WO2021245872A1 - Gas transportation device, method for manufacturing gas transportation device, and gas transportation method - Google Patents

Gas transportation device, method for manufacturing gas transportation device, and gas transportation method Download PDF

Info

Publication number
WO2021245872A1
WO2021245872A1 PCT/JP2020/022082 JP2020022082W WO2021245872A1 WO 2021245872 A1 WO2021245872 A1 WO 2021245872A1 JP 2020022082 W JP2020022082 W JP 2020022082W WO 2021245872 A1 WO2021245872 A1 WO 2021245872A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
transport device
vibration
housing
gas transport
Prior art date
Application number
PCT/JP2020/022082
Other languages
French (fr)
Japanese (ja)
Inventor
誠 ▲高▼田
洋航 松浦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020561088A priority Critical patent/JP6964805B1/en
Priority to PCT/JP2020/022082 priority patent/WO2021245872A1/en
Publication of WO2021245872A1 publication Critical patent/WO2021245872A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser

Definitions

  • the present disclosure relates to a gas transport device having a vibrating part, a manufacturing method thereof, and a gas transport method.
  • Patent Document 1 discloses a technique for transporting a gas to a local space in a room by forming a vortex ring having such directivity.
  • Patent Document 1 the pressure inside the pressurizing chamber connected to the vortex ring outlet is directly fluctuated by the diaphragm facing the pressurizing chamber to generate a vortex ring, and the gas is transported. Therefore, when the gas transported by the gas transport device is humidified air containing a large amount of water, the device disclosed in Patent Document 1 is configured such that the humidified air in the pressurizing chamber directly touches the vibrating plate. Therefore, the humidified air is dewed and water droplets are likely to adhere to the vibrating plate. When water droplets adhere to the diaphragm, the vibration is hindered and the intended pressurization chamber is not pressurized, and a good vortex ring cannot be formed, so that stable gas transportation cannot be performed.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a gas transport device capable of stable gas transport, a method for manufacturing a gas transport device, and a gas transport method.
  • the gas transport device is a gas transport device for transporting gas, which has a housing having a gas discharge port and a pressurizing chamber connected to the discharge port, and vibrating vibration.
  • a vibrating device having a portion and a vibration generator for vibrating the vibrating portion, the vibrating portion installed at an arbitrary position of the housing via the pressurizing chamber, and the pressurizing chamber and the vibrating portion. It is provided with an elastic film having an outer peripheral portion connected to the inner surface of the housing, and is provided between the vibrating portion and the elastic film inside the housing in the housing.
  • a closed vibration transmission chamber is formed by being surrounded by a wall portion between the vibrating portion and the outer peripheral portion of the elastic film, the vibrating portion, and the elastic film.
  • the method for manufacturing a gas transport device is the above-mentioned method for manufacturing a gas transport device, in which the outer peripheral portion of the elastic film is connected to the inner surface of the housing with an adhesive. ..
  • the gas transport method according to the present disclosure includes a vibration step of vibrating the vibrating portion by driving the vibration generator and the vibration in the gas transport method of transporting the gas using the gas transport device.
  • the elastic film is expanded and contracted through the vibration transmission chamber by the vibration of the portion, and the vibration is transmitted to the pressurizing chamber connected to the discharge port, and the pressurization is performed by the expansion and contraction of the elastic film. It includes a pressurizing step of pressurizing the gas existing in the room and a discharging step of discharging the gas pressurized by the elastic membrane to the outside through the discharging port.
  • an elastic film is provided between the pressurizing chamber and the vibrating portion, and a closed vibration transmission chamber is formed between the vibrating portion and the elastic membrane, so that the pressurizing chamber is humidified. Water droplets due to air dew do not adhere to the vibrating part of the vibrating device, the decrease in vibration efficiency can be suppressed, and stable gas transportation is possible.
  • FIG. It is a schematic diagram which shows the structure of the gas transport apparatus which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the generation principle of the vortex ring of the gas transport apparatus which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the gas transport method using the gas transport apparatus which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the structure of the gas transport apparatus which concerns on Embodiment 2.
  • FIG. It is a schematic diagram which shows the structure of the gas transport apparatus which concerns on Embodiment 3.
  • FIG. It is a schematic diagram which shows the structure of the gas transport apparatus which concerns on Embodiment 4.
  • FIG. It is a schematic diagram which shows the structure of the gas transport apparatus which concerns on Embodiment 5.
  • FIG. 1 is a schematic view showing the configuration of the gas transport device according to the first embodiment.
  • the gas transport device 100 transports gas to a specific region of the target space.
  • the depth direction of the gas transport device 100 is represented by the arrow Y direction
  • the height direction of the gas transport device 100 is represented by the arrow Z direction.
  • the gas transport device 100 is provided in a housing 14, a vibration device 10, a drive circuit 20 of the vibration device 10, a gas supply unit 50, a control unit 31, and a housing 14. It has an elastic film 13 that has been formed.
  • the gas supply unit 50 is connected to the housing 14 and supplies the gas to be transported to the housing 14.
  • the housing 14 is formed at the front wall 141, the peripheral wall portion 142 extending rearward from the outer peripheral end of the front wall 141, and the lower portion of the peripheral wall portion 142, and is a tubular connecting wall that connects the peripheral wall portion 142 to the gas supply portion 50. It has 143 and.
  • An opening 15 is formed in the front wall 141. In the example shown in FIG. 1 and FIG. 2 described later, the opening 15 is formed substantially in the center of the front wall 141, but the opening 15 can be formed at an arbitrary position on the front wall 141.
  • the housing 14 has a pressurizing chamber 16 surrounded by a front wall 141, an elastic film 13 described later, and a front portion of the peripheral wall portion 142 connecting the outer peripheral portion of the elastic film 13 and the outer peripheral portion of the front wall 141. Is formed. Further, the gas supply unit 50 includes a humidification unit 51 that humidifies the gas supplied to the pressurizing chamber 16.
  • the drive circuit 20 has a signal generator 22 that generates a signal and a power amplifier 23 that amplifies the signal generated by the signal generator 22.
  • the signal generator 22 and the power amplifier 23 are connected by a signal line 24.
  • the power amplifier 23 is connected to the vibration device 10 by a signal line 24.
  • the vibrating device 10 includes a vibrating portion 12 installed at the rear end of the housing 14 so as to face the elastic film 13, and a vibration generator 11 that receives a signal from the power amplifier 23 and vibrates the vibrating portion 12. Have.
  • a closed vibration transmission chamber 17 is formed between the elastic film 13 provided in the housing 14 and the vibrating portion 12 of the vibrating device 10 installed in the housing 14.
  • the elastic film 13 and the vibrating portion 12 are not in direct contact with each other, and the elastic film 13 and the vibrating portion 12 are arranged apart from each other. That is, the vibration transmission chamber 17 includes the elastic film 13, the vibrating portion 12 facing the elastic film 13, and the rear portion connecting the outer peripheral portion of the elastic film 13 and the outer peripheral portion of the vibrating portion 12 on the peripheral wall of the housing 14. , Formed by. That is, in the housing 14, a pressure chamber 16 opened to the atmosphere of the target space by the opening 15 is formed in front of the elastic membrane 13, and a closed vibration transmission chamber 17 is formed behind the elastic membrane 13. Has been done.
  • connection wall 143 described above is connected to the lower part of the peripheral wall portion 142 in front of the elastic film 13, and is configured to communicate the gas supply portion 50 and the pressurizing chamber 16.
  • the control unit 31 is connected to each of the signal generator 22, the power amplifier 23, and the gas supply unit 50 by a control line 32.
  • the control unit 31 controls the vibration of the vibration unit 12 by controlling the signal of the signal generator 22 and the power amplification amount of the power amplifier 23. Specifically, the control unit 31 controls the waveform, magnitude, frequency, and the like of the signal generated by the signal generator 22. Further, the control unit 31 controls the amount of gas to be transported to the target space by controlling the amount of gas supplied from the gas supply unit 50 to the pressurizing chamber 16.
  • the control unit 31 can use a device having a storage function such as a memory, a device having a calculation function such as a CPU, or a device having both a storage function and a calculation function such as a microcomputer.
  • the control unit 31 can also store a program in which the operation of each device is predetermined. Further, the control unit 31 stores a relational expression, a data table, or the like based on the evaluation result of the measurement performed in advance by changing various parameters.
  • the parameters are, for example, the physical properties of the gas to be transported, the surrounding environment, the size of the opening 15, the setting of each device, the region for transporting the gas, the transport amount of the gas, and the like.
  • the settings of each device are, for example, a signal generated by the signal generator 22, an amplification amount of the power amplifier 23, a gas supply amount of the gas supply unit 50, and the like.
  • a human interface device such as a keyboard may be connected to the control unit 31, and a program, setting values, and the like may be input and changed to the control unit 31 via the human interface device.
  • the signal generated by the signal generator 22 is sent to the power amplifier 23.
  • the signal amplified by the power amplifier 23 is sent to the vibration generator 11 of the vibration device 10, and the vibration unit 12 is displaced by the vibration generated by the vibration generator 11.
  • the vibration of the vibrating portion 12 of the vibrating device 10 is transmitted to the elastic membrane 13 via the sealed vibration transmission chamber 17.
  • the elastic film 13 expands and contracts while the outer peripheral portion 13a (see FIG. 2 described later) is supported by the housing 14. By displacing the portion including the central portion of the elastic film 13 toward the pressurizing chamber 16, the pressurizing chamber 16 is pressurized, and the gas in the pressurizing chamber 16 supplied from the gas supply unit 50 is released from the opening 15.
  • the control unit 31 controls the amount of gas supplied from the gas supply unit 50 to the pressurizing chamber 16.
  • the signal generator 22 can generate a signal having an arbitrary waveform.
  • the signal waveform is preferably a rectangular pulse wave.
  • the frequency of the signal waveform is the resonance frequency of the vibration generator 11 in the state of being incorporated in the gas transport device 100, or the resonance frequency of the vibration generator 11 alone in the state of not being incorporated in the gas transport device 100. It is desirable to set. Alternatively, it is desirable that the vibration generator 11 is set so as to include a large number of frequency components having a maximum value or a minimum value of the impedance in the state of being incorporated in the gas transport device 100. Alternatively, it is desirable that the vibration generator 11 is set so as to include a large amount of resonance frequency components at the maximum value or the minimum value of the impedance of the vibration generator 11 alone, which is not incorporated in the gas transport device 100.
  • an electromechanical converter that converts the electric energy of an electric signal into vibration, which is mechanical energy
  • a typical example of an electromechanical transducer is a speaker of an audio device.
  • the speaker uses the current flowing through the coil and the action of a magnet to convert an electrical signal into mechanical vibration.
  • a speaker is composed of, for example, a cone-type or horn-type diaphragm, a coil portion to which the diaphragm is adhered, a support portion that supports the coil portion via a spring, a magnet installed on the support portion, and the like.
  • the coil is the vibration generator 11 and the diaphragm constitutes the vibration unit 12.
  • a piezoelectric element which is one of the electromechanical transducers, can be used instead of the speaker.
  • the piezoelectric element has a piezoelectric ceramic, an electrode provided on the piezoelectric ceramic, and a metal plate bonded to the piezoelectric ceramic, and is configured to vibrate the metal plate by applying a voltage to the piezoelectric ceramic. ..
  • the power amplifier 23 amplifies the signal output from the signal generator 22.
  • the amount of amplification is arbitrary, but it is desirable to adjust it so that it is equal to or less than the allowable input power of the vibration generator 11.
  • the elastic membrane 13 is a thin film that is connected to the housing 14 without slack and has elasticity and elasticity with a thickness of 1 mm or less.
  • the material of the elastic film 13 include a thin film of a film-like polymer compound.
  • FIG. 2 is an explanatory diagram showing the principle of generating a vortex ring of the gas transport device according to the first embodiment.
  • the width direction of the gas transport device 100 is represented by the arrow X direction.
  • the vibration transmission chamber 17 has a closed structure.
  • the boundary portion between the vibrating portion 12 and an arbitrary surface of the housing 14 and the boundary portion between the elastic film 13 and the peripheral wall portion 142 of the housing 14 are all the boundary portions. Over the circumference, it is adhered and fixed with, for example, a resin adhesive. That is, by connecting the outer peripheral portion 13a of the elastic membrane 13 to the inner surface of the housing 14 with an adhesive or the like, the gas transport device 100 having a sealed vibration transmission chamber 17 can be manufactured.
  • the outer peripheral portion 13a of the elastic film 13 and the inner surface of the housing 14 are brought into close contact with each other to prevent gas from entering and exiting between the pressurizing chamber 16 and the vibration transmission chamber 17.
  • the configuration is not limited to the adhesive.
  • the gas containing water when the gas containing water is transported by using, for example, the humidifying unit 51, the gas containing water does not come into contact with the vibrating unit 12, so that the adhesion of water due to dew condensation or the like on the surface of the vibrating unit 12 is suppressed. .. Therefore, the vibration of the vibrating unit 12 is not hindered, the vibration efficiency of the vibrating unit 12 does not decrease, the pressure fluctuation is stably applied to the pressurizing chamber 16, and stable gas transportation becomes possible. Further, by providing such an elastic film 13 on the housing 14, it is possible to prevent water droplets from adhering to the vibrating portion 12, so that the price of the device is higher than that in the case where the vibrating portion 12 is specially waterproofed. Can also be suppressed.
  • the vibration of the entire surface of the vibrating unit 12 is converted into the pressure fluctuation of the vibration transmission chamber 17. That is, the vibration of the entire surface of the vibrating portion 12 is concentrated in the central portion of the elastic film 13.
  • the elastic film 13 is centered by the pressure concentrated by the vibration of the vibrating portion 12 on the central portion of the elastic film 13 fixed to the inner surface of the peripheral wall portion 142 of the housing 14 at the outer peripheral portion 13a and provided without slack.
  • the part easily expands and contracts as the peak of vibration displacement. Therefore, the vibration displacement at the center of the elastic film 13, that is, the reciprocating distance due to the vibration is larger than the vibration displacement at any point on the vibration surface of the vibration unit 12.
  • the gas supply unit 50 supplies the gas to be conveyed to the pressurizing chamber 16 of the housing 14.
  • a humidifying device such as an ultrasonic type or a heating type is used for the gas supply unit 50.
  • a compressor type or desiccant type dehumidifying device is used for the gas supply unit 50.
  • a specific gas such as oxygen
  • a device for generating the specific gas is used in the gas supply unit 50.
  • the housing 14 constitutes the pressurizing chamber 16, and any material can be used.
  • the material of the housing 14 is preferably a material that is resistant to the gas to be transported, and the surface on the pressure chamber 16 side is thin-film, such as a material having a function of retaining or eliminating charges in the transported gas. It is also possible to use the one coated by the above. Further, the housing 14 may be made of a material that reduces noise generated by the vibrating portion 12 of the vibrating device 10, the elastic film 13, and the like.
  • the opening 15 is a hole of any shape and any size made in the housing 14 in order to release the gas of the pressurizing chamber 16 as a vortex ring. Regardless of the shape of the opening 15, the released vortex ring becomes circular with the passage of time. Therefore, it is desirable that the shape of the opening 15 is circular as shown in FIG. 2 to be described later.
  • the size of the opening 15 is determined by the vibration displacement of the elastic membrane 13, that is, the amount of pressure fluctuation of the pressurizing chamber 16, the transport distance of the gas, the viscosity of the transported gas, and the like.
  • FIG. 2 is an explanatory diagram showing the principle of generating a vortex ring of the gas transport device according to the first embodiment.
  • the principle of vortex ring generation and gas transport will be described with reference to FIG.
  • the opening 15 has a circular shape with a diameter D and an area S
  • the elastic membrane 13 has a rectangular shape with an area A
  • the elastic membrane 13 is uniformly displaced in the plane.
  • the time ⁇ T at which the pressure in the pressurizing chamber 16 changes is as short as 1 second or less.
  • the displacement amount of the elastic membrane 13 in the depth direction (arrow Y direction) is ⁇ Y
  • the rate at which the gas 59 is discharged from the opening 15 is L / ⁇ T
  • a cylindrical mass of gas 59 having a bottom area of S and a height of L from the bottom surface is discharged from the opening 15.
  • the volume is SL.
  • the columnar gas mass released from the opening 15 changes its shape due to the force received, and after being released from the opening 15, becomes an annular shape (also called a donut shape or a torus shape) and translates. do.
  • annular shape also called a donut shape or a torus shape
  • such an annular gas mass that moves in translation may be referred to as a vortex ring.
  • the formation state of the vortex ring changes depending on the physical properties such as the viscosity of the gas to be conveyed and the environmental factors such as the ambient temperature.
  • the values of the diameter D, the force F, the force F0, and the like of the opening 15 are determined.
  • the vortex ring released into the space slows down due to air resistance or the like, and eventually becomes stationary, the gas constituting the vortex ring diffuses into the surrounding space, and the vortex ring disappears. Since the vortex ring moves in the direction in which the rotating fluid is trapped inside and is discharged, the gas is less likely to diffuse to the surroundings during movement than a gas mass having a uniform velocity inside and outside, and it goes far. Can be reached.
  • the gas transport device 100 of the first embodiment has a housing 14 having a gas discharge port (opening 15) and a pressurizing chamber 16 connected to the discharge port formed therein, and vibration.
  • the device 10 and the elastic film 13 are provided.
  • the vibrating device 10 has a vibrating unit 12 that vibrates and a vibration generator 11 that vibrates the vibrating unit 12, and the vibrating unit 12 is installed at an arbitrary position of the housing 14 via the pressurizing chamber 16.
  • the elastic membrane 13 is arranged between the pressurizing chamber 16 and the vibrating portion 12, and has an outer peripheral portion 13a connected to the inner surface of the housing 14.
  • a closed vibration transmission chamber 17 is formed by being surrounded by the membrane 13.
  • the elastic membrane 13 having a larger amplitude than the vibrating portion 12 of the vibrating device 10 is provided.
  • the inventors manufactured a gas transport device designed as described above and visually confirmed the flight distance of the humidified air using the humidified air generated by the ultrasonic humidifier as a specific gas, the vortex ring was found. It was confirmed that it can be humidified by translating for 1 meter or more, transporting water to a specific area. Further, the inventor has configured the gas transport device 100 in which the humidified air is not brought into contact with the vibrating portion 12 by the closed vibration transmission chamber 17, in which the vibration efficiency of the vibrating portion 12 does not decrease and the gas is stably transported with low energy. It was confirmed that this can be done and that the deterioration of the vibrating portion 12 can be suppressed.
  • the gas transport device 100 of the first embodiment is connected to the vibration generator 11 via a signal line 24, and has a drive circuit 20 for driving the vibration generator 11 and a control unit 31 for controlling the drive circuit 20.
  • the drive circuit 20 includes a signal generator 22 that generates a signal and a power amplifier 23 that amplifies the signal generated by the signal generator 22.
  • the vibration generator 11 converts the electrical energy of the signal input from the drive circuit 20 into mechanical energy.
  • the pressure applied to the gas in the pressurizing chamber 16 can be adjusted so that the released gas forms a vortex ring.
  • an electromechanical converter such as a general piezoelectric element and a speaker can be used, and the price of the gas transport device 100 can be reduced.
  • an arbitrary waveform such as a sine shape or a rectangular shape is continuously generated to repeatedly vibrate the vibrating portion 12, repeat through the transmission chamber, and vibrate the elastic film 13 to be substantially continuous.
  • the gas can be transported to the target space.
  • an arbitrary waveform such as a sine shape or a rectangular shape is generated intermittently or intermittently
  • the vibrating portion 12 is vibrated at an intended time interval, and the elastic film 13 is passed through the transmission chamber.
  • the amount of gas transported can be adjusted by controlling the length of ON and OFF of the waveform (so-called duty ratio).
  • the gas transport device 100 when the amount of gas supplied from the gas supply unit 50 to the pressurizing chamber 16 exceeds the ability to release gas from the opening 15 due to the pressure fluctuation of the pressurizing chamber 16 due to the vibration of the elastic film 13. The gas flows out from the opening 15 without forming a vortex ring. Further, if the gas is continuously supplied from the gas supply unit 50 to the pressurizing chamber 16 when the waveform is OFF, the gas flows out from the opening 15 without forming a vortex ring. The gas flowing out from the opening 15 without forming a vortex ring is more likely to diffuse than the vortex ring, and the reach is shortened.
  • the operation of these devices is controlled by the control unit 31 so that the signal generator 22, the power amplifier 23, and the gas supply unit 50 are interlocked with each other. By doing so, it can be prevented.
  • control unit 31 since the control unit 31 has a storage function, the optimum equipment configuration in a plurality of states for each of the region for transporting gas, the amount of gas to be transported, the surrounding environment such as temperature, the gas to be transported, and the like in advance. By deciding and storing it in a relational expression, etc., it is possible to respond to changes. For example, when changing the region for transporting gas or changing the amount of gas to be transported, the setting of each device is set using the relational expression stored in advance according to the physical properties of the gas to be transported or the change in the surrounding environment. Can be changed at any time to change the region for transporting gas, the amount of gas transported, and the like.
  • the signal generated by the signal generator 22, the amplification amount of the power amplifier 23, and the gas supply amount of the gas supply unit 50 are changed at any time. Further, the size of the opening 15 can be changed to change the range for transporting the gas or the amount of the gas to be transported.
  • FIG. 3 is an explanatory diagram showing a gas transport method using the gas transport device according to the first embodiment.
  • a gas transport method for transporting gas using the gas transport device 100 will be described with reference to FIG.
  • the gas transport method includes a humidification step of humidifying the supplied gas and a gas supply step of supplying the gas to be transported. Further, the gas transport method includes a signal processing step of processing a signal, a vibration step of generating vibration, a vibration transmission step of transmitting vibration, a pressurizing step, and a discharging step of discharging gas.
  • the humidifying unit 51 humidifies the gas supplied to the pressurizing chamber 16 (step ST101).
  • the gas supply step a predetermined amount of gas is supplied to the pressurizing chamber 16 by the gas supply unit 50 (step ST102).
  • the drive circuit 20 processes the signal for driving the vibration generator 11 (step ST103). Specifically, first, a signal generation step of generating a signal by the signal generator 22 is performed, and then a signal amplification step of amplifying the signal by the power amplifier 23 is performed. The signal processed in the signal processing step is input to the vibration generator 11.
  • the vibration generator 11 is driven and the vibrating unit 12 vibrates (step ST104). Specifically, the vibration generator 11 converts the electric power of the signal input from the drive circuit 20 into mechanical energy to generate vibration, and the generated vibration causes the vibrating unit 12 to vibrate.
  • the elastic film 13 is expanded and contracted through the sealed vibration transmission chamber 17 by the vibration of the vibration portion 12, and the vibration is transmitted to the pressurizing chamber 16 connected to the discharge port (opening 15) (step). ST105).
  • the pressurizing step the humidifying body in the pressurizing chamber 16 is pressurized by the expansion and contraction of the elastic film 13 (step ST106).
  • the discharge step the humidifying body pressurized by the elastic membrane 13 is discharged to the outside from the discharge port of the housing 14 (step ST107).
  • the gas transport device 100 transports a gas or the like containing water or oxygen
  • the gas transport device 100 carries a gas or powder or the like containing a scent component (smell component). It can transport any gas, including gases it contains.
  • FIG. 4 is a schematic view showing the configuration of the gas transport device according to the second embodiment.
  • the gas transport device 200 of the second embodiment includes a valve 201 installed in a portion of the housing 14 forming the vibration transmission chamber 17, and a control line 32 connecting the valve 201 and the control unit 31. It is different from the gas transport device of the first embodiment.
  • a configuration different from the configuration shown in the first embodiment will be described, the same devices as those shown in the first embodiment are designated by the same reference numerals, and the same devices will be described. Omit.
  • the portion of the peripheral wall portion 142 of the housing 14 that forms the vibration transmission chamber 17, that is, the portion of the peripheral wall portion 142 that is located between the elastic film 13 and the vibration portion 12, is the outside of the vibration transmission chamber 17 and the housing 14.
  • a hole 14a is formed to communicate with the above.
  • the valve 201 is fitted into a hole 14a formed in the housing 14, and adjusts the pressure inside the vibration transmission chamber 17 in the open state, and keeps the inside of the vibration transmission chamber 17 at a constant pressure in the closed state. It is something to hold.
  • the control unit 31 controls the opening and closing of the valve 201 so that the internal pressure of the vibration transmission chamber 17 becomes a predetermined pressure.
  • a first pressure sensor for detecting the pressure in the vibration transmission chamber 17 and a second pressure sensor for detecting the pressure around the device are provided, and the control unit 31 has a control unit 31 in which the value of the first pressure sensor is the second pressure.
  • the valve opening can be controlled so as to be larger than the sensor value.
  • the inside of the vibration transmission chamber 17 is adjusted and maintained at a pressure at which vibration is efficiently transmitted.
  • the pressure of an air compressor or the like having a function of further sending air to the vibration transmission chamber 17 through the valve 201 to the valve 201 installed in the housing 14 and removing air from the vibration transmission chamber 17 through the valve 201.
  • the pressure inside the vibration transmission chamber 17 is adjusted by controlling the operation of the valve 201 and the pressure regulator by the control unit 31.
  • the operation performed by the gas transport device 200 of the second embodiment will be described.
  • the operation of transporting the gas that is, the operation of the gas supply unit 50, the signal generator 22, the power amplifier 23, and the vibration generator 11 is the same as in the case of the first embodiment.
  • the explanation is omitted.
  • the opening and closing of the valve 201 is controlled by the control unit 31, and the internal pressure of the vibration transmission chamber 17 is adjusted. At this time, it is desirable that the internal pressure of the vibration transmission chamber 17 is adjusted to be higher than the environmental pressure (atmospheric pressure) around the device.
  • Information including the environmental pressure around the device is manually input to the control unit 31 by the user via, for example, the above-mentioned human interface device. It should be noted that the information on the surrounding environment may be acquired by a sensor or the like and automatically input to the control unit 31. The information input from the human interface device, the sensor, or the like is stored in the control unit 31.
  • the control unit 31 adjusts the opening and closing of the valve 201 based on the stored information, and adjusts the internal pressure of the vibration transmission chamber 17. Such an operation of adjusting the internal pressure by the valve 201 is executed before the operation of transporting the gas by the gas supply unit 50 or the like is started, and the vibration transmission chamber 17 is performed while the operation of transporting the gas is being performed. The internal pressure of is maintained at the adjusted pressure. Further, the control unit 31 is configured to automatically adjust the internal pressure of the vibration transmission chamber 17 by operating the valve 201 at any time when the environmental pressure around the device changes while the operation of transporting the gas is being performed. May be.
  • control unit 31 opens the valve 201 and adjusts the internal pressure of the vibration transmission chamber 17 to be the same as the environmental pressure. As a result, it is possible to prevent excessive tension from being applied to the elastic film 13, and it is possible to prevent deterioration of the elastic film 13.
  • the gas transport method for transporting gas using the gas transport device 200 of the second embodiment is almost the same as that of the first embodiment, but the pressure inside the vibration transmission chamber 17 is adjusted by opening and closing the valve 201. It also has a pressure adjustment step.
  • the elastic film 13 is provided between the pressurizing chamber 16 and the vibrating portion 12 as in the case of the first embodiment, and the vibrating portion 12 and the elastic film 13 are provided.
  • a closed vibration transmission chamber 17 is formed between the elastic film 13 and the elastic film 13. Therefore, also in the second embodiment, as in the case of the first embodiment, the water droplets of the humidified air existing in the pressurizing chamber 16 do not adhere to the vibrating portion 12 of the vibrating device 10, and the decrease in vibration efficiency can be suppressed. Stable gas transport is possible.
  • the gas transport device 200 of the second embodiment includes a valve 201, which is provided on the wall portion between the vibrating portion 12 and the outer peripheral portion 13a of the elastic membrane 13 in the housing 14, and is closed.
  • the pressure inside the vibration transmission chamber 17 is kept constant in the state.
  • the valve 201 can be opened to adjust the pressure inside the vibration transmission chamber 17, and the valve 201 can be closed to maintain the adjusted pressure. Therefore, by changing the pressure, the degree of freedom in controlling the vibration transmission can be increased. Increase. Therefore, more stable gas transportation becomes possible.
  • the vibration transmission chamber 17 is held at a pressure higher than the atmospheric pressure around the housing 14.
  • the elastic film 13 arranged between the pressurizing chamber 16 and the sealed vibration transmission chamber 17 in the housing 14 can be easily displaced toward the pressurizing chamber 16 by the vibration of the vibrating portion 12.
  • the gas in the pressurizing chamber 16 can be efficiently pressurized.
  • FIG. 5 is a schematic view showing the configuration of the gas transport device according to the third embodiment.
  • the gas transport device 300 according to the third embodiment includes an opening adjuster 301 that changes the size of the opening 15 of the housing 14, and a control line 32 that connects the opening adjuster 301 and the control unit 31. Is different from the gas transport device of the first embodiment.
  • a configuration different from the configuration shown in the first embodiment will be described, the same devices as those shown in the first embodiment are designated by the same reference numerals, and the same devices will be described. Omit.
  • the opening adjuster 301 is provided at the edge of the opening 15 in the housing 14, and changes the size of the opening 15.
  • the opening adjuster 301 is composed of, for example, an iris diaphragm composed of a plurality of plate-shaped members.
  • the control unit 31 controls the operation of the opening adjuster 301 so that the size of the opening 15 of the housing 14 becomes a predetermined size. With such a configuration, it is possible to generate a stable vortex ring in which the annulus shape does not easily collapse, and it is possible to control the transport distance of the gas.
  • the size of the opening 15 is adjusted by controlling the operation of the opening adjuster 301 by the control unit 31.
  • the control unit 31 controls the opening adjuster 301 according to the electric power of the input signal of the vibration generator 11 and adjusts the size of the opening portion 15.
  • the size of the opening 15 suitable for the vibration amplitude of the elastic film 13 can be changed to generate a stable vortex ring, and the gas transport distance can be adjusted.
  • the control unit 31 may be configured to control the opening adjuster 301 and adjust the size of the opening 15 according to the power of the input signal of the vibration generator 11 and the surrounding environment of the device.
  • the information on the ambient environment includes, for example, information such as temperature or humidity, and the information on the ambient environment is manually input to the control unit 31 by the user via, for example, the above-mentioned human interface device.
  • the gas transport device 300 is configured to include a sensor or the like for acquiring information on the ambient environment such as temperature and humidity, and the information on the ambient environment is acquired by the sensor or the like and automatically input to the control unit 31. You can also do it.
  • the information input from the human interface device, the sensor, or the like is stored in the control unit 31.
  • the control unit 31 controls the opening adjuster 301 according to the electric power of the input signal of the vibration generator 11 and the stored information of the surrounding environment, and adjusts the size of the opening 15. Such an operation of adjusting the size of the opening 15 by the opening adjuster 301 is executed, for example, when a signal is first input to the vibration generator 11 when the gas transport device 300 starts the operation. Will be done. Further, the control unit 31 may be configured to automatically adjust the size of the opening 15 by operating the opening adjuster 301 at any time when the surrounding environment changes while the operation of transporting the gas is being performed. good. In this case, even if the surrounding environment changes, a stable vortex ring whose annulus shape does not easily collapse can be generated, and the gas transport distance can be automatically adjusted. It is desirable to store the program of the opening adjuster 301 in the control unit 31 in advance.
  • the gas transport method for transporting the gas using the gas transport device 300 of the third embodiment is substantially the same as that of the first embodiment, but the opening adjuster 301 is used at the discharge port (opening 15) of the housing 14. It further has an opening adjusting step of adjusting the opening area.
  • the elastic film 13 is provided between the pressurizing chamber 16 and the vibrating portion 12 as in the case of the first embodiment, and the vibrating portion 12 and the elastic film 13 are provided.
  • a closed vibration transmission chamber 17 is formed between the elastic film 13 and the elastic film 13. Therefore, also in the third embodiment, as in the case of the first embodiment, the water droplets of the humidified air existing in the pressurizing chamber 16 do not adhere to the vibrating portion of the vibrating device, and the decrease in vibration efficiency can be suppressed, which is stable. Can transport gas.
  • the gas transport device 300 of the third embodiment has an opening adjuster 301 provided at the discharge port (opening 15) of the housing 14 and adjusting the opening area. This makes it possible to stably transport the gas and change the transport distance of the gas.
  • the opening adjuster 301 is provided in the gas transport device 100 of the first embodiment and the above-mentioned opening adjuster 301 is provided in the gas transport device 300 of the second embodiment and the opening 15 is provided. It may be configured to adjust the size of.
  • FIG. 6 is a schematic view showing the configuration of the gas transport device according to the fourth embodiment.
  • the detector 401 provided between the gas supply unit 50 and the pressurizing chamber 16 of the housing 14, and the control line 32 connecting the detector 401 and the control unit 31 are connected. It is different from the gas transport device of the first embodiment in that it is provided with.
  • the fourth embodiment a configuration different from the configuration shown in the first embodiment will be described, the same devices as those shown in the first embodiment are designated by the same reference numerals, and the same devices will be described. Omit.
  • the detector 401 is provided on the connection wall 143 of the housing 14 that communicates the gas supply unit 50 and the pressurizing chamber 16 of the housing 14, and the gas supply unit 50 to the pressurizing chamber 16 are provided. It detects the component, physical property value, flow rate, etc. of the gas supplied to.
  • the physical property value refers to, for example, the temperature, humidity, conductivity, or the like of a gas.
  • the detector 401 may detect a plurality of physical property values. Further, the detector 401 may detect two or more of the gas component, the physical characteristic value and the flow rate.
  • the detector 401 transmits the detected value K such as the detected gas component, physical characteristic value or flow rate to the control unit 31 via the control line 32.
  • the control unit 31 adjusts the supply of gas to the pressurizing chamber 16 by the gas supply unit 50 based on the detection value K detected by the detector 401.
  • the operation performed by the gas transport device 400 of the fourth embodiment will be described.
  • the operation performed by each device of the gas transport device 400 in the fourth embodiment is substantially the same as that of the first embodiment.
  • the gas component, physical properties, flow rate, and the like in the gas supplied from the gas supply unit 50 to the pressurizing chamber 16 of the housing 14 are adjusted.
  • the detection value K of the gas component, the physical property value or the flow rate supplied from the gas supply unit 50 to the pressurizing chamber 16 is repeatedly detected by the detector 401 and transmitted to the control unit 31.
  • the gas supplied from the gas supply unit 50 to the pressurizing chamber 16 is adjusted so that the detection value K1 detected by the detector 401 becomes the preset set value Ks1.
  • the amount of gas supplied from the gas supply unit 50 to the pressurizing chamber 16 or the amount of a specific component is adjusted.
  • the set value Ks1 is such that the desired amount of gas, the amount of the desired specific component, or the desired gas state (eg, temperature, humidity or conductivity) is obtained in the region of the target space where the gas is intended to be transported. Is determined and stored in the control unit 31.
  • the control unit 31 supplies gas according to the detected detection value K1 so that the gas is most efficiently transported to the region of the intended target space.
  • the unit 50 may be configured to control the signal generator 22, the power amplifier 23, and the like.
  • the same detector 401 can be used even when the gas supply unit 50 is changed to another new gas supply unit in the gas transport device 400, and the gas transport device 400 can be used.
  • the configuration of can be simplified.
  • the detector 401 detects the component, physical property value, flow rate, or the like of the gas supplied from the new gas supply unit.
  • the control unit 31 controls the gas supply unit 50 and the like so that the detected detection value K2 of the gas supplied from the new gas supply unit becomes the preset value Ks2 for the gas. Can be done.
  • the control unit 31 may be configured to perform a calculation based on the detected detection value K2 and control the operation of each device of the gas transport device 400 based on the calculation result.
  • control unit 31 stores the determination program using the detected values K1 and K2 and the set values Ks1 and Ks2 in advance.
  • the elastic film 13 is provided between the pressurizing chamber 16 and the vibrating portion 12 as in the case of the first embodiment, and the vibrating portion 12 and the elastic film 13 are provided.
  • a closed vibration transmission chamber 17 is formed between the elastic film 13 and the elastic film 13. Therefore, also in the fourth embodiment, as in the case of the first embodiment, the water droplets of the humidified air existing in the pressurizing chamber 16 do not adhere to the vibrating portion of the vibrating device, and the decrease in vibration efficiency can be suppressed, which is stable. Can transport gas.
  • the gas transport device 400 of the fourth embodiment includes a detector 401, and the detector 401 is arranged between the pressurizing chamber 16 of the housing 14 and the gas supply unit 50, and pressurizes from the gas supply unit 50. At least one of the gas component, the physical characteristic value of the gas, and the flow rate of the gas supplied to the chamber 16 is detected. As a result, it is possible to perform control according to the gas to be transported based on the information regarding the gas detected by the detector 401.
  • the housing 14 has a cylindrical connection wall 143 that connects the pressurizing chamber 16 and the gas supply unit 50, and the detector 401 is arranged on the connection wall 143.
  • the same detector 401 arranged on the connection wall 143 of the housing 14 can be used, and the configuration can be simplified.
  • the detector 401 is provided in the gas transport device 100 of the first embodiment so far, the detector 401 is provided in the gas transport device 200 of the second embodiment or the gas transport device 300 of the third embodiment. It may be provided and the configuration may be such that the supply amount of gas is adjusted based on the detected value.
  • FIG. 7 is a schematic view showing the configuration of the gas transport device according to the fifth embodiment.
  • the gas transport device 500 of the fifth embodiment controls two state detectors (first state detector 501 and second state detector 502) provided in the housing 14 and each of the two state detectors. It differs from the gas transport device 200 of the second embodiment in that it includes a control line 32 connected to the unit 31.
  • first state detector 501 and second state detector 502 provided in the housing 14 and each of the two state detectors. It differs from the gas transport device 200 of the second embodiment in that it includes a control line 32 connected to the unit 31.
  • the fifth embodiment a configuration different from the configuration shown in the second embodiment will be described, the same devices as those shown in the second embodiment are designated by the same reference numerals, and the same devices will be described. Omit.
  • a first installation hole 14b is formed to communicate with the above.
  • the first installation hole 14b is provided separately from the hole 14a into which the valve 201 is fitted.
  • the portion forming the pressure chamber 16, that is, the portion of the peripheral wall portion 142 located between the elastic film 13 and the front wall 141, the pressure chamber 16 and the housing 14 are formed.
  • a second installation hole 14c that communicates with the outside is formed.
  • the first state detector 501 is fitted into the first installation hole 14b formed in the housing 14, and detects at least one of the pressure, temperature, and humidity of the vibration transmission chamber 17.
  • the first state detector 501 is composed of, for example, a pressure sensor, a temperature / humidity sensor, and the like.
  • the second state detector 502 is fitted in the second installation hole 14c formed in the housing 14, and detects at least one of the pressure, temperature, and humidity of the pressurizing chamber 16.
  • the second state detector 502 is composed of, for example, a pressure sensor, a temperature / humidity sensor, and the like.
  • the gas transport device 500 may be configured to omit the second state detector 502 and include only the first state detector 501.
  • the operation performed by the gas transport device 500 according to the fifth embodiment will be described.
  • the operation performed by each device of the gas transport device 500 in the fifth embodiment is substantially the same as that of the second embodiment.
  • the control of each device is performed based on the detection value P1 detected by the first state detector 501 and the detection value P2 detected by the second state detector 502. Will be done.
  • the pressure in the vibration transmission chamber 17 is continuously detected by the first state detector 501, and the detected detection value P1 is transmitted to the control unit 31 via the control line 32.
  • the pressure in the pressurizing chamber 16 is continuously detected by the second state detector 502, and the detected detection value P2 is transmitted to the control unit 31 via the control line 32.
  • the control unit 31 compares the detected value P1 and the detected value P2, and the signal generator 22, the power amplifier 23, and the gas supply unit 50 so that the gas is most efficiently transported to the region of the intended target space. And the valve 201 and the like are controlled.
  • control unit 31 It is desirable to store the determination program using the detected values P1 and P2 in the control unit 31 and the program of the valve 201 in advance. Further, when the operation of transporting gas is being performed in the gas transport device 500, when the environmental pressure changes, the opening and closing of the valve 201 is controlled to automatically adjust the internal pressure of the vibration transmission chamber 17.
  • the control unit 31 can also be configured.
  • the elastic film 13 is provided between the pressurizing chamber 16 and the vibrating portion 12 as in the case of the first embodiment, and the vibrating portion 12 and the elastic film 13 are provided.
  • a closed vibration transmission chamber 17 is formed between the elastic film 13 and the elastic film 13. Therefore, also in the fifth embodiment, as in the case of the first embodiment, the water droplets of the humidified air existing in the pressurizing chamber 16 do not adhere to the vibrating portion of the vibrating device, and the decrease in the vibration efficiency can be suppressed, which is stable. Can transport gas.
  • the gas transport device 500 of the fifth embodiment includes a first state detector 501 that detects at least one of the pressure, temperature, and humidity of the vibration transmission chamber 17.
  • a first state detector 501 that detects at least one of the pressure, temperature, and humidity of the vibration transmission chamber 17.
  • each device can be controlled according to the detection value P1 detected by the first state detector 501, and the degree of freedom of control is increased.
  • the first state detector 501 detects the pressure in the vibration transmission chamber 17
  • each device is controlled according to the detected pressure, and the fluctuation amount of the pressure in the pressurizing chamber 16 is supplied to the pressurizing chamber 16.
  • the amount of gas to be generated, the pressure of the vibration transmission chamber 17, and the like can be changed. As a result, more stable gas transportation becomes possible.
  • the gas transport device 500 includes a second state detector 502 that detects at least one of the pressure, temperature, and humidity of the pressurizing chamber 16.
  • a second state detector 502 that detects at least one of the pressure, temperature, and humidity of the pressurizing chamber 16.
  • FIG. 8 is a schematic view showing the configuration of the gas transport device according to the sixth embodiment.
  • the gas transport device 600 of the sixth embodiment connects the gas transport device 500 shown in the fifth embodiment to the opening adjuster 301 shown in the third embodiment, and the opening adjuster 301 and the control unit 31.
  • the control line 32 is added.
  • the sixth embodiment a configuration different from the configuration shown in the fifth embodiment will be described, the same devices as those shown in the fifth embodiment are designated by the same reference numerals, and the same devices will be described. Omit.
  • the opening adjuster 301 is provided at the edge of the opening 15 in the housing 14, and changes the size of the opening 15.
  • the opening adjuster 301 is composed of, for example, an iris diaphragm composed of a plurality of plate-shaped members.
  • the operation performed by the gas transport device 600 of the sixth embodiment will be described.
  • the operation of the signal generator 22, the power amplifier 23, the gas supply unit 50, and the valve 201 is substantially the same as that of the fifth embodiment.
  • the operation of the opening adjuster 301 is substantially the same as that of the third embodiment.
  • the control unit 31 controls the operation of the opening adjuster 301 so that the size of the opening 15 of the housing 14 becomes a predetermined size.
  • control unit 31 adjusts the opening based on the detection value P1 detected by the first state detector 501 and the detection value P2 detected by the second state detector 502.
  • the vessel 301 is configured to adjust the size of the opening 15. With such a configuration, the vortex ring emitted from the opening 15 can be stabilized.
  • control unit 31 has a signal generator 22, a power amplifier 23, and a gas according to the detected detection values P1 and P2 so that the gas is most efficiently transported to the region of the intended target space.
  • the supply unit 50, the valve 201, the opening adjuster 301, and the like may be controlled.
  • control unit 31 It is desirable to store the determination program using the detected values P1 and P2 in the control unit 31 and the program of the valve 201 in advance. Further, when the operation of transporting gas is being performed in the gas transport device 500, when the environmental pressure changes, the opening and closing of the valve 201 is controlled to automatically adjust the internal pressure of the vibration transmission chamber 17.
  • the control unit 31 can also be configured.
  • the detector 401 of the fourth embodiment is provided, and the gas is supplied from the gas supply unit 50 to the pressurizing chamber 16 according to the gas component, the physical property value, the flow rate, and the like. It may be configured to perform a combination of controls for adjusting the supply of the gas. In this case, it is desirable to store the determination program using the detection value P1, the detection value P2, the detection values K1, K2, the set values Ks1, Ks2, etc. in the control unit 31 in advance.
  • the elastic film 13 is provided between the pressurizing chamber 16 and the vibrating portion 12 as in the case of the first embodiment, and the vibrating portion 12 and the elastic film 13 are provided.
  • a closed vibration transmission chamber 17 is formed between the elastic film 13 and the elastic film 13. Therefore, also in the sixth embodiment, as in the case of the first embodiment, the water droplets of the humidified air existing in the pressurizing chamber 16 do not adhere to the vibrating portion of the vibrating device, and the decrease in vibration efficiency can be suppressed, which is stable. Can transport gas.
  • FIG. 9 is a schematic view showing the configuration of the gas transport device according to the seventh embodiment.
  • the gas transport device 700 according to the seventh embodiment has a configuration in which an input unit 701 and a control line 32 connecting the input unit 701 and the control unit 31 are added to the gas transport device 600 shown in the sixth embodiment. Has been done.
  • the seventh embodiment a configuration different from the configuration shown in the sixth embodiment will be described, the same devices as those shown in the sixth embodiment will be designated by the same reference numerals, and the same devices will be described. Omit.
  • the input unit 701 is for inputting a program, set values, and the like to the control unit 31, and changing these, and is composed of, for example, a human interface device such as a keyboard operated by a user. With such a configuration, each device of the gas transport device 700 can be manually controlled, and gas can be transported according to each individual's preference.
  • the control unit 31 has a signal generator 22, a power amplifier 23, a gas supply unit 50, and a valve according to the input value I input from the input unit 701. It controls 201, the opening adjuster 301, and the like.
  • the control unit 31 can also be configured. Further, the detector 401 shown in the fourth embodiment can also be installed. In this case, the determination program using the detection value P1, the detection value P2, the detection values K1, K2, and the set values Ks1 and Ks2 in the control unit 31 can be installed. Is desirable to be stored in advance.
  • the input unit 701 is not limited to the one manually input by the user, and may be configured such that information from various sensors is directly input. For example, when transporting a gas containing moisture to a specific area in a room, the humidity of the specific area in the room is automatically controlled by inputting the information of the humidity sensor installed in the room to the input unit 701. It is possible to build a system to do. In addition, the air quality of the local space can be controlled by inputting the information of the detector that senses the comfort of each individual in the room to the input unit 701, and the air conditioning control corresponding to each individual can be performed. It will be possible.
  • the elastic film 13 is provided between the pressurizing chamber 16 and the vibrating portion 12 as in the case of the first embodiment, and the vibrating portion 12 and the elastic film 13 are provided.
  • a closed vibration transmission chamber 17 is formed between the elastic film 13 and the elastic film 13. Therefore, also in the seventh embodiment, as in the case of the first embodiment, the water droplets of the humidified air existing in the pressurizing chamber 16 do not adhere to the vibrating portion of the vibrating device, and the decrease in vibration efficiency can be suppressed, which is stable. Can transport gas.
  • the gas transport device 700 of the seventh embodiment includes an input unit 701 for inputting information to the control unit 31.
  • the control can be changed according to the surrounding environment of the gas transport device 700, the personal preference, etc. via the input unit 701, and the comfort can be improved.

Abstract

Disclosed is a gas transportation device that transports a gas, wherein the gas transportation device comprises: a housing having a discharge opening for discharging the gas, the housing having formed therein a pressurizing chamber connected to the discharge opening; a vibration device including a vibrating portion that vibrates and a vibration generator that causes the vibrating portion to vibrate, the vibrating portion being provided at an arbitrary position of the housing via the pressurizing chamber; and an elastic membrane provided between the pressurizing chamber and the vibrating portion, the elastic membrane having an outer circumferential portion connected to an inner surface of the housing. A hermetically sealed vibration transmission chamber surrounded by the vibrating portion, the elastic membrane and a wall portion of the housing between the vibrating portion and the outer circumferential portion of the elastic membrane is formed between the vibrating portion and the elastic membrane inside the housing.

Description

気体輸送装置、気体輸送装置の製造方法及び気体輸送方法Gas transport device, manufacturing method of gas transport device and gas transport method
 本開示は、振動部を有する気体輸送装置、その製造方法及び気体輸送方法に関する。 The present disclosure relates to a gas transport device having a vibrating part, a manufacturing method thereof, and a gas transport method.
 近年、健康環境性能等から建物を評価するLEED(Leadership in Energy and Environmental Design)認証、及びヒトの快適性と健康とから建物を評価するWELL認証等の認証制度が注目されている。一般的に快適性は、温度と湿度とからPMV(Predicted Mean Vote:予測温冷感申告)を算出する方法で評価される。また一般的には、快適であるとされるPMVの規定値となるように、建物内の温度及び湿度が調整されるが、個人の嗜好は考慮されていない。そのため、建物内の環境が、快適とされるPMV値と一致する場合であっても、個人によっては不快と感じることもある。例えば、冬場において乾燥の感じ方には個人差があるので、室内を加湿する際に、気化式、蒸気式あるいは水噴霧式といった従来の加湿方法が用いられると、水分が拡散して室内の湿度が均一となり、室内にいる複数の人の快適性を満たすことができない。このような課題を解決する方法として、水分を含む気体を渦輪として各個人が居る局所空間へ搬送する方法がある(例えば、特許文献1参照)。渦輪は、内部に回転する流体を閉じ込めたまま移動し、搬送中に気体が周囲へ拡散にくい。特許文献1には、このような指向性を有する渦輪を形成することにより、室内の局所空間に気体を輸送する技術が開示されている。 In recent years, certification systems such as LEED (Leadership in Energy and Environmental Design) certification, which evaluates buildings based on health and environmental performance, and WELL certification, which evaluates buildings based on human comfort and health, have been attracting attention. In general, comfort is evaluated by a method of calculating PMV (Predicted Mean Vote) from temperature and humidity. Further, in general, the temperature and humidity in the building are adjusted so as to be the specified value of PMV which is considered to be comfortable, but personal preference is not taken into consideration. Therefore, even if the environment inside the building matches the PMV value that is considered to be comfortable, some individuals may feel uncomfortable. For example, since there are individual differences in how dryness is felt in winter, if a conventional humidification method such as vaporization, steam, or water spray is used to humidify the room, the moisture will diffuse and the humidity in the room will be diffused. Is uniform, and the comfort of multiple people in the room cannot be satisfied. As a method for solving such a problem, there is a method of transporting a gas containing water as a vortex ring to a local space where each individual is present (see, for example, Patent Document 1). The vortex ring moves while confining the fluid that rotates inside, and it is difficult for the gas to diffuse to the surroundings during transportation. Patent Document 1 discloses a technique for transporting a gas to a local space in a room by forming a vortex ring having such directivity.
特開2013-024480号公報Japanese Unexamined Patent Publication No. 2013-024480
 しかしながら、特許文献1では、渦輪吹出口とつながる加圧室の内部の圧力を加圧室と面した振動板により直接変動させて渦輪を生成し、気体を輸送する構成とされている。このため、気体輸送装置で輸送される気体が、水分を多く含む加湿空気である場合、特許文献1に開示された装置では、加圧室内の加湿空気が振動板に直接触れる構成とされているので、加湿空気が結露して水滴が振動板に付着し易くなる。そして、振動板に水滴が付着すると、振動が妨げられて意図した加圧室の加圧が行われず、良好な渦輪が形成できないので、安定した気体の輸送ができない。 However, in Patent Document 1, the pressure inside the pressurizing chamber connected to the vortex ring outlet is directly fluctuated by the diaphragm facing the pressurizing chamber to generate a vortex ring, and the gas is transported. Therefore, when the gas transported by the gas transport device is humidified air containing a large amount of water, the device disclosed in Patent Document 1 is configured such that the humidified air in the pressurizing chamber directly touches the vibrating plate. Therefore, the humidified air is dewed and water droplets are likely to adhere to the vibrating plate. When water droplets adhere to the diaphragm, the vibration is hindered and the intended pressurization chamber is not pressurized, and a good vortex ring cannot be formed, so that stable gas transportation cannot be performed.
 本開示は、上記のような課題を解決するためになされたもので、安定した気体の輸送ができる気体輸送装置、気体輸送装置の製造方法及び気体輸送方法を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a gas transport device capable of stable gas transport, a method for manufacturing a gas transport device, and a gas transport method.
 本開示に係る気体輸送装置は、気体の輸送を行う気体輸送装置において、前記気体の放出口を有し、内部に、前記放出口とつながる加圧室が形成された筐体と、振動する振動部と前記振動部を振動させる振動発生器とを有し、前記加圧室を介して前記振動部が前記筐体の任意の位置に設置された振動装置と、前記加圧室と前記振動部との間に配置され、前記筐体の内面に接続された外周部を有する弾性膜と、を備え、前記筐体の内部において前記振動部と前記弾性膜との間には、前記筐体における前記振動部と前記弾性膜の前記外周部との間の壁部と、前記振動部と、前記弾性膜とにより囲まれ、密閉された振動伝達室が形成されたものである。
 また、本開示に係る気体輸送装置の製造方法は、上記の気体輸送装置の製造方法であって、前記弾性膜の前記外周部を、接着剤で前記筐体の前記内面と接続するものである。
 また、本開示に係る気体輸送方法は、上記の気体輸送装置を用いて前記気体を輸送する気体輸送方法において、前記振動発生器を駆動することにより前記振動部を振動させる振動工程と、前記振動部の前記振動により前記振動伝達室を介して前記弾性膜を伸縮させ、前記振動を、前記放出口とつながる前記加圧室に伝達する振動伝達工程と、前記弾性膜の伸縮により、前記加圧室内に存する前記気体を加圧する加圧工程と、前記弾性膜によって加圧された前記気体を前記放出口を介して外部に放出する放出工程と、を備えるものである。
The gas transport device according to the present disclosure is a gas transport device for transporting gas, which has a housing having a gas discharge port and a pressurizing chamber connected to the discharge port, and vibrating vibration. A vibrating device having a portion and a vibration generator for vibrating the vibrating portion, the vibrating portion installed at an arbitrary position of the housing via the pressurizing chamber, and the pressurizing chamber and the vibrating portion. It is provided with an elastic film having an outer peripheral portion connected to the inner surface of the housing, and is provided between the vibrating portion and the elastic film inside the housing in the housing. A closed vibration transmission chamber is formed by being surrounded by a wall portion between the vibrating portion and the outer peripheral portion of the elastic film, the vibrating portion, and the elastic film.
Further, the method for manufacturing a gas transport device according to the present disclosure is the above-mentioned method for manufacturing a gas transport device, in which the outer peripheral portion of the elastic film is connected to the inner surface of the housing with an adhesive. ..
Further, the gas transport method according to the present disclosure includes a vibration step of vibrating the vibrating portion by driving the vibration generator and the vibration in the gas transport method of transporting the gas using the gas transport device. The elastic film is expanded and contracted through the vibration transmission chamber by the vibration of the portion, and the vibration is transmitted to the pressurizing chamber connected to the discharge port, and the pressurization is performed by the expansion and contraction of the elastic film. It includes a pressurizing step of pressurizing the gas existing in the room and a discharging step of discharging the gas pressurized by the elastic membrane to the outside through the discharging port.
 本開示によれば、加圧室と振動部との間に弾性膜が設けられ、振動部と弾性膜との間には密閉された振動伝達室が形成されているので、加圧室の加湿空気の結露による水滴が振動装置の振動部に付着せず、振動効率の低下が抑制でき、安定した気体の輸送ができる。 According to the present disclosure, an elastic film is provided between the pressurizing chamber and the vibrating portion, and a closed vibration transmission chamber is formed between the vibrating portion and the elastic membrane, so that the pressurizing chamber is humidified. Water droplets due to air dew do not adhere to the vibrating part of the vibrating device, the decrease in vibration efficiency can be suppressed, and stable gas transportation is possible.
実施の形態1に係る気体輸送装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the gas transport apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る気体輸送装置の渦輪の発生原理を示す説明図である。It is explanatory drawing which shows the generation principle of the vortex ring of the gas transport apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る気体輸送装置を用いた気体輸送方法を示す説明図である。It is explanatory drawing which shows the gas transport method using the gas transport apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る気体輸送装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the gas transport apparatus which concerns on Embodiment 2. 実施の形態3に係る気体輸送装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the gas transport apparatus which concerns on Embodiment 3. FIG. 実施の形態4に係る気体輸送装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the gas transport apparatus which concerns on Embodiment 4. FIG. 実施の形態5に係る気体輸送装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the gas transport apparatus which concerns on Embodiment 5. 実施の形態6に係る気体輸送装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the gas transport apparatus which concerns on Embodiment 6. 実施の形態7に係る気体輸送装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the gas transport apparatus which concerns on Embodiment 7.
 以下、本開示の実施の形態に係る気体輸送装置、その製造方法、及び気体輸送装置について図面を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」及び「後」等)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。 Hereinafter, the gas transport device, the manufacturing method thereof, and the gas transport device according to the embodiment of the present disclosure will be described with reference to the drawings. In the following drawings including FIG. 1, the relative dimensional relationships and shapes of the constituent members may differ from the actual ones. Further, in the following drawings, those having the same reference numerals are the same or equivalent thereof, and this shall be common to the entire text of the specification. In addition, terms indicating directions (for example, "upper", "lower", "right", "left", "front", "rear", etc.) are appropriately used for ease of understanding, but these notations are used. For convenience of explanation, it is described as such, and does not limit the arrangement and orientation of the device or component.
実施の形態1.
 図1は、実施の形態1に係る気体輸送装置の構成を示す概略図である。気体輸送装置100は、対象空間の特定の領域に気体を輸送するものである。図中、気体輸送装置100の奥行方向は矢印Y方向で表され、気体輸送装置100の高さ方向は矢印Z方向で表される。
Embodiment 1.
FIG. 1 is a schematic view showing the configuration of the gas transport device according to the first embodiment. The gas transport device 100 transports gas to a specific region of the target space. In the figure, the depth direction of the gas transport device 100 is represented by the arrow Y direction, and the height direction of the gas transport device 100 is represented by the arrow Z direction.
 図1に示されるように、気体輸送装置100は、筐体14と、振動装置10と、振動装置10の駆動回路20と、気体供給部50と、制御部31と、筐体14内に設けられた弾性膜13とを有している。 As shown in FIG. 1, the gas transport device 100 is provided in a housing 14, a vibration device 10, a drive circuit 20 of the vibration device 10, a gas supply unit 50, a control unit 31, and a housing 14. It has an elastic film 13 that has been formed.
 気体供給部50は、筐体14に接続されており、輸送の対象となる気体を筐体14に供給するものである。筐体14は、前壁141と、前壁141の外周端から後方へ延びる周壁部142と、周壁部142の下部に形成され、周壁部142を気体供給部50と接続する筒状の接続壁143と、を有している。前壁141には開口部15が形成されている。図1及び後述する図2に示される例では、開口部15は前壁141の略中央に形成されているが、開口部15は前壁141の任意の位置に形成することができる。筐体14には、前壁141と、後述する弾性膜13と、周壁部142において弾性膜13の外周部と前壁141の外周部とを接続する前方部分と、により囲まれる加圧室16が形成されている。また気体供給部50は、加圧室16へ供給される気体の加湿を行う加湿部51を備えている。 The gas supply unit 50 is connected to the housing 14 and supplies the gas to be transported to the housing 14. The housing 14 is formed at the front wall 141, the peripheral wall portion 142 extending rearward from the outer peripheral end of the front wall 141, and the lower portion of the peripheral wall portion 142, and is a tubular connecting wall that connects the peripheral wall portion 142 to the gas supply portion 50. It has 143 and. An opening 15 is formed in the front wall 141. In the example shown in FIG. 1 and FIG. 2 described later, the opening 15 is formed substantially in the center of the front wall 141, but the opening 15 can be formed at an arbitrary position on the front wall 141. The housing 14 has a pressurizing chamber 16 surrounded by a front wall 141, an elastic film 13 described later, and a front portion of the peripheral wall portion 142 connecting the outer peripheral portion of the elastic film 13 and the outer peripheral portion of the front wall 141. Is formed. Further, the gas supply unit 50 includes a humidification unit 51 that humidifies the gas supplied to the pressurizing chamber 16.
 駆動回路20は、信号を発生させる信号発生器22と、信号発生器22により発生した信号を増幅させる電力増幅器23とを有する。信号発生器22と電力増幅器23とは、信号線24により接続されている。また電力増幅器23は、信号線24により振動装置10と接続されている。振動装置10は、弾性膜13と対向するように筐体14の後端部に設置された振動部12と、電力増幅器23から信号を受信して振動部12を振動させる振動発生器11とを有している。 The drive circuit 20 has a signal generator 22 that generates a signal and a power amplifier 23 that amplifies the signal generated by the signal generator 22. The signal generator 22 and the power amplifier 23 are connected by a signal line 24. Further, the power amplifier 23 is connected to the vibration device 10 by a signal line 24. The vibrating device 10 includes a vibrating portion 12 installed at the rear end of the housing 14 so as to face the elastic film 13, and a vibration generator 11 that receives a signal from the power amplifier 23 and vibrates the vibrating portion 12. Have.
 筐体14内に設けられた弾性膜13と、筐体14に設置された振動装置10の振動部12との間には、密閉した振動伝達室17が形成されている。弾性膜13と振動部12とは直接接触しておらず、弾性膜13と振動部12とは離間して配置されている。すなわち、振動伝達室17は、弾性膜13と、弾性膜13と対向する振動部12と、筐体14の周壁において弾性膜13の外周部と振動部12の外周部とを接続する後方部分と、により形成されている。つまり、筐体14において、弾性膜13の前方には開口部15により対象空間の雰囲気に開放された加圧室16が形成され、弾性膜13の後方には密閉された振動伝達室17が形成されている。振動伝達室17の内部圧力は、装置周囲の環境圧(気圧)よりも高い圧力とされていることが望ましい。筐体14において、上述した接続壁143は、周壁部142における弾性膜13よりも前方部分の下部につながっており、気体供給部50と加圧室16とを連通する構成とされる。 A closed vibration transmission chamber 17 is formed between the elastic film 13 provided in the housing 14 and the vibrating portion 12 of the vibrating device 10 installed in the housing 14. The elastic film 13 and the vibrating portion 12 are not in direct contact with each other, and the elastic film 13 and the vibrating portion 12 are arranged apart from each other. That is, the vibration transmission chamber 17 includes the elastic film 13, the vibrating portion 12 facing the elastic film 13, and the rear portion connecting the outer peripheral portion of the elastic film 13 and the outer peripheral portion of the vibrating portion 12 on the peripheral wall of the housing 14. , Formed by. That is, in the housing 14, a pressure chamber 16 opened to the atmosphere of the target space by the opening 15 is formed in front of the elastic membrane 13, and a closed vibration transmission chamber 17 is formed behind the elastic membrane 13. Has been done. It is desirable that the internal pressure of the vibration transmission chamber 17 is higher than the environmental pressure (atmospheric pressure) around the device. In the housing 14, the connection wall 143 described above is connected to the lower part of the peripheral wall portion 142 in front of the elastic film 13, and is configured to communicate the gas supply portion 50 and the pressurizing chamber 16.
 制御部31は、信号発生器22、電力増幅器23及び気体供給部50のそれぞれと、制御線32により接続されている。制御部31は、信号発生器22の信号及び電力増幅器23の電力増幅量を制御することにより、振動部12の振動を制御する。具体的には、制御部31は、信号発生器22で発生する信号の波形、大きさ及び周波数等を制御する。また制御部31は、気体供給部50から加圧室16に供給される気体の供給量を制御することにより、対象空間へ輸送する気体の量を制御する。 The control unit 31 is connected to each of the signal generator 22, the power amplifier 23, and the gas supply unit 50 by a control line 32. The control unit 31 controls the vibration of the vibration unit 12 by controlling the signal of the signal generator 22 and the power amplification amount of the power amplifier 23. Specifically, the control unit 31 controls the waveform, magnitude, frequency, and the like of the signal generated by the signal generator 22. Further, the control unit 31 controls the amount of gas to be transported to the target space by controlling the amount of gas supplied from the gas supply unit 50 to the pressurizing chamber 16.
 制御部31は、メモリ等の記憶機能を有する装置、CPU等の計算機能を有する装置、又はマイクロコンピューター等の記憶機能と計算機能の双方を有する装置を用いることができる。制御部31には、各機器の動作を予め決めたプログラムを記憶しておくこともできる。また制御部31には、各種パラメータを変えて予め行った測定の評価結果に基づく関係式又はデータテーブル等が記憶されている。ここでパラメータとは、例えば、輸送する気体の物性、周囲環境、開口部15の大きさ、各機器の設定、気体を輸送する領域、気体の輸送量等である。また各機器の設定とは、例えば、信号発生器22で発生する信号、電力増幅器23の増幅量、及び気体供給部50の気体供給量等である。 The control unit 31 can use a device having a storage function such as a memory, a device having a calculation function such as a CPU, or a device having both a storage function and a calculation function such as a microcomputer. The control unit 31 can also store a program in which the operation of each device is predetermined. Further, the control unit 31 stores a relational expression, a data table, or the like based on the evaluation result of the measurement performed in advance by changing various parameters. Here, the parameters are, for example, the physical properties of the gas to be transported, the surrounding environment, the size of the opening 15, the setting of each device, the region for transporting the gas, the transport amount of the gas, and the like. The settings of each device are, for example, a signal generated by the signal generator 22, an amplification amount of the power amplifier 23, a gas supply amount of the gas supply unit 50, and the like.
 なお、制御部31には、例えばキーボード等のヒューマンインターフェース機器が接続され、ヒューマンインターフェース機器を介して制御部31にプログラム及び設定値等の入力及び変更がされる構成としてもよい。 A human interface device such as a keyboard may be connected to the control unit 31, and a program, setting values, and the like may be input and changed to the control unit 31 via the human interface device.
 図1を参照して気体輸送装置100が行う一連の動作について説明する。まず、信号発生器22により発生した信号が電力増幅器23に送られる。電力増幅器23で増幅された信号は、振動装置10の振動発生器11に送られ、振動発生器11により発生した振動で振動部12が変位する。振動装置10の振動部12の振動は、密閉された振動伝達室17を介して弾性膜13に伝わる。弾性膜13は、外周部13a(後述する図2参照)が筐体14に支持されつつ伸縮して変位する。弾性膜13の中央部を含む部分が加圧室16側に変位することにより、加圧室16が加圧され、気体供給部50から供給された加圧室16内の気体が開口部15から渦輪となって放出され、気体が輸送される。このとき、信号発生器22の信号及び電力増幅器23の電力増幅量が制御部31により制御され、振動部12の振動による変位量が制御される。また制御部31により、気体供給部50から加圧室16に供給される気体の供給量が制御される。 A series of operations performed by the gas transport device 100 will be described with reference to FIG. First, the signal generated by the signal generator 22 is sent to the power amplifier 23. The signal amplified by the power amplifier 23 is sent to the vibration generator 11 of the vibration device 10, and the vibration unit 12 is displaced by the vibration generated by the vibration generator 11. The vibration of the vibrating portion 12 of the vibrating device 10 is transmitted to the elastic membrane 13 via the sealed vibration transmission chamber 17. The elastic film 13 expands and contracts while the outer peripheral portion 13a (see FIG. 2 described later) is supported by the housing 14. By displacing the portion including the central portion of the elastic film 13 toward the pressurizing chamber 16, the pressurizing chamber 16 is pressurized, and the gas in the pressurizing chamber 16 supplied from the gas supply unit 50 is released from the opening 15. It is released as a vortex ring and the gas is transported. At this time, the signal of the signal generator 22 and the power amplification amount of the power amplifier 23 are controlled by the control unit 31, and the displacement amount due to the vibration of the vibration unit 12 is controlled. Further, the control unit 31 controls the amount of gas supplied from the gas supply unit 50 to the pressurizing chamber 16.
 次に、気体輸送装置100の構成について、詳しく説明する。信号発生器22では、任意の波形の信号を生成することができる。信号波形は、矩形状のパルス波であることが望ましい。また、信号波形の周波数は、気体輸送装置100に組み込まれた状態における振動発生器11の共振周波数、あるいは、気体輸送装置100に組み込まれていない状態、すなわち、振動発生器11単体の共振周波数に設定されることが望ましい。あるいは、気体輸送装置100に組み込まれた状態における振動発生器11のインピーダンスの極大値又は極小値の周波数の成分が多く含まれるように設定されることが望ましい。あるいは、気体輸送装置100に組み込まれていない状態である振動発生器11単体のインピーダンスの極大値又は極小値における共振周波数の成分が多く含まれるように設定されることが望ましい。 Next, the configuration of the gas transport device 100 will be described in detail. The signal generator 22 can generate a signal having an arbitrary waveform. The signal waveform is preferably a rectangular pulse wave. Further, the frequency of the signal waveform is the resonance frequency of the vibration generator 11 in the state of being incorporated in the gas transport device 100, or the resonance frequency of the vibration generator 11 alone in the state of not being incorporated in the gas transport device 100. It is desirable to set. Alternatively, it is desirable that the vibration generator 11 is set so as to include a large number of frequency components having a maximum value or a minimum value of the impedance in the state of being incorporated in the gas transport device 100. Alternatively, it is desirable that the vibration generator 11 is set so as to include a large amount of resonance frequency components at the maximum value or the minimum value of the impedance of the vibration generator 11 alone, which is not incorporated in the gas transport device 100.
 振動装置10は、電気信号の電気エネルギーを機械エネルギーである振動に変換する電気機械変換器が用いられる。電気機械変換器の代表例として、音響機器のスピーカが挙げられる。スピーカは、コイルに流れる電流と磁石の作用を用い、電気信号を機械振動に変換する。一般にスピーカは、例えばコーン型又はホーン型の振動板と、振動板が接着されたコイル部と、バネを介してコイル部を支持する支持部と、支持部に設置された磁石等とにより構成される。コイルに電流が流れると磁界が生じ、生じた磁界と磁石の磁場とによりコイルに力が作用してコイルが振動し、コイルに接着された振動板が振動する。振動装置にスピーカを用いる場合、コイルが振動発生器11であり、振動板が振動部12を構成する。一般に、スピーカの振動板には、金属、高分子素材、セラミックス、又は紙といった多種多様な材質が用いられる。振動装置10として、スピーカの代わりに、電気機械変換器の一つである圧電素子を用いることもできる。一般に圧電素子は、圧電セラミックと、圧電セラミックに設けられた電極と、圧電セラミックと接着された金属板とを有し、圧電セラミックに電圧を印加することで、金属板を振動させる構成とされる。 As the vibration device 10, an electromechanical converter that converts the electric energy of an electric signal into vibration, which is mechanical energy, is used. A typical example of an electromechanical transducer is a speaker of an audio device. The speaker uses the current flowing through the coil and the action of a magnet to convert an electrical signal into mechanical vibration. Generally, a speaker is composed of, for example, a cone-type or horn-type diaphragm, a coil portion to which the diaphragm is adhered, a support portion that supports the coil portion via a spring, a magnet installed on the support portion, and the like. To. When a current flows through the coil, a magnetic field is generated, and a force acts on the coil due to the generated magnetic field and the magnetic field of the magnet to vibrate the coil, and the vibrating plate adhered to the coil vibrates. When a speaker is used as the vibration device, the coil is the vibration generator 11 and the diaphragm constitutes the vibration unit 12. Generally, a wide variety of materials such as metal, polymer material, ceramics, or paper are used for the diaphragm of the speaker. As the vibrating device 10, a piezoelectric element, which is one of the electromechanical transducers, can be used instead of the speaker. Generally, the piezoelectric element has a piezoelectric ceramic, an electrode provided on the piezoelectric ceramic, and a metal plate bonded to the piezoelectric ceramic, and is configured to vibrate the metal plate by applying a voltage to the piezoelectric ceramic. ..
 電力増幅器23は、信号発生器22から出力された信号を増幅する。増幅量は任意であるが、振動発生器11の許容入力電力以下となるように調整されることが望ましい。 The power amplifier 23 amplifies the signal output from the signal generator 22. The amount of amplification is arbitrary, but it is desirable to adjust it so that it is equal to or less than the allowable input power of the vibration generator 11.
 弾性膜13は、弛み無く筐体14に接続され、厚みが1mm以下の伸縮性と弾力性とがある薄膜であることが望ましい。弾性膜13の材質としては、例えば、フィルム状の高分子化合物の薄膜等が挙げられる。 It is desirable that the elastic membrane 13 is a thin film that is connected to the housing 14 without slack and has elasticity and elasticity with a thickness of 1 mm or less. Examples of the material of the elastic film 13 include a thin film of a film-like polymer compound.
 図2は、実施の形態1に係る気体輸送装置の渦輪の発生原理を示す説明図である。図中、気体輸送装置100の幅方向は矢印X方向で表される。振動伝達室17は密閉構造となっている。振動伝達室17を密閉するために、振動部12と筐体14の任意の面との境界部分、及び、弾性膜13と筐体14の周壁部142との境界部分はそれぞれ、境界部分の全周にわたって、例えば樹脂製の接着剤等で密着し、固定されている。すなわち、弾性膜13の外周部13aを、接着剤等で筐体14の内面と接続することにより、密閉された振動伝達室17を有する気体輸送装置100を製造することができる。なお、接着剤が用いられる場合について説明したが、弾性膜13の外周部13aと筐体14の内面とを密着させ、加圧室16と振動伝達室17との間の気体の出入りを阻止する構成であれば接着剤に限定されない。 FIG. 2 is an explanatory diagram showing the principle of generating a vortex ring of the gas transport device according to the first embodiment. In the figure, the width direction of the gas transport device 100 is represented by the arrow X direction. The vibration transmission chamber 17 has a closed structure. In order to seal the vibration transmission chamber 17, the boundary portion between the vibrating portion 12 and an arbitrary surface of the housing 14 and the boundary portion between the elastic film 13 and the peripheral wall portion 142 of the housing 14 are all the boundary portions. Over the circumference, it is adhered and fixed with, for example, a resin adhesive. That is, by connecting the outer peripheral portion 13a of the elastic membrane 13 to the inner surface of the housing 14 with an adhesive or the like, the gas transport device 100 having a sealed vibration transmission chamber 17 can be manufactured. Although the case where the adhesive is used has been described, the outer peripheral portion 13a of the elastic film 13 and the inner surface of the housing 14 are brought into close contact with each other to prevent gas from entering and exiting between the pressurizing chamber 16 and the vibration transmission chamber 17. The configuration is not limited to the adhesive.
 これにより、例えば加湿部51を用いる等して水分を含む気体を輸送する場合、振動部12に水分を含む気体が接触しないので、振動部12の表面における結露等による水分の付着が抑制される。したがって、振動部12の振動が妨げられず、振動部12の振動効率が低下することなく、安定して加圧室16に圧力変動が与えられ、安定した気体の輸送が可能となる。また、このような弾性膜13を筐体14に設けることで振動部12に水滴が付着することを防止できるので、振動部12に特殊な防水加工を施す場合と比べて、機器の高価格化を抑制することもできる。 As a result, when the gas containing water is transported by using, for example, the humidifying unit 51, the gas containing water does not come into contact with the vibrating unit 12, so that the adhesion of water due to dew condensation or the like on the surface of the vibrating unit 12 is suppressed. .. Therefore, the vibration of the vibrating unit 12 is not hindered, the vibration efficiency of the vibrating unit 12 does not decrease, the pressure fluctuation is stably applied to the pressurizing chamber 16, and stable gas transportation becomes possible. Further, by providing such an elastic film 13 on the housing 14, it is possible to prevent water droplets from adhering to the vibrating portion 12, so that the price of the device is higher than that in the case where the vibrating portion 12 is specially waterproofed. Can also be suppressed.
 振動部12の振動は、振動部12の面全体の振動が振動伝達室17の圧力変動に変換される。つまり、振動部12の面全体の振動が、弾性膜13の中心部に集約される。筐体14の周壁部142の内面に外周部13aにおいて固定されて弛みなく設けられた弾性膜13の中心部に、振動部12の振動により圧力が集中してかかることで、弾性膜13は中心部を振動変位のピークとして容易に伸縮する。よって、弾性膜13の中心部における振動変位すなわち振動により往復する距離は、振動部12の振動面の任意の点における振動変位よりも大きくなる。そのため、上述した振動伝達室17及び弾性膜13を有することで、開口部15から所望の気体を放出させる加圧室16の内部の圧力変動を発生させるために必要な振動発生器11への信号のエネルギーが削減でき、省エネルギー効果が得られる。 As for the vibration of the vibrating unit 12, the vibration of the entire surface of the vibrating unit 12 is converted into the pressure fluctuation of the vibration transmission chamber 17. That is, the vibration of the entire surface of the vibrating portion 12 is concentrated in the central portion of the elastic film 13. The elastic film 13 is centered by the pressure concentrated by the vibration of the vibrating portion 12 on the central portion of the elastic film 13 fixed to the inner surface of the peripheral wall portion 142 of the housing 14 at the outer peripheral portion 13a and provided without slack. The part easily expands and contracts as the peak of vibration displacement. Therefore, the vibration displacement at the center of the elastic film 13, that is, the reciprocating distance due to the vibration is larger than the vibration displacement at any point on the vibration surface of the vibration unit 12. Therefore, by having the vibration transmission chamber 17 and the elastic membrane 13 described above, a signal to the vibration generator 11 necessary for generating a pressure fluctuation inside the pressurizing chamber 16 that discharges a desired gas from the opening 15 is generated. Energy can be reduced and energy saving effect can be obtained.
 気体供給部50は、搬送する気体を筐体14の加圧室16に供給する。例えば、水分を含む気体を輸送する場合は、気体供給部50に超音波式又は加熱式等の加湿装置を用いる。また、乾燥した気体を輸送する場合は、気体供給部50にコンプレッサー式又はデシカント式等の除湿装置を用いる。また、酸素などの特定気体を輸送する場合は、気体供給部50にその特定気体を発生させる装置を用いる。 The gas supply unit 50 supplies the gas to be conveyed to the pressurizing chamber 16 of the housing 14. For example, when transporting a gas containing water, a humidifying device such as an ultrasonic type or a heating type is used for the gas supply unit 50. When transporting a dry gas, a compressor type or desiccant type dehumidifying device is used for the gas supply unit 50. When transporting a specific gas such as oxygen, a device for generating the specific gas is used in the gas supply unit 50.
 筐体14は加圧室16を構成し、任意の材質を用いることができる。筐体14の材質は、輸送する気体に対して、耐性を有する材質であることが望ましく、搬送気体に電荷を保持、あるいは、消失させる機能を有する材質など、加圧室16側の表面を薄膜等によりコーティングしたものを用いることもできる。また、筐体14に、振動装置10の振動部12、及び弾性膜13等により生じる騒音を軽減する材質を用いることもできる。 The housing 14 constitutes the pressurizing chamber 16, and any material can be used. The material of the housing 14 is preferably a material that is resistant to the gas to be transported, and the surface on the pressure chamber 16 side is thin-film, such as a material having a function of retaining or eliminating charges in the transported gas. It is also possible to use the one coated by the above. Further, the housing 14 may be made of a material that reduces noise generated by the vibrating portion 12 of the vibrating device 10, the elastic film 13, and the like.
 開口部15は、加圧室16の気体を渦輪として放出するため、筐体14に開けられた、任意の形状、任意の大きさの穴である。開口部15の形状によらず、放出された渦輪は、時間経過とともに円形状になるため、開口部15の形状は、後述する図2に示されるように円形であることが望ましい。開口部15の大きさは、弾性膜13の振動変位、すなわち、加圧室16の圧力変動量と、気体の輸送距離と、輸送する気体の粘性等とにより決定される。 The opening 15 is a hole of any shape and any size made in the housing 14 in order to release the gas of the pressurizing chamber 16 as a vortex ring. Regardless of the shape of the opening 15, the released vortex ring becomes circular with the passage of time. Therefore, it is desirable that the shape of the opening 15 is circular as shown in FIG. 2 to be described later. The size of the opening 15 is determined by the vibration displacement of the elastic membrane 13, that is, the amount of pressure fluctuation of the pressurizing chamber 16, the transport distance of the gas, the viscosity of the transported gas, and the like.
 図2は、実施の形態1に係る気体輸送装置の渦輪の発生原理を示説明図である。図2を参照して、渦輪の生成と気体輸送の原理について説明する。簡略化のため、開口部15は直径Dで面積Sの円形状を有し、弾性膜13は面積Aの四角形状を有するものとし、弾性膜13は面内一様に変位すると仮定する。 FIG. 2 is an explanatory diagram showing the principle of generating a vortex ring of the gas transport device according to the first embodiment. The principle of vortex ring generation and gas transport will be described with reference to FIG. For simplification, it is assumed that the opening 15 has a circular shape with a diameter D and an area S, the elastic membrane 13 has a rectangular shape with an area A, and the elastic membrane 13 is uniformly displaced in the plane.
 図2において、振動装置10の振動発生器11に電気信号が入力されると、振動部12に力F0が印加されて変位する。振動伝達室17は密閉されているので、振動部12が弾性膜13側へ変位すると振動伝達室17の容積が小さくなることにより振動伝達室17が加圧され、弾性膜13が力Fを受けて前方へ変位し、加圧室16の容積が小さくなることにより加圧室16が加圧される。そして、開口部15から加圧室16の内部の気体が放出される。 In FIG. 2, when an electric signal is input to the vibration generator 11 of the vibration device 10, a force F0 is applied to the vibration unit 12 to displace it. Since the vibration transmission chamber 17 is hermetically sealed, when the vibration portion 12 is displaced toward the elastic film 13, the volume of the vibration transmission chamber 17 becomes smaller, so that the vibration transmission chamber 17 is pressurized and the elastic film 13 receives the force F. The pressure chamber 16 is pressurized by shifting forward and reducing the volume of the pressure chamber 16. Then, the gas inside the pressurizing chamber 16 is discharged from the opening 15.
 加圧室16の圧力が変化する時間ΔTは、1秒以内の短い時間で行われる。図2に示されるように、奥行方向(矢印Y方向)における弾性膜13の変位量をΔYとすると、加圧室16における体積変化量ΔVは、ΔV=AΔYとなる。また、開口部15から気体59が放出される速度をL/ΔTとすると、底面積がS、かつ底面からの高さがLの円柱状の気体59の塊が開口部15から放出され、その体積はSLとなる。開口部15から放出された円柱状の気体の塊は、受ける力により形状が変化し、開口部15から放出された後、円環状(ドーナツ状、あるいは、トーラス状ともいう)となって並進運動する。以降の説明において、このように並進運動する円環状の気体の塊を、渦輪と称する場合がある。ここで、渦輪の生成状況は、搬送する気体の粘性等の物性、及び周囲の温度といった環境等の要因によって変化するので、予め実験等により渦輪の生成状況を確認し、渦輪が生成されるように、開口部15の直径D、力F、及び力F0等の値を決定しておく。 The time ΔT at which the pressure in the pressurizing chamber 16 changes is as short as 1 second or less. As shown in FIG. 2, assuming that the displacement amount of the elastic membrane 13 in the depth direction (arrow Y direction) is ΔY, the volume change amount ΔV in the pressurizing chamber 16 is ΔV = AΔY. Further, assuming that the rate at which the gas 59 is discharged from the opening 15 is L / ΔT, a cylindrical mass of gas 59 having a bottom area of S and a height of L from the bottom surface is discharged from the opening 15. The volume is SL. The columnar gas mass released from the opening 15 changes its shape due to the force received, and after being released from the opening 15, becomes an annular shape (also called a donut shape or a torus shape) and translates. do. In the following description, such an annular gas mass that moves in translation may be referred to as a vortex ring. Here, the formation state of the vortex ring changes depending on the physical properties such as the viscosity of the gas to be conveyed and the environmental factors such as the ambient temperature. In addition, the values of the diameter D, the force F, the force F0, and the like of the opening 15 are determined.
 開口部15から放出された渦輪の運動状態は、開口部15の直径Dが小さく、かつ、弾性膜13に加わる力Fが大きく、かつ、ΔTが小さいほど、渦輪の進行速度が大きくなる。空間に放出された渦輪は、空気抵抗等を受けて減速し、やがて静止し、渦輪を構成する気体は周囲の空間に拡散して、渦輪が消滅する。渦輪は、内部において回転する流体を閉じ込めたまま放出された方向へ移動するので、内側と外側とで速度が均一な気体の塊と比べて、移動中に気体が周囲へ拡散しにくく、遠方まで到達することができる。 As for the motion state of the vortex ring discharged from the opening 15, the smaller the diameter D of the opening 15, the larger the force F applied to the elastic film 13, and the smaller ΔT, the higher the traveling speed of the vortex ring. The vortex ring released into the space slows down due to air resistance or the like, and eventually becomes stationary, the gas constituting the vortex ring diffuses into the surrounding space, and the vortex ring disappears. Since the vortex ring moves in the direction in which the rotating fluid is trapped inside and is discharged, the gas is less likely to diffuse to the surroundings during movement than a gas mass having a uniform velocity inside and outside, and it goes far. Can be reached.
 以上より、予め、開口部15の直径D及び振動部12に加わる力F0等のパラメータを設定することで、特定の領域に特定の気体を輸送することが可能となる。開口部15の直径D、振動伝達室17を介して弾性膜13を振動させるために必要な振動部12に加わる力F0、信号発生器22で発生する信号の波形、電力及び周波数、電力増幅器23の増幅量、並びに気体供給部50の気体の供給量等は、予め決定しておく。これらの値は、対象空間に輸送対象の気体の輸送を実験等により行って、実験結果に基づいて予め設定しておくことが望ましい。 From the above, by setting parameters such as the diameter D of the opening 15 and the force F0 applied to the vibrating portion 12 in advance, it is possible to transport a specific gas to a specific region. The diameter D of the opening 15, the force F0 applied to the vibrating portion 12 required to vibrate the elastic film 13 through the vibration transmission chamber 17, the waveform, power and frequency of the signal generated by the signal generator 22, and the power amplifier 23. The amplification amount of the above, the amount of gas supplied by the gas supply unit 50, and the like are determined in advance. It is desirable that these values are set in advance based on the experimental results by transporting the gas to be transported to the target space by an experiment or the like.
 以上のように、実施の形態1の気体輸送装置100は、気体の放出口(開口部15)を有し、内部に、放出口とつながる加圧室16が形成された筐体14と、振動装置10と、弾性膜13と、を備える。振動装置10は、振動する振動部12と振動部12を振動させる振動発生器11とを有し、加圧室16を介して振動部12が筐体14の任意の位置に設置されている。弾性膜13は、加圧室16と振動部12との間に配置され、筐体14の内面に接続された外周部13aを有する。そして、筐体14の内部において振動部12と弾性膜13との間には、筐体14における振動部12と弾性膜13の外周部13aとの間の壁部と、振動部12と、弾性膜13とにより囲まれ、密閉された振動伝達室17が形成されている。 As described above, the gas transport device 100 of the first embodiment has a housing 14 having a gas discharge port (opening 15) and a pressurizing chamber 16 connected to the discharge port formed therein, and vibration. The device 10 and the elastic film 13 are provided. The vibrating device 10 has a vibrating unit 12 that vibrates and a vibration generator 11 that vibrates the vibrating unit 12, and the vibrating unit 12 is installed at an arbitrary position of the housing 14 via the pressurizing chamber 16. The elastic membrane 13 is arranged between the pressurizing chamber 16 and the vibrating portion 12, and has an outer peripheral portion 13a connected to the inner surface of the housing 14. Then, inside the housing 14, between the vibrating portion 12 and the elastic membrane 13, the wall portion between the vibrating portion 12 and the outer peripheral portion 13a of the elastic membrane 13 in the housing 14, the vibrating portion 12, and the elasticity. A closed vibration transmission chamber 17 is formed by being surrounded by the membrane 13.
 これにより、加圧室16の加湿空気の結露による水滴が振動装置10の振動部12に付着せず、振動効率の低下が抑制でき、良好な渦輪による安定した気体の輸送が行える。また、水滴による振動装置10の振動部12の劣化を防止できる。よって、振動装置10に防水加工を施す必要がなく、一般的なスピーカ等を振動装置10として使用でき、気体輸送装置100の低価格化が可能である。更に、振動装置10の振動部12全面の振動が振動伝達室17を介して弾性膜13の中央部に集約されるので、振動装置10の振動部12よりも増大した振幅を有する弾性膜13を介して加圧室16の気体が加圧されることにより、省エネルギー効果が得られる。 As a result, water droplets due to dew condensation on the humidified air in the pressurizing chamber 16 do not adhere to the vibrating portion 12 of the vibrating device 10, a decrease in vibration efficiency can be suppressed, and stable gas transportation can be performed by a good vortex ring. Further, it is possible to prevent deterioration of the vibrating portion 12 of the vibrating device 10 due to water droplets. Therefore, it is not necessary to apply waterproofing to the vibrating device 10, a general speaker or the like can be used as the vibrating device 10, and the price of the gas transport device 100 can be reduced. Further, since the vibration of the entire surface of the vibrating portion 12 of the vibrating device 10 is concentrated in the central portion of the elastic membrane 13 via the vibration transmission chamber 17, the elastic membrane 13 having a larger amplitude than the vibrating portion 12 of the vibrating device 10 is provided. By pressurizing the gas in the pressurizing chamber 16 through the pressurizing chamber 16, an energy saving effect can be obtained.
 実際に、発明者等が、上記のように設計した気体輸送装置を製作し、超音波加湿器で生成された加湿空気を特定の気体として、加湿空気の飛距離を目視確認したところ、渦輪が1メートル以上並進運動し、特定領域に水分を輸送し、加湿できることを確認した。また発明者は、密閉された振動伝達室17により加湿空気を振動部12に接触させない構成とした気体輸送装置100において、振動部12の振動効率が低下せず、低エネルギーで安定した気体の輸送ができること、及び振動部12の劣化が抑制できること確認した。 Actually, when the inventors manufactured a gas transport device designed as described above and visually confirmed the flight distance of the humidified air using the humidified air generated by the ultrasonic humidifier as a specific gas, the vortex ring was found. It was confirmed that it can be humidified by translating for 1 meter or more, transporting water to a specific area. Further, the inventor has configured the gas transport device 100 in which the humidified air is not brought into contact with the vibrating portion 12 by the closed vibration transmission chamber 17, in which the vibration efficiency of the vibrating portion 12 does not decrease and the gas is stably transported with low energy. It was confirmed that this can be done and that the deterioration of the vibrating portion 12 can be suppressed.
 また実施の形態1の気体輸送装置100は、振動発生器11と信号線24を介して接続され、振動発生器11を駆動する駆動回路20と、駆動回路20を制御する制御部31と、を備える。駆動回路20は、信号を発生させる信号発生器22と、信号発生器22により発生した信号を増幅させる電力増幅器23と、を含むものである。振動発生器11は、駆動回路20から入力される信号の電気エネルギーを機械エネルギーに変換するものである。 Further, the gas transport device 100 of the first embodiment is connected to the vibration generator 11 via a signal line 24, and has a drive circuit 20 for driving the vibration generator 11 and a control unit 31 for controlling the drive circuit 20. Be prepared. The drive circuit 20 includes a signal generator 22 that generates a signal and a power amplifier 23 that amplifies the signal generated by the signal generator 22. The vibration generator 11 converts the electrical energy of the signal input from the drive circuit 20 into mechanical energy.
 これにより、振動部12の振動を制御することにより、放出される気体が渦輪を形成するように加圧室16の気体にかかる圧力を調整することができる。また、振動装置10として、一般的な圧電素子及びスピーカといった電気機械変換器を用いることができ、気体輸送装置100の低価格化が可能である。 Thereby, by controlling the vibration of the vibrating unit 12, the pressure applied to the gas in the pressurizing chamber 16 can be adjusted so that the released gas forms a vortex ring. Further, as the vibration device 10, an electromechanical converter such as a general piezoelectric element and a speaker can be used, and the price of the gas transport device 100 can be reduced.
 信号発生器22では、正弦状又は矩形状等の任意の波形を連続して発生させることで、繰り返し、振動部12を振動させ、伝達室を介して繰り返し、弾性膜13を振動させ、ほぼ連続して気体を対象空間に輸送することができる。また、信号発生器22では、正弦状又は矩形状等の任意の波形を断続的あるいは間欠的して発生させると、意図した時間間隔で振動部12を振動させ、伝達室を介して弾性膜13を振動させ、断続的あるいは間欠的に気体を対象空間に輸送することができる。このとき、波形のONとOFFの長さ(いわゆる、デューティー比)を制御することで、気体の輸送量を調整することができる。 In the signal generator 22, an arbitrary waveform such as a sine shape or a rectangular shape is continuously generated to repeatedly vibrate the vibrating portion 12, repeat through the transmission chamber, and vibrate the elastic film 13 to be substantially continuous. The gas can be transported to the target space. Further, in the signal generator 22, when an arbitrary waveform such as a sine shape or a rectangular shape is generated intermittently or intermittently, the vibrating portion 12 is vibrated at an intended time interval, and the elastic film 13 is passed through the transmission chamber. Can be vibrated to intermittently or intermittently transport gas to the target space. At this time, the amount of gas transported can be adjusted by controlling the length of ON and OFF of the waveform (so-called duty ratio).
 気体輸送装置100において、気体供給部50から加圧室16への気体の供給量が、弾性膜13の振動による加圧室16の圧力変動により開口部15から気体を放出する能力を超えると、開口部15から気体が渦輪を形成せずに外部に流出する。また、波形がOFFである時に、気体供給部50から気体が加圧室16に供給され続けると、開口部15から気体が渦輪を形成せずに外部に流出する。渦輪を形成せずに開口部15から流出した気体は、渦輪よりも拡散しやすく、到達距離が短くなる。開口部15から気体が渦輪を形成せずに外部に流出する状況は、信号発生器22と電力増幅器23と気体供給部50とが互いに連動するように制御部31によってこれらの機器の動作を制御することにより、防ぐことができる。 In the gas transport device 100, when the amount of gas supplied from the gas supply unit 50 to the pressurizing chamber 16 exceeds the ability to release gas from the opening 15 due to the pressure fluctuation of the pressurizing chamber 16 due to the vibration of the elastic film 13. The gas flows out from the opening 15 without forming a vortex ring. Further, if the gas is continuously supplied from the gas supply unit 50 to the pressurizing chamber 16 when the waveform is OFF, the gas flows out from the opening 15 without forming a vortex ring. The gas flowing out from the opening 15 without forming a vortex ring is more likely to diffuse than the vortex ring, and the reach is shortened. In the situation where the gas flows out from the opening 15 without forming a vortex ring, the operation of these devices is controlled by the control unit 31 so that the signal generator 22, the power amplifier 23, and the gas supply unit 50 are interlocked with each other. By doing so, it can be prevented.
 また、制御部31は記憶機能を有しているので、予め、気体を輸送する領域、輸送する気体の量、温度等の周辺環境、及び輸送する気体等についてそれぞれ複数の状態における最適な機器構成を決めて関係式等で記憶しておくことで、変更に対応することができる。例えば、気体を輸送する領域を変更する、又は輸送する気体の量を変更する場合に、輸送する気体の物性若しくは周囲環境の変化に応じて、予め記憶された関係式を用いて各機器の設定を随時変更し、気体を輸送する領域及び気体の輸送量等を変更することもできる。具体的には、信号発生器22で発生する信号、電力増幅器23の増幅量、及び気体供給部50の気体供給量が随時変更される。更に、開口部15の大きさを変更し、気体を輸送する範囲又は輸送する気体の量を変更することもできる。 Further, since the control unit 31 has a storage function, the optimum equipment configuration in a plurality of states for each of the region for transporting gas, the amount of gas to be transported, the surrounding environment such as temperature, the gas to be transported, and the like in advance. By deciding and storing it in a relational expression, etc., it is possible to respond to changes. For example, when changing the region for transporting gas or changing the amount of gas to be transported, the setting of each device is set using the relational expression stored in advance according to the physical properties of the gas to be transported or the change in the surrounding environment. Can be changed at any time to change the region for transporting gas, the amount of gas transported, and the like. Specifically, the signal generated by the signal generator 22, the amplification amount of the power amplifier 23, and the gas supply amount of the gas supply unit 50 are changed at any time. Further, the size of the opening 15 can be changed to change the range for transporting the gas or the amount of the gas to be transported.
 図3は、実施の形態1に係る気体輸送装置を用いた気体輸送方法を示す説明図である。図3を参照して、気体輸送装置100を用いて気体を輸送する気体輸送方法について説明する。気体輸送方法は、供給する気体を加湿する加湿工程と、輸送の対象となる気体を供給する気体供給工程とを有する。また気体輸送方法は、信号を処理する信号処理工程と、振動を発生させる振動工程と、振動を伝達する振動伝達工程と、加圧工程と、気体を放出する放出工程とを有する。 FIG. 3 is an explanatory diagram showing a gas transport method using the gas transport device according to the first embodiment. A gas transport method for transporting gas using the gas transport device 100 will be described with reference to FIG. The gas transport method includes a humidification step of humidifying the supplied gas and a gas supply step of supplying the gas to be transported. Further, the gas transport method includes a signal processing step of processing a signal, a vibration step of generating vibration, a vibration transmission step of transmitting vibration, a pressurizing step, and a discharging step of discharging gas.
 加湿工程において、加湿部51により、加圧室16へ供給される気体に加湿が行われる(ステップST101)。気体供給工程において、気体供給部50により、予め決められた量の気体が加圧室16へ供給される(ステップST102)。 In the humidification step, the humidifying unit 51 humidifies the gas supplied to the pressurizing chamber 16 (step ST101). In the gas supply step, a predetermined amount of gas is supplied to the pressurizing chamber 16 by the gas supply unit 50 (step ST102).
 信号処理工程において、駆動回路20により、振動発生器11を駆動するための信号の処理が行われる(ステップST103)。具体的には、まず、信号発生器22により信号を発生する信号発生工程が行われ、次に、電力増幅器23により信号を増幅させる信号増幅工程が行われる。信号処理工程で処理された信号は、振動発生器11に入力される。 In the signal processing step, the drive circuit 20 processes the signal for driving the vibration generator 11 (step ST103). Specifically, first, a signal generation step of generating a signal by the signal generator 22 is performed, and then a signal amplification step of amplifying the signal by the power amplifier 23 is performed. The signal processed in the signal processing step is input to the vibration generator 11.
 振動工程において、振動発生器11が駆動され、振動部12が振動する(ステップST104)。具体的には、振動発生器11により、駆動回路20から入力された信号の電力が機械エネルギーに変換されて振動を発生し、発生した振動により振動部12を振動させる。 In the vibration process, the vibration generator 11 is driven and the vibrating unit 12 vibrates (step ST104). Specifically, the vibration generator 11 converts the electric power of the signal input from the drive circuit 20 into mechanical energy to generate vibration, and the generated vibration causes the vibrating unit 12 to vibrate.
 振動伝達工程において、振動部12の振動により、密閉された振動伝達室17を介して弾性膜13を伸縮させ、振動を、放出口(開口部15)とつながる加圧室16に伝達する(ステップST105)。加圧工程において、弾性膜13の伸縮により、加圧室16内の加湿気体を加圧する(ステップST106)。放出工程において、弾性膜13によって加圧された加湿気体が、筐体14の放出口から外部に放出する(ステップST107)。 In the vibration transmission step, the elastic film 13 is expanded and contracted through the sealed vibration transmission chamber 17 by the vibration of the vibration portion 12, and the vibration is transmitted to the pressurizing chamber 16 connected to the discharge port (opening 15) (step). ST105). In the pressurizing step, the humidifying body in the pressurizing chamber 16 is pressurized by the expansion and contraction of the elastic film 13 (step ST106). In the discharge step, the humidifying body pressurized by the elastic membrane 13 is discharged to the outside from the discharge port of the housing 14 (step ST107).
 なお、本実施の形態では、気体輸送装置100が水分又は酸素を含む気体等を搬送する場合について説明したが、気体輸送装置100は、香り成分(匂い成分)を含む気体、あるいは粉体等を含む気体等、あらゆる気体を輸送することができる。 In the present embodiment, the case where the gas transport device 100 transports a gas or the like containing water or oxygen has been described, but the gas transport device 100 carries a gas or powder or the like containing a scent component (smell component). It can transport any gas, including gases it contains.
実施の形態2.
 図4は、実施の形態2に係る気体輸送装置の構成を示す概略図である。実施の形態2の気体輸送装置200は、筐体14において振動伝達室17を形成する部分に設置された弁201と、弁201と制御部31とを接続する制御線32と、を備える点で実施の形態1の気体輸送装置と異なる。以下、実施の形態2において、実施の形態1に示した構成と異なる構成について説明し、実施の形態1に示した構成と同一の機器については同一の符号を付し、同一の機器の説明は省略する。
Embodiment 2.
FIG. 4 is a schematic view showing the configuration of the gas transport device according to the second embodiment. The gas transport device 200 of the second embodiment includes a valve 201 installed in a portion of the housing 14 forming the vibration transmission chamber 17, and a control line 32 connecting the valve 201 and the control unit 31. It is different from the gas transport device of the first embodiment. Hereinafter, in the second embodiment, a configuration different from the configuration shown in the first embodiment will be described, the same devices as those shown in the first embodiment are designated by the same reference numerals, and the same devices will be described. Omit.
 筐体14の周壁部142において振動伝達室17を形成する部分、すなわち、周壁部142において弾性膜13と振動部12との間に位置する部分には、振動伝達室17と筐体14の外部とを連通する穴14aが形成されている。 The portion of the peripheral wall portion 142 of the housing 14 that forms the vibration transmission chamber 17, that is, the portion of the peripheral wall portion 142 that is located between the elastic film 13 and the vibration portion 12, is the outside of the vibration transmission chamber 17 and the housing 14. A hole 14a is formed to communicate with the above.
 弁201は、筐体14に形成された穴14aに嵌め込まれており、開状態において、振動伝達室17の内部の圧力を調整し、閉状態において、振動伝達室17の内部を一定の圧力に保持するものである。制御部31は、振動伝達室17の内部圧力が予め決められた圧力となるように弁201の開閉を制御する。この場合において、例えば、振動伝達室17の圧力を検知する第1圧力センサと装置周囲の圧力を検知する第2圧力センサとを設け、制御部31は、第1圧力センサの値が第2圧力センサの値より大きくなるように弁の開度を制御する構成とできる。このような構成により、振動伝達室17の内部は、効率的に振動が伝達される圧力に調整され保持されている。なお、筐体14に設置された弁201に更に、弁201を介して振動伝達室17に空気を送り、弁201を介して振動伝達室17から空気を抜く機能を有する、エアーコンプレッサ等の圧力調節器を接続することもできる。この場合、弁201及び圧力調節器の動作を制御部31により制御することで、振動伝達室17の内部の圧力を調整する構成とされる。 The valve 201 is fitted into a hole 14a formed in the housing 14, and adjusts the pressure inside the vibration transmission chamber 17 in the open state, and keeps the inside of the vibration transmission chamber 17 at a constant pressure in the closed state. It is something to hold. The control unit 31 controls the opening and closing of the valve 201 so that the internal pressure of the vibration transmission chamber 17 becomes a predetermined pressure. In this case, for example, a first pressure sensor for detecting the pressure in the vibration transmission chamber 17 and a second pressure sensor for detecting the pressure around the device are provided, and the control unit 31 has a control unit 31 in which the value of the first pressure sensor is the second pressure. The valve opening can be controlled so as to be larger than the sensor value. With such a configuration, the inside of the vibration transmission chamber 17 is adjusted and maintained at a pressure at which vibration is efficiently transmitted. The pressure of an air compressor or the like having a function of further sending air to the vibration transmission chamber 17 through the valve 201 to the valve 201 installed in the housing 14 and removing air from the vibration transmission chamber 17 through the valve 201. You can also connect a compressor. In this case, the pressure inside the vibration transmission chamber 17 is adjusted by controlling the operation of the valve 201 and the pressure regulator by the control unit 31.
 実施の形態2の気体輸送装置200が行う動作について説明する。気体輸送装置200において、気体を搬送する動作、すなわち、気体供給部50、信号発生器22、電力増幅器23及び振動発生器11の動作は、実施の形態1の場合と同じであるため、ここでは説明を省略する。実施の形態2の気体輸送装置200では、制御部31により弁201の開閉が制御され、振動伝達室17の内部圧力が調整される。このとき、振動伝達室17の内部圧力は、装置周囲の環境圧(気圧)よりも高くなるように調整されることが望ましい。 The operation performed by the gas transport device 200 of the second embodiment will be described. In the gas transport device 200, the operation of transporting the gas, that is, the operation of the gas supply unit 50, the signal generator 22, the power amplifier 23, and the vibration generator 11 is the same as in the case of the first embodiment. The explanation is omitted. In the gas transport device 200 of the second embodiment, the opening and closing of the valve 201 is controlled by the control unit 31, and the internal pressure of the vibration transmission chamber 17 is adjusted. At this time, it is desirable that the internal pressure of the vibration transmission chamber 17 is adjusted to be higher than the environmental pressure (atmospheric pressure) around the device.
 装置周囲の環境圧等を含む情報は、例えば、上述したヒューマンインターフェース機器を介して利用者により制御部31に手動で入力される。なお、周囲環境の情報は、センサ等により取得して制御部31に自動で入力される構成とすることもできる。ヒューマンインターフェース機器又はセンサ等から入力された情報は、制御部31に記憶される。 Information including the environmental pressure around the device is manually input to the control unit 31 by the user via, for example, the above-mentioned human interface device. It should be noted that the information on the surrounding environment may be acquired by a sensor or the like and automatically input to the control unit 31. The information input from the human interface device, the sensor, or the like is stored in the control unit 31.
 制御部31は、記憶されている情報に基づいて、弁201の開閉を調整し、振動伝達室17の内部圧力を調整する。このような、弁201により内部圧力を調整する動作は、気体供給部50等により気体を搬送する動作を開始する前に実行され、気体を搬送する動作が行われている間、振動伝達室17の内部圧力は調整後の圧力に保持される。また制御部31は、気体を搬送する動作が行われている間において装置周囲の環境圧が変化した場合に、随時、弁201を動作させて振動伝達室17の内部圧力を自動で調整する構成としてもよい。気体を搬送する動作の終了後、制御部31は弁201を開状態とし、振動伝達室17の内部圧力が環境圧と同じ圧力になるように調整することが望ましい。これにより、弾性膜13に張力が過剰に印加されるのを回避でき、弾性膜13の劣化を防ぐことができる。 The control unit 31 adjusts the opening and closing of the valve 201 based on the stored information, and adjusts the internal pressure of the vibration transmission chamber 17. Such an operation of adjusting the internal pressure by the valve 201 is executed before the operation of transporting the gas by the gas supply unit 50 or the like is started, and the vibration transmission chamber 17 is performed while the operation of transporting the gas is being performed. The internal pressure of is maintained at the adjusted pressure. Further, the control unit 31 is configured to automatically adjust the internal pressure of the vibration transmission chamber 17 by operating the valve 201 at any time when the environmental pressure around the device changes while the operation of transporting the gas is being performed. May be. After the operation of transporting the gas is completed, it is desirable that the control unit 31 opens the valve 201 and adjusts the internal pressure of the vibration transmission chamber 17 to be the same as the environmental pressure. As a result, it is possible to prevent excessive tension from being applied to the elastic film 13, and it is possible to prevent deterioration of the elastic film 13.
 制御部31における弁201のプログラムは、予め記憶させておくことが望ましい。実施の形態2の気体輸送装置200を用いて気体を輸送する気体輸送方法は、実施の形態1の場合とほぼ同じであるが、弁201の開閉により振動伝達室17の内部の圧力を調整する圧力調整工程を更に有する。 It is desirable to store the program of the valve 201 in the control unit 31 in advance. The gas transport method for transporting gas using the gas transport device 200 of the second embodiment is almost the same as that of the first embodiment, but the pressure inside the vibration transmission chamber 17 is adjusted by opening and closing the valve 201. It also has a pressure adjustment step.
 以上のように、実施の形態2の気体輸送装置200においても、実施の形態1の場合と同様に、加圧室16と振動部12との間に弾性膜13が設けられ、振動部12と弾性膜13との間には密閉された振動伝達室17が形成されている。よって、実施の形態2においても、実施の形態1の場合と同様に、加圧室16に存する加湿空気の水滴が振動装置10の振動部12に付着せず、振動効率の低下が抑制でき、安定した気体の輸送ができる。 As described above, also in the gas transport device 200 of the second embodiment, the elastic film 13 is provided between the pressurizing chamber 16 and the vibrating portion 12 as in the case of the first embodiment, and the vibrating portion 12 and the elastic film 13 are provided. A closed vibration transmission chamber 17 is formed between the elastic film 13 and the elastic film 13. Therefore, also in the second embodiment, as in the case of the first embodiment, the water droplets of the humidified air existing in the pressurizing chamber 16 do not adhere to the vibrating portion 12 of the vibrating device 10, and the decrease in vibration efficiency can be suppressed. Stable gas transport is possible.
 また実施の形態2の気体輸送装置200は、弁201を備えており、弁201は、筐体14における、振動部12と弾性膜13の外周部13aとの間の壁部に設けられ、閉状態において振動伝達室17の内部の圧力を一定に保持する。これにより、弁201を開いて振動伝達室17の内部の圧力を調整し、弁201を閉じて調整後の圧力を維持することができるので、圧力の変更により、振動伝達の制御の自由度が増す。よって、より安定した気体の輸送が可能となる。 Further, the gas transport device 200 of the second embodiment includes a valve 201, which is provided on the wall portion between the vibrating portion 12 and the outer peripheral portion 13a of the elastic membrane 13 in the housing 14, and is closed. The pressure inside the vibration transmission chamber 17 is kept constant in the state. As a result, the valve 201 can be opened to adjust the pressure inside the vibration transmission chamber 17, and the valve 201 can be closed to maintain the adjusted pressure. Therefore, by changing the pressure, the degree of freedom in controlling the vibration transmission can be increased. Increase. Therefore, more stable gas transportation becomes possible.
 また、振動伝達室17は、筐体14の周囲の気圧よりも高い圧力に保持されている。これにより、筐体14内において加圧室16と密閉された振動伝達室17との間に配置された弾性膜13を、振動部12の振動により加圧室16側へ変位し易い構成とでき、加圧室16内の気体を効率的に加圧できる。 Further, the vibration transmission chamber 17 is held at a pressure higher than the atmospheric pressure around the housing 14. As a result, the elastic film 13 arranged between the pressurizing chamber 16 and the sealed vibration transmission chamber 17 in the housing 14 can be easily displaced toward the pressurizing chamber 16 by the vibration of the vibrating portion 12. , The gas in the pressurizing chamber 16 can be efficiently pressurized.
実施の形態3.
 図5は、実施の形態3における気体輸送装置の構成を示す概略図である。実施の形態3の気体輸送装置300は、筐体14の開口部15の大きさを変化させる開口調整器301と、開口調整器301と制御部31とを接続する制御線32と、を備える点で実施の形態1の気体輸送装置と異なる。以下、実施の形態3において、実施の形態1に示した構成と異なる構成について説明し、実施の形態1に示した構成と同一の機器については同一の符号を付し、同一の機器の説明は省略する。
Embodiment 3.
FIG. 5 is a schematic view showing the configuration of the gas transport device according to the third embodiment. The gas transport device 300 according to the third embodiment includes an opening adjuster 301 that changes the size of the opening 15 of the housing 14, and a control line 32 that connects the opening adjuster 301 and the control unit 31. Is different from the gas transport device of the first embodiment. Hereinafter, in the third embodiment, a configuration different from the configuration shown in the first embodiment will be described, the same devices as those shown in the first embodiment are designated by the same reference numerals, and the same devices will be described. Omit.
 開口調整器301は、筐体14において開口部15の縁部に設けられ、開口部15の大きさを変更するものである。開口調整器301は、例えば、複数の板状の部材から成るアイリス絞りにより構成される。制御部31は、筐体14の開口部15の大きさが予め決められた大きさとなるように開口調整器301の動作を制御する。このような構成により、円環形状が崩れにくい安定した渦輪を生成でき、また、気体の輸送距離を制御することができる。 The opening adjuster 301 is provided at the edge of the opening 15 in the housing 14, and changes the size of the opening 15. The opening adjuster 301 is composed of, for example, an iris diaphragm composed of a plurality of plate-shaped members. The control unit 31 controls the operation of the opening adjuster 301 so that the size of the opening 15 of the housing 14 becomes a predetermined size. With such a configuration, it is possible to generate a stable vortex ring in which the annulus shape does not easily collapse, and it is possible to control the transport distance of the gas.
 実施の形態3の気体輸送装置300が行う動作について説明する。気体輸送装置300において、気体供給部50、信号発生器22、電力増幅器23及び振動発生器11の動作は、実施の形態1の場合と同じであるため、ここでは説明を省略する。実施の形態3の気体輸送装置300では、制御部31により開口調整器301の動作が制御されることで、開口部15の大きさが調整される。具体的には、制御部31は、振動発生器11の入力信号の電力に応じて、開口調整器301を制御し、開口部15の大きさを調整する。これにより、弾性膜13の振動振幅に適した開口部15の大きさに変更して安定した渦輪を生成でき、また、気体の輸送距離が調整できる。 The operation performed by the gas transport device 300 according to the third embodiment will be described. In the gas transport device 300, the operations of the gas supply unit 50, the signal generator 22, the power amplifier 23, and the vibration generator 11 are the same as those in the first embodiment, and thus the description thereof will be omitted here. In the gas transport device 300 of the third embodiment, the size of the opening 15 is adjusted by controlling the operation of the opening adjuster 301 by the control unit 31. Specifically, the control unit 31 controls the opening adjuster 301 according to the electric power of the input signal of the vibration generator 11 and adjusts the size of the opening portion 15. As a result, the size of the opening 15 suitable for the vibration amplitude of the elastic film 13 can be changed to generate a stable vortex ring, and the gas transport distance can be adjusted.
 制御部31は、振動発生器11の入力信号の電力及び装置の周囲環境に応じて、開口調整器301を制御し、開口部15の大きさを調整する構成とされてもよい。周囲環境の情報には、例えば温度又は湿度等の情報が含まれ、周囲環境の情報は、例えば、上述したヒューマンインターフェース機器を介して利用者により制御部31に手動で入力される。なお、気体輸送装置300は、温度及び湿度といった周囲環境の情報を取得するセンサ等を備える構成とされ、周囲環境の情報は、センサ等により取得して制御部31に自動で入力される構成とすることもできる。ヒューマンインターフェース機器又はセンサ等から入力された情報は、制御部31に記憶される。 The control unit 31 may be configured to control the opening adjuster 301 and adjust the size of the opening 15 according to the power of the input signal of the vibration generator 11 and the surrounding environment of the device. The information on the ambient environment includes, for example, information such as temperature or humidity, and the information on the ambient environment is manually input to the control unit 31 by the user via, for example, the above-mentioned human interface device. The gas transport device 300 is configured to include a sensor or the like for acquiring information on the ambient environment such as temperature and humidity, and the information on the ambient environment is acquired by the sensor or the like and automatically input to the control unit 31. You can also do it. The information input from the human interface device, the sensor, or the like is stored in the control unit 31.
 制御部31は、振動発生器11の入力信号の電力、及び記憶されている周囲環境の情報に応じて、開口調整器301を制御し、開口部15の大きさを調整する。このような、開口調整器301により開口部15の大きさを調整する動作は、例えば、気体輸送装置300が動作を開始する際において、振動発生器11へ信号が最初に入力されたときに実行される。また制御部31は、気体を搬送する動作が行われている間において周囲環境が変化した場合に、随時、開口調整器301を動作させて開口部15の大きさを自動で調整する構成としてもよい。この場合、周囲環境が変化しても、円環形状が崩れにくい安定した渦輪を発生させるとともに、気体の輸送距離を自動で調整することができる。制御部31における開口調整器301のプログラムは、予め記憶させておくことが望ましい。 The control unit 31 controls the opening adjuster 301 according to the electric power of the input signal of the vibration generator 11 and the stored information of the surrounding environment, and adjusts the size of the opening 15. Such an operation of adjusting the size of the opening 15 by the opening adjuster 301 is executed, for example, when a signal is first input to the vibration generator 11 when the gas transport device 300 starts the operation. Will be done. Further, the control unit 31 may be configured to automatically adjust the size of the opening 15 by operating the opening adjuster 301 at any time when the surrounding environment changes while the operation of transporting the gas is being performed. good. In this case, even if the surrounding environment changes, a stable vortex ring whose annulus shape does not easily collapse can be generated, and the gas transport distance can be automatically adjusted. It is desirable to store the program of the opening adjuster 301 in the control unit 31 in advance.
 実施の形態3の気体輸送装置300を用いて気体を輸送する気体輸送方法は、実施の形態1の場合とほぼ同じだが、開口調整器301により、筐体14の放出口(開口部15)における開口面積を調整する開口調整工程を更に有する。 The gas transport method for transporting the gas using the gas transport device 300 of the third embodiment is substantially the same as that of the first embodiment, but the opening adjuster 301 is used at the discharge port (opening 15) of the housing 14. It further has an opening adjusting step of adjusting the opening area.
 以上のように、実施の形態3の気体輸送装置300においても、実施の形態1の場合と同様に、加圧室16と振動部12との間に弾性膜13が設けられ、振動部12と弾性膜13との間には密閉された振動伝達室17が形成されている。よって、実施の形態3においても、実施の形態1の場合と同様に、加圧室16に存する加湿空気の水滴が振動装置の振動部に付着せず、振動効率の低下が抑制でき、安定した気体の輸送ができる。 As described above, also in the gas transport device 300 of the third embodiment, the elastic film 13 is provided between the pressurizing chamber 16 and the vibrating portion 12 as in the case of the first embodiment, and the vibrating portion 12 and the elastic film 13 are provided. A closed vibration transmission chamber 17 is formed between the elastic film 13 and the elastic film 13. Therefore, also in the third embodiment, as in the case of the first embodiment, the water droplets of the humidified air existing in the pressurizing chamber 16 do not adhere to the vibrating portion of the vibrating device, and the decrease in vibration efficiency can be suppressed, which is stable. Can transport gas.
 また実施の形態3の気体輸送装置300は、筐体14の放出口(開口部15)に設けられ、開口面積を調整する開口調整器301を有する。これにより、安定した気体の輸送と、気体の輸送距離の変更を行うことができる。 Further, the gas transport device 300 of the third embodiment has an opening adjuster 301 provided at the discharge port (opening 15) of the housing 14 and adjusting the opening area. This makes it possible to stably transport the gas and change the transport distance of the gas.
 なお、これまで、実施の形態1の気体輸送装置100に開口調整器301を設ける場合について説明したが、実施の形態2の気体輸送装置300に、上述した開口調整器301を設け、開口部15の大きさを調整する構成としてもよい。 Although the case where the opening adjuster 301 is provided in the gas transport device 100 of the first embodiment has been described so far, the above-mentioned opening adjuster 301 is provided in the gas transport device 300 of the second embodiment and the opening 15 is provided. It may be configured to adjust the size of.
実施の形態4.
 図6は、実施の形態4における気体輸送装置の構成を示す概略図である。実施の形態4の気体輸送装置400は、気体供給部50と筐体14の加圧室16との間に設けられた検知器401と、検知器401と制御部31とを接続する制御線32と、を備える点で実施の形態1の気体輸送装置と異なる。以下、実施の形態4において、実施の形態1に示した構成と異なる構成について説明し、実施の形態1に示した構成と同一の機器については同一の符号を付し、同一の機器の説明は省略する。
Embodiment 4.
FIG. 6 is a schematic view showing the configuration of the gas transport device according to the fourth embodiment. In the gas transport device 400 of the fourth embodiment, the detector 401 provided between the gas supply unit 50 and the pressurizing chamber 16 of the housing 14, and the control line 32 connecting the detector 401 and the control unit 31 are connected. It is different from the gas transport device of the first embodiment in that it is provided with. Hereinafter, in the fourth embodiment, a configuration different from the configuration shown in the first embodiment will be described, the same devices as those shown in the first embodiment are designated by the same reference numerals, and the same devices will be described. Omit.
 図6に示されるように、検知器401は、気体供給部50と筐体14の加圧室16とを連通させる筐体14の接続壁143に設けられ、気体供給部50から加圧室16へ供給される気体の成分、物性値又は流量等を検知するものである。ここで、物性値とは、例えば、気体の温度、湿度、又は導電率等を指す。検知器401は複数の物性値を検知するものでもよい。また検知器401は、気体の成分、物性値及び流量のうち二以上を検知するものでもよい。検知器401は、検知した気体の成分、物性値又は流量といった検知値Kを、制御線32を介して制御部31に送信する。制御部31は、検知器401により検知された検知値Kに基づいて気体供給部50による加圧室16への気体の供給を調整する。 As shown in FIG. 6, the detector 401 is provided on the connection wall 143 of the housing 14 that communicates the gas supply unit 50 and the pressurizing chamber 16 of the housing 14, and the gas supply unit 50 to the pressurizing chamber 16 are provided. It detects the component, physical property value, flow rate, etc. of the gas supplied to. Here, the physical property value refers to, for example, the temperature, humidity, conductivity, or the like of a gas. The detector 401 may detect a plurality of physical property values. Further, the detector 401 may detect two or more of the gas component, the physical characteristic value and the flow rate. The detector 401 transmits the detected value K such as the detected gas component, physical characteristic value or flow rate to the control unit 31 via the control line 32. The control unit 31 adjusts the supply of gas to the pressurizing chamber 16 by the gas supply unit 50 based on the detection value K detected by the detector 401.
 実施の形態4の気体輸送装置400が行う動作について説明する。実施の形態4において気体輸送装置400の各機器が行う動作は、実施の形態1の場合とほぼ同じである。ただし、実施の形態4の気体輸送装置400では、気体供給部50から筐体14の加圧室16へ供給される気体における気体の成分、物性及び流量等が調整される。 The operation performed by the gas transport device 400 of the fourth embodiment will be described. The operation performed by each device of the gas transport device 400 in the fourth embodiment is substantially the same as that of the first embodiment. However, in the gas transport device 400 of the fourth embodiment, the gas component, physical properties, flow rate, and the like in the gas supplied from the gas supply unit 50 to the pressurizing chamber 16 of the housing 14 are adjusted.
 具体的には、気体供給部50から加圧室16へ供給される気体の成分、物性値又は流量の検知値Kが、繰り返し、検知器401により検知され、制御部31へ送信される。検知器401により検知される検知値K1が、予め設定された設定値Ks1となるように、気体供給部50から加圧室16へ供給される気体が調整される。具体的には、気体供給部50から加圧室16へ供給される気体の量あるいは特定成分の量等が調整される。設定値Ks1は、気体の搬送が意図される対象空間の領域において、所望の気体の量、所望の特定成分の量、あるいは所望の気体の状態(例えば、温度、湿度又は導電率)となるように決定され、制御部31に記憶されている。 Specifically, the detection value K of the gas component, the physical property value or the flow rate supplied from the gas supply unit 50 to the pressurizing chamber 16 is repeatedly detected by the detector 401 and transmitted to the control unit 31. The gas supplied from the gas supply unit 50 to the pressurizing chamber 16 is adjusted so that the detection value K1 detected by the detector 401 becomes the preset set value Ks1. Specifically, the amount of gas supplied from the gas supply unit 50 to the pressurizing chamber 16 or the amount of a specific component is adjusted. The set value Ks1 is such that the desired amount of gas, the amount of the desired specific component, or the desired gas state (eg, temperature, humidity or conductivity) is obtained in the region of the target space where the gas is intended to be transported. Is determined and stored in the control unit 31.
 このような構成により、意図した対象空間の領域に過不足なく気体あるいは気体の特定成分(例えば、水分又は酸素)等を輸送できる。また制御部31は、加圧室16への気体の供給が調整される際、意図する対象空間の領域へ気体が最も効率よく輸送されるように、検知された検知値K1に応じて気体供給部50と、信号発生器22と、電力増幅器23等とを制御する構成とされてもよい。 With such a configuration, it is possible to transport a gas or a specific component of a gas (for example, water or oxygen) to the intended target space area without excess or deficiency. Further, when the supply of gas to the pressurizing chamber 16 is adjusted, the control unit 31 supplies gas according to the detected detection value K1 so that the gas is most efficiently transported to the region of the intended target space. The unit 50 may be configured to control the signal generator 22, the power amplifier 23, and the like.
 また、検知器401を設置することで、気体輸送装置400において気体供給部50を別の新たな気体供給部に変更する場合でも、同一の検知器401を使用することができ、気体輸送装置400の構成を簡素化できる。このように気体供給部50が変更された場合、検知器401は、新たな気体供給部から供給される気体の成分、物性値、又は流量等を検知する。制御部31は、新たな気体供給部から供給される気体について、検知された検知値K2が、その気体について予め設定されている設定値Ks2となるように、気体供給部50等を制御することができる。また制御部31は、検知された検知値K2に基づいて演算を行い、演算結果に基づいて気体輸送装置400の各機器の動作を制御するように構成されてもよい。 Further, by installing the detector 401, the same detector 401 can be used even when the gas supply unit 50 is changed to another new gas supply unit in the gas transport device 400, and the gas transport device 400 can be used. The configuration of can be simplified. When the gas supply unit 50 is changed in this way, the detector 401 detects the component, physical property value, flow rate, or the like of the gas supplied from the new gas supply unit. The control unit 31 controls the gas supply unit 50 and the like so that the detected detection value K2 of the gas supplied from the new gas supply unit becomes the preset value Ks2 for the gas. Can be done. Further, the control unit 31 may be configured to perform a calculation based on the detected detection value K2 and control the operation of each device of the gas transport device 400 based on the calculation result.
 制御部31において、検知値K1、K2、設定値Ks1、Ks2を用いた判断プログラムは、予め記憶させておくことが望ましい。 It is desirable that the control unit 31 stores the determination program using the detected values K1 and K2 and the set values Ks1 and Ks2 in advance.
 以上のように、実施の形態4の気体輸送装置400においても、実施の形態1の場合と同様に、加圧室16と振動部12との間に弾性膜13が設けられ、振動部12と弾性膜13との間には密閉された振動伝達室17が形成されている。よって、実施の形態4においても、実施の形態1の場合と同様に、加圧室16に存する加湿空気の水滴が振動装置の振動部に付着せず、振動効率の低下が抑制でき、安定した気体の輸送ができる。 As described above, also in the gas transport device 400 of the fourth embodiment, the elastic film 13 is provided between the pressurizing chamber 16 and the vibrating portion 12 as in the case of the first embodiment, and the vibrating portion 12 and the elastic film 13 are provided. A closed vibration transmission chamber 17 is formed between the elastic film 13 and the elastic film 13. Therefore, also in the fourth embodiment, as in the case of the first embodiment, the water droplets of the humidified air existing in the pressurizing chamber 16 do not adhere to the vibrating portion of the vibrating device, and the decrease in vibration efficiency can be suppressed, which is stable. Can transport gas.
 また実施の形態4の気体輸送装置400は、検知器401を備え、検知器401は、筐体14の加圧室16と気体供給部50との間に配置され、気体供給部50から加圧室16へ供給される気体の成分、気体の物性値及び気体の流量のうち少なくとも一つを検知する。これにより、検知器401により検知された気体に関する情報に基づいて、輸送する気体に応じた制御を行うことができる。 Further, the gas transport device 400 of the fourth embodiment includes a detector 401, and the detector 401 is arranged between the pressurizing chamber 16 of the housing 14 and the gas supply unit 50, and pressurizes from the gas supply unit 50. At least one of the gas component, the physical characteristic value of the gas, and the flow rate of the gas supplied to the chamber 16 is detected. As a result, it is possible to perform control according to the gas to be transported based on the information regarding the gas detected by the detector 401.
 また、筐体14は、加圧室16と気体供給部50とを接続する筒状の接続壁143を有し、上記の検知器401は、接続壁143に配置されている。これにより、気体供給部50を別の気体供給部に取り替えた場合でも、筐体14の接続壁143に配置された同一の検知器401を用いることができ、構成を簡素化できる。 Further, the housing 14 has a cylindrical connection wall 143 that connects the pressurizing chamber 16 and the gas supply unit 50, and the detector 401 is arranged on the connection wall 143. As a result, even when the gas supply unit 50 is replaced with another gas supply unit, the same detector 401 arranged on the connection wall 143 of the housing 14 can be used, and the configuration can be simplified.
 なお、これまで、実施の形態1の気体輸送装置100に検知器401を設ける場合について説明したが、実施の形態2の気体輸送装置200又は実施の形態3の気体輸送装置300に検知器401を設け、検知値に基づいて気体の供給量を調整する構成としてもよい。 Although the case where the detector 401 is provided in the gas transport device 100 of the first embodiment has been described so far, the detector 401 is provided in the gas transport device 200 of the second embodiment or the gas transport device 300 of the third embodiment. It may be provided and the configuration may be such that the supply amount of gas is adjusted based on the detected value.
実施の形態5.
 図7は、実施の形態5における気体輸送装置の構成を示す概略図である。実施の形態5の気体輸送装置500は、筐体14に設けられた2つの状態検知器(第1の状態検知器501及び第2の状態検知器502)と、2つの状態検知器それぞれを制御部31と接続する制御線32を備える点で実施の形態2の気体輸送装置200と異なる。以下、実施の形態5において、実施の形態2に示した構成と異なる構成について説明し、実施の形態2に示した構成と同一の機器については同一の符号を付し、同一の機器の説明は省略する。
Embodiment 5.
FIG. 7 is a schematic view showing the configuration of the gas transport device according to the fifth embodiment. The gas transport device 500 of the fifth embodiment controls two state detectors (first state detector 501 and second state detector 502) provided in the housing 14 and each of the two state detectors. It differs from the gas transport device 200 of the second embodiment in that it includes a control line 32 connected to the unit 31. Hereinafter, in the fifth embodiment, a configuration different from the configuration shown in the second embodiment will be described, the same devices as those shown in the second embodiment are designated by the same reference numerals, and the same devices will be described. Omit.
 筐体14の周壁部142において振動伝達室17を形成する部分、すなわち、周壁142部において弾性膜13と振動部12との間に位置する部分には、振動伝達室17と筐体14の外部とを連通する第1の設置孔14bが形成されている。第1の設置孔14bは、弁201が嵌め込まれる穴14aとは別に設けられている。また筐体14の周壁部142において加圧室16を形成する部分、すなわち、周壁部142において弾性膜13と前壁141との間に位置する部分には、加圧室16と筐体14の外部とを連通する第2の設置孔14cが形成されている。 The portion of the peripheral wall portion 142 of the housing 14 that forms the vibration transmission chamber 17, that is, the portion of the peripheral wall 142 that is located between the elastic film 13 and the vibration portion 12, is the outside of the vibration transmission chamber 17 and the housing 14. A first installation hole 14b is formed to communicate with the above. The first installation hole 14b is provided separately from the hole 14a into which the valve 201 is fitted. Further, in the peripheral wall portion 142 of the housing 14, the portion forming the pressure chamber 16, that is, the portion of the peripheral wall portion 142 located between the elastic film 13 and the front wall 141, the pressure chamber 16 and the housing 14 are formed. A second installation hole 14c that communicates with the outside is formed.
 第1の状態検知器501は、筐体14に形成された第1の設置孔14bに嵌め込まれ、振動伝達室17の圧力、温度及び湿度のうち少なくとも一つを検知する。第1の状態検知器501は、例えば、圧力センサ及び温湿度センサ等で構成される。第2の状態検知器502は、筐体14に形成された第2の設置孔14cに嵌め込まれ、加圧室16の圧力、温度及び湿度のうち少なくとも一つを検知する。第2の状態検知器502は、例えば、圧力センサ及び温湿度センサ等で構成される。なお、気体輸送装置500において、第2の状態検知器502を省略し、第1の状態検知器501のみを備える構成としてもよい。 The first state detector 501 is fitted into the first installation hole 14b formed in the housing 14, and detects at least one of the pressure, temperature, and humidity of the vibration transmission chamber 17. The first state detector 501 is composed of, for example, a pressure sensor, a temperature / humidity sensor, and the like. The second state detector 502 is fitted in the second installation hole 14c formed in the housing 14, and detects at least one of the pressure, temperature, and humidity of the pressurizing chamber 16. The second state detector 502 is composed of, for example, a pressure sensor, a temperature / humidity sensor, and the like. The gas transport device 500 may be configured to omit the second state detector 502 and include only the first state detector 501.
 ここでは、圧力が検知されるものとして説明する。つまり、第1の状態検知器501及び第2の状態検知器502により、筐体14内における弾性膜13の両側の位置の圧力が検知される。第2の状態検知器502が嵌め込まれる第2の設置孔14cは、筐体14の周壁部142において加圧室16を形成する部分のうち、開口部15からできるだけ遠く、且つ弾性膜13の動きを阻害しない程度に弾性膜13から離れた部位に形成されることが望ましい。 Here, it is assumed that pressure is detected. That is, the pressure at the positions on both sides of the elastic film 13 in the housing 14 is detected by the first state detector 501 and the second state detector 502. The second installation hole 14c into which the second state detector 502 is fitted is located as far as possible from the opening 15 and the movement of the elastic film 13 in the peripheral wall portion 142 of the housing 14 that forms the pressurizing chamber 16. It is desirable that the film is formed at a site away from the elastic film 13 so as not to inhibit the above.
 実施の形態5の気体輸送装置500が行う動作について説明する。実施の形態5において気体輸送装置500の各機器が行う動作は、実施の形態2の場合とほぼ同じである。ただし、実施の形態5の気体輸送装置500では、第1の状態検知器501により検知された検知値P1及び第2の状態検知器502により検知された検知値P2に基づいて各機器の制御がされる。 The operation performed by the gas transport device 500 according to the fifth embodiment will be described. The operation performed by each device of the gas transport device 500 in the fifth embodiment is substantially the same as that of the second embodiment. However, in the gas transport device 500 of the fifth embodiment, the control of each device is performed based on the detection value P1 detected by the first state detector 501 and the detection value P2 detected by the second state detector 502. Will be done.
 第1の状態検知器501により連続的に振動伝達室17の圧力が検知され、検知された検知値P1は、制御線32を介して制御部31に送信される。第2の状態検知器502により連続的に加圧室16の圧力が検知され、検知された検知値P2は、制御線32を介して制御部31に送信される。制御部31は、検知値P1と検知値P2とを比較し、意図する対象空間の領域へ気体が最も効率よく輸送されるように、信号発生器22と、電力増幅器23と、気体供給部50と、弁201等とを制御する。 The pressure in the vibration transmission chamber 17 is continuously detected by the first state detector 501, and the detected detection value P1 is transmitted to the control unit 31 via the control line 32. The pressure in the pressurizing chamber 16 is continuously detected by the second state detector 502, and the detected detection value P2 is transmitted to the control unit 31 via the control line 32. The control unit 31 compares the detected value P1 and the detected value P2, and the signal generator 22, the power amplifier 23, and the gas supply unit 50 so that the gas is most efficiently transported to the region of the intended target space. And the valve 201 and the like are controlled.
 制御部31における検知値P1、P2を用いた判断プログラム、及び弁201のプログラムは、予め記憶させておくことが望ましい。また気体輸送装置500において気体を搬送する動作が行われているとき、環境圧が変化した場合に、随時、弁201の開閉を制御して振動伝達室17の内部圧力を自動で調整するように制御部31を構成することもできる。 It is desirable to store the determination program using the detected values P1 and P2 in the control unit 31 and the program of the valve 201 in advance. Further, when the operation of transporting gas is being performed in the gas transport device 500, when the environmental pressure changes, the opening and closing of the valve 201 is controlled to automatically adjust the internal pressure of the vibration transmission chamber 17. The control unit 31 can also be configured.
 以上のように、実施の形態5の気体輸送装置500においても、実施の形態1の場合と同様に、加圧室16と振動部12との間に弾性膜13が設けられ、振動部12と弾性膜13との間には密閉された振動伝達室17が形成されている。よって、実施の形態5においても、実施の形態1の場合と同様に、加圧室16に存する加湿空気の水滴が振動装置の振動部に付着せず、振動効率の低下が抑制でき、安定した気体の輸送ができる。 As described above, also in the gas transport device 500 of the fifth embodiment, the elastic film 13 is provided between the pressurizing chamber 16 and the vibrating portion 12 as in the case of the first embodiment, and the vibrating portion 12 and the elastic film 13 are provided. A closed vibration transmission chamber 17 is formed between the elastic film 13 and the elastic film 13. Therefore, also in the fifth embodiment, as in the case of the first embodiment, the water droplets of the humidified air existing in the pressurizing chamber 16 do not adhere to the vibrating portion of the vibrating device, and the decrease in the vibration efficiency can be suppressed, which is stable. Can transport gas.
 また実施の形態5の気体輸送装置500は、振動伝達室17の圧力、温度及び湿度のうち少なくとも一つを検知する第1の状態検知器501を備える。これにより、第1の状態検知器501で検知された検知値P1に応じて各機器を制御でき、制御の自由度が増す。例えば、第1の状態検知器501が振動伝達室17の圧力を検知する場合、検知された圧力に応じて各機器を制御し、加圧室16の圧力の変動量、加圧室16へ供給する気体の量、あるいは、振動伝達室17の圧力等を変更することができる。結果、より安定した気体の輸送が可能となる。 Further, the gas transport device 500 of the fifth embodiment includes a first state detector 501 that detects at least one of the pressure, temperature, and humidity of the vibration transmission chamber 17. As a result, each device can be controlled according to the detection value P1 detected by the first state detector 501, and the degree of freedom of control is increased. For example, when the first state detector 501 detects the pressure in the vibration transmission chamber 17, each device is controlled according to the detected pressure, and the fluctuation amount of the pressure in the pressurizing chamber 16 is supplied to the pressurizing chamber 16. The amount of gas to be generated, the pressure of the vibration transmission chamber 17, and the like can be changed. As a result, more stable gas transportation becomes possible.
 また気体輸送装置500は、加圧室16の圧力、温度及び湿度のうち少なくとも一つを検知する第2の状態検知器502を備える。これにより、第2の状態検知器502で検知された検知値P2に応じて各機器を制御でき、制御の自由度が増す。結果、より安定した気体の輸送が可能となる。 Further, the gas transport device 500 includes a second state detector 502 that detects at least one of the pressure, temperature, and humidity of the pressurizing chamber 16. As a result, each device can be controlled according to the detection value P2 detected by the second state detector 502, and the degree of freedom of control is increased. As a result, more stable gas transportation becomes possible.
実施の形態6.
 図8は、実施の形態6における気体輸送装置の構成を示す概略図である。実施の形態6の気体輸送装置600は、実施の形態5に示された気体輸送装置500に、実施の形態3に示された開口調整器301、及び開口調整器301と制御部31とを接続する制御線32が追加された構成とされている。以下、実施の形態6において、実施の形態5に示した構成と異なる構成について説明し、実施の形態5に示した構成と同一の機器については同一の符号を付し、同一の機器の説明は省略する。
Embodiment 6.
FIG. 8 is a schematic view showing the configuration of the gas transport device according to the sixth embodiment. The gas transport device 600 of the sixth embodiment connects the gas transport device 500 shown in the fifth embodiment to the opening adjuster 301 shown in the third embodiment, and the opening adjuster 301 and the control unit 31. The control line 32 is added. Hereinafter, in the sixth embodiment, a configuration different from the configuration shown in the fifth embodiment will be described, the same devices as those shown in the fifth embodiment are designated by the same reference numerals, and the same devices will be described. Omit.
 開口調整器301は、筐体14において開口部15の縁部に設けられ、開口部15の大きさを変更するものである。開口調整器301は、例えば、複数の板状の部材から成るアイリス絞りにより構成される。 The opening adjuster 301 is provided at the edge of the opening 15 in the housing 14, and changes the size of the opening 15. The opening adjuster 301 is composed of, for example, an iris diaphragm composed of a plurality of plate-shaped members.
 実施の形態6の気体輸送装置600が行う動作について説明する。実施の形態6において、信号発生器22と、電力増幅器23と、気体供給部50と、弁201との動作は実施の形態5の場合とほぼ同じである。また実施の形態6において、開口調整器301の動作は実施の形態3の場合とほぼ同じである。制御部31は、筐体14の開口部15の大きさが予め決められた大きさとなるように開口調整器301の動作を制御する。 The operation performed by the gas transport device 600 of the sixth embodiment will be described. In the sixth embodiment, the operation of the signal generator 22, the power amplifier 23, the gas supply unit 50, and the valve 201 is substantially the same as that of the fifth embodiment. Further, in the sixth embodiment, the operation of the opening adjuster 301 is substantially the same as that of the third embodiment. The control unit 31 controls the operation of the opening adjuster 301 so that the size of the opening 15 of the housing 14 becomes a predetermined size.
 ただし、実施の形態6の気体輸送装置600では、制御部31は、第1の状態検知器501により検知した検知値P1及び第2の状態検知器502により検知した検知値P2に基づいて開口調整器301により開口部15の大きさを調整するように構成されている。このような構成により、開口部15から放出される渦輪を安定化することができる。 However, in the gas transport device 600 of the sixth embodiment, the control unit 31 adjusts the opening based on the detection value P1 detected by the first state detector 501 and the detection value P2 detected by the second state detector 502. The vessel 301 is configured to adjust the size of the opening 15. With such a configuration, the vortex ring emitted from the opening 15 can be stabilized.
 また制御部31は、意図する対象空間の領域へ気体が最も効率よく輸送されるように、検知された検知値P1及び検知値P2に応じて、信号発生器22と、電力増幅器23と、気体供給部50と、弁201と、開口調整器301等とを制御する構成とされてもよい。 Further, the control unit 31 has a signal generator 22, a power amplifier 23, and a gas according to the detected detection values P1 and P2 so that the gas is most efficiently transported to the region of the intended target space. The supply unit 50, the valve 201, the opening adjuster 301, and the like may be controlled.
 制御部31における検知値P1、P2を用いた判断プログラム及び弁201のプログラムは、予め記憶させておくことが望ましい。また気体輸送装置500において気体を搬送する動作が行われているとき、環境圧が変化した場合に、随時、弁201の開閉を制御して振動伝達室17の内部圧力を自動で調整するように制御部31を構成することもできる。 It is desirable to store the determination program using the detected values P1 and P2 in the control unit 31 and the program of the valve 201 in advance. Further, when the operation of transporting gas is being performed in the gas transport device 500, when the environmental pressure changes, the opening and closing of the valve 201 is controlled to automatically adjust the internal pressure of the vibration transmission chamber 17. The control unit 31 can also be configured.
 また、本実施の形態の気体輸送装置600において、実施の形態4の検知器401を設け、気体供給部50から加圧室16へ供給される気体の成分、物性値又は流量等に応じて気体の供給を調整する制御を組み合わせて行う構成としてもよい。この場合、制御部31における検知値P1、検知値P2、検知値K1、K2、設定値Ks1、Ks2等を用いた判断プログラムは、予め記憶させておくことが望ましい。 Further, in the gas transport device 600 of the present embodiment, the detector 401 of the fourth embodiment is provided, and the gas is supplied from the gas supply unit 50 to the pressurizing chamber 16 according to the gas component, the physical property value, the flow rate, and the like. It may be configured to perform a combination of controls for adjusting the supply of the gas. In this case, it is desirable to store the determination program using the detection value P1, the detection value P2, the detection values K1, K2, the set values Ks1, Ks2, etc. in the control unit 31 in advance.
 以上のように、実施の形態6の気体輸送装置600においても、実施の形態1の場合と同様に、加圧室16と振動部12との間に弾性膜13が設けられ、振動部12と弾性膜13との間には密閉された振動伝達室17が形成されている。よって、実施の形態6においても、実施の形態1の場合と同様に、加圧室16に存する加湿空気の水滴が振動装置の振動部に付着せず、振動効率の低下が抑制でき、安定した気体の輸送ができる。 As described above, also in the gas transport device 600 of the sixth embodiment, the elastic film 13 is provided between the pressurizing chamber 16 and the vibrating portion 12 as in the case of the first embodiment, and the vibrating portion 12 and the elastic film 13 are provided. A closed vibration transmission chamber 17 is formed between the elastic film 13 and the elastic film 13. Therefore, also in the sixth embodiment, as in the case of the first embodiment, the water droplets of the humidified air existing in the pressurizing chamber 16 do not adhere to the vibrating portion of the vibrating device, and the decrease in vibration efficiency can be suppressed, which is stable. Can transport gas.
実施の形態7.
 図9は、実施の形態7における気体輸送装置の構成を示す概略図である。実施の形態7の気体輸送装置700は、実施の形態6に示された気体輸送装置600に、入力部701、及び入力部701と制御部31とを接続する制御線32が追加された構成とされている。以下、実施の形態7において、実施の形態6に示した構成と異なる構成について説明し、実施の形態6に示した構成と同一の機器については同一の符号を付し、同一の機器の説明は省略する。
Embodiment 7.
FIG. 9 is a schematic view showing the configuration of the gas transport device according to the seventh embodiment. The gas transport device 700 according to the seventh embodiment has a configuration in which an input unit 701 and a control line 32 connecting the input unit 701 and the control unit 31 are added to the gas transport device 600 shown in the sixth embodiment. Has been done. Hereinafter, in the seventh embodiment, a configuration different from the configuration shown in the sixth embodiment will be described, the same devices as those shown in the sixth embodiment will be designated by the same reference numerals, and the same devices will be described. Omit.
 入力部701は、制御部31に、プログラム及び設定値等の入力及びこれらの変更を行うためのものであり、例えば、利用者により操作されるキーボード等のヒューマンインターフェース機器で構成される。このような構成により、気体輸送装置700の各機器を手動で制御可能となり、各個人の好みに合わせた気体の輸送を行うこともできる。 The input unit 701 is for inputting a program, set values, and the like to the control unit 31, and changing these, and is composed of, for example, a human interface device such as a keyboard operated by a user. With such a configuration, each device of the gas transport device 700 can be manually controlled, and gas can be transported according to each individual's preference.
 実施の形態7の気体輸送装置700が行う動作について説明する。実施の形態7において気体輸送装置700の各機器が行う動作は、実施の形態6の場合とほぼ同じである。ただし、実施の形態7の気体輸送装置700において、制御部31は、入力部701から入力された入力値Iに応じて、信号発生器22と、電力増幅器23と、気体供給部50と、弁201と、開口調整器301等を制御する。 The operation performed by the gas transport device 700 according to the seventh embodiment will be described. The operation performed by each device of the gas transport device 700 in the seventh embodiment is substantially the same as that of the sixth embodiment. However, in the gas transport device 700 of the seventh embodiment, the control unit 31 has a signal generator 22, a power amplifier 23, a gas supply unit 50, and a valve according to the input value I input from the input unit 701. It controls 201, the opening adjuster 301, and the like.
 制御部31における検知値P1、検知値P2、入力値Iを用いた判断プログラム及び弁201のプログラムは、予め記憶させておくことが望ましい。また気体輸送装置500において気体を搬送する動作が行われているとき、環境圧が変化した場合に、随時、弁201の開閉を制御して振動伝達室17の内部圧力を自動で調整するように制御部31を構成することもできる。また、実施の形態4で示した検知器401を設置することもでき、この場合、制御部31における検知値P1、検知値P2、検知値K1、K2、設定値Ks1、Ks2を用いた判断プログラムは、予め記憶させておくことが望ましい。 It is desirable to store the detection value P1, the detection value P2, the determination program using the input value I, and the program of the valve 201 in the control unit 31 in advance. Further, when the operation of transporting gas is being performed in the gas transport device 500, when the environmental pressure changes, the opening and closing of the valve 201 is controlled to automatically adjust the internal pressure of the vibration transmission chamber 17. The control unit 31 can also be configured. Further, the detector 401 shown in the fourth embodiment can also be installed. In this case, the determination program using the detection value P1, the detection value P2, the detection values K1, K2, and the set values Ks1 and Ks2 in the control unit 31 can be installed. Is desirable to be stored in advance.
 なお、入力部701は、利用者が手動で入力するものに限らず、各種センサからの情報が直接入力される構成とすることもできる。例えば、水分を含む気体を室内の特定の領域に輸送する場合、室内に設置した湿度センサの情報が入力部701に入力される構成とすることで、室内における特定の領域の湿度を自動で制御するシステムを構築することができる。また、室内における各個人の快適性をセンシングする検知器の情報が入力部701に入力される構成とすることで、局所空間の空気質を制御することができ、各個人に対応した空調制御が可能となる。 The input unit 701 is not limited to the one manually input by the user, and may be configured such that information from various sensors is directly input. For example, when transporting a gas containing moisture to a specific area in a room, the humidity of the specific area in the room is automatically controlled by inputting the information of the humidity sensor installed in the room to the input unit 701. It is possible to build a system to do. In addition, the air quality of the local space can be controlled by inputting the information of the detector that senses the comfort of each individual in the room to the input unit 701, and the air conditioning control corresponding to each individual can be performed. It will be possible.
 以上のように、実施の形態7の気体輸送装置700においても、実施の形態1の場合と同様に、加圧室16と振動部12との間に弾性膜13が設けられ、振動部12と弾性膜13との間には密閉された振動伝達室17が形成されている。よって、実施の形態7においても、実施の形態1の場合と同様に、加圧室16に存する加湿空気の水滴が振動装置の振動部に付着せず、振動効率の低下が抑制でき、安定した気体の輸送ができる。 As described above, also in the gas transport device 700 of the seventh embodiment, the elastic film 13 is provided between the pressurizing chamber 16 and the vibrating portion 12 as in the case of the first embodiment, and the vibrating portion 12 and the elastic film 13 are provided. A closed vibration transmission chamber 17 is formed between the elastic film 13 and the elastic film 13. Therefore, also in the seventh embodiment, as in the case of the first embodiment, the water droplets of the humidified air existing in the pressurizing chamber 16 do not adhere to the vibrating portion of the vibrating device, and the decrease in vibration efficiency can be suppressed, which is stable. Can transport gas.
 また実施の形態7の気体輸送装置700は、制御部31に情報を入力する入力部701を備える。これにより、入力部701を介して、気体輸送装置700の周囲環境又は個人の好み等に合わせて制御の変更を行うことができ、快適性を向上させることができる。 Further, the gas transport device 700 of the seventh embodiment includes an input unit 701 for inputting information to the control unit 31. Thereby, the control can be changed according to the surrounding environment of the gas transport device 700, the personal preference, etc. via the input unit 701, and the comfort can be improved.
 10 振動装置、11 振動発生器、12 振動部、13 弾性膜、13a 外周部、14 筐体、14a 穴、14b 第1の設置孔、14c 第2の設置孔、15 開口部、16 加圧室、17 振動伝達室、20 駆動回路、22 信号発生器、23 電力増幅器、24 信号線、31 制御部、32 制御線、50 気体供給部、51 加湿部、59 気体、100、200、300、400、500、600、700 気体輸送装置、141 前壁、142 周壁部、143 接続壁、201 弁、301 開口調整器、401 検知器、501 第1の状態検知器、502 第2の状態検知器、701 入力部、A 面積、F、F0 力、I 入力値、K、K1、K2 検知値、Ks1、Ks2 設定値、P1、P2 検知値、S 面積、ΔV 体積変化量。 10 vibrating device, 11 vibrating generator, 12 vibrating part, 13 elastic film, 13a outer peripheral part, 14 housing, 14a hole, 14b first installation hole, 14c second installation hole, 15 opening, 16 pressurizing chamber , 17 vibration transmission chamber, 20 drive circuit, 22 signal generator, 23 power amplifier, 24 signal line, 31 control unit, 32 control line, 50 gas supply unit, 51 humidification unit, 59 gas, 100, 200, 300, 400 , 500, 600, 700 gas transport device, 141 front wall, 142 peripheral wall, 143 connection wall, 201 valve, 301 opening adjuster, 401 detector, 501 first state detector, 502 second state detector, 701 Input unit, A area, F, F0 force, I input value, K, K1, K2 detection value, Ks1, Ks2 set value, P1, P2 detection value, S area, ΔV volume change amount.

Claims (18)

  1.  気体の輸送を行う気体輸送装置において、
     前記気体の放出口を有し、内部に、前記放出口とつながる加圧室が形成された筐体と、
     振動する振動部と前記振動部を振動させる振動発生器とを有し、前記加圧室を介して前記振動部が前記筐体の任意の位置に設置された振動装置と、
     前記加圧室と前記振動部との間に配置され、前記筐体の内面に接続された外周部を有する弾性膜と、を備え、
     前記筐体の内部において前記振動部と前記弾性膜との間には、前記筐体における前記振動部と前記弾性膜の前記外周部との間の壁部と、前記振動部と、前記弾性膜とにより囲まれ、密閉された振動伝達室が形成されている
     気体輸送装置。
    In a gas transport device that transports gas
    A housing having the gas discharge port and having a pressurizing chamber connected to the discharge port inside.
    A vibrating device having a vibrating portion and a vibration generator that vibrates the vibrating portion, and the vibrating portion installed at an arbitrary position in the housing via the pressurizing chamber.
    An elastic membrane disposed between the pressurizing chamber and the vibrating portion and having an outer peripheral portion connected to the inner surface of the housing is provided.
    Inside the housing, between the vibrating portion and the elastic membrane, a wall portion between the vibrating portion and the outer peripheral portion of the elastic membrane in the housing, the vibrating portion, and the elastic membrane. A gas transport device surrounded by and to form a closed vibration transmission chamber.
  2.  前記振動発生器と信号線を介して接続され、前記振動発生器を駆動する駆動回路と、
     前記駆動回路を制御する制御部と、を備え、
     前記駆動回路は、
     信号を発生させる信号発生器と、
     前記信号発生器により発生した前記信号を増幅させる電力増幅器と、を含むものであり、
     前記振動発生器は、前記信号の電気エネルギーを機械エネルギーに変換するものである
     請求項1に記載の気体輸送装置。
    A drive circuit that is connected to the vibration generator via a signal line and drives the vibration generator.
    A control unit that controls the drive circuit is provided.
    The drive circuit
    A signal generator that generates a signal and
    It includes a power amplifier that amplifies the signal generated by the signal generator.
    The gas transport device according to claim 1, wherein the vibration generator converts the electrical energy of the signal into mechanical energy.
  3.  前記制御部に情報を入力する入力部を備える
     請求項2に記載の気体輸送装置。
    The gas transport device according to claim 2, further comprising an input unit for inputting information to the control unit.
  4.  前記筐体における、前記振動部と前記弾性膜の前記外周部との間の壁部に設けられ、閉状態において前記振動伝達室の内部の圧力を一定に保持する弁を備える
     請求項1~3のいずれか一項に記載の気体輸送装置。
    Claims 1 to 3 include a valve provided on a wall portion between the vibrating portion and the outer peripheral portion of the elastic film in the housing and holding a constant pressure inside the vibration transmission chamber in a closed state. The gas transport device according to any one of the above.
  5.  前記振動伝達室は、前記筐体の周囲の気圧よりも高い圧力に保持されている
     請求項4に記載の気体輸送装置。
    The gas transport device according to claim 4, wherein the vibration transmission chamber is held at a pressure higher than the atmospheric pressure around the housing.
  6.  前記振動伝達室の圧力、温度及び湿度のうち少なくとも一つを検知する第1の状態検知器を備える
     請求項4又は5に記載の気体輸送装置。
    The gas transport device according to claim 4 or 5, further comprising a first state detector that detects at least one of the pressure, temperature, and humidity of the vibration transmission chamber.
  7.  前記加圧室の圧力、温度及び湿度のうち少なくとも一つを検知する第2の状態検知器を備える
     請求項6に記載の気体輸送装置。
    The gas transport device according to claim 6, further comprising a second state detector that detects at least one of the pressure, temperature, and humidity of the pressurizing chamber.
  8.  前記筐体の前記放出口に設けられ、開口面積を調整する開口調整器を有する
     請求項1~7のいずれか一項に記載の気体輸送装置。
    The gas transport device according to any one of claims 1 to 7, which is provided at the discharge port of the housing and has an opening adjuster for adjusting the opening area.
  9.  前記筐体の前記加圧室に接続され、輸送の対象となる前記気体を前記加圧室に供給する気体供給部を備える
     請求項1~8のいずれか一項に記載の気体輸送装置。
    The gas transport device according to any one of claims 1 to 8, further comprising a gas supply unit connected to the pressurizing chamber of the housing and supplying the gas to be transported to the pressurizing chamber.
  10.  前記筐体の前記加圧室と前記気体供給部との間に配置され、前記気体供給部から前記加圧室へ供給される前記気体の成分、前記気体の物性値及び前記気体の流量のうち少なくとも一つを検知する検知器と、を有する
     請求項9に記載の気体輸送装置。
    Of the components of the gas, the physical property value of the gas, and the flow rate of the gas, which are arranged between the pressurizing chamber and the gas supply unit of the housing and are supplied from the gas supply unit to the pressurizing chamber. The gas transport device according to claim 9, further comprising a detector that detects at least one.
  11.  前記筐体は、前記加圧室と前記気体供給部とを接続する筒状の接続壁を有し、
     前記検知器は、前記接続壁に配置されている
     請求項10に記載の気体輸送装置。
    The housing has a cylindrical connecting wall connecting the pressurizing chamber and the gas supply unit.
    The gas transport device according to claim 10, wherein the detector is arranged on the connection wall.
  12.  前記気体供給部は、前記気体供給部から前記加圧室へ供給される前記気体の加湿を行う加湿部を有する
     請求項9~11のいずれか一項に記載の気体輸送装置。
    The gas transport device according to any one of claims 9 to 11, wherein the gas supply unit has a humidifying unit that humidifies the gas supplied from the gas supply unit to the pressurizing chamber.
  13.  請求項1~12のいずれか一項に記載の気体輸送装置の製造方法であって、
     前記弾性膜の前記外周部を、接着剤で前記筐体の前記内面と接続する
     気体輸送装置の製造方法。
    The method for manufacturing a gas transport device according to any one of claims 1 to 12.
    A method for manufacturing a gas transport device in which the outer peripheral portion of the elastic film is connected to the inner surface of the housing with an adhesive.
  14.  請求項1~12のいずれか一項に記載の気体輸送装置を用いて前記気体を輸送する気体輸送方法において、
     前記振動発生器を駆動することにより前記振動部を振動させる振動工程と、
     前記振動部の前記振動により前記振動伝達室を介して前記弾性膜を伸縮させ、前記振動を、前記放出口とつながる前記加圧室に伝達する振動伝達工程と、
     前記弾性膜の伸縮により、前記加圧室内に存する前記気体を加圧する加圧工程と、
     前記弾性膜によって加圧された前記気体を前記放出口を介して外部に放出する放出工程と、を備える
     気体輸送方法。
    In the gas transport method for transporting the gas using the gas transport device according to any one of claims 1 to 12.
    A vibration process that vibrates the vibrating part by driving the vibration generator, and
    A vibration transmission step in which the elastic film is expanded and contracted through the vibration transmission chamber by the vibration of the vibration unit, and the vibration is transmitted to the pressure chamber connected to the discharge port.
    A pressurizing step of pressurizing the gas existing in the pressurizing chamber by expanding and contracting the elastic membrane,
    A gas transport method comprising a discharge step of discharging the gas pressurized by the elastic membrane to the outside through the discharge port.
  15.  前記振動伝達室の内部の圧力を調整する圧力調整工程を更に備える
     請求項14に記載の気体輸送方法。
    The gas transport method according to claim 14, further comprising a pressure adjusting step for adjusting the pressure inside the vibration transmission chamber.
  16.  前記筐体の前記放出口の開口面積を調整する開口調整工程を更に備える
     請求項14又は15に記載の気体輸送方法。
    The gas transport method according to claim 14 or 15, further comprising an opening adjusting step for adjusting the opening area of the discharge port of the housing.
  17.  輸送の対象となる前記気体を前記加圧室に供給する気体供給工程を更に備える
     請求項14~16のいずれか一項に記載の気体輸送方法。
    The gas transport method according to any one of claims 14 to 16, further comprising a gas supply step of supplying the gas to be transported to the pressurizing chamber.
  18.  前記気体供給工程で前記加圧室に供給する前記気体に加湿を行う加湿工程を更に備える
     請求項17に記載の気体輸送方法。
    The gas transport method according to claim 17, further comprising a humidification step of humidifying the gas supplied to the pressurizing chamber in the gas supply step.
PCT/JP2020/022082 2020-06-04 2020-06-04 Gas transportation device, method for manufacturing gas transportation device, and gas transportation method WO2021245872A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020561088A JP6964805B1 (en) 2020-06-04 2020-06-04 Gas transport device, manufacturing method of gas transport device and gas transport method
PCT/JP2020/022082 WO2021245872A1 (en) 2020-06-04 2020-06-04 Gas transportation device, method for manufacturing gas transportation device, and gas transportation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022082 WO2021245872A1 (en) 2020-06-04 2020-06-04 Gas transportation device, method for manufacturing gas transportation device, and gas transportation method

Publications (1)

Publication Number Publication Date
WO2021245872A1 true WO2021245872A1 (en) 2021-12-09

Family

ID=78466200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022082 WO2021245872A1 (en) 2020-06-04 2020-06-04 Gas transportation device, method for manufacturing gas transportation device, and gas transportation method

Country Status (2)

Country Link
JP (1) JP6964805B1 (en)
WO (1) WO2021245872A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330296A (en) * 1976-09-01 1978-03-22 Seiko Instr & Electronics Ltd Electro-acoustic transducer
JPS5379495A (en) * 1976-12-24 1978-07-13 Seiko Instr & Electronics Ltd Electroacoustic transducer
JPH07332750A (en) * 1994-06-09 1995-12-22 Taikisha Ltd Gas transferring method and gas transferring apparatus
WO2012168890A1 (en) * 2011-06-10 2012-12-13 Koninklijke Philips Electronics N.V. Fragrance delivery device and method
JP2014085086A (en) * 2012-10-26 2014-05-12 Mitsubishi Electric Corp Fluid transport device
US9092953B1 (en) * 2012-01-24 2015-07-28 Bruce J. P. Mortimer System and method for providing a remote haptic stimulus
US20150328960A1 (en) * 2014-05-15 2015-11-19 GM Global Technology Operations LLC Hvac vent utilizing vortex ring air flow
JP2017125643A (en) * 2016-01-13 2017-07-20 日本電産サンキョー株式会社 Fluid release unit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330296A (en) * 1976-09-01 1978-03-22 Seiko Instr & Electronics Ltd Electro-acoustic transducer
JPS5379495A (en) * 1976-12-24 1978-07-13 Seiko Instr & Electronics Ltd Electroacoustic transducer
JPH07332750A (en) * 1994-06-09 1995-12-22 Taikisha Ltd Gas transferring method and gas transferring apparatus
WO2012168890A1 (en) * 2011-06-10 2012-12-13 Koninklijke Philips Electronics N.V. Fragrance delivery device and method
US9092953B1 (en) * 2012-01-24 2015-07-28 Bruce J. P. Mortimer System and method for providing a remote haptic stimulus
JP2014085086A (en) * 2012-10-26 2014-05-12 Mitsubishi Electric Corp Fluid transport device
US20150328960A1 (en) * 2014-05-15 2015-11-19 GM Global Technology Operations LLC Hvac vent utilizing vortex ring air flow
JP2017125643A (en) * 2016-01-13 2017-07-20 日本電産サンキョー株式会社 Fluid release unit

Also Published As

Publication number Publication date
JP6964805B1 (en) 2021-11-10
JPWO2021245872A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
US10165343B2 (en) Multi-function synthetic jet and method of manufacturing same
US9154882B2 (en) Sound generator
US20100014696A1 (en) Hearing device
US10773040B2 (en) Cuff pressure controller device
JP2009099570A (en) Air manager system of air battery using diaphragm or bellows
KR20180112076A (en) Piezoelectric MEMS device for generating a signal indicative of detection of acoustic stimuli
JPH08275278A (en) Method and apparatus for generating structural and acoustic oscillation
TWI666385B (en) Vibrational fluid mover active controller
WO2021245872A1 (en) Gas transportation device, method for manufacturing gas transportation device, and gas transportation method
US9228671B2 (en) Electrically actuated valve with a sealing ball
KR100786645B1 (en) Active Noise Control System
US7822216B2 (en) Electroacoustic transducer using diaphragm and method for producing diaphragm
US8144907B2 (en) Water-resistant hearing device
JP2010255447A (en) Air blowing device driving device and air blowing device driving method
US7835539B2 (en) Electroacoustic transducer using diaphragm and method for producing diaphragm
KR20100107330A (en) Vibrator for humidifier and humidifier use there
JP2008207054A (en) Ultrasonic atomizing device and equipment provided with the same
JP4882836B2 (en) Speaker diaphragm and speaker
KR20230049000A (en) Portable humidifier
US20120129060A1 (en) Device for removing generated water
JP2011034809A (en) Device for removing generated water
EP2101060B1 (en) Ultrasonic piezoelectric pump
JP2011174677A (en) Mist generator
WO2011013266A1 (en) Device for removing generated water
US20210035545A1 (en) Temperature compensation for piezo sounder

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020561088

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938843

Country of ref document: EP

Kind code of ref document: A1