JPH07225168A - Differential type pressure sensor - Google Patents

Differential type pressure sensor

Info

Publication number
JPH07225168A
JPH07225168A JP1815294A JP1815294A JPH07225168A JP H07225168 A JPH07225168 A JP H07225168A JP 1815294 A JP1815294 A JP 1815294A JP 1815294 A JP1815294 A JP 1815294A JP H07225168 A JPH07225168 A JP H07225168A
Authority
JP
Japan
Prior art keywords
diaphragm
case
sensor
cavities
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1815294A
Other languages
Japanese (ja)
Inventor
Nobuomi Imai
信臣 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PURIMO KK
Original Assignee
PURIMO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PURIMO KK filed Critical PURIMO KK
Priority to JP1815294A priority Critical patent/JPH07225168A/en
Publication of JPH07225168A publication Critical patent/JPH07225168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain a differential type pressure sensor which can be handled easily and is not affected by external force and noise for measurincj the pressure difference between two points and the alternate frequency. CONSTITUTION:A piezoelectric ceramic plate 19 is adhered to a diaphragm 16. The inside of a sensor case 20 where the diaphragm 16 is mounted to an opening is subdivided into two cavities 25a and 25b by the diaphragm 16 and a first screening plate 22a which is adhered to the surface inside the sensor case 20. Conduits 23 and 24 for leading the pressure at a part where a pressure difference is measured to each cavity in the sensor case 20 are mounted to the sensor case 20. The front surface of the case 20 is provided with a second screening plate 22b located on the extension of the first screening plate 22a and is covered with a cover 33 for dividing the front space of the diaphragm 16 into the cavities 25c and 25d.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明の差圧型圧力センサは、
流体振動を利用した流量計におけるように、2部分間の
振動的に変化する流体の圧力差を測定するのに利用す
る。
BACKGROUND OF THE INVENTION The differential pressure type pressure sensor of the present invention is
It is used to measure the oscillatory changing fluid pressure difference between two parts, such as in a flow meter utilizing fluid vibration.

【0002】[0002]

【従来の技術】管内を流れる空気、燃料ガス、水等の流
体の流量を測定するのに、管の途中に流体発振器を設け
て、流体に振動を生じさせ、その振動数を計測して流量
を知る方法が知られている。
2. Description of the Related Art To measure the flow rate of a fluid such as air, fuel gas, or water flowing in a pipe, a fluid oscillator is installed in the middle of the pipe to cause the fluid to vibrate, and the vibration frequency is measured to measure the flow rate. There are known ways to know.

【0003】図10は、フルイデイツク素子と呼ばれる
流体発振器の1例を示す断面図である。この発振器は、
ケース1内にターゲット2、導流突起3、3、導流壁4
を形成したもので、ノズル5からターゲット2に向けて
流体を噴出させると、噴流はターゲット2、導流突起
3、導流壁4等のため白矢印aとハッチング矢印bとの
2つの流れを交互に取りながら出口6から流出する。流
体はこのように流路を変えることによって振動を生じ
る。このとき、行止まりとなったノズル側方部分へ向お
うとする流れの一部c又はdが、行止まり部分で正圧を
発生し、このときノズルの反対部分で負圧を発生するの
で、ノズル5の両側の通孔7、8を通して圧力変化を測
定する事により、流体発振器の周波数を知ることができ
る。図10の流体発振器の形状を2次元的(即ちケーシ
ング内の流路形状は、紙面に垂直方向では変化しない)
とすれば、上記の流体振動の周波数が流量に比例するこ
とが知られている。
FIG. 10 is a sectional view showing an example of a fluid oscillator called a fluidic element. This oscillator
In the case 1, the target 2, the flow guiding projections 3, 3, and the flow guiding wall 4
When the fluid is ejected from the nozzle 5 toward the target 2, the jet flow causes two flows of a white arrow a and a hatching arrow b due to the target 2, the flow guide projections 3, the flow guide wall 4, and the like. It flows out from the outlet 6 while taking alternately. The fluid thus oscillates by changing the flow path. At this time, the part c or d of the flow that is going to the side portion of the nozzle that has become a dead end generates a positive pressure at the dead end portion, and at this time, a negative pressure at the opposite part of the nozzle. By measuring the pressure change through the through holes 7 and 8 on both sides of 5, the frequency of the fluid oscillator can be known. The shape of the fluid oscillator in FIG. 10 is two-dimensional (that is, the flow path shape in the casing does not change in the direction perpendicular to the paper surface).
Then, it is known that the frequency of the fluid vibration is proportional to the flow rate.

【0004】図11は、上記の発振器の構造を簡略化し
ようとして発明された流体発振器の別例を示し、ケース
9の入口に形成したノズル10からターゲット11に向
けて流体を噴射し、ターゲット11及び導流壁12、1
3により流体振動を生じさせ、通孔7、8から圧力変化
を測定して振動の周波数を知り、これに基いて流体の流
量を知るようにしたものである。
FIG. 11 shows another example of a fluid oscillator invented in order to simplify the structure of the above-mentioned oscillator. A fluid is jetted from a nozzle 10 formed at the inlet of a case 9 toward a target 11 to produce the target 11. And the diversion walls 12, 1
3, the fluid vibration is generated, the pressure change is measured from the through holes 7 and 8, the frequency of the vibration is known, and the flow rate of the fluid is known based on this.

【0005】これらの流体発振器において、通孔7、8
に作用する圧力差を測定するには、図12、図13のよ
うに管14の両端を通孔7、8に接続し、管14内に圧
力傾度型センサ15を置き、その振動板16の撓みによ
って圧力差を測定する。通孔7から正圧が入り、通孔8
が負圧になると、センサの振動板16は、図12のよう
に、通孔8側に撓み、通孔7側が負圧、通孔8側が正圧
になると、振動板16は図13のように通孔7側に撓む
から、両通孔に作用する圧力の大きさ及び交番周波数を
計測することができる。
In these fluid oscillators, the through holes 7 and 8
In order to measure the pressure difference acting on the pipe 14, as shown in FIGS. 12 and 13, both ends of the pipe 14 are connected to the through holes 7 and 8, the pressure gradient type sensor 15 is placed in the pipe 14, and the diaphragm 16 The pressure difference is measured by deflection. Positive pressure enters through the through hole 7, and through hole 8
When the pressure becomes negative, the vibration plate 16 of the sensor bends toward the through hole 8 side as shown in FIG. 12, and when the through hole 7 side becomes negative pressure and the through hole 8 side becomes positive pressure, the vibration plate 16 becomes as shown in FIG. Since it bends toward the through hole 7 side, the magnitude of the pressure acting on both through holes and the alternating frequency can be measured.

【0006】ところが、上記の測定時に、図12、図1
3のように、振動板16と直角方向に外部から雑音や機
械的振動による外力Fが加わると、これに影響されてセ
ンサ15の動作が不確実になり、流量計の流量測定が不
正確になってしまう。
However, at the time of the above measurement, FIG. 12 and FIG.
3, when external force F due to noise or mechanical vibration is applied from the outside in the direction perpendicular to the vibration plate 16, the operation of the sensor 15 becomes uncertain due to this, and the flow rate measurement of the flow meter becomes inaccurate. turn into.

【0007】そこで、このような外力の影響を除くため
に、図14のように2個のセンサ15a、15bを使用
し、真直な管14a、及び屈曲した管14bにより各通
孔7、8の圧力をセンサ15a、15bの異なる側に通
じさせて、外部振動等の影響を相殺して測定することが
考えられている。
Therefore, in order to eliminate the influence of such external force, two sensors 15a and 15b are used as shown in FIG. 14, and the straight pipe 14a and the bent pipe 14b form the through holes 7 and 8, respectively. It is considered that the pressure is communicated to different sides of the sensors 15a and 15b to cancel the influence of external vibration and the like for measurement.

【0008】センサ15、15a、15bとしては、図
15に略示するように、周囲を固定した振動板16に、
圧電セラミック板34の両面に薄金属板(例えばアルミ
ニウム箔)の電極17、18を接着して成る圧電素子1
9を接着し(図15では判り易くするため上記各部は、
厚く且つ離して示している)、振動板16の撓みにより
圧電素子19で発生する電圧変化を導線20、21によ
り取出して撓み量を検出するものが使用される。圧電素
子の発生電圧を大きくするため、図16のように電極1
7、18を電極17a、17b、17c、18a、18
bのように分割して圧電素子の発生電圧を重畳させるこ
とも行なわれている。図17は分割数を少なくしたもの
である。図18は、この電極分割を振動板の半部で行な
わせるものである。
As the sensors 15, 15a and 15b, as shown schematically in FIG.
Piezoelectric element 1 in which electrodes 17 and 18 of thin metal plates (for example, aluminum foil) are bonded to both surfaces of the piezoelectric ceramic plate 34
9 are adhered (the above-mentioned parts are
(Thick and separated) is used to detect the amount of bending by extracting the voltage change generated in the piezoelectric element 19 by the bending of the vibrating plate 16 through the conductors 20 and 21. In order to increase the voltage generated by the piezoelectric element, as shown in FIG.
7, 18 are electrodes 17a, 17b, 17c, 18a, 18
It is also practiced to superimpose the generated voltage of the piezoelectric element by dividing as shown in b. In FIG. 17, the number of divisions is reduced. In FIG. 18, this electrode division is performed in the half part of the diaphragm.

【0009】[0009]

【発明が解決しようとする課題】従来は、図14のよう
に2個のセンサと2個の管又は同様に作用する導音通路
とを用いて、外部からの雑音、振動等の影響を除いてい
たため、流体振動の検出装置が複雑になっていた。本発
明は、2個の別体のセンサや複雑な導音管系を用いるこ
となく2点間の差圧を検出する差圧型圧力センサを得よ
うとするものである。
Conventionally, as shown in FIG. 14, two sensors and two pipes or a sound guide passage acting similarly are used to eliminate the influence of noise and vibration from the outside. Therefore, the device for detecting the fluid vibration is complicated. The present invention is intended to obtain a differential pressure type pressure sensor for detecting a differential pressure between two points without using two separate sensors or a complicated sound guiding tube system.

【0010】[0010]

【課題を解決するための手段】この発明は、圧電素子を
接着した振動板及びセンサケースに接着されて振動板及
びケース内を2分割する隔板を、センサ内に設けて圧電
素子を独立に作用する2組に分け、センサケースの前面
は、分割された振動板部分を各独立に覆う空洞を持つカ
バーで覆い、圧電素子の両組をその出力の差を出力する
ように接続し、2分割されたケース内に各別に圧力を導
入させるようにして、従来の2個のセンサを一体に構成
したものである。
SUMMARY OF THE INVENTION According to the present invention, a diaphragm bonded to a piezoelectric element and a sensor case are provided in the sensor so as to divide the diaphragm into two parts. It is divided into two sets that operate, and the front surface of the sensor case is covered with a cover having a cavity that covers each of the divided diaphragm parts independently, and both sets of piezoelectric elements are connected so as to output the difference in their outputs. In this case, two conventional sensors are integrally formed by individually introducing pressure into the divided cases.

【0011】[0011]

【作用】2分割されたケース内には、各1本の単純な管
により測定しようとする2点の圧力が導入される。これ
により振動板が振動すると、振動板に接着した2組の圧
電素子がそれぞれ出力を発生し、この出力により2点間
の圧力差、流体振動の周波数を知ることができる。外力
によりケースが直線方向に振動したり、外部雑音があっ
てもこれが振動板に作用して測定に影響することはな
い。
In the case divided into two parts, the pressure at two points to be measured is introduced by one simple tube. As a result, when the diaphragm vibrates, the two sets of piezoelectric elements bonded to the diaphragm generate outputs, and the pressure difference between the two points and the frequency of fluid vibration can be known from the outputs. Even if the case vibrates in a straight line direction due to an external force or external noise is generated, it does not affect the measurement by acting on the diaphragm.

【0012】[0012]

【実施例】図1〜図3はこのような差圧型圧力センサの
第1実施例を示し、図1は外観斜視図、図2は図1のA
−A断面図、図3は図2のB−B断面図である。有底円
筒形のセンサケース20のかしめた縁とカバー33、ス
ぺーサ21a、21bとにより振動板16の縁が支持さ
れており、これに電極17、18を接着した圧電素子1
9が接着されている。振動板16の一つの直径に当接
し、センサケース20の底及びスぺーサ21aの内側面
に当接してケース内を2つの空洞25a、25bに分割
する第1の隔板22a及び第1の隔板22aの延長上に
あって振動板16とカバー33との間を空洞25c、2
5dに分割する第2の隔板22bが振動板16、センサ
ケース20、スぺーサ21a、21b、カバー33に接
着されている。第1の隔板22aで2分されたケース内
の各空洞25a、25bには、導管23、24が接続さ
れている。分割された振動板の各部により駆動されて各
別に作用する圧電素子の回路には、それぞれ振動板の一
部に取付けたFET26a、26bを接続する。
1 to 3 show a first embodiment of such a differential pressure type pressure sensor, FIG. 1 is an external perspective view, and FIG. 2 is A of FIG.
-A sectional view, FIG. 3 is a BB sectional view of FIG. The edge of the diaphragm 16 is supported by the crimped edge of the bottomed cylindrical sensor case 20, the cover 33, and the spacers 21a and 21b, and the electrodes 17 and 18 are bonded to the edge of the piezoelectric element 1.
9 is glued. The first partition plate 22a and the first partition plate 22a that come into contact with one diameter of the diaphragm 16 and come into contact with the bottom of the sensor case 20 and the inner surface of the spacer 21a to divide the inside of the case into two cavities 25a and 25b. Cavities 25c, 2 are provided between the diaphragm 16 and the cover 33 on the extension of the partition plate 22a.
A second partition plate 22b that is divided into 5d is bonded to the diaphragm 16, the sensor case 20, the spacers 21a and 21b, and the cover 33. The conduits 23 and 24 are connected to the cavities 25a and 25b in the case, which are divided into two parts by the first partition plate 22a. FETs 26a and 26b attached to a part of the diaphragm are connected to the circuits of the piezoelectric element that are driven by the respective divided portions of the diaphragm and act individually.

【0013】このように構成されるから、導管23、2
4を前述の流体発振器(図10、図11)の通孔7、8
にそれぞれ接続すると、通孔7、8に加わる圧力がケー
ス内の空洞25a、25bに導入され振動板16を振動
させ、振動板に接着した圧電素子に電圧を発生させる。
圧電素子は、隔板の両側にあって分割された極板により
各別に作用する2部分19a、19bに分割されてお
り、これらは図4又は図5のように接続される。27、
27a、27bはゲート抵抗、28は電源、29、29
aはバランス調整抵抗、30a、30bは出力端子であ
る。回路31はセンサケース内に設けられ、回路32は
外部回路である。
Due to this structure, the conduits 23, 2
4 to the through holes 7 and 8 of the fluid oscillator (FIGS. 10 and 11) described above.
, The pressure applied to the through holes 7 and 8 is introduced into the cavities 25a and 25b in the case to vibrate the vibration plate 16 and generate a voltage in the piezoelectric element bonded to the vibration plate.
The piezoelectric element is divided into two parts 19a and 19b, which act on each side by divided polar plates on both sides of the partition plate, which are connected as shown in FIG. 4 or FIG. 27,
27a and 27b are gate resistances, 28 is a power supply, 29 and 29
Reference symbol a is a balance adjustment resistor, and 30a and 30b are output terminals. The circuit 31 is provided in the sensor case, and the circuit 32 is an external circuit.

【0014】この回路は、原理的には図6のようにな
る。即ち、通孔7、8から強弱の流体圧が導入される
と、圧電素子19a、19bはe−△e、e+△eの電
圧を発生しこれは回路A、Bにより電圧差の±2△eと
なって出力端子30a、30bから取出される。従って
端子30a、30bの出力を測定すれば、通孔7、8に
作用する流体圧の差及びその交番周波数を知ることがで
きる。
In principle, this circuit is as shown in FIG. That is, when a strong and weak fluid pressure is introduced from the through holes 7 and 8, the piezoelectric elements 19a and 19b generate voltages of e-Δe and e + Δe, which are the voltage difference ± 2Δ due to the circuits A and B. e is output from the output terminals 30a and 30b. Therefore, by measuring the outputs of the terminals 30a and 30b, it is possible to know the difference between the fluid pressures acting on the through holes 7 and 8 and the alternating frequency thereof.

【0015】図7は、隔板22a、22bにより2分割
された振動板16の各部分の振幅の大きい中間部分に独
立して圧電素子19c、19dを接着した第2実施例を
示す。前記の第1実施例では、圧電素子の中心位置部分
に隔板22a、22bが接着されているので、圧電素子
の一部の撓みが制限されたが、第2実施例では圧電素子
の撓みをより大きくすることができる。
FIG. 7 shows a second embodiment in which piezoelectric elements 19c and 19d are independently adhered to the middle portion of the diaphragm 16 which is divided into two parts by the diaphragms 22a and 22b and has a large amplitude. In the first embodiment described above, since the partition plates 22a and 22b are adhered to the central position portion of the piezoelectric element, the deflection of a part of the piezoelectric element is limited, but in the second embodiment, the deflection of the piezoelectric element is suppressed. Can be larger.

【0016】図8、図9は本発明の第3実施例を示し図
8は外観斜視図、図9は図8のC−C断面図である。金
属又は樹脂で成形されたセンサケース20aには独立し
た有底の空洞25a、25bが形成されており、このケ
ースの開口端に、第2の隔板22bを形成したカバー3
3aで抑えて振動板16a、16bを取付ける。振動
板、カバーの取付けは、図示のようにカバー33aをケ
ース20aにねじ止めして両者の間で振動板を挟持させ
ても、接着剤により貼着しても良い。ケース20aに
は、空洞25a、25bに通じる導管23、24を取付
ける。このセンサの作用は、前記2実施例のものと同様
である。
8 and 9 show a third embodiment of the present invention, FIG. 8 is an external perspective view, and FIG. 9 is a sectional view taken along line CC of FIG. The sensor case 20a formed of metal or resin has independent bottomed cavities 25a and 25b, and the cover 3 having the second partition plate 22b formed at the open end of the case.
The diaphragms 16a and 16b are attached while being suppressed by 3a. The diaphragm and the cover may be attached by screwing the cover 33a to the case 20a so as to sandwich the diaphragm between the two as shown in the figure, or may be attached by an adhesive. The conduits 23 and 24 leading to the cavities 25a and 25b are attached to the case 20a. The operation of this sensor is similar to that of the second embodiment.

【0017】上記各実施例に見るように、本発明の差圧
型圧力センサは、導管23、24を、図10、図11の
通孔7、8のような圧力差を測定しようとする部分に接
続すれば、両部分の差圧及び交番周波数が測定できるも
のであり、直線方向の外力が加わっても、これにより振
動板は同方向に動くから、外部振動の影響を受けること
がなく、又、外部から雑音が到来しても振動板はケース
及びカバーで覆われているので、雑音のため動かされる
ことがなく、図14のような複雑な管路を形成しなくて
も済む。
As can be seen from the above embodiments, in the differential pressure type pressure sensor of the present invention, the conduits 23 and 24 are provided in the portions such as the through holes 7 and 8 in FIGS. 10 and 11 where the pressure difference is to be measured. If connected, the differential pressure and alternating frequency of both parts can be measured, and even if an external force in a linear direction is applied, the diaphragm will move in the same direction, so there will be no effect of external vibration, and Since the diaphragm is covered with the case and the cover even when noise is coming from the outside, it is not moved by the noise, and it is not necessary to form a complicated conduit as shown in FIG.

【0018】[0018]

【発明の効果】【The invention's effect】

(1) 2つの圧力を測定するセンサが1個のものとして形
成されており、1個のセンサで2部分の圧力の差を及び
交番周波数を測定することができる。従ってセンサの取
扱いが容易である。
(1) A single sensor for measuring two pressures is formed, and a single sensor can measure a pressure difference between two parts and an alternating frequency. Therefore, the handling of the sensor is easy.

【0019】(2) 圧力差測定は、導管23、24を被測
定部に接続するだけで済み、複雑な管路を形成しないで
済む。
(2) The pressure difference measurement only needs to connect the conduits 23 and 24 to the part to be measured and does not need to form a complicated conduit.

【0020】(3) センサケースを回転させないように使
用すれば、外部振動や雑音のため測定が妨げられること
がない。
(3) If the sensor case is used so as not to rotate, the measurement will not be hindered by external vibration or noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例を示す圧力センサの外観斜視図。FIG. 1 is an external perspective view of a pressure sensor showing a first embodiment.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図2のB−B断面図。3 is a sectional view taken along line BB of FIG.

【図4】第1実施例のセンサを組込んだ回路の第1例を
示す回路図。
FIG. 4 is a circuit diagram showing a first example of a circuit incorporating the sensor of the first embodiment.

【図5】第1実施例のセンサを組込んだ回路の第2例を
示す回路図。
FIG. 5 is a circuit diagram showing a second example of a circuit incorporating the sensor of the first embodiment.

【図6】同上の動作原理図。FIG. 6 is an operation principle diagram of the above.

【図7】第2実施例の外観斜視図。FIG. 7 is an external perspective view of the second embodiment.

【図8】第3実施例の外観斜視図。FIG. 8 is an external perspective view of the third embodiment.

【図9】図8のC−C断面図。9 is a sectional view taken along line CC of FIG.

【図10】従来の流体発振器の第1例の断面図。FIG. 10 is a sectional view of a first example of a conventional fluid oscillator.

【図11】従来の流体発振器の第2例の断面図。FIG. 11 is a sectional view of a second example of a conventional fluid oscillator.

【図12】これらの流体発振器における差圧測定のため
のセンサ接続を示す略図。
FIG. 12 is a schematic diagram showing sensor connections for differential pressure measurement in these fluid oscillators.

【図13】図12における圧力の正負が逆になった場合
を示す同様の略図。
FIG. 13 is a similar schematic diagram showing a case where the positive and negative pressures in FIG. 12 are reversed.

【図14】外力の影響を受けなくするための従来のセン
サ及び管路を示す略図。
FIG. 14 is a schematic diagram showing a conventional sensor and a conduit for eliminating the influence of external force.

【図15】圧電素子の構成を略示する断面図。FIG. 15 is a sectional view schematically showing the configuration of a piezoelectric element.

【図16】圧電素子分割の第1例を示す略図。FIG. 16 is a schematic view showing a first example of piezoelectric element division.

【図17】圧電素子分割の第2例を示す略図。FIG. 17 is a schematic view showing a second example of piezoelectric element division.

【図18】圧電素子分割の第3例を示す略図。FIG. 18 is a schematic view showing a third example of piezoelectric element division.

【符号の説明】[Explanation of symbols]

1 ケース 2 ターゲット 3 導流突起 4 導流壁 5 ノズル 6 出口 7、8 通孔 9 ケース 10 ノズル 11 ターゲット 12、13 導流壁 14、14a、14b 管 15、15a、15b センサ 16、16a、16b 振動板 17、17a、17b、17c、18、18a、18b
電極 19、19a、19b、19c、19d 圧電素子 20、20a センサケース 21a、21b スぺーサ 22a、22b 隔板 23、24 導管 25a、25b、25c、25d 空洞 26a、26b FET 27、27a、27b ゲート抵抗 28 電源 29、29a バランス調整抵抗 30a、30b 出力端子 31、32 回路 33、33a カバー 34 圧電セラミック板
1 Case 2 Target 3 Flow Protrusion 4 Flow Wall 5 Nozzle 6 Outlet 7, 8 Through Hole 9 Case 10 Nozzle 11 Target 12, 13 Flow Wall 14, 14a, 14b Pipe 15, 15a, 15b Sensor 16, 16a, 16b Diaphragm 17, 17a, 17b, 17c, 18, 18a, 18b
Electrode 19, 19a, 19b, 19c, 19d Piezoelectric element 20, 20a Sensor case 21a, 21b Spacer 22a, 22b Separator 23, 24 Conduit 25a, 25b, 25c, 25d Cavity 26a, 26b FET 27, 27a, 27b Gate Resistance 28 Power supply 29, 29a Balance adjustment resistance 30a, 30b Output terminal 31, 32 Circuit 33, 33a Cover 34 Piezoelectric ceramic plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧電素子を接着した振動板をセンサケー
スの開口端に取付け、このケース内を、振動板に接着し
た第1の隔板により、2部分に区画すると共に、振動板
及び圧電素子をそれぞれ独立に作用する2部分に分割
し、ケース内の分割された各区画にそれぞれ通じる導管
をセンサケースに取付け、ケースの前面を、第1の隔板
の延長上に位置する第2の隔板を有して振動板の前面空
間を2分するカバーで覆って成る差圧型圧力センサ。
1. A diaphragm to which a piezoelectric element is bonded is attached to an open end of a sensor case, and the inside of this case is divided into two parts by a first partition plate bonded to the diaphragm. Is divided into two parts that act independently of each other, conduits that respectively communicate with the divided compartments in the case are attached to the sensor case, and the front surface of the case is separated from the second partition located on the extension of the first partition plate. A differential pressure type pressure sensor comprising a plate and a cover that divides the front space of the diaphragm into two parts.
【請求項2】 別個の2個の圧電素子を第1の隔板によ
り分割された振動板の振幅の大きい部分に接着した請求
項1に記載の差圧型圧力センサ。
2. The differential pressure type pressure sensor according to claim 1, wherein two separate piezoelectric elements are bonded to a large amplitude portion of the diaphragm divided by the first partition plate.
【請求項3】 別個の2個の空洞を形成したセンサケー
スの各空洞の一端に、圧電素子を接着した振動板を取付
け、各空洞にそれぞれ通じる導管をケースに取付け、各
振動板の前面を、上記2個の空洞の前方にそれぞれ独立
して位置する空洞を持つカバーで覆って成る差圧型圧力
センサ。
3. A diaphragm having a piezoelectric element bonded to one end of each cavity of a sensor case in which two separate cavities are formed, conduits leading to the respective cavities are attached to the case, and a front surface of each diaphragm is attached. , A differential pressure type pressure sensor comprising a cover having cavities independently located in front of the two cavities.
JP1815294A 1994-02-15 1994-02-15 Differential type pressure sensor Pending JPH07225168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1815294A JPH07225168A (en) 1994-02-15 1994-02-15 Differential type pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1815294A JPH07225168A (en) 1994-02-15 1994-02-15 Differential type pressure sensor

Publications (1)

Publication Number Publication Date
JPH07225168A true JPH07225168A (en) 1995-08-22

Family

ID=11963649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1815294A Pending JPH07225168A (en) 1994-02-15 1994-02-15 Differential type pressure sensor

Country Status (1)

Country Link
JP (1) JPH07225168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7516667B2 (en) 2006-06-29 2009-04-14 Denso Corporation Differential pressure sensor having symmetrically-provided sensor chips and pressure introduction passages
CN103308246A (en) * 2012-03-08 2013-09-18 精工电子有限公司 Pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7516667B2 (en) 2006-06-29 2009-04-14 Denso Corporation Differential pressure sensor having symmetrically-provided sensor chips and pressure introduction passages
CN103308246A (en) * 2012-03-08 2013-09-18 精工电子有限公司 Pressure sensor

Similar Documents

Publication Publication Date Title
RU2691285C1 (en) Vortex flowmeter vortex converter
US7506551B2 (en) Coriolis flowmeter having a drive device driven in reverse phase to pair of second drive devices
JP2004286514A (en) Vortex flowmeter sensor and vortex flowmeter
JPH07225168A (en) Differential type pressure sensor
GB2200450A (en) Apparatus for detecting resonant frequency of a vibratory member to measure a fluid parameter
JPH06504129A (en) Noise-rejecting vortex flowmeter
JPH07198434A (en) Current meter
RU47097U1 (en) VORTEX FLOW METER SENSOR (OPTIONS)
JP3344846B2 (en) Fluidic gas meter
US3368387A (en) Density measuring instruments
JPH0378624A (en) Vortex flowmeter
JPH08327416A (en) Fluid-vibration detection sensor
JP2530824B2 (en) Fluid logic element type flow meter
EP0077764A1 (en) Piezoelectric pressure sensor
JP2002054959A (en) Differential pressure type flow rate meter
JPS6340820A (en) Flow rate detector
JP2813654B2 (en) Fluid vibration detection sensor in fluid vibration type flow meter
JPS59180435A (en) Karman vortex flowmeter
JPH1038640A (en) Fluid vibration detecting sensor
JPH0972803A (en) Varying pressure sensor
JPH11118543A (en) Vibration detecting sensor for fluidic type flowmeter
JPH08166283A (en) Fluid vibration detecting sensor and fluidic flow meter using the same
JPH0732523U (en) Measuring instrument for fluid flow meter
JP2001349754A (en) Karman vortex flowmeter
JPH01207634A (en) Differential pressure type flowmeter