JPH0732523U - Measuring instrument for fluid flow meter - Google Patents

Measuring instrument for fluid flow meter

Info

Publication number
JPH0732523U
JPH0732523U JP6086793U JP6086793U JPH0732523U JP H0732523 U JPH0732523 U JP H0732523U JP 6086793 U JP6086793 U JP 6086793U JP 6086793 U JP6086793 U JP 6086793U JP H0732523 U JPH0732523 U JP H0732523U
Authority
JP
Japan
Prior art keywords
sensors
pressure
holes
hole
measuring instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6086793U
Other languages
Japanese (ja)
Inventor
泰夫 前川
Original Assignee
株式会社プリモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プリモ filed Critical 株式会社プリモ
Priority to JP6086793U priority Critical patent/JPH0732523U/en
Publication of JPH0732523U publication Critical patent/JPH0732523U/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

(57)【要約】 【目的】 フルイデイツク流量計に使用して、外部振動
の影響を受けなくすることができて、製作容易な計測器
を得ようとする。 【構成】ゴム成形した内ケース14を外ケース18で気
密に囲む。内ケースの円筒孔内に同性能の圧力傾度型セ
ンサ10a、10bを、同極の表面を対向させ、空間1
7を隔てて気密に固定する。両センサの裏面と外ケース
18との間には空間19、20を形成し、フルイデイツ
ク素子の圧力取出し用通孔に通じる通孔26、27を外
ケース18に形成し、2つの導溝28、29を介して通
孔26、27を空間17、19、20に通じさせる通孔
23、24、25を内ケース14に形成する。
(57) [Summary] [Purpose] To obtain a measuring instrument that can be easily manufactured by being used in a fluidic flow meter without being affected by external vibration. [Structure] A rubber-molded inner case 14 is airtightly surrounded by an outer case 18. The pressure gradient type sensors 10a and 10b having the same performance are placed in the cylindrical hole of the inner case so that the surfaces of the same poles face each other, and the space 1
7 are fixed airtightly. Spaces 19 and 20 are formed between the back surfaces of both sensors and the outer case 18, and through holes 26 and 27 that communicate with pressure extracting through holes of the fluidic element are formed in the outer case 18, and two guiding grooves 28, Through holes 23, 24, 25 for communicating the through holes 26, 27 with the spaces 17, 19, 20 via 29 are formed in the inner case 14.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、流体を通したときに流量に比例した周波数の振動を発生させるフ ルイデイツク素子と共に使用して、フルイデイツク流量計を構成し、この素子の 発生する振動の周波数を検知する計測器に関する。 The present invention relates to a measuring instrument for detecting a frequency of vibration generated by a fluidic flowmeter, which is used in combination with a fluidic device which generates a vibration having a frequency proportional to a flow rate when a fluid is passed through.

【0002】[0002]

【従来の技術】[Prior art]

フルイデイツク素子は、ケーシング内を流通する流体により、流量に比例する 周波数の振動を発生させる一種の発振器である。フルイデイツク流量計は、この 素子を利用して、流体の流量を知るようにした流量計であり、発生する振動の周 波数を計測するのに電気的センサが使用される。 The fluidic element is a kind of oscillator that generates a vibration having a frequency proportional to the flow rate by the fluid flowing in the casing. A fluidic flow meter is a flow meter that uses this element to know the flow rate of a fluid, and an electrical sensor is used to measure the frequency of generated vibration.

【0003】 フルイデイツク素子は、図5にその断面図を示すように構成される。即ち、ケ ーシング1内には、ターゲット2、導流突起3、3、導流壁4が形成されており 、ノズル5からターゲット2に向けて流体を噴出させると、流体はターゲット2 、突起3、導流壁4のため白矢印aとハッチング矢印bとの2つの流れを交互に 取りながら出口6から流出する。The fluidic element is constructed as shown in the sectional view of FIG. That is, the target 2, the flow guide projections 3 and 3, and the flow guide wall 4 are formed in the casing 1. When the fluid is ejected from the nozzle 5 toward the target 2, the fluid is the target 2, the projection 3 Because of the flow guiding wall 4, the two flows of the white arrow a and the hatching arrow b are alternately taken and flow out from the outlet 6.

【0004】 このように交互に流路を変えながら流出する流体は、流線を変えるときに圧力 の変化による振動を発生する。この振動の周波数は、行止りとなったノズル5の 側方部分へ向おうとする流れの一部c又はdが、行止り部分で圧力を発生し、こ のときノズルと反対側部分で負圧を発生するので、この圧力の変化を通孔7、8 を通して計測器に導くことにより計測できる。As described above, the fluid flowing out while alternately changing the flow path generates vibration due to a change in pressure when the streamline is changed. The frequency of this vibration is such that a part c or d of the flow going to the lateral part of the nozzle 5 which has become dead creates pressure at the dead part, and at this time, negative pressure is applied at the part opposite to the nozzle. Is generated, this pressure change can be measured by introducing it to the measuring instrument through the holes 7 and 8.

【0005】 即ち、図6のように、両端を通孔7、8に連通させたU字形の管9に、2点間 の圧力傾度に比例した出力が得られる1個の圧力傾度型センサ10(例えばマイ クロホン、圧電膜センサ)を、管9を遮断して装着する。通孔7側が正圧、通孔 8側が負圧になると、センサ10の振動板11は、図7のように、通孔8側に凸 に弯曲し、通孔7側が負圧、通孔8側が正圧になると、振動板11は、図8のよ うに通孔7側に凸に弯曲する。そこでセンサ10の電気的出力を計測して、その 変動の周波数を知れば、フルイデイツク素子を通過する流体の流量を知ることが できる。That is, as shown in FIG. 6, one pressure gradient type sensor 10 capable of obtaining an output proportional to the pressure gradient between two points is provided in a U-shaped tube 9 communicating with the through holes 7 and 8 at both ends. (For example, a microphone or a piezoelectric film sensor) is attached with the tube 9 blocked. When the positive pressure is applied to the through hole 7 side and the negative pressure is applied to the through hole 8 side, the diaphragm 11 of the sensor 10 is curved so as to be convex toward the through hole 8 side as shown in FIG. When the positive pressure is applied to the side, the diaphragm 11 bends convexly toward the through hole 7 as shown in FIG. Therefore, if the electrical output of the sensor 10 is measured and the frequency of the fluctuation is known, the flow rate of the fluid passing through the fluidic element can be known.

【0006】 上記のようにしてセンサ10によりフルイデイツク素子の発生する振動圧を計 測する場合に、外部からケーシング1に雑音や機械的振動が加わると、これに影 響されてセンサ10の動作が不確実になり、フルイデイツク流量計の流量測定が 不正確になってしまう。When the vibration pressure generated by the fluidic element is measured by the sensor 10 as described above, if noise or mechanical vibration is applied to the casing 1 from the outside, the operation of the sensor 10 is affected by noise or mechanical vibration. Uncertainty and inaccurate flow measurement of fluidic flow meters.

【0007】 このような外部振動の影響を除くために、図9のように2個のセンサを使用し た計測器により、外部振動の影響を相殺し除くことが考えられた。図9の計測器 は、性能の等しい2個のセンサ10a、10bを互に極性を反対側にして、両端 がフルイデイツク素子の通孔7、8に通じる管12、13内に設けて構成してい る。両センサの極性を反対にするため、一方の管12は直線状に、他方の管13 はS字状に屈曲させている。In order to eliminate the influence of such external vibration, it has been considered that the influence of external vibration is offset and removed by a measuring instrument using two sensors as shown in FIG. The measuring instrument shown in FIG. 9 is configured by providing two sensors 10a and 10b having the same performance with opposite polarities to each other and in tubes 12 and 13 whose both ends communicate with the through holes 7 and 8 of the fluidic element. It In order to reverse the polarities of both sensors, one tube 12 is bent linearly and the other tube 13 is bent S-shaped.

【0008】 このように構成すれば、通孔7に正圧が加わると、この正圧は、図9において センサ10aの左側に、センサ10bの右側に加わり、通孔8の負圧は両センサ の上記と反対側に加わる。この結果、両センサ10a、10bから極性の同じ出 力が発生し、両出力を加えて計測器の出力とすることができ、外部振動Fが流量 計に加わっても、両センサ10a、10bの外部振動による出力は相殺されて、 流量計測の妨げにならない。According to this structure, when positive pressure is applied to the through hole 7, this positive pressure is applied to the left side of the sensor 10a and the right side of the sensor 10b in FIG. 9, and the negative pressure of the through hole 8 is applied to both sensors. Join the other side of the above. As a result, output with the same polarity is generated from both sensors 10a and 10b, and both outputs can be added to be the output of the measuring instrument. Even if external vibration F is applied to the flow meter, both sensors 10a and 10b will output. Output due to external vibration is canceled out and does not interfere with flow rate measurement.

【0009】[0009]

【考案が解決しようとする課題】[Problems to be solved by the device]

図9のようにしてフルイデイツク流量計の計測器を構成しようとすると、直線 管12とS状に屈曲した管13とを造り、その中にセンサ10a、10bを挿入 しなければならないので、製作が著しく面倒になる。 In order to construct a measuring device for a fluidic flow meter as shown in FIG. 9, a straight pipe 12 and a pipe 13 bent in an S shape must be formed, and the sensors 10a and 10b must be inserted therein, so that the fabrication is difficult. It is extremely troublesome.

【0010】[0010]

【課題を解決するための手段】[Means for Solving the Problems]

両端を塞いだ弾性の内ケース内に、2個の同性能の圧力傾度型センサを、間隔 をおき、且つ同極同士を対向させて気密に固定し、フルイデイツク素子の圧力を 取出す通孔に通じる通孔を形成した外ケースで内ケースを気密に囲み、対向する 両センサの間の空間及び両センサの上記と反対側の空間を上記フルイデイツク素 子の圧力を取出す通孔に各別に通じさせる通孔及び導溝を内ケースの外側面に形 成して、フルイデイツク流量計用計測器を構成したものである。 Two pressure gradient type sensors with the same performance are placed in an elastic inner case with both ends blocked and are airtightly fixed with the same poles facing each other, and the pressure gradient type sensors are connected to a through hole that takes out the pressure of the fluidic element. The inner case is hermetically enclosed by the outer case having the through holes, and the space between the two sensors facing each other and the space on the opposite side of both the sensors are individually communicated with the through holes for taking out the pressure of the fluidic element. A hole and guide groove are formed on the outer surface of the inner case to construct a measuring instrument for fluidic flow meters.

【0011】[0011]

【作用】[Action]

外ケースの2つの通孔からそれぞれ内筒外面の2つの導溝に入ったフルイデイ ツク素子の正圧、負圧は、同極を向い合わせた2つの圧力傾度型センサの間の空 間及び各センサの反対側の空間に導かれるから、フルイデイツク素子内で発生す る圧力変動を2つのセンサで計測し、これらの出力を合算してフルイデイツク流 量計の計測器の出力として出力させる。 The positive and negative pressures of the fluidic element that entered the two guide grooves on the outer surface of the inner cylinder from the two through holes of the outer case are the space between the two pressure gradient type sensors facing the same pole and the respective pressures. Since it is guided to the space on the opposite side of the sensor, pressure fluctuations occurring in the fluidic element are measured by two sensors, and the outputs of these are summed and output as the output of the measuring instrument of the fluidic flow meter.

【0012】 この計測は2つのセンサで行なうから、出力の大きさは倍増される。Since this measurement is performed with two sensors, the magnitude of the output is doubled.

【0013】 2つのセンサを囲む内ケース、外ケースに通孔及び導溝を形成して圧力変動を センサに導くから、従来のような管で圧力変動を導く構成より製作が容易になる 。Since the through hole and the guide groove are formed in the inner case and the outer case surrounding the two sensors to guide the pressure fluctuation to the sensor, the manufacturing is easier than the conventional structure in which the pressure fluctuation is guided by the pipe.

【0014】[0014]

【実施例】【Example】

図1〜図4は本考案の計測器の実施例を示し、図1は外ケースを切断した側面 図、図2は図1のA−A線による計測器の断面略図、図3は図1のB−B線によ る計測器の断面略図、図4は両センサに加わる圧力の通路の概念を示す略図であ る。 1 to 4 show an embodiment of a measuring instrument of the present invention, FIG. 1 is a side view in which an outer case is cut, FIG. 2 is a schematic sectional view of the measuring instrument taken along the line AA of FIG. 1, and FIG. FIG. 4 is a schematic sectional view of the measuring instrument along the line BB, and FIG. 4 is a schematic diagram showing the concept of the passage of pressure applied to both sensors.

【0015】 ゴムを成形して造った内ケース14の中心部には円筒孔15を形成し、2個の 同性能の圧力傾度型センサ(この実施例ではマイクロホンを使用)10a、10 bを同極を向い合わせ、且つ円筒孔15の中間部に形成した内フランジ16に衝 き当てて円筒孔内に気密に固定する。両センサの間には空間17が形成される。 この内ケース14は、外ケース18で気密に包まれる。両センサ10a、10b の空間17と反対側には、空間19、20が形成され、この空間19、20を通 り、内ケース14、外ケース18を気密に貫通して各センサの導線21、22が 外部へ導出される。内ケース14の側面には、空間17に通じる通孔23、空間 19、20に通じる通孔24、25を形成する。外ケース18には、フルイデイ ツク素子の通孔7、8に各別に連通させられる通孔26、27を形成し、内ケー ス14の外側面に通孔24、25、26を連通させる導溝28及び通孔23、2 7を連通させる導溝29を形成する。A cylindrical hole 15 is formed in the center of an inner case 14 made by molding rubber, and two pressure gradient type sensors (a microphone is used in this embodiment) 10a and 10b having the same performance are provided. The poles are faced to each other and abutted against the inner flange 16 formed in the intermediate portion of the cylindrical hole 15 to fix the inside of the cylindrical hole in an airtight manner. A space 17 is formed between both sensors. The inner case 14 is airtightly wrapped by the outer case 18. Spaces 19 and 20 are formed on the opposite side of the space 17 between the two sensors 10a and 10b. 22 is led to the outside. On the side surface of the inner case 14, a through hole 23 communicating with the space 17 and through holes 24, 25 communicating with the spaces 19, 20 are formed. The outer case 18 is formed with through holes 26 and 27 which communicate with the through holes 7 and 8 of the fluidic element, respectively. A guide groove 29 is formed to connect the No. 28 and the through holes 23, 27.

【0016】 以上のように構成される計測器は、外ケースの通孔26とフルイデイツク素子 の通孔7とを連通させ、通孔27と同素子の通孔8とを連通させてフルイデイツ ク流量計用計測器として使用される。In the measuring instrument configured as described above, the through hole 26 of the outer case and the through hole 7 of the fluidic element are communicated with each other, and the through hole 27 and the through hole 8 of the same element are communicated with each other, so that the fluidic flow rate is increased. Used as a measuring instrument.

【0017】 フルイデイツク素子の通孔7に正圧が入り、通孔8に負圧が入ると、計測器の 通孔26、導溝28、通孔24、25を通り空間19、20に正圧が入ってセン サ10a、10bの背面に正圧が加わり、導溝29、通孔23、空間17を通っ てセンサ10a、10bの表面に負圧が加わる。これにより両センサの振動板は 共に空間17側に凸に弯曲する。フルイデイツク素子の通孔7、8に入る圧力の 正負が逆になると、空間19、20は負圧となり空間17は正圧になり、両セン サの振動板は上記と逆の方向に弯曲する。フルイデイツク素子内を流体、例えば ガスの噴流が通過して通孔7、8に交互に正負の圧力が加わると、その交番周波 数は、センサであるマイクロホンの出力によりフルイデイツク素子の発生する正 負圧力の交番周波数を計測することができる。この場合に、計測器に外部振動F が加わっても同性能の2個のマイクロホンの振動板は、正負の極性に関して互に 逆方向に動くから、その出力は相殺されてしまうので、フルイデイツク素子によ り発生する正負の圧力変化の計測に影響が及ぶことがない。When positive pressure is applied to the through hole 7 of the fluidic element and negative pressure is applied to the through hole 8, a positive pressure is applied to the spaces 19 and 20 through the through hole 26, the guide groove 28, and the through holes 24 and 25 of the measuring instrument. Then, a positive pressure is applied to the back surfaces of the sensors 10a and 10b, and a negative pressure is applied to the surfaces of the sensors 10a and 10b through the guide groove 29, the through hole 23, and the space 17. As a result, the diaphragms of both sensors are curved so as to be convex toward the space 17 side. When the positive and negative pressures entering the through holes 7 and 8 of the fluidic element are reversed, the spaces 19 and 20 become negative pressure and the space 17 becomes positive pressure, and the diaphragms of both sensors bend in the opposite direction. When a positive or negative pressure is alternately applied to the through holes 7 and 8 due to a jet of a fluid such as a gas passing through the fluidic element, the alternating frequency is the positive or negative pressure generated by the fluidic element due to the output of the microphone which is the sensor. The alternating frequency of can be measured. In this case, even if an external vibration F is applied to the measuring instrument, the diaphragms of the two microphones having the same performance move in opposite directions with respect to positive and negative polarities, so that the outputs are canceled out, so that the fluidic element is It does not affect the measurement of positive and negative pressure changes.

【0018】[0018]

【考案の効果】[Effect of device]

(1) フルイデイツク素子の発生する圧力変化を2個のセンサの出力として取出し 計測することができる。この計測は、2個のセンサの出力の和として測定できる ので、大きな出力を得ることができる。 (1) The pressure change generated by the fluidic element can be taken out and measured as the output of two sensors. Since this measurement can be performed as the sum of the outputs of the two sensors, a large output can be obtained.

【0019】 (1) 外部振動が加わっても、これによる2個のセンサの出力が相殺されてしまう ので、外部振動の影響を受けて流量計測が不正確になることがない。(1) Even if external vibration is applied, the outputs of the two sensors are canceled by this, so that the flow rate measurement will not be inaccurate due to the influence of external vibration.

【0020】 (3) ゴム、プラスチック等の弾性材により、内筒14に図1〜図3のような径方 向の通孔23〜25、導溝28、29を形成することは容易であり、この内筒を 外筒18で気密に包むことも容易であって、外部振動に影響されない計測器を製 作することが容易である。(3) It is easy to form the radial through holes 23 to 25 and the guiding grooves 28 and 29 in the inner cylinder 14 by using an elastic material such as rubber or plastic. It is easy to wrap the inner cylinder in the outer cylinder 18 in an airtight manner, and it is easy to manufacture a measuring instrument that is not affected by external vibration.

【図面の簡単な説明】[Brief description of drawings]

【図1】外ケースを切断した本考案の計測器の側面図。FIG. 1 is a side view of a measuring instrument of the present invention with an outer case cut off.

【図2】図1のA−A線による計測器の断面略図。2 is a schematic sectional view of the measuring instrument taken along the line AA in FIG.

【図3】図1のB−B線による計測器の断面略図。3 is a schematic cross-sectional view of the measuring instrument taken along line BB of FIG.

【図4】2つのセンサに加わる圧力の通路を示す略図。FIG. 4 is a schematic diagram showing the passage of pressure applied to two sensors.

【図5】従来から知られたフルイデイツク素子の構造を
示す断面図。
FIG. 5 is a cross-sectional view showing the structure of a conventionally known fluidic element.

【図6】フルイデイツク素子内の圧力変化を計測する従
来の手段を示す略図。
FIG. 6 is a schematic diagram showing a conventional means for measuring a pressure change in a fluidic element.

【図7】図6の計測手段におけるセンサの振動板の弯曲
を示す略図。
FIG. 7 is a schematic diagram showing the curvature of the diaphragm of the sensor in the measuring means of FIG.

【図8】フルイデイツク素子内の圧力の正負が変った場
合の振動板の弯曲を示す略図。
FIG. 8 is a schematic diagram showing the curvature of the diaphragm when the positive and negative pressures inside the fluidic element change.

【図9】2個の測定素子を使用してフルイデイツク素子
内の圧力変化を計測する場合の従来方法を示す略図であ
る。
FIG. 9 is a schematic diagram showing a conventional method for measuring a pressure change in a fluidic element using two measuring elements.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 ターゲット 3 導流突起 4 導流壁 5 ノズル 6 出口 7、8 通孔 9 管 10 圧力傾度型センサ 10a、10b センサ 11 振動板 12、13 管 14 内ケース 15 円筒孔 16 内フランジ 17 空間 18 外ケース 19、20 空間 21、22 導線 23、24、25、26、27 通孔 28、29 導溝 1 Casing 2 Target 3 Flow Protrusion 4 Flow Wall 5 Nozzle 6 Outlet 7, 8 Through Hole 9 Tube 10 Pressure Gradient Sensor 10a, 10b Sensor 11 Vibration Plate 12, 13 Tube 14 Inner Case 15 Cylindrical Hole 16 Inner Flange 17 Space 18 Outer case 19, 20 Space 21, 22 Conductive wire 23, 24, 25, 26, 27 Through hole 28, 29 Conductive groove

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 両端を塞いだ弾性の内ケース内に、2個
の同性能の圧力傾度型センサを、間隔をおき、且つ同極
同士を対向させて気密に固定し、フルイデイツク素子の
圧力を取出す通孔に通じる通孔を形成した外ケースで内
ケースを気密に囲み、対向する両センサの間の空間及び
両センサの上記と反対側の空間を上記フルイデイツク素
子の圧力を取出す通孔に各別に通じさせる通孔及び導溝
を内ケースの外側面に形成したフルイデイツク流量計用
計測器。
1. A pressure gradient type sensor having the same performance is fixed in an elastic inner case whose both ends are closed at intervals, and the same poles are opposed to each other in an airtight manner to fix the pressure of the fluidic element. The inner case is airtightly surrounded by an outer case having a through hole that communicates with the through hole, and the space between the two sensors facing each other and the space on the opposite side of both sensors are connected to the through holes for taking out the pressure of the fluidic element. A measuring instrument for a fluid flow meter, which has a through hole and a guide groove separately formed on the outer surface of the inner case.
JP6086793U 1993-11-12 1993-11-12 Measuring instrument for fluid flow meter Pending JPH0732523U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6086793U JPH0732523U (en) 1993-11-12 1993-11-12 Measuring instrument for fluid flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6086793U JPH0732523U (en) 1993-11-12 1993-11-12 Measuring instrument for fluid flow meter

Publications (1)

Publication Number Publication Date
JPH0732523U true JPH0732523U (en) 1995-06-16

Family

ID=13154776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6086793U Pending JPH0732523U (en) 1993-11-12 1993-11-12 Measuring instrument for fluid flow meter

Country Status (1)

Country Link
JP (1) JPH0732523U (en)

Similar Documents

Publication Publication Date Title
FI90379B (en) Fluid flow meter
US5945609A (en) Mass flowmeter for measuring flow rate of a fluid
JPH0464020A (en) Flowmeter
RU2691285C1 (en) Vortex flowmeter vortex converter
US11624756B2 (en) Optical fiber flow velocity measuring apparatus and method integrating high and low ranges
JP2004286514A (en) Vortex flowmeter sensor and vortex flowmeter
JPH0732523U (en) Measuring instrument for fluid flow meter
JP2018081025A (en) Pressure type flowmeter
RU47097U1 (en) VORTEX FLOW METER SENSOR (OPTIONS)
JP5773800B2 (en) Pressure measuring device and pressure measuring method
WO2022190666A1 (en) Flowmeter
JPS5880525A (en) Karman vortex flowmeter
KR920002274Y1 (en) Eddy water meter
RU49247U1 (en) Vortex Flowmeter with Piezoelectric Sensor
JPH07119636B2 (en) Flowmeter
JPH01207634A (en) Differential pressure type flowmeter
JPH07225168A (en) Differential type pressure sensor
CN107478285B (en) Coriolis mass flowmeter
JP2530824B2 (en) Fluid logic element type flow meter
JP2591172Y2 (en) Rectifier mounting structure for fluidic flow meter
JPS59180435A (en) Karman vortex flowmeter
JPH10221146A (en) Coriolis mass flow meter
RU16551U1 (en) PRIMARY VORTEX FLOW METER CONVERTER
JPH0313692Y2 (en)
RU45522U1 (en) PRESSURE PULSATION SENSOR

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981110