JPH07326677A - Semiconductor integrated circuit and its manufacture - Google Patents

Semiconductor integrated circuit and its manufacture

Info

Publication number
JPH07326677A
JPH07326677A JP6118447A JP11844794A JPH07326677A JP H07326677 A JPH07326677 A JP H07326677A JP 6118447 A JP6118447 A JP 6118447A JP 11844794 A JP11844794 A JP 11844794A JP H07326677 A JPH07326677 A JP H07326677A
Authority
JP
Japan
Prior art keywords
island
integrated circuit
film
polycrystalline silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6118447A
Other languages
Japanese (ja)
Inventor
Shigeaki Okawa
重明 大川
Toshiyuki Okoda
敏幸 大古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6118447A priority Critical patent/JPH07326677A/en
Publication of JPH07326677A publication Critical patent/JPH07326677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To provide isolation structure which can manufacture a semiconductor integrated circuit of a dielectric isolation structure containing a high withstand voltage element, with high yield and high reliability, and its manufacturing method. CONSTITUTION:In a semiconductor integrated circuit of a dielectric isolation structure constituted of an island 1 composed of single crystal semiconductor, an insulating film 12 covering the lower surface and the side surface of the island 1, retaining members 11, 24 wherein the island l covered with the insulating film is buried and retained, and a retaining substrate 10 on which the retaining members are fixed, the retaining members are constituted of a polycrystalline silicon film 24 which is fixed on the insulating film with which the island 1 is covered, and a boron glass film 11 which is fixed to the polycrystalline silicon film 24 and the retaining substrate 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路及びその
製造方法に係り、特に誘電体分離されたアイランド内に
高耐圧半導体素子を含む半導体集積回路の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit and a method of manufacturing the same, and more particularly to a method of manufacturing a semiconductor integrated circuit including a high breakdown voltage semiconductor element in an island separated by a dielectric.

【0002】[0002]

【従来の技術】耐圧が数百Vを超えるような半導体素子
を含む半導体集積回路を製造する場合、PN接合によっ
て素子間分離を行うのではなく、酸化膜(誘電体)によ
って分離を行う誘電体分離構造が用いられている。その
製造方法にも幾つかの種類があるが、その一つとして、
半導体基板の表面に溝を形成した後、その溝を多結晶シ
リコンで埋めて支持基板に接着して、反対表面を研磨し
て該研磨面を素子形成面とする手法が知られている(例
えば、特開昭59−99735号公報参照)。
2. Description of the Related Art When manufacturing a semiconductor integrated circuit including a semiconductor element having a withstand voltage of several hundreds of volts or more, a dielectric material that does not use a PN junction to separate elements but an oxide film (dielectric material). A separate structure is used. There are several types of manufacturing methods, one of which is
A method is known in which after a groove is formed on the surface of a semiconductor substrate, the groove is filled with polycrystalline silicon and adhered to a supporting substrate, and the opposite surface is polished to use the polished surface as an element formation surface (for example, , JP-A-59-99735).

【0003】また特開平1−93143号公報によれ
ば、第1の半導体基板と第2の半導体基板のそれぞれの
主表面に凹凸(溝)を形成し、流動性を有する接着材料
を介して互いの凹凸面を嵌合させた後、その接着材料を
加熱溶融することにより両半導体基板を接着させ、一方
の半導体基板の裏面から研磨して接着剤及び絶縁層によ
り誘電体分離されたアイランドを形成する方法が開示さ
れている。ここで、流動性を有する接着材料として、B
PSG等のガラス材料が用いられている。
According to Japanese Patent Laid-Open No. 1-93143, unevenness (grooves) is formed on the main surfaces of the first semiconductor substrate and the second semiconductor substrate, and they are mutually bonded via a fluid adhesive material. After fitting the concavo-convex surface, the adhesive material is heated and melted to bond both semiconductor substrates, and the back surface of one semiconductor substrate is polished to form an island separated by the adhesive and the insulating layer. A method of doing so is disclosed. Here, as the adhesive material having fluidity, B
A glass material such as PSG is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、耐圧が
数百Vを超えるようなトランジスタ等の半導体素子を誘
電体分離された単結晶半導体からなるアイランドに収納
する場合に、そのベース領域下面からアイランド下面ま
での深さは50〜100μm程度の距離が必要である。
このため、U字型或いはV字型の分離用の溝もその深さ
が50〜150μm程度が必要となる。しかしながら、
この程度の深さのU字またはV字状の分離用溝を、単に
前述のようなBPSG等のガラス材料で埋込もうとする
と、ガラス材料の平坦化性能にも限界があることから、
U字又はV字状の深い溝が必ずしも充分に埋めきれない
という問題がある。
However, when a semiconductor element such as a transistor having a withstand voltage of several hundreds of volts or more is housed in an island made of a dielectric-isolated single crystal semiconductor, the bottom surface of the base region is changed to the bottom surface of the island. The required depth is about 50 to 100 μm.
Therefore, the U-shaped or V-shaped separating groove also requires a depth of about 50 to 150 μm. However,
If the U-shaped or V-shaped separating groove having such a depth is simply filled with the glass material such as BPSG as described above, the flattening performance of the glass material has a limit.
There is a problem that the U-shaped or V-shaped deep groove cannot always be sufficiently filled.

【0005】分離用の深いU字又はV字状の溝がガラス
材料等の誘電体により埋めきれない場合には、ガラス材
料と支持基板との間にエア或いはガスが溜まり、その後
の熱処理により半導体基板等にストレスを与え、ウエハ
にクラックを発生させたり、できあがった半導体集積回
路のスクライブ性を劣化させたり、或いは歩留低下、信
頼性上の問題を引き起こす場合がある。
When the deep U-shaped or V-shaped groove for separation cannot be filled with a dielectric material such as glass material, air or gas is accumulated between the glass material and the supporting substrate, and the semiconductor is heated by the subsequent heat treatment. In some cases, stress may be applied to the substrate or the like to cause cracks in the wafer, the scribe property of the completed semiconductor integrated circuit may be deteriorated, or the yield may be reduced or reliability problems may be caused.

【0006】本発明は係る従来技術の問題点に鑑みて為
されたものであり、高耐圧素子を含む誘電体分離構造の
半導体集積回路を高歩留、高信頼性で製造することので
きる分離構造、及びその製造方法を提供することを目的
とする。
The present invention has been made in view of the problems of the related art, and a semiconductor integrated circuit having a dielectric isolation structure including a high breakdown voltage element can be manufactured with high yield and high reliability. An object is to provide a structure and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明の半導体集積回路
は、単結晶半導体からなるアイランドと、該アイランド
の下面及び側面を被覆する絶縁膜と、該絶縁膜で被覆さ
れたアイランドを埋込み支持する支持部材と、該支持部
材を固着した支持基板とからなる誘電体分離型の半導体
集積回路において、前記支持部材は前記アイランドを被
覆する絶縁膜に固着した多結晶シリコン膜と、該多結晶
シリコン膜と前記支持基板に固着したボロンガラス膜と
からなることを特徴とする。
In a semiconductor integrated circuit of the present invention, an island made of a single crystal semiconductor, an insulating film covering the lower surface and side surfaces of the island, and an island covered with the insulating film are embedded and supported. In a dielectric isolation type semiconductor integrated circuit comprising a supporting member and a supporting substrate to which the supporting member is fixed, the supporting member includes a polycrystalline silicon film fixed to an insulating film covering the island, and the polycrystalline silicon film. And a boron glass film fixed to the support substrate.

【0008】又、本発明の半導体集積回路の製造方法
は、単結晶半導体基板上に分離用の溝を形成して前記半
導体基板表面に酸化膜を形成する工程と、前記半導体基
板表面の前記溝を埋込んで多結晶シリコン膜を被着する
工程と、前記多結晶シリコン膜上にボロンガラス膜を被
着する工程と、前記ボロンガラス膜の被着面を支持基板
に貼り付ける工程と、前記半導体基板の裏面から前記分
離用溝に達する迄研磨して前記ボロンガラス膜及び多結
晶シリコン膜により支持されたアイランドを形成する工
程と、前記アイランド内に半導体素子を形成する工程と
からなることを特徴とする。
The method of manufacturing a semiconductor integrated circuit according to the present invention further comprises a step of forming a separating groove on a single crystal semiconductor substrate to form an oxide film on the surface of the semiconductor substrate, and the groove on the surface of the semiconductor substrate. A step of embedding a polycrystalline silicon film by embedding, a step of depositing a boron glass film on the polycrystalline silicon film, a step of attaching the adhered surface of the boron glass film to a support substrate, and And a step of forming an island supported by the boron glass film and the polycrystalline silicon film by polishing from the back surface of the semiconductor substrate until reaching the separation groove; and a step of forming a semiconductor element in the island. Characterize.

【0009】[0009]

【作用】単結晶半導体からなるアイランドは、アイラン
ドを被覆する絶縁膜に固着した多結晶シリコン膜と、そ
の多結晶シリコン膜と支持基板に固着したボロンガラス
膜とにより基板上に支持される。多結晶シリコン膜は、
単結晶半導体のアイランドを被覆する酸化膜等の絶縁膜
に対して密着性が良好であるので、分離用の溝を埋込む
際に、分離用の溝が細く且つ深くても密着性良く埋込む
ことができる。そして、ボロンガラス膜は多結晶膜と他
の半導体ウエハ等である支持基板との間に良好な密着性
が得られる。それ故、多結晶シリコン膜とボロンガラス
膜の2層構造により単結晶半導体からなるアイランドを
支持基板上に支持するので、その支持構造が強固であ
り、且つ熱歪み等に対してクッション性の高いものとな
る。従って、高耐圧素子を含む半導体集積回路を、良好
な歩留、信頼性等で製造することができる。
The island made of a single crystal semiconductor is supported on the substrate by the polycrystalline silicon film fixed to the insulating film covering the island and the polycrystalline silicon film and the boron glass film fixed on the supporting substrate. The polycrystalline silicon film is
Adhesion is good with respect to an insulating film such as an oxide film that covers the island of the single crystal semiconductor. Therefore, when the separation groove is buried, the separation groove is thin and deep and the adhesion is good. be able to. Further, the boron glass film can provide good adhesion between the polycrystalline film and another supporting substrate such as a semiconductor wafer. Therefore, since the island made of the single crystal semiconductor is supported on the supporting substrate by the two-layer structure of the polycrystalline silicon film and the boron glass film, the supporting structure is strong and has a high cushioning property against thermal strain and the like. Will be things. Therefore, a semiconductor integrated circuit including a high breakdown voltage element can be manufactured with a good yield and reliability.

【0010】[0010]

【実施例】以下、本発明の一実施例について添付図面を
参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0011】図1は、本発明の一実施例の半導体集積回
路の部分断面図であり、誘電体分離されたアイランドの
一領域を示す。本実施例の半導体集積回路は、支持基板
10上にボロンガラス膜11及び多結晶シリコン膜24
により誘電体分離されたアイランド1が多数支持されて
いる。そして、誘電体分離されたアイランド1に例えば
数百Vの耐圧を有する高耐圧バイポーラトランジスタ、
DMOS、IGBT等の素子が収納される。
FIG. 1 is a partial cross-sectional view of a semiconductor integrated circuit according to an embodiment of the present invention, showing a region of an island with dielectric isolation. In the semiconductor integrated circuit of this embodiment, the boron glass film 11 and the polycrystalline silicon film 24 are provided on the support substrate 10.
A large number of islands 1 separated by the dielectric are supported by. Then, a high breakdown voltage bipolar transistor having a breakdown voltage of, for example, several hundreds V in the island 1 separated from the dielectric,
Elements such as DMOS and IGBT are housed.

【0012】酸化膜12によりその底面及び側面が被覆
され誘電体分離されたアイランド1は、V字型分離用の
溝3によって区画されており、酸化膜12を介して多結
晶シリコン膜24及びボロンガラス膜11からなる支持
部材中に埋込まれた構造となっている。多結晶シリコン
膜24は、アイランド1の酸化膜12に固着されてお
り、ボロンガラス膜11は、多結晶シリコン膜24を他
の半導体基板である支持基板10に接着する役割を果た
している。
The island 1 whose bottom and side surfaces are covered with an oxide film 12 and which is dielectrically separated is divided by a groove 3 for V-shaped separation, and the polycrystalline silicon film 24 and boron are interposed via the oxide film 12. It has a structure of being embedded in a supporting member made of the glass film 11. The polycrystalline silicon film 24 is fixed to the oxide film 12 of the island 1, and the boron glass film 11 plays a role of adhering the polycrystalline silicon film 24 to the supporting substrate 10 which is another semiconductor substrate.

【0013】そして、アイランド1内には、高耐圧トラ
ンジスタを構成するP型ベース領域20、N+ 型エミッ
タ領域21、N+ 型コレクタコンタクト領域19、N+
型埋込拡散層17等を備えている。N+ 型埋込拡散層1
7は、誘電体アイランド1の周囲の酸化膜17の内面側
に予めイオン注入されたN+ 型不純物層からの拡散によ
り形成される。
In the island 1, a P-type base region 20, an N + type emitter region 21, an N + type collector contact region 19 and an N + constituting a high breakdown voltage transistor are formed.
The mold embedded diffusion layer 17 and the like are provided. N + type buried diffusion layer 1
7 is formed by diffusion from an N + -type impurity layer that has been ion-implanted in advance on the inner surface side of the oxide film 17 around the dielectric island 1.

【0014】係る構造の誘電体分離されたトランジスタ
は、アイランドの深さを50〜100μm程度取ること
ができ、ベース20と埋込拡散層17間の距離Wを大き
く取ることができる。このため、耐圧の高い素子を半導
体集積回路上に搭載することが可能となり、誘電体分離
されているので、ラッチアップ等の問題がない。又、ア
イランド部分が、多結晶シリコン膜を挟んだボロンガラ
ス膜により支持基板上に接着されているので、それぞれ
の密着性が良いため、構造が強固であり且つ熱歪等に対
しては良好なクッション性が得られる。
In the dielectric-isolated transistor having such a structure, the island depth can be set to about 50 to 100 μm, and the distance W between the base 20 and the buried diffusion layer 17 can be set large. Therefore, it becomes possible to mount an element having a high breakdown voltage on a semiconductor integrated circuit, and since it is dielectric-separated, there is no problem such as latch-up. Further, since the island portion is adhered to the supporting substrate by the boron glass film sandwiching the polycrystalline silicon film, the respective adhesiveness is good, so that the structure is strong and it is good for heat distortion and the like. Cushioning property is obtained.

【0015】次に、本実施例の半導体集積回路の製造方
法について説明する。まず、図2に示すようにN型半導
体基板15の表面をレジストパターニングにより選択的
に異方性ドライエッチングすることによりV字、または
U字型の深さ50〜150μmの溝3を形成する。この
V字又はU字型の溝3は、KOH溶液による異方性エッ
チングにより形成してもよい。
Next, a method of manufacturing the semiconductor integrated circuit of this embodiment will be described. First, as shown in FIG. 2, the surface of the N-type semiconductor substrate 15 is selectively subjected to anisotropic dry etching by resist patterning to form a V-shaped or U-shaped groove 3 having a depth of 50 to 150 μm. The V-shaped or U-shaped groove 3 may be formed by anisotropic etching using a KOH solution.

【0016】次に、図3に示すように半導体基板15の
表面の全面にヒ素をイオン注入してN+ 型不純物層17
Aを形成して、厚さ1μm程度の酸化膜12を成長させ
る。尚、N+ 型不純物層17Aの形成は、拡散によって
行ってもよく、又、酸化膜12の形成後イオン注入によ
って行ってもよい。
Next, as shown in FIG. 3, arsenic is ion-implanted into the entire surface of the semiconductor substrate 15 to form an N + -type impurity layer 17 therein.
A is formed and an oxide film 12 having a thickness of about 1 μm is grown. The N + type impurity layer 17A may be formed by diffusion, or may be formed by ion implantation after the oxide film 12 is formed.

【0017】次に、図4に示すように多結晶シリコン膜
24をCVDにより形成する。多結晶シリコン膜24
は、例えば深さ100μm程度の溝3に対して50μm
程度の厚みに形成する。多結晶シリコン膜24をCVD
により堆積させると、溝3の最深部では半導体基板15
の平坦部より膜厚が厚く被着する。本発明ではこの膜厚
の差を利用して、溝3の深さを実質的に浅くするのであ
る。そして、図5に示すように半導体基板15の表面に
ボロンガラス膜11を例えば70μm程度の厚みに形成
する。ボロンガラス膜11は、CVDにより四塩化硅素
と三塩化ホウ素等を反応させて形成されたスートと呼ば
れるボロンを含む珪酸ガラス系の被膜である。ボロンガ
ラス膜11は、V字型の溝3を埋込んでその表面が略平
坦になる厚さ迄成長させる。先の工程において、溝3の
実質的な深さを多結晶シリコン膜24により浅くしてい
るので、ボロンガラス膜11の表面を平坦面に形成でき
る。
Next, as shown in FIG. 4, a polycrystalline silicon film 24 is formed by CVD. Polycrystalline silicon film 24
Is, for example, 50 μm for a groove 3 having a depth of about 100 μm.
It is formed to a thickness of a certain degree. CVD of polycrystalline silicon film 24
Is deposited on the semiconductor substrate 15 at the deepest part of the groove 3.
The film thickness is thicker than that of the flat portion of. In the present invention, the depth of the groove 3 is made substantially shallow by utilizing this difference in film thickness. Then, as shown in FIG. 5, the boron glass film 11 is formed on the surface of the semiconductor substrate 15 to have a thickness of, for example, about 70 μm. The boron glass film 11 is a silicate glass-based coating containing boron called soot, which is formed by reacting silicon tetrachloride with boron trichloride or the like by CVD. The boron glass film 11 is grown to such a thickness that the V-shaped groove 3 is embedded and its surface is substantially flat. In the previous step, since the substantial depth of the groove 3 is made shallow by the polycrystalline silicon film 24, the surface of the boron glass film 11 can be formed as a flat surface.

【0018】次に、図6に示すように半導体基板15を
ひっくり返してその表面を支持基板10に貼り付ける。
すなわち、半導体基板15のボロンガラス膜11の被着
した面を支持基板10の表面に嵌め合わせて、例えば1
200〜1300゜Cで加熱する。この加熱処理により
ボロンガラス膜11が軟化溶融して多結晶シリコン膜2
4と支持基板10とをしっかりと接着固定する。なお支
持基板10としては、半導体基板15と同種の半導体基
板が用いられる。支持基板10は、単にボロンガラス膜
11によりアイランド1を支持するためのものであるの
で、熱膨張係数等の観点から半導体基板15と同種のも
のが好ましいが、セラミック基板等を用いても差し支え
はない。
Next, as shown in FIG. 6, the semiconductor substrate 15 is turned over and its surface is attached to the supporting substrate 10.
That is, the surface of the semiconductor substrate 15 on which the boron glass film 11 is adhered is fitted to the surface of the support substrate 10, and, for example, 1
Heat at 200-1300 ° C. By this heat treatment, the boron glass film 11 is softened and melted, and the polycrystalline silicon film 2
4 and the supporting substrate 10 are firmly bonded and fixed. A semiconductor substrate of the same type as the semiconductor substrate 15 is used as the support substrate 10. Since the supporting substrate 10 is merely for supporting the island 1 by the boron glass film 11, it is preferably the same type as the semiconductor substrate 15 from the viewpoint of the coefficient of thermal expansion and the like, but a ceramic substrate or the like may be used. Absent.

【0019】次に、図7に示すように半導体基板15の
裏面側から研磨してV字型の溝3の頭が出たところで研
磨を停止する。半導体基板15の研磨は、通常のポリッ
シングにより行う。この研磨により、単結晶半導体基板
15は、酸化膜12により誘電体分離されたアイランド
1に分割され、ボロンガラス膜11及び多結晶シリコン
膜24により支持基板10に接着支持される。N+ 型埋
込み拡散層17は、多結晶シリコン膜24及びボロンガ
ラス膜11の被着、支持基板10への半導体基板15の
貼り付け時の熱処理等により図3における不純物層17
Aの表面層からアイランド1の底面及び側面の酸化膜1
2の内側に拡散して形成される。
Next, as shown in FIG. 7, polishing is performed from the back surface side of the semiconductor substrate 15 and the polishing is stopped when the head of the V-shaped groove 3 is exposed. The polishing of the semiconductor substrate 15 is performed by ordinary polishing. By this polishing, the single crystal semiconductor substrate 15 is divided into islands 1 that are dielectrically separated by the oxide film 12, and is bonded and supported by the support substrate 10 by the boron glass film 11 and the polycrystalline silicon film 24. The N + -type buried diffusion layer 17 is formed by depositing the polycrystalline silicon film 24 and the boron glass film 11, heat treatment when the semiconductor substrate 15 is attached to the support substrate 10, and the like, and the impurity layer 17 shown in FIG.
Oxide film 1 from the surface layer of A to the bottom and side surfaces of island 1
It is formed by diffusing inside 2.

【0020】次に図1に示すように、P型ベース拡散層
20、N+ 型エミッタ拡散層21、N+ 型コレクタコン
タクト拡散層19等が次々に形成され、誘電体分離され
たアイランド領域1内にトランジスタ等のデバイスの拡
散領域が形成される。そして図示しないその他のアイラ
ンドにも、高耐圧バイポーラトランジスタ、或いは耐圧
を要さない小信号トランジスタ等の半導体素子が同時に
拡散により形成される。そして、これらの高耐圧型トラ
ンジスタ及び小信号用トランジスタ等は公知の配線技術
により接続され、高耐圧半導体素子を含む誘電体分離構
造の半導体集積回路が完成する。
Next, as shown in FIG. 1, a P-type base diffusion layer 20, an N + type emitter diffusion layer 21, an N + type collector contact diffusion layer 19 and the like are formed one after another, and the dielectrically isolated island region 1 is formed. Diffusion regions for devices such as transistors are formed therein. Then, on other islands (not shown), semiconductor elements such as high breakdown voltage bipolar transistors or small signal transistors that do not require breakdown voltage are simultaneously formed by diffusion. Then, these high breakdown voltage type transistors, small signal transistors and the like are connected by a known wiring technique, and a semiconductor integrated circuit having a dielectric isolation structure including a high breakdown voltage semiconductor element is completed.

【0021】なお、以上に説明した実施例では誘電体分
離されたアイランド領域内にバイポーラトランジスタを
形成する例について述べたが、高耐圧ダイオード、サイ
リスタまたは絶縁ゲートバイポーラトランジスタ(IG
BT)等を形成してもよいことは勿論のことである。
又、ボロンガラス膜も上述の実施例に限定されるもので
なく、支持基板に誘電体分離されたアイランドを多結晶
シリコン膜を挟んで固定できるものであるならば何でも
利用可能である。このように本発明の趣旨を逸脱するこ
となく、種々の変形実施例が可能である。
In the above-described embodiments, the bipolar transistor is formed in the island region where the dielectric is separated. However, a high breakdown voltage diode, a thyristor or an insulated gate bipolar transistor (IG) is used.
It goes without saying that BT) or the like may be formed.
Also, the boron glass film is not limited to the above-mentioned embodiment, and any film can be used as long as it can fix the dielectrically separated islands on the supporting substrate with the polycrystalline silicon film interposed therebetween. As described above, various modifications can be made without departing from the spirit of the present invention.

【0022】[0022]

【発明の効果】以上に説明したように本発明によれば、
多結晶シリコン膜が溝の深さを浅くするので、ガラス膜
が埋めこめる限界の深さより溝の深さを深くできる。し
たがって、深いアイランド領域を形成することができ素
子耐圧を向上させることが出来る。それ故、高耐圧半導
体素子を含む半導体集積回路を良好な歩留、信頼性で且
つ経済的に生産することが可能となる。
As described above, according to the present invention,
Since the polycrystalline silicon film makes the depth of the groove shallow, the depth of the groove can be made deeper than the limit depth at which the glass film can be embedded. Therefore, a deep island region can be formed and the element breakdown voltage can be improved. Therefore, it becomes possible to produce a semiconductor integrated circuit including a high breakdown voltage semiconductor element with good yield, reliability and economically.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の半導体集積回路の断面図で
あり、誘電体分離されたアイランドの一領域を示す。
FIG. 1 is a cross-sectional view of a semiconductor integrated circuit according to an embodiment of the present invention, showing a region of an island with dielectric isolation.

【図2】本発明の一実施例の半導体集積回路の製造工程
を示す断面図。
FIG. 2 is a cross-sectional view showing a manufacturing process of a semiconductor integrated circuit according to an embodiment of the present invention.

【図3】本発明の一実施例の半導体集積回路の製造工程
を示す断面図。
FIG. 3 is a cross-sectional view showing a manufacturing process of a semiconductor integrated circuit according to an embodiment of the present invention.

【図4】本発明の一実施例の半導体集積回路の製造工程
を示す断面図。
FIG. 4 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit according to the embodiment of the present invention.

【図5】本発明の一実施例の半導体集積回路の製造工程
を示す断面図。
FIG. 5 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit according to the embodiment of the present invention.

【図6】本発明の一実施例の半導体集積回路の製造工程
を示す断面図。
FIG. 6 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit according to the embodiment of the present invention.

【図7】本発明の一実施例の半導体集積回路の製造工程
を示す断面図。
FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit according to the embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/06 29/786 29/78 9056−4M H01L 29/78 311 R 321 R ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H01L 27/06 29/786 29/78 9056-4M H01L 29/78 311 R 321 R

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 単結晶半導体からなるアイランドと、該
アイランドの下面及び側面を被覆する絶縁膜と、該絶縁
膜で被覆されたアイランドを埋込み支持する支持部材
と、該支持部材を固着した支持基板とからなる誘電体分
離型の半導体集積回路において、前記支持部材は前記ア
イランドを被覆する絶縁膜に固着した多結晶シリコン膜
と、該多結晶シリコン膜と前記支持基板に固着したボロ
ンガラス膜とからなることを特徴とする半導体集積回
路。
1. An island made of a single crystal semiconductor, an insulating film covering the lower surface and side surfaces of the island, a support member for embedding and supporting the island covered with the insulating film, and a support substrate to which the support member is fixed. In the dielectric isolation type semiconductor integrated circuit consisting of, the supporting member comprises a polycrystalline silicon film fixed to an insulating film covering the island, and a polycrystalline silicon film and a boron glass film fixed to the supporting substrate. A semiconductor integrated circuit characterized by the following.
【請求項2】 前記アイランドの下面及び側面を被覆す
る絶縁膜の内面には、高濃度不純物拡散層を更に備えた
ことを特徴とする請求項1記載の半導体集積回路。
2. The semiconductor integrated circuit according to claim 1, further comprising a high-concentration impurity diffusion layer on the inner surface of the insulating film that covers the lower surface and the side surface of the island.
【請求項3】 単結晶半導体基板上に分離用の溝を形成
して前記半導体基板表面に酸化膜を形成する工程と、前
記半導体基板表面の前記溝を埋込んで多結晶シリコン膜
を被着する工程と、前記多結晶シリコン膜上にボロンガ
ラス膜を被着する工程と、前記ボロンガラス膜の被着面
を支持基板に貼り付ける工程と、前記半導体基板の裏面
から前記分離用溝に達する迄研磨して前記ボロンガラス
膜及び多結晶シリコン膜により支持されたアイランドを
形成する工程と、前記アイランド内に半導体素子を形成
する工程とからなることを特徴とする半導体集積回路の
製造方法。
3. A step of forming a separating groove on a single crystal semiconductor substrate to form an oxide film on the surface of the semiconductor substrate, and filling the groove on the surface of the semiconductor substrate to deposit a polycrystalline silicon film. And a step of depositing a boron glass film on the polycrystalline silicon film, a step of attaching a deposition surface of the boron glass film to a supporting substrate, and a step of reaching the separation groove from the back surface of the semiconductor substrate. A method of manufacturing a semiconductor integrated circuit, comprising: a step of polishing up to form an island supported by the boron glass film and the polycrystalline silicon film; and a step of forming a semiconductor element in the island.
【請求項4】 前記半導体基板上に分離用の溝を形成し
た後に、前記基板表面上に埋込拡散層となる高濃度不純
物層を形成する工程を更に含むことを特徴とする請求項
3記載の半導体集積回路の製造方法。
4. The method according to claim 3, further comprising the step of forming a high concentration impurity layer to be a buried diffusion layer on the surface of the substrate after forming a separation groove on the semiconductor substrate. Manufacturing method of semiconductor integrated circuit.
JP6118447A 1994-05-31 1994-05-31 Semiconductor integrated circuit and its manufacture Pending JPH07326677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6118447A JPH07326677A (en) 1994-05-31 1994-05-31 Semiconductor integrated circuit and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6118447A JPH07326677A (en) 1994-05-31 1994-05-31 Semiconductor integrated circuit and its manufacture

Publications (1)

Publication Number Publication Date
JPH07326677A true JPH07326677A (en) 1995-12-12

Family

ID=14736877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6118447A Pending JPH07326677A (en) 1994-05-31 1994-05-31 Semiconductor integrated circuit and its manufacture

Country Status (1)

Country Link
JP (1) JPH07326677A (en)

Similar Documents

Publication Publication Date Title
JP2788269B2 (en) Semiconductor device and manufacturing method thereof
US3922705A (en) Dielectrically isolated integral silicon diaphram or other semiconductor product
JP3014012B2 (en) Method for manufacturing semiconductor device
JPH0883837A (en) Semiconductor device and manufacture thereof
JPH09509792A (en) Method for manufacturing semiconductor device in which semiconductor element is formed in layer of semiconductor material adhered on supporting wafer
JP3474926B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP2763107B2 (en) Dielectric-isolated semiconductor substrate and method of manufacturing the same
JPH07326677A (en) Semiconductor integrated circuit and its manufacture
JPH07326662A (en) Semiconductor integrated circuit and its manufacture
JPH10242266A (en) Semiconductor device, and semiconductor bonding substrate using for its manufacture
JPS61182242A (en) Manufacture of semiconductor device
JPH0687480B2 (en) Method for manufacturing semiconductor device
JPS6276646A (en) Manufacture of semiconductor device
JPH07326661A (en) Manufacture of semiconductor integrated circuit
JPS61174661A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0555357A (en) Manufacture of semiconductor device
JPH04199632A (en) Soi wafer and manufacture thereof
JPH0817908A (en) Semiconductor integrated circuit and its manufacture
JPH05267438A (en) Adhesion-type dielectric separation semiconductor substrate
JP2674533B2 (en) SOI substrate, semiconductor device using the same, and manufacturing method thereof
JP3264401B2 (en) Method of manufacturing insulator-isolated lateral bipolar transistor and lateral pnp bipolar transistor
JPS58155739A (en) Semiconductor device
JPH04103146A (en) Semiconductor device and manufacture thereof
JPH05129424A (en) Semiconductor device and manufacture thereof
JP3197143B2 (en) Semiconductor device, method of manufacturing the same, and method of manufacturing a dielectric isolation substrate