delivered by repeating this at predetermined time intervals.

【0060】すなわち、気室3の室圧をパルス的に陽圧
側に変化させると、その瞬間、気室3内の被搬送気体G
が図3(イ)に示す如く吹出口2から勢い良く吐出され
るが、室圧の陽圧側への変化がパルス的なものであって
吐出が極短時間で断たれるため、また、吐出直後、図3
の(ロ)において破線の矢印で示す如き逆回転の渦流が
吹出口2の近傍で形成されるといったことに現れるよう
に、吐出の慣性により吹出口部が吐出直後に陰圧傾向と
なることが作用して、前記の渦輪Rが図3の(イ)〜
(ハ)に示す過程で吐出気体Gにより形成される。
That is, when the chamber pressure of the air chamber 3 is changed in a pulsed manner to the positive pressure side, at that moment, the transported gas G in the air chamber 3 is generated.
Is vigorously discharged from the outlet 2 as shown in FIG. 3 (a), but the change in the room pressure to the positive pressure side is pulse-like and the discharge is interrupted in an extremely short time. Immediately after,
In (b), as indicated by the fact that a counter-rotating eddy current is formed in the vicinity of the outlet 2 as indicated by the dashed arrow, the outlet inertia portion may have a negative pressure tendency immediately after the outlet due to the inertia of the outlet. In operation, the vortex ring R is operated as shown in FIG.
It is formed by the discharge gas G in the process shown in (c).

【0061】気室3の室圧を陽圧側へパルス的に変化さ
せる上記の操作手段としては、気室3の容積を瞬間的に
縮小させる形態、あるいは、適当な圧力源による発生圧
力を導圧路を介して気室3に対し急激に印加する形態の
ものなどを採用でき、そして、気室3の容積を瞬間的に
縮小させる形態では、その気室容積の瞬間的縮小と気室
容積の拡大復帰とを繰り返すことにより、また、導圧路
を介して圧力を急激に印加する形態では、その急激印加
と印加停止とを繰り返すことにより、渦輪Rの吐出を繰
り返すことができる。
As the above-mentioned operating means for changing the chamber pressure of the air chamber 3 to the positive pressure side in a pulsed manner, the volume of the air chamber 3 is instantaneously reduced, or the pressure generated by an appropriate pressure source is introduced. In the form in which a rapid application to the air chamber 3 via the passage is possible, and in the form in which the volume of the air chamber 3 is instantaneously reduced, the instantaneous reduction of the air chamber volume and the air chamber volume It is possible to repeat the discharge of the vortex ring R by repeating the expansion and return, or in the mode in which the pressure is rapidly applied through the pressure guiding path, by repeating the rapid application and the stop of the application.

【0062】図4は上記の渦輪による気体搬送を適用し
たスポットクーリングを示し、冷却した空気を前記の被
搬送気体Gとし、かつ、在人箇所である被冷房箇所を前
記の目標箇所Mとして、吹き出し装置1の吹出口2から
冷却空気Gを渦輪Rの状態で在人箇所Mへ向けて繰り返
し送出することにより、到達渦輪Rをもって在人域Mを
局所的に冷房する。
FIG. 4 shows spot cooling to which the above-mentioned gas transportation by the vortex ring is applied, in which cooled air is the above-mentioned gas to be transported G, and a location to be cooled which is a manned location is the above-mentioned target location M. By repeatedly sending the cooling air G from the outlet 2 of the blowing device 1 toward the manned place M in the state of the vortex ring R, the reaching vortex ring R locally cools the manned area M.

【0063】なお、このスポットクーリングにおいて人
員の移動(すなわち、目標箇所Mである在人箇所の移
動)を適当な検出手段により検出し、そして、図4に破
線で示す如く、この検出情報に基づき、吹き出し装置1
からの渦輪Rの吐出向きを在人箇所の移動にかかわらず
常に在人箇所向きとするように、吹き出し装置1の吐出
向きを自動変更する構成を採用してもよい。
In this spot cooling, the movement of the personnel (that is, the movement of the manned portion which is the target portion M) is detected by an appropriate detecting means, and based on this detection information as shown by the broken line in FIG. , Blowing device 1
A configuration may be adopted in which the discharge direction of the blowing device 1 is automatically changed so that the discharge direction of the vortex ring R is always the direction of the manned location regardless of the movement of the manned location.

【0064】図5は劇場や屋内競技場等の大空間施設に
おける暖房に前記の渦輪による気体搬送を適用した例を
示し、複数の吹き出し装置1を大空間施設における高所
の天井部に配置し、そして、加熱した空気を被搬送気体
Gとし、かつ、被暖房箇所である床上の所定箇所を目標
箇所Mとして、各々の吹き出し装置1の吹出口2から加
熱空気Gを渦輪Rの状態で床上の各々の所定箇所Mへ向
けて繰り返し送出し、これにより、加熱空気の浮力に抗
し所定箇所Mに到達する渦輪Rをもって床上の各々の所
定箇所Mを暖房する。
FIG. 5 shows an example in which the gas transfer by the above-mentioned vortex ring is applied to heating in a large space facility such as a theater or an indoor stadium, and a plurality of blowing devices 1 are arranged on the ceiling of a high place in the large space facility. Then, the heated air is used as the carrier gas G, and the predetermined location on the floor that is the heated location is used as the target location M, and the heated air G is blown from the outlets 2 of each blowing device 1 in the state of the vortex ring R on the floor. Are repeatedly sent to the respective predetermined points M of the above, and thereby the respective predetermined points M on the floor are heated by the vortex ring R which reaches the predetermined points M against the buoyancy of the heated air.

【0065】なお、この大空間施設における暖房では、
各吹き出し装置1の渦輪吐出状態(例えば、渦輪吐出の
時間間隔、渦輪の吐出速度、あるいは、渦輪一つ当たり
の加熱空気量など)を個別に調整することで、被暖房箇
所である各所定箇所Mの暖房状態を適宜に個別調整する
形態を採用してもよい。
In the heating of this large space facility,
By individually adjusting the vortex ring discharge state of each blowing device 1 (for example, the time interval of vortex ring discharge, the discharge speed of the vortex ring, or the amount of heated air per vortex ring), each predetermined location that is a heated location You may employ | adopt the form which adjusts the heating state of M suitably.

【0066】〔第2実施例〕図6は前述の渦輪による気
体搬送を実施する気体搬送装置の具体的一例を示し、5
は気室3を形成する箱体、2は箱体5における一室壁に
形成した円筒状の吹出口、4は気室3に被搬送気体Gを
供給する供給手段Sとしての気体供給路である。
[Second Embodiment] FIG. 6 shows a concrete example of a gas transfer device for carrying out gas transfer by means of the aforementioned vortex ring.
Is a box forming the air chamber 3, 2 is a cylindrical air outlet formed in one chamber wall of the box 5, and 4 is a gas supply path as a supply means S for supplying the transported gas G to the air chamber 3. is there.

【0067】気室3の室圧を陽圧側へパルス的に変化さ
せる前述の操作手段Tとしては、箱体5において吹出口
2の形成壁とは対向する室壁の全部又は一部をゴム膜等
の弾性膜体6で形成し、そして、その弾性膜体6を気室
3の外側から打撃する打撃装置7を設けた構成としてあ
る。
As the above-mentioned operating means T for changing the chamber pressure of the air chamber 3 to the positive pressure side in a pulsed manner, all or part of the chamber wall of the box body 5 facing the wall forming the outlet 2 is a rubber film. And the like, and a striking device 7 for striking the elastic film body 6 from the outside of the air chamber 3 is provided.

【0068】つまり、弾性変位可能な室壁形成体である
上記弾性膜体6を打撃装置7により打撃することで、そ
の弾性膜体6を気室3の内側へ瞬間的に弾性変位させ
て、気室3の容積を瞬間的に縮小させ、これにより、気
室3の室圧を陽圧側へパルス的に変化させて、気室内部
の被搬送気体Gを前記の渦輪Rとして吹出口2から吐出
させる。
That is, by hitting the elastic film body 6 which is an elastically displaceable chamber wall forming body with the striking device 7, the elastic film body 6 is elastically displaced to the inside of the air chamber 3 instantaneously. The volume of the air chamber 3 is instantaneously reduced, whereby the chamber pressure of the air chamber 3 is changed in a pulsed manner to the positive pressure side, and the transported gas G in the air chamber is used as the vortex ring R from the outlet 2. Discharge.

【0069】また、打撃に続いて弾性膜体6を気室3の
外側へ自由復帰変位させることにより、室圧の陽圧側へ
のパルス的変化の直後に、気室3の容積を瞬間的に拡大
復帰させて気室3の室圧を陰圧側へパルス的に変化さ
せ、これにより、前述の図3(ロ)において破線の矢印
で示した如き吐出直後における吹出口部の陰圧傾向を助
長して、渦流強度の高い渦輪Rを形成する。
Further, the elastic membrane body 6 is freely returned and displaced to the outside of the air chamber 3 following the impact, so that the volume of the air chamber 3 is instantaneously changed immediately after the pulse-like change of the room pressure to the positive pressure side. By expanding and returning to change the chamber pressure of the air chamber 3 to the negative pressure side in a pulsed manner, this promotes the negative pressure tendency of the air outlet immediately after the discharge as shown by the broken line arrow in FIG. Then, the vortex ring R having a high vortex strength is formed.

【0070】なお、打撃装置7による打撃は、被搬送気
体Gを気室3内に所定濃度まで充満させた状態で行う
が、気体供給路4からの気体供給とともに打撃を繰り返
して渦輪吐出を繰り返す場合、気体供給路4から気室3
へは被搬送気体Gを連続供給する形態、あるいは、打撃
の繰り返しタイミングと同期させて気体供給と気体供給
停止とを繰り返す形態のいずれを採用してもよい。
The striking by the striking device 7 is performed in a state where the gas to be transported G is filled up to a predetermined concentration in the gas chamber 3, but the striking is repeated by supplying the gas from the gas supply passage 4 and the vortex ring discharge is repeated. In this case, the gas supply path 4 to the air chamber 3
Either a form in which the transported gas G is continuously supplied or a form in which gas supply and gas supply stop are repeated in synchronization with the repetition timing of the impact may be adopted.

【0071】〔第3実施例〕図7は渦輪による気体搬送
を実施する気体搬送装置の他の具体的一例を示し、気室
3の室圧を陽圧側へパルス的に変化させる前述の操作手
段Tとしては、箱体5において吹出口2の形成壁とは対
向する室壁の全部又は一部をゴム膜等の弾性膜体6で形
成し、そして、その弾性膜体6に対し気室3の外側から
衝撃音波を放射するスピーカ8を設けた構成としてあ
る。
[Third Embodiment] FIG. 7 shows another specific example of a gas transfer device for carrying out gas transfer by means of a vortex ring. The above-mentioned operating means for changing the chamber pressure of the air chamber 3 to the positive pressure side in a pulsed manner. As T, all or part of the chamber wall of the box body 5 facing the wall forming the outlet 2 is formed of an elastic film body 6 such as a rubber film, and the air chamber 3 is formed against the elastic film body 6. The speaker 8 which radiates an impact sound wave from the outside is provided.

【0072】つまり、弾性変位可能な室壁形成体である
弾性膜体6に対しスピーカ8により衝撃音波を放射する
ことで、その弾性膜体6を気室3の内側へ瞬間的に弾性
変位させて、気室3の容積を瞬間的に縮小させ、これに
より、気室3の室圧を陽圧側へパルス的に変化させて、
気室内部の被搬送気体Gを前記の渦輪Rとして吹出口2
から吐出させる。
That is, the speaker 8 emits an impact sound wave to the elastic film body 6 which is an elastically displaceable chamber wall forming body, thereby instantaneously elastically displacing the elastic film body 6 inside the air chamber 3. Then, the volume of the air chamber 3 is instantaneously reduced, whereby the chamber pressure of the air chamber 3 is changed in a pulsed manner to the positive pressure side,
The transferred gas G in the air chamber is used as the vortex ring R and the outlet 2
Discharge from.

【0073】また、前述の第2実施例と同様、衝撃音波
の放射に続いて弾性膜体6を気室3の外側へ自由復帰変
位させることにより、室圧の陽圧側へのパルス的変化の
直後に、気室3の容積を瞬間的に拡大復帰させて気室3
の室圧を陰圧側へパルス的に変化させ、これにより、吐
出直後における吹出口部の陰圧傾向を助長して渦流強度
の高い渦輪Rを形成する。
Further, similarly to the above-mentioned second embodiment, the elastic film body 6 is freely returned to the outside of the air chamber 3 following the emission of the impact sound wave, whereby the pulse pressure change of the room pressure to the positive pressure side is performed. Immediately after that, the volume of the air chamber 3 is momentarily expanded and restored to restore the air chamber 3.
The chamber pressure is changed to the negative pressure side in a pulsed manner, thereby facilitating the negative pressure tendency of the air outlet immediately after the discharge to form the vortex ring R having high vortex strength.

【0074】図中9は、スピーカ8から衝撃音波を所定
の時間間隔で繰り返し放射させるスピーカ制御回路であ
り、このスピーカ制御回路9は、気室3の室圧を所定の
時間間隔で繰り返し陽圧側へパルス的に変化させて、吹
出口2から渦輪Rを繰り返し吐出させる制御手段Cを構
成するものである。
In the figure, 9 is a speaker control circuit for repeatedly emitting impact sound waves from the speaker 8 at predetermined time intervals. The speaker control circuit 9 repeats the chamber pressure of the air chamber 3 at predetermined time intervals to the positive pressure side. The control means C is configured to repeatedly discharge the vortex ring R from the air outlet 2 by changing the pulse shape to.

【0075】なお、気体供給路4からの気体供給ととも
に衝撃音波の放射を繰り返して渦輪吐出を繰り返す場
合、前述の第2実施例と同様、気体供給路4から気室3
へは被搬送気体Gを連続供給する形態、あるいは、衝撃
音波放射の繰り返しタイミングと同期させて気体供給と
気体供給停止とを繰り返す形態のいずれを採用してもよ
い。
When gas is supplied from the gas supply path 4 and vortex ring discharge is repeated by repeating the emission of impact sound waves, the gas supply path 4 to the air chamber 3 is repeated as in the second embodiment.
Either of the form in which the transported gas G is continuously supplied or the form in which the gas supply and the gas supply stop are repeated in synchronization with the repetition timing of the impact sound wave radiation may be adopted.

【0076】〔第4実施例〕図8は上述の第2実施例、
及び、第3実施例の変形例を示し、第2実施例、及び、
第3実施例では、ゴム膜等の弾性膜体6を打撃する、あ
るいは、その弾性膜体6に対し衝撃音波を放射する形態
を示したが、これに代え、気室3の形成においては剛性
の室壁形成体6’を弾性部材10を介して弾性変位自在
に支持装備してあり、この剛性の室壁形成体6’を打撃
することにより、あるいは、この剛性の室壁形成体6’
に衝撃波(音波以外の流体波であってもよい)を放射す
ることにより、その剛性の室壁形成体6’を気室3の内
側へ瞬間的に弾性変位させて、気室3の室圧をパルス的
に陽圧側に変化させるものである。
[Fourth Embodiment] FIG. 8 shows the above-described second embodiment.
And a modified example of the third embodiment, the second embodiment, and
In the third embodiment, the elastic film body 6 such as a rubber film is struck or an impact sound wave is emitted to the elastic film body 6. However, instead of this, rigidity is formed in forming the air chamber 3. The chamber wall forming body 6'of No. 1 is movably supported by an elastic member 10 so as to be elastically displaceable. By hitting the rigid chamber wall forming body 6'or by the rigid chamber wall forming body 6 '.
By radiating a shock wave (which may be a fluid wave other than a sound wave) to the inside, the rigid chamber wall forming body 6 ′ is momentarily elastically displaced to the inside of the air chamber 3, and the chamber pressure of the air chamber 3 is increased. The pulse is changed to the positive pressure side.

【0077】〔第5実施例〕図9は渦輪による気体搬送
を実施する気体搬送装置の他の具体的一例を示し、気室
3の室圧を陽圧側へパルス的に変化させる前述の操作手
段Tとしては、気室の形成において、その一室壁をスピ
ーカ8’のコーン8aで形成してある。
[Fifth Embodiment] FIG. 9 shows another specific example of a gas transfer device for carrying out gas transfer by means of a vortex ring. The above-mentioned operating means for changing the chamber pressure of the air chamber 3 to the positive pressure side in a pulsed manner. As for T, in forming the air chamber, one chamber wall is formed by the cone 8a of the speaker 8 '.

【0078】つまり、このスピーカ8’に衝撃電流を通
電して、弾性変位可能な室壁形成体であるコーン8aを
気室3の内側へ瞬間的に弾性変位させることで、気室3
の室圧を陽圧側へパルス的に変化させ、これにより、気
室内部の被搬送気体Gを前記の渦輪Rとして吹出口2か
ら吐出させる。
In other words, a shock current is applied to the speaker 8 ', and the cone 8a, which is a chamber wall forming body capable of elastic displacement, is momentarily elastically displaced to the inside of the chamber 3 to generate the chamber 3'.
The chamber pressure is changed to a positive pressure side in a pulsed manner, whereby the transported gas G in the air chamber is discharged from the outlet 2 as the vortex ring R.

【0079】図中9’は、スピーカ8’に対し衝撃電流
を所定の時間間隔で繰り返し通電するスピーカ制御回路
であり、前述の第3実施例におけるスピーカ制御回路9
と同様、気室3の室圧を所定の時間間隔で繰り返し陽圧
側へパルス的に変化させて、吹出口2から渦輪Rを繰り
返し吐出させる制御手段Cを構成する。
Reference numeral 9'in the figure is a speaker control circuit for repeatedly applying an impact current to the speaker 8'at a predetermined time interval. The speaker control circuit 9 in the third embodiment described above.
Similarly to the above, the control means C is configured to repeatedly change the chamber pressure of the air chamber 3 in a pulsed manner to the positive pressure side at predetermined time intervals and repeatedly discharge the vortex ring R from the outlet 2.

【0080】〔第6実施例〕図10は渦輪による気体搬
送を実施する気体搬送装置のさらに他の具体的一例を示
し、気室3に被搬送気体Gを供給する供給手段Sとし
て、被搬送気体Gを所定の圧力で気体供給路4を介して
気室3に加圧供給するファンやコンプレッサ等の加圧送
給装置11を設けてある。
[Sixth Embodiment] FIG. 10 shows still another specific example of the gas transfer device for carrying out the gas transfer by the vortex ring. As the supply means S for supplying the transfer target gas G to the gas chamber 3, the transfer target S is supplied. A pressure feeding device 11 such as a fan or a compressor for supplying the gas G at a predetermined pressure to the air chamber 3 via the gas supply path 4 is provided.

【0081】そして、気室3の室圧を陽圧側へパルス的
に変化させる操作手段T、及び、そのパルス的室圧変化
を所定の時間間隔で繰り返し行わせる制御手段Cとし
て、流体素子利用の発振回路12を気体供給路4に装備
してある。
A fluid element is used as the operation means T for changing the chamber pressure of the air chamber 3 to the positive pressure side in a pulsed manner and the control means C for repeatedly performing the pulsed change of the chamber pressure at a predetermined time interval. The oscillation circuit 12 is installed in the gas supply path 4.

【0082】上記の発振回路12は、加圧送給装置11
により加圧供給する被搬送気体Gそのものを作動流体と
して自励発振し、その発振により気室3への気体加圧供
給を所定の時間間隔で繰り返し断続するものであり、こ
の繰り返しの断続における加圧供給の開始ごとに、その
加圧供給の開始により、気室3に対する被搬送気体Gの
供給に伴い、気室3の室圧を陽圧側へパルス的に変化さ
せ、これにより、被搬送気体Gを吹出口2から前記の渦
輪Rとして所定の時間間隔で繰り返し吐出させる。
The oscillation circuit 12 is composed of the pressure feeding device 11
The self-excited oscillation is performed by using the transported gas G that is pressurized and supplied as a working fluid, and the oscillation of the pressurized gas supply to the air chamber 3 is repeated at predetermined time intervals. With each start of the pressure supply, the start of the pressure supply changes the chamber pressure of the air chamber 3 in a pulsed manner to the positive pressure side in accordance with the supply of the transported gas G to the air chamber 3, whereby the transported gas is transferred. G is repeatedly discharged from the outlet 2 as the vortex ring R at predetermined time intervals.

【0083】発振回路12を構成する流体素子13に
は、第1及び第2の二つの制御口cp1,cp2への択
一的な信号流体供給により、供給口ipからの主噴流
(すなわち、加圧送給装置11から加圧供給される被搬
送気体Gの流れ)を第1の出力口op1へ導く状態と第
2の出力口op2に導く状態とに切り換える付着型素子
を用いており、そして、発振回路12の回路構成として
は、タンク14を介して第1の出力口op1を気室3に
接続するとともに、そのタンク14と第1の制御口cp
1とを第1信号路r1により接続し、一方、第2の出力
口cp2と第2の制御口cp2とを第2信号路r2を介
して接続してある。
The fluid element 13 constituting the oscillation circuit 12 is supplied with an alternative signal fluid to the first and second control ports cp1 and cp2, so that the main jet flow (that is, the additional jet flow) from the supply port ip is added. An adhesive type element is used for switching between a state in which a flow of the conveyed gas G pressurized and supplied from the pressure supply device 11 is guided to the first output port op1 and a state in which it is guided to the second output port op2, and As the circuit configuration of the oscillation circuit 12, the first output port op1 is connected to the air chamber 3 via the tank 14, and the tank 14 and the first control port cp are connected.
1 is connected by the first signal path r1, while the second output port cp2 and the second control port cp2 are connected by the second signal path r2.

【0084】つまり、供給口ipからの主噴流が第1出
力口cp1へ導かれるようになった状態から、タンク1
4を介しての気室3への気体供給に伴いタンク14の内
圧が所定圧にまで高まると、タンク14から第1信号路
r1を介して第1制御口cp1へ加圧供給される信号流
体(タンク14内の被搬送気体G)により、供給口ip
からの主噴流が第2出力口cp2へ導かれる状態に切り
換わり、これにより、気室3への気体加圧供給が断たれ
る。
That is, from the state in which the main jet flow from the supply port ip is introduced to the first output port cp1, the tank 1
When the internal pressure of the tank 14 rises to a predetermined pressure due to the gas supply to the air chamber 3 via 4, the signal fluid pressurized and supplied from the tank 14 to the first control port cp1 via the first signal path r1. Due to (the transported gas G in the tank 14), the supply port ip
The main jet flow from is switched to a state in which the main jet is guided to the second output port cp2, whereby the gas pressurized supply to the air chamber 3 is cut off.

【0085】そして、供給口ipからの主噴流が第2出
力口cp2へ導かれるようになると、第2出力口op2
から第2信号路r2を介して第2制御口cp2へ加圧供
給される信号流体(第2出力口op2から送出される被
搬送気体G)により、供給口ipからの主噴流が再び第
1出力口cp1へ導かれる状態に切り換わり、これによ
り、気室3への気体加圧供給が開始されるとともに、そ
の加圧供給の開始により気室3の室圧が陽圧側へパルス
的に変化し、以後、自励発振として、この気体供給の断
続を繰り返す。
When the main jet from the supply port ip comes to be guided to the second output port cp2, the second output port op2
The main jet flow from the supply port ip is restored to the first by the signal fluid (the transported gas G sent from the second output port op2) pressurized from the second control port cp2 to the second control port cp2. The state is switched to the state where it is guided to the output port cp1, and thereby, the gas pressure supply to the air chamber 3 is started, and the chamber pressure of the air chamber 3 changes to the positive pressure side in a pulsed manner by the start of the pressure supply. Then, thereafter, this gas supply is repeated intermittently as self-excited oscillation.

【0086】なお、上記の発振回路12においては、タ
ンク14の容量を変更することにより発振周波数を変更
して、渦輪Rの吐出時間間隔を変更することができる。
In the oscillation circuit 12, the discharge frequency interval of the vortex ring R can be changed by changing the oscillation frequency by changing the capacity of the tank 14.

【0087】〔その他の実施例〕次にその他の実施例を
列記する。 (1)流体素子利用の発振回路12により気室3への気
体加圧供給を繰り返し断続する形態を採用する場合、流
体素子には前述の第6実施例で示した如き付着型素子に
限らず種々の流体素子を採用でき、また、発振回路の具
体的回路構成も使用する流体素子に応じて種々の構成変
更が可能である。
Other Embodiments Next, other embodiments will be listed. (1) In the case of adopting the mode in which the gas pressure supply to the air chamber 3 is repeated intermittently by the oscillation circuit 12 using the fluid element, the fluid element is not limited to the adhesive element as shown in the sixth embodiment. Various fluid elements can be adopted, and various concrete circuit configurations of the oscillation circuit can be changed according to the fluid element to be used.

【0088】(2)流体素子利用の発振回路12により
気室3への気体加圧供給を繰り返し断続するに代えて、
図11に示すように、気室3に対し被搬送気体Gを加圧
供給する気体供給路4に弁装置15を介装し、この弁装
置15を電子回路利用の制御装置16等により繰り返し
開閉操作することで、気室3への気体加圧供給を繰り返
し断続して、気室3の室圧を陽圧側へ繰り返しパルス的
に変化させる構成としてもよい。
(2) Instead of repeatedly interrupting the gas pressure supply to the air chamber 3 by the oscillation circuit 12 using the fluid element,
As shown in FIG. 11, a valve device 15 is provided in the gas supply path 4 for pressurizing the transported gas G to the air chamber 3, and the valve device 15 is repeatedly opened and closed by a control device 16 using an electronic circuit. The gas pressure supply to the air chamber 3 may be repeatedly interrupted by operating, and the chamber pressure of the air chamber 3 may be repeatedly changed to the positive pressure side in a pulsed manner.

【0089】(3)気室3への気体加圧供給を完全遮断
により断続するに代え、上記弁装置15の操作等によ
り、被搬送気体Gの気室3への加圧供給量を急激に増大
させることと減少させることとを繰り返し、これによ
り、気室3の室圧を繰り返し陽圧側へパルス的に変化さ
せるようにしてもよい。
(3) Instead of intermittently interrupting the gas pressurization supply to the air chamber 3 by completely shutting it off, the amount of pressurization and supply of the conveyed gas G to the air chamber 3 is rapidly increased by operating the valve device 15 or the like. The increase and the decrease may be repeated, whereby the chamber pressure of the air chamber 3 may be repeatedly changed to the positive pressure side in a pulsed manner.

【0090】(4)気室3の容積を急激に縮小させて気
室3の室圧を陽圧側へパルス的に変化させる形態を採用
する場合、図12に示すように、ピストン17を内装し
たシリンダ18のシリンダ室を気室3とし、そして、こ
のピストン17を急激に摺動変位させることで気室3の
室圧をパルス的に変化させるようにしてもよい。
(4) When adopting a mode in which the volume of the air chamber 3 is sharply reduced to change the chamber pressure of the air chamber 3 in a pulsed manner to the positive pressure side, the piston 17 is internally provided as shown in FIG. The cylinder chamber of the cylinder 18 may be the air chamber 3, and the piston 17 may be abruptly slidably displaced to change the chamber pressure of the air chamber 3 in a pulsed manner.

【0091】(5)気室3に被搬送気体Gを供給する供
給手段Sとしては、前述の各実施例の如く気体供給路4
を介して気室3に被搬送気体Gを送給する形態に代え、
気室3の内部で被搬送気体Gを発生させる形態を採用し
てもよい。
(5) As the supply means S for supplying the transported gas G to the air chamber 3, the gas supply passage 4 is used as in the above-mentioned embodiments.
Instead of the form in which the transported gas G is sent to the air chamber 3 via
A mode in which the transported gas G is generated inside the air chamber 3 may be adopted.

【0092】(6)気室5の形状は、直方体や立方体等
の箱状に限定されるものではなく、例えば球状に形成す
る等、種々の構成変更が可能であり、また、吹出口2の
形状も、円筒状に限定されるものではなく、例えば角筒
状に形成したり、あるいは、室壁に円形や多角形の単な
る開口を形成する形態とするなど、種々の構成変更が可
能である。
(6) The shape of the air chamber 5 is not limited to a box shape such as a rectangular parallelepiped or a cube, but can be modified in various ways such as by forming it into a spherical shape. The shape is not limited to a cylindrical shape, and various configuration changes are possible, for example, a rectangular tube shape or a shape in which a circular or polygonal opening is formed in the chamber wall. .

【0093】(7)本発明による気体搬送方法、及び、
気体搬送装置は、空調用途に限らず、各種分野における
種々の気体の搬送に適用でき、例えば、香り付けした空
気や微粉混じりの気体、あるいは、ミスト混じりの気体
等を所定の目標箇所へ供給する場合にも適用できる。
(7) A method for carrying gas according to the present invention, and
The gas transfer device is applicable not only to air-conditioning applications but also to transfer various gases in various fields, for example, supplying scented air, gas mixed with fine powder, or gas mixed with mist to a predetermined target location. It can also be applied in cases.

【0094】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that although reference numerals are given in the claims for convenience of comparison with the drawings, the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】渦輪による気体搬送形態を示す図FIG. 1 is a diagram showing a gas transfer form by a vortex ring.

【図2】渦輪の状態を示す斜視図FIG. 2 is a perspective view showing a state of a vortex ring.

【図3】渦輪の形成過程を示す模式的側面図FIG. 3 is a schematic side view showing a process of forming a vortex ring.

【図4】スポットクーリングの実施形態を示す図FIG. 4 is a diagram showing an embodiment of spot cooling.

【図5】大空間施設における暖房形態を示す図FIG. 5 is a diagram showing a heating mode in a large space facility.

【図6】気体搬送装置の構造例を示す側面図FIG. 6 is a side view showing a structural example of a gas transfer device.

【図7】気体搬送装置の他の構造例を示す側面図FIG. 7 is a side view showing another structural example of the gas transfer device.

【図8】気体搬送装置の他の構造例を示す側面図FIG. 8 is a side view showing another structural example of the gas transfer device.

【図9】気体搬送装置の他の構造例を示す側面図FIG. 9 is a side view showing another structural example of the gas transfer device.

【図10】気体搬送装置の他の構造例を示す側面図FIG. 10 is a side view showing another structural example of the gas transfer device.

【図11】気体搬送装置の他の構造例を示す側面図FIG. 11 is a side view showing another structural example of the gas transfer device.

【図12】気体搬送装置の他の構造例を示す側面図FIG. 12 is a side view showing another structural example of the gas transfer device.

【図13】従来の気体搬送形態を示す図FIG. 13 is a view showing a conventional gas transfer mode.

【図14】従来の他の気体搬送形態を示す図FIG. 14 is a view showing another conventional gas transfer mode.

【符号の説明】[Explanation of symbols]

G 被搬送気体,温調空気 2 吹出口 M 目標箇所 O 空間 R 渦輪 3 気室 S 供給手段 T 操作手段 C 制御手段 6,6’,8a 室壁形成体 12 流体素子利用発振回路 G Transported gas, temperature-controlled air 2 Outlet M Target location O Space R Vortex ring 3 Air chamber S Supply means T Operating means C Control means 6, 6 ', 8a Chamber wall forming body 12 Fluid element utilizing oscillation circuit

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 被搬送気体(G)を吹出口(2)から目
標箇所(M)に向けて空間(O)中へ吹き出すことによ
り、その被搬送気体(G)を前記目標箇所(M)に到達
させる気体搬送方法であって、 前記吹出口(2)から吹き出した被搬送気体(G)を、
環状であって、かつ、その環状の周方向に対し直交する
断面の形態として環状形成気体が断面中心部周りで渦流
状に回転する渦輪(R)の状態で、前記目標箇所(M)
に向けて空間(O)中を進行させる気体搬送方法。
1. The conveyed gas (G) is blown out into the space (O) from the outlet (2) toward the target point (M), whereby the conveyed gas (G) is blown into the target point (M). Is a method of transporting a gas to reach a target gas (G) blown out from the outlet (2),
In the state of a vortex ring (R) that is annular and has a cross section orthogonal to the circumferential direction of the ring, the annular forming gas is swirling around the center of the cross section in the vortex ring (R), and the target location (M)
A method of transporting a gas that advances in a space (O) toward the.
【請求項2】 前記被搬送気体(G)を温調空気とし、
かつ、前記目標箇所(M)を被空調箇所として、前記の
渦輪(R)の状態で搬送する温調空気(G)により前記
目標箇所(M)を空調する請求項1記載の気体搬送方
法。
2. The carrier gas (G) is temperature-controlled air,
The gas transfer method according to claim 1, wherein the target location (M) is used as an air-conditioned location, and the target location (M) is air-conditioned by temperature-controlled air (G) transported in the state of the vortex ring (R).
【請求項3】 請求項1又は2記載の気体搬送方法に使
用する気体搬送装置であって、 前記吹出口(2)を形成した気室(3)と、その気室
(3)に被搬送気体(G)を供給する供給手段(S)
と、前記気室(3)の室圧を陽圧側へパルス的に変化さ
せる操作手段(T)を設けた気体搬送装置。
3. A gas transfer device for use in the gas transfer method according to claim 1, wherein the air chamber (3) is formed with the air outlet (2), and the gas is transferred to the air chamber (3). Supply means (S) for supplying gas (G)
And a gas transfer device provided with operation means (T) for changing the chamber pressure of the air chamber (3) to the positive pressure side in a pulsed manner.
【請求項4】 前記操作手段(T)による室圧のパルス
的変化を所定時間間隔で繰り返し行わせる制御手段
(C)を設けた請求項3記載の気体搬送装置。
4. The gas transfer device according to claim 3, further comprising a control means (C) for repeatedly performing a pulse-like change of the room pressure by the operating means (T) at predetermined time intervals.
【請求項5】 前記操作手段(T)は、前記室圧の陽圧
側へのパルス的変化の直後に、前記室圧を陰圧側へパル
ス的に変化させる構成としてある請求項3又は4記載の
気体搬送装置。
5. The operating means (T) is configured to pulse-change the chamber pressure to the negative pressure side immediately after the pulse-like change of the chamber pressure to the positive pressure side. Gas carrier.
【請求項6】 前記操作手段(T)は、前記気室(3)
の容積を変化させて前記室圧を変化させる構成としてあ
る請求項3、4又は5記載の気体搬送装置。
6. The operating means (T) includes the air chamber (3).
6. The gas transfer device according to claim 3, 4 or 5, wherein the volume of the chamber is changed to change the chamber pressure.
【請求項7】 前記操作手段(T)は、前記気室(3)
における弾性変位可能な室壁形成体(6),(6’),
(8a)を打撃して、前記気室(3)の容積を変化させ
る構成としてある請求項6記載の気体搬送装置。
7. The operating means (T) includes the air chamber (3).
Elastically displaceable chamber wall forming bodies (6), (6 '),
7. The gas transfer device according to claim 6, wherein the gas chamber (3) is configured to change the volume of the air chamber (3) by hitting (8a).
【請求項8】 前記操作手段(T)は、前記気室(3)
における弾性変位可能な室壁形成体(6),(6’),
(8a)に対し衝撃波を放射して、前記気室(3)の容
積を変化させる構成としてある請求項6記載の気体搬送
装置。
8. The operating means (T) includes the air chamber (3).
Elastically displaceable chamber wall forming bodies (6), (6 '),
The gas transfer device according to claim 6, wherein a shock wave is emitted to (8a) to change the volume of the air chamber (3).
【請求項9】 前記供給手段(S)は、前記気室(3)
に対し被搬送気体(G)を加圧供給する構成とし、 前記操作手段(T)は、前記供給手段(T)による気体
加圧供給を制御して前記室圧を変化させる構成としてあ
る請求項3又は4記載の気体搬送装置。
9. The supply means (S) includes the air chamber (3).
And the operation means (T) controls the gas pressurization and supply by the supply means (T) to change the chamber pressure. 3. The gas transfer device according to 3 or 4.
【請求項10】 前記供給手段(S)は、前記気室
(3)に対し被搬送気体(G)を加圧供給する構成と
し、 前記操作手段(T)、及び、前記制御手段(C)は、前
記供給手段(S)により加圧供給する被搬送気体(G)
を作動流体として自励発振して、その発振により前記気
室(3)への気体加圧供給を繰り返し断続操作する流体
素子利用の発振回路(12)で構成してある請求項4記
載の気体搬送装置。
10. The supply means (S) is configured to pressurize and supply the transported gas (G) to the air chamber (3), and the operation means (T) and the control means (C). Is the transported gas (G) supplied under pressure by the supply means (S).
5. The gas according to claim 4, wherein the gas is a self-excited oscillation as a working fluid, and the oscillation circuit (12) utilizing a fluid element is configured to repeatedly intermittently operate the gas pressure supply to the air chamber (3) by the oscillation. Transport device.
JP12721394A 1994-06-09 1994-06-09 Gas transferring method and gas transferring apparatus Pending JPH07332750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12721394A JPH07332750A (en) 1994-06-09 1994-06-09 Gas transferring method and gas transferring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12721394A JPH07332750A (en) 1994-06-09 1994-06-09 Gas transferring method and gas transferring apparatus

Publications (1)

Publication Number Publication Date
JPH07332750A true JPH07332750A (en) 1995-12-22

Family

ID=14954531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12721394A Pending JPH07332750A (en) 1994-06-09 1994-06-09 Gas transferring method and gas transferring apparatus

Country Status (1)

Country Link
JP (1) JPH07332750A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855521A3 (en) * 1996-11-12 1999-03-24 Hoval Interliz Ag Method and device for transporting a fluid
JP2004053102A (en) * 2002-07-18 2004-02-19 Daikin Ind Ltd Air blow off unit
JP2005102719A (en) * 2003-09-26 2005-04-21 Toshiba Plant Systems & Services Corp Device for generating air shell
JP2005202599A (en) * 2004-01-14 2005-07-28 Advanced Telecommunication Research Institute International Doze preventing device
JP2006305484A (en) * 2005-04-28 2006-11-09 F & F:Kk Emitting device
JP2007234060A (en) * 2007-05-31 2007-09-13 Advanced Telecommunication Research Institute International Doze prevention device
JP2008014548A (en) * 2006-07-04 2008-01-24 Denso Corp Gaseous constituent supply device
JP2008018394A (en) * 2006-07-14 2008-01-31 Denso Corp Air quality component feeder
JP2009146437A (en) * 2009-02-27 2009-07-02 Advanced Telecommunication Research Institute International Doze prevention apparatus
JP2010022642A (en) * 2008-07-22 2010-02-04 Fuji Heavy Ind Ltd Effective component supplying apparatus for indoors
JP2011234638A (en) * 2010-05-07 2011-11-24 Misao Yoshida Bubble generater
US8523642B2 (en) 2006-03-03 2013-09-03 Denso Corporation Gaseous constituent supply device
JP2017053592A (en) * 2015-09-11 2017-03-16 株式会社九電工 Vortex ring generation device for air conditioning
CN109945288A (en) * 2019-03-29 2019-06-28 武汉理工大学 A kind of convective heat transfer device based on the air-supply of collar vortex circulated at low velocity
JP2019158164A (en) * 2018-03-07 2019-09-19 トヨタ車体株式会社 Vortex ring air conditioner
JP2020079694A (en) * 2018-10-12 2020-05-28 ダイキン工業株式会社 Airflow ejection device, sleeper support device, and time notification device
CN111412602A (en) * 2020-03-31 2020-07-14 广东美的制冷设备有限公司 Vortex ring generation method based on air conditioner, storage medium and device
WO2020192062A1 (en) * 2019-03-26 2020-10-01 广东美的制冷设备有限公司 Air conditioner, control method for air conditioner and computer-readable storage medium
CN112577107A (en) * 2019-09-30 2021-03-30 青岛海尔智能技术研发有限公司 Air conditioner
JPWO2021065808A1 (en) * 2019-09-30 2021-04-08
JP6964805B1 (en) * 2020-06-04 2021-11-10 三菱電機株式会社 Gas transport device, manufacturing method of gas transport device and gas transport method
JP2024065979A (en) * 2022-10-31 2024-05-15 剛 來本 Water toys

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855521A3 (en) * 1996-11-12 1999-03-24 Hoval Interliz Ag Method and device for transporting a fluid
JP2004053102A (en) * 2002-07-18 2004-02-19 Daikin Ind Ltd Air blow off unit
JP4647897B2 (en) * 2003-09-26 2011-03-09 有限会社酸京クラウド Air gun generator
JP2005102719A (en) * 2003-09-26 2005-04-21 Toshiba Plant Systems & Services Corp Device for generating air shell
JP2005202599A (en) * 2004-01-14 2005-07-28 Advanced Telecommunication Research Institute International Doze preventing device
JP2006305484A (en) * 2005-04-28 2006-11-09 F & F:Kk Emitting device
US8523642B2 (en) 2006-03-03 2013-09-03 Denso Corporation Gaseous constituent supply device
JP2008014548A (en) * 2006-07-04 2008-01-24 Denso Corp Gaseous constituent supply device
JP2008018394A (en) * 2006-07-14 2008-01-31 Denso Corp Air quality component feeder
JP2007234060A (en) * 2007-05-31 2007-09-13 Advanced Telecommunication Research Institute International Doze prevention device
JP2010022642A (en) * 2008-07-22 2010-02-04 Fuji Heavy Ind Ltd Effective component supplying apparatus for indoors
JP2009146437A (en) * 2009-02-27 2009-07-02 Advanced Telecommunication Research Institute International Doze prevention apparatus
JP2011234638A (en) * 2010-05-07 2011-11-24 Misao Yoshida Bubble generater
JP2017053592A (en) * 2015-09-11 2017-03-16 株式会社九電工 Vortex ring generation device for air conditioning
JP2019158164A (en) * 2018-03-07 2019-09-19 トヨタ車体株式会社 Vortex ring air conditioner
JP2020079694A (en) * 2018-10-12 2020-05-28 ダイキン工業株式会社 Airflow ejection device, sleeper support device, and time notification device
WO2020192062A1 (en) * 2019-03-26 2020-10-01 广东美的制冷设备有限公司 Air conditioner, control method for air conditioner and computer-readable storage medium
CN109945288A (en) * 2019-03-29 2019-06-28 武汉理工大学 A kind of convective heat transfer device based on the air-supply of collar vortex circulated at low velocity
CN109945288B (en) * 2019-03-29 2020-01-31 武汉理工大学 convection heat exchange device based on vortex ring low-speed circulation air supply
CN112577107A (en) * 2019-09-30 2021-03-30 青岛海尔智能技术研发有限公司 Air conditioner
JPWO2021065808A1 (en) * 2019-09-30 2021-04-08
WO2021065808A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Air circulation device
CN112577107B (en) * 2019-09-30 2022-04-29 青岛海尔智能技术研发有限公司 Air conditioner
CN114450530A (en) * 2019-09-30 2022-05-06 大金工业株式会社 Air circulation device
CN114450530B (en) * 2019-09-30 2023-08-15 大金工业株式会社 Air circulation device
CN111412602A (en) * 2020-03-31 2020-07-14 广东美的制冷设备有限公司 Vortex ring generation method based on air conditioner, storage medium and device
CN111412602B (en) * 2020-03-31 2021-11-23 广东美的制冷设备有限公司 Vortex ring generation method based on air conditioner, storage medium and device
JP6964805B1 (en) * 2020-06-04 2021-11-10 三菱電機株式会社 Gas transport device, manufacturing method of gas transport device and gas transport method
WO2021245872A1 (en) * 2020-06-04 2021-12-09 三菱電機株式会社 Gas transportation device, method for manufacturing gas transportation device, and gas transportation method
JP2024065979A (en) * 2022-10-31 2024-05-15 剛 來本 Water toys

Similar Documents

Publication Publication Date Title
JPH07332750A (en) Gas transferring method and gas transferring apparatus
JP5274250B2 (en) High speed and low pressure emitter
US9931639B2 (en) Blast media fragmenter
US6174500B1 (en) Negative ion generating apparatus
US8016208B2 (en) Echoing ultrasound atomization and mixing system
US20080264505A1 (en) Air cannon
US20030177899A1 (en) Flat fan device
US7753285B2 (en) Echoing ultrasound atomization and/or mixing system
JP6810553B2 (en) Vortic ring generator
JP3931753B2 (en) Air blowing unit
JP6992608B2 (en) Vortic wheel air conditioner
WO2005008348A2 (en) System and method for thermal management using distributed synthetic jet actuators
JP3906207B2 (en) Electron beam source for stable focused electron beam formation
US8500038B2 (en) Gas splattered fluid display
US20060158819A1 (en) Collimated ionizers with fans
AU2009238303B2 (en) Foam-generating device of a fire nozzle
KR101871825B1 (en) Apparatus and method for liquid pumping
JP3818614B2 (en) Foam fire extinguisher
JP2008152924A (en) Electrode for surface plasma generation
JP2008018394A (en) Air quality component feeder
JP2007245847A (en) Duct type silencer
US3482638A (en) Firefighting foam generator
JP2003042893A (en) Ultrasonic nozzle
JP6845835B2 (en) Vortic ring generator
JPH11137708A (en) Fire foam device