JPS6340820A - Flow rate detector - Google Patents

Flow rate detector

Info

Publication number
JPS6340820A
JPS6340820A JP18344686A JP18344686A JPS6340820A JP S6340820 A JPS6340820 A JP S6340820A JP 18344686 A JP18344686 A JP 18344686A JP 18344686 A JP18344686 A JP 18344686A JP S6340820 A JPS6340820 A JP S6340820A
Authority
JP
Japan
Prior art keywords
fluid
flow path
sensor
logic element
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18344686A
Other languages
Japanese (ja)
Inventor
Takehiko Mori
武彦 森
Moriyoshi Miyahara
宮原 盛義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OLYMPIA KOGYO KK
Original Assignee
OLYMPIA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OLYMPIA KOGYO KK filed Critical OLYMPIA KOGYO KK
Priority to JP18344686A priority Critical patent/JPS6340820A/en
Publication of JPS6340820A publication Critical patent/JPS6340820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure the flow rate of a fluid in a fine flow rate area, by arranging a pair of control ports provided symmetrical with the center line close to an inflow while being connected to a main passage through respective control nozzles. CONSTITUTION:When a fluid flowing out of a light transmitting and inflow port 4-1 is jetted into a main passage 4-3 from a main jet nozzle 4-4, it flows along either of wall surfaces of the main passage 4-3 by Coanda effect to cause a pressure difference between both sides of the main passage 4-3, which generates, for example, a flow being transmitted through one wall surface control nozzle 5-3 for the main passage 4-3, a control port 4-5 and a control nozzle 4-6. This changes the direction of the main passage to a wall surface 4-3b on the opposite side to a wall surface 4-3a while the flow is turned to a vortex. A fluid containing a pressure vibration flows in a vortex and a free end of a diaphragm 13 vibrates receiving the pressure vibration. The pressure vibration is detected with a piezo-electric film 14 thereby enabling measurement of a flow rate in a fine flow rate area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流量検出器、特に分流路内に流体論理素子を
設け、その流路内に発生する流体の圧力匠動をセンサに
より検出することにより、微少流量領域で流量を計測す
る分流型の流量検出器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a flow rate detector, particularly a fluid logic element in a branch flow path, and detects the pressure movement of the fluid generated in the flow path using a sensor. This invention relates to a branch type flow rate detector that measures flow rate in a minute flow rate region.

〔従来の技術〕[Conventional technology]

流体論理素子式流量計は、バイステーブル型の流体論理
素子の内部流路に発生する流体の圧力振動を検出して流
体流量を計測するものであり、この種流量計は同様の流
体圧力振動を検出して計測する渦式流量計に比して、よ
り微少流量を検出してデジタル計測するのに適している
A fluid logic element type flowmeter measures fluid flow rate by detecting fluid pressure vibrations generated in the internal flow path of a bistable fluid logic element. Compared to vortex flowmeters that detect and measure flow rates, they are suitable for detecting and digitally measuring minute flow rates.

微少流量をデジタル計測する領域に於ける流量計は容積
式又はタービン式などの考案があった。
Flowmeters used in the digital measurement of minute flow rates have been devised as positive displacement or turbine types.

然しなから、これら考案は何れも可動機械部品を主構成
要素としており、このため装置が高価となり、又保守が
困難であるなどの課題がある上、1時間当たり数リット
ル乃至数100す7)ル程度の微少流量に対しては不感
応であると云う問題があったゆ 流体論理素子式流量計は、上記タービン式或いは容積式
の流量計に比して、より微少流量領域での流量計測又は
低粘性流体の流量計測が可能となるが、更に一層の微少
流量領域で流量を計測する装置の開発が望まれていた。
However, all of these devices have movable mechanical parts as their main components, which makes the equipment expensive and difficult to maintain. Fluid logic element type flowmeters, which had the problem of being insensitive to minute flow rates as small as 1, are capable of measuring flow rates in a more minute flow range than the turbine type or positive displacement flowmeters mentioned above. Alternatively, it is possible to measure the flow rate of a low-viscosity fluid, but it has been desired to develop a device that can measure the flow rate in an even smaller flow rate region.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は、畝上の観点に立ってなされたものであって、
その目的とするところは、分流法による流体論理素子式
流量針の計測精度を維持したま\圧力損失を低減させる
ことができ、又、高感度圧電フィルムを用いた流体脈流
センサにより流体の圧力振動を高精度に検出することが
でき、かつ従来不可能とされた微少流量領域で流量を計
測することができる流量検出器を提供することにある。
The present invention was made from the viewpoint of ridges, and
The purpose of this is to reduce pressure loss while maintaining the measurement accuracy of the fluid logic element type flow needle using the flow dividing method, and to reduce the pressure loss of the fluid using a fluid pulsating flow sensor using a highly sensitive piezoelectric film. It is an object of the present invention to provide a flow rate detector that can detect vibrations with high precision and can measure flow rates in a microflow range that has been conventionally considered impossible.

〔問題点を解決するための手段〕[Means for solving problems]

而して、上記の目的は、流入ポートと、流出ポートと、
上記流入ポートと流出ポートを結ぶ中心線に沿って設け
られ、かつ流出ポートに向かって拡幅されるv字状の主
流路と、流入ポートに近接して上記中心線に対称に左右
対をなして設けられ、かつそれぞれの制御ノズルで主流
路に接続される一対の制御ポートと、上記流出ポートの
左右に対をなして対称に設けられ、■字状の主流路の両
隅に通じる一対のベントとを形成する一連の透孔を設け
た流体論理素子パターンと、上記流体論理素子パターン
の流入ポートと流出ポートに対応する透孔と、中心線に
対称に左右対をなして設けられ、上記一対のベントのそ
れぞれをそれぞれ対応する制御ポートに連通ずる制御ノ
ズルとを形成したマニホールドと、両端に流体の流入口
と流出口を有し、内部には上記流入口と流出口を連通さ
せ、かつその中央部に絞り部材を具備した主流路と、上
記絞り部材の上流側及び下流側で上記主流路から分岐し
、それぞれ上記流体論理素子パターンの流入ポート及び
流出ポートに連通せしめられる分流路とから形成された
主流路筐体と、上記主流路筐体との間に上記流体論理素
子パターン及びマニホールドを挾持して気密に流体をシ
ールすると共に、次項記載の流体脈流センサが取り付け
られるセンサ室を具備したセンサ筐体と、上記センサ筐
体のセンサ室内に設けられ、先端部分が上記流体論理素
子パターンの流出ポートに振動自在に挿入される可撓性
の細長い振動板と、上記振動板の一面に設けられた圧電
フィルムと、上記振動板に設けられ、上記圧電フィルム
に設けた一対の端子からそれぞれ上記振動板の一端部に
至る導電路を形成する一対の導電フィルムと、上記圧電
フィルム及び導電フィルムを被覆、シールする被膜部材
とから成る流体脈流センサとにより構成することによっ
て達成される。
Therefore, the above purpose is to provide an inflow port, an outflow port,
A V-shaped main channel is provided along the center line connecting the inflow port and the outflow port and is widened toward the outflow port, and a V-shaped main channel is provided in the vicinity of the inflow port and formed in left and right pairs symmetrically about the center line. A pair of control ports are provided and connected to the main flow path through respective control nozzles, and a pair of vents are provided symmetrically in pairs on the left and right sides of the outflow port and communicate with both corners of the ■-shaped main flow path. a fluid logic element pattern provided with a series of through holes forming a pair of through holes, and through holes corresponding to an inflow port and an outflow port of the fluid logic element pattern, provided in left and right pairs symmetrically about a center line, A manifold is formed with a control nozzle that communicates each of the vents with a corresponding control port, and has an inlet and an outlet for fluid at both ends, and has an interior that communicates the inlet and outlet with the fluid. Formed from a main flow path having a throttle member in the center, and branch flow paths that branch from the main flow path on the upstream and downstream sides of the throttle member and communicate with the inflow port and outflow port of the fluid logic element pattern, respectively. The fluid logic element pattern and the manifold are sandwiched between the main flow path housing and the main flow path housing to airtightly seal the fluid, and a sensor chamber is provided in which the fluid pulsating flow sensor described in the next section is attached. a flexible elongated diaphragm provided in the sensor chamber of the sensor casing, the tip of which is inserted into the outflow port of the fluid logic element pattern so as to vibrate freely; a piezoelectric film provided on the diaphragm, a pair of conductive films provided on the diaphragm and forming a conductive path from a pair of terminals provided on the piezoelectric film to one end of the diaphragm, and the piezoelectric film and the conductive film. This is achieved by constructing a fluid pulsating flow sensor consisting of a membrane member that covers and seals the fluid.

〔作  用〕[For production]

畝上の如く構成することにより、流体脈流センサにより
流出ポートに発生する流体の圧力振動を高精度に検出し
、従来不可能とされていた微少流量領域で流量を計測す
ることができる。
By configuring it like a ridge, the fluid pulsating flow sensor can detect the pressure vibration of the fluid generated at the outflow port with high accuracy, and the flow rate can be measured in a minute flow rate region that was previously considered impossible.

〔実 施 例〕〔Example〕

以下、図面を参照しつ\本発明の詳細を具体的に説明す
る。
Hereinafter, details of the present invention will be specifically explained with reference to the drawings.

第1図は本発明にか\る流量検出器の一実施例を示す側
面断面図、第2図は第1図に示す流体論理素子パターン
の平面図、第3図は第1図に示すマニホールドの平面図
、第4図は第1図に示す流体論理素子パターンの流出ポ
ート部分の拡大平面図、第5図は第1図に示す流体脈流
センサの一部破断断面斜視図、第6図は第1図に示す流
体脈流センサの取付状態を示す斜視図である。
FIG. 1 is a side sectional view showing an embodiment of the flow rate detector according to the present invention, FIG. 2 is a plan view of the fluid logic element pattern shown in FIG. 1, and FIG. 3 is a manifold shown in FIG. 1. 4 is an enlarged plan view of the outflow port portion of the fluid logic element pattern shown in FIG. 1, FIG. 5 is a partially cutaway cross-sectional perspective view of the fluid pulsating flow sensor shown in FIG. 1, and FIG. FIG. 2 is a perspective view showing how the fluid pulsating flow sensor shown in FIG. 1 is installed.

第1図中、1は主流路筐体、2はセンサ筺体、3はオリ
フィス板又はベンチュリー管などの絞り部材、4は流体
論理素子パターン、5はマニホールド、6は流入口、7
は流出口、8.8′は主流路、9.9′は分流路、10
は0リング、11はセンサ室、12は流体脈流センサ、
13はその振動板、14は圧電フィルム、15は電極板
、16.16はリード線、17は取付ラバー、18はセ
ンサ取付部材、19はセンサ用蓋体、20はOリング、
21は空気抜き流路、22はパツキン、23はねじ、2
4.24はボルトである。
In FIG. 1, 1 is a main flow path housing, 2 is a sensor housing, 3 is a throttle member such as an orifice plate or a venturi tube, 4 is a fluid logic element pattern, 5 is a manifold, 6 is an inlet port, and 7
is the outlet, 8.8′ is the main flow path, 9.9′ is the branch flow path, 10
is an 0 ring, 11 is a sensor chamber, 12 is a fluid pulsating flow sensor,
13 is its diaphragm, 14 is a piezoelectric film, 15 is an electrode plate, 16.16 is a lead wire, 17 is a mounting rubber, 18 is a sensor mounting member, 19 is a sensor lid, 20 is an O-ring,
21 is an air vent passage, 22 is a gasket, 23 is a screw, 2
4.24 is a bolt.

本発明にか\る流量検出器に於ては、主流路筐体1とセ
ンサ筐体2とが組み合わされており、主流路筐体1の両
端には流体の流入口6及び流出ロアが設けられ、流入口
6及び流出ロアには検出用流体を直接通す配管が接続さ
れ、流入口6及び流出ロアの中心線に沿った内部には主
流路8.8′が設けられ、その中心線の略中間位置には
絞り部材3が設けられており、又、主流路筺体lには絞
り部材3の上流側及び下流側で主流路8.8′から分岐
し、センサ筐体2側に固定された流体論理素子パターン
4及びマニホールド5の流路に通じる分流路9.9′が
設けられており、又、センサ筺体2には主流路筺体1と
の間に流体論理素子パターン4及びマニホールド5が挾
持されてOリング10により気密に流体をシールするよ
うに設けられており、又、センサ筺体2にはセンサ室1
1が設けられ、センサ室11内には流体脈流センサ12
が流体論理素子パターン4の流路内に発生する流体の圧
力振動を検出するように取り付けられており、又、セン
サ筺体2にはセンサ室11から連通する空気抜き流路2
1が設けられ、その空気抜き流路21端にはパツキン2
1及びねじ23が設けられる。
In the flow rate detector according to the present invention, a main flow path housing 1 and a sensor housing 2 are combined, and a fluid inlet 6 and an outflow lower are provided at both ends of the main flow path housing 1. A pipe for directly passing the detection fluid is connected to the inflow port 6 and the outflow lower, and a main flow path 8.8' is provided inside the inflow port 6 and the outflow lower along the center line. A diaphragm member 3 is provided at an approximately intermediate position, and the main flow path 8.8' branches off from the main flow path 8.8' on the upstream and downstream sides of the diaphragm member 3, and is fixed to the sensor casing 2 side. The sensor housing 2 is provided with a branch passage 9.9' communicating with the flow passages of the fluid logic element pattern 4 and the manifold 5, and the fluid logic element pattern 4 and the manifold 5 are provided between the sensor housing 2 and the main flow passage housing 1. The sensor housing 2 is provided with an O-ring 10 to airtightly seal the fluid.
1 is provided, and a fluid pulsating flow sensor 12 is provided in the sensor chamber 11.
is attached to detect the pressure vibration of the fluid generated in the flow path of the fluid logic element pattern 4, and the sensor housing 2 has an air vent flow path 2 communicating with the sensor chamber 11.
1 is provided, and a gasket 2 is provided at the end of the air vent passage 21.
1 and a screw 23 are provided.

而して、配管から流入した流体は、流入口6から主流路
8に入り、その一部流体は直進して絞り部材3を通り流
出側の主流路8′を経て流出ロアへと到り、一方残りの
流体は分流路9から流体論理素子を構成する流体論理素
子パターン4及びマニホールド5の流路を通り、流出側
の分流路91を経て絞り部材3の流出側の主流路8′へ
と到り、両者流体は合流し流出ロアから配管へと流出す
る。
The fluid flowing in from the piping enters the main flow path 8 from the inflow port 6, and a portion of the fluid travels straight through the throttle member 3 and reaches the outflow lower via the main flow path 8' on the outflow side. On the other hand, the remaining fluid passes through the flow path of the fluid logic element pattern 4 and the manifold 5 that constitute the fluid logic element from the branch channel 9, passes through the branch channel 91 on the outflow side, and enters the main flow channel 8' on the outflow side of the throttle member 3. At this point, both fluids merge and flow out from the outflow lower to the piping.

又、このときの主流路側の絞り部材3と分流路側の流体
論理素子パターン4及びマニホールド5から成る流体論
理素子の圧力損失特性はいずれも二乗特性であり、かつ
常時相等しいから、全流量域に対して分流比は一定とな
るので、流体論理素子パターン4及びマニホールドS側
を通る流量を計測すればよいこととなり、例えば、流体
論理素子4.5側の流量をQlとし、絞り部材3側の流
量をQ2とした場合、合流iQは、 Q−Q+ +Q: =Q1 (1+α)=kQ。
In addition, the pressure loss characteristics of the fluid logic element consisting of the throttle member 3 on the main flow path side and the fluid logic element pattern 4 and manifold 5 on the branch flow path side at this time are all square-law characteristics, and the phase is always equal, so that On the other hand, since the division ratio is constant, it is sufficient to measure the flow rate passing through the fluid logic element pattern 4 and the manifold S side.For example, let the flow rate on the fluid logic element 4.5 side be Ql, and the flow rate on the throttle member 3 side. When the flow rate is Q2, the confluence iQ is Q-Q+ +Q: =Q1 (1+α)=kQ.

となる。becomes.

第2図及び第3図は、流体論理素子を構成する流体論理
素子パターン4及びマニホールド5を示す平面図である
FIGS. 2 and 3 are plan views showing the fluid logic element pattern 4 and manifold 5 that constitute the fluid logic element.

第2図中、4−1は流入ポート、4−2は流出ポート、
4−3は上記流入ポート4−1と流出ポート4−2を結
ぶ中心線に沿って、かつ流出ポート4−2に向かって拡
幅される7字状の主流路、4−4は上記流入ポート4−
1から主流路4−3を結ぶ中心線に沿って設けられた主
噴流ノズル、4−5.4−5 ’は上記主噴流ノズル4
−4に近接して上記中心線に対称に左右対をなして設け
られ、かつそれぞれの制御ノズル4−6.4−6 ’で
主流路4−3に接続される一対の制御ポート、4−7.
4−7 ’は上記流出ポート4−2の左右に対をなして
対称に設けられ、7字状の主流路4−3の両隅に通じる
一対のベント、4−8.4−8は取付孔である。
In Figure 2, 4-1 is an inflow port, 4-2 is an outflow port,
4-3 is a 7-shaped main channel that is widened along the center line connecting the inflow port 4-1 and the outflow port 4-2 and toward the outflow port 4-2; 4-4 is the inflow port 4-
The main jet nozzle provided along the center line connecting main flow path 4-3 from 1 to 4-5' is the main jet nozzle 4-5'.
- a pair of control ports provided in a left and right pair symmetrically about the center line in the vicinity of -4 and connected to the main flow path 4-3 by respective control nozzles 4-6, 4-6'; 7.
4-7' are a pair of vents that are symmetrically provided on the left and right sides of the outflow port 4-2 and communicate with both corners of the 7-shaped main channel 4-3; 4-8 and 4-8 are mounting vents. It is a hole.

而して、流体論理素子パターン4は上記符号4−1乃至
4−7から形成する一連の透孔を設けた円板状に構成さ
れる。
The fluid logic element pattern 4 is formed into a disk shape with a series of through holes formed by the above-mentioned symbols 4-1 to 4-7.

第3図中、5−1及び5−2は上記流入ポート4−1と
流出ポート4−2に対応する透孔、5−3.5−3 ’
は上記透孔5−1及び5−2を結ぶ中心線に対称に左右
対をなして設けられ、上記一対のベント4−7.4−7
′のそれぞれをそれぞれ対応する制御ポート4−5.4
−5 ’に連通ずる制御ノズル、5−4.5−4は上記
取付孔4−8.4−8に対応して設けられた取付孔であ
る。
In FIG. 3, 5-1 and 5-2 are through holes corresponding to the inflow port 4-1 and outflow port 4-2, and 5-3.5-3'
are provided in left and right pairs symmetrically about the center line connecting the through holes 5-1 and 5-2, and the pair of vents 4-7, 4-7
' respectively to the corresponding control port 4-5.4
-5' is a control nozzle communicating with the control nozzle, and 5-4.5-4 is a mounting hole provided corresponding to the above-mentioned mounting hole 4-8.4-8.

而して、上記流体論理素子パターン4と上記マニホール
ド5とは重ね合わせられてセンサ筐体2と主流路筐体1
との間に挾持されて気密に流体をシールするように取り
付けられる。
The fluid logic element pattern 4 and the manifold 5 are overlapped to form the sensor housing 2 and the main flow path housing 1.
It is installed in such a way as to airtightly seal fluid by being sandwiched between the two.

而して、透孔5−1、流入ポート4−1から流入する流
体は、主噴流ノズル4−4から主流路4−3に噴流され
るときにコアンダ効果により、主流路4−3のいずれか
一方の壁面に沿って流れ、そのため主流路4−3の両側
で圧力の差が生じ、この圧力差は例えば主流路4−3の
一方の壁面4−3aに沿っての主噴流に対して他の一方
の壁面4−3b側からの巻き込む流れと一方のペン)4
−7、制御ノズル5−3、制御ポート4−5及び制御ノ
ズル4−6を介して伝達される流れとを発生せしめ、こ
れにより主流路4−3内の噴流の方向が壁面4−3aと
反対側の壁面4−3bに切り替えられると共に渦状とな
る。以下、順次噴流の方向が左右に切り替えられる。上
記制御流路内を流体の圧力波が伝播する速度は一定であ
るから、主流路4−3及び両制御流路内には流体の流速
に比例した繰返し周波数で流体の圧力振動が生じる。
Therefore, when the fluid flowing from the through hole 5-1 and the inflow port 4-1 is jetted from the main jet nozzle 4-4 to the main flow path 4-3, due to the Coanda effect, the fluid flows into the main flow path 4-3. Therefore, a pressure difference occurs on both sides of the main flow path 4-3, and this pressure difference is, for example, relative to the main jet flow along one wall surface 4-3a of the main flow path 4-3. Flow from the other wall 4-3b side and one pen) 4
-7, a flow transmitted through the control nozzle 5-3, the control port 4-5, and the control nozzle 4-6 is generated, so that the direction of the jet flow in the main channel 4-3 is aligned with the wall surface 4-3a. It is switched to the opposite wall surface 4-3b and becomes spiral-shaped. Thereafter, the direction of the jet stream is sequentially switched to left and right. Since the speed at which the fluid pressure waves propagate within the control flow path is constant, fluid pressure vibrations occur within the main flow path 4-3 and both control flow paths at a repetition frequency proportional to the fluid flow speed.

この圧力振動を含んだ流体は第4図に示す如く流出ポー
ト4−2で両矢印方向に渦状に流れ、これにより流出ポ
ート4−2の中央に設けられた振動板13の自由端が圧
力振動を受けて振動する。
The fluid containing this pressure vibration flows in a spiral shape in the direction of both arrows at the outflow port 4-2 as shown in FIG. It vibrates in response to

従って、第4図に示すように流出ポート4−2に配置さ
れた流体脈流センサ12の振動板13には、矢印方向か
ら圧力振動を含んだ渦流体が当てられ、このときに振動
板13は流体に発生せしめられた圧力振動により振動す
る。
Therefore, as shown in FIG. 4, the vortex fluid containing pressure vibrations is applied from the direction of the arrow to the diaphragm 13 of the fluid pulsating flow sensor 12 disposed at the outflow port 4-2. vibrates due to pressure vibrations generated in the fluid.

第5図は流体脈流センサ12の内部構造を示す一部破断
斜視図であり、第5図中、13は前記振動板、14は前
記圧電フィルム、15.15は前記電極板、16.16
は前記リード線、17は前記取付ラバー、31.31は
導電フィルム、32.32は被膜部材、33.33はハ
ンダである。
FIG. 5 is a partially cutaway perspective view showing the internal structure of the fluid pulsating flow sensor 12. In FIG. 5, 13 is the diaphragm, 14 is the piezoelectric film, 15.15 is the electrode plate, 16.16
17 is the lead wire, 17 is the mounting rubber, 31.31 is a conductive film, 32.32 is a coating member, and 33.33 is solder.

流体脈流センサ12は、圧電フィルム14を用いたピエ
ゾセンサであり、その構造は板ばねで作られた可撓性の
薄く細長い振動板13を芯とし、振動板13の一面に圧
電フィルム14を貼付して固定しており、振動板13に
はその一端に至る一対の電極板15.15に圧電フィル
ム14から導電路を形成するように一対の4mフィルム
31.31を設け、圧電フィルム13及び導電フィルム
31.31を被覆、シールするテフロンシートなどの被
膜部材32.32を設けて成るものである。
The fluid pulsating flow sensor 12 is a piezo sensor using a piezoelectric film 14, and its structure has a flexible thin and elongated diaphragm 13 made of a leaf spring as its core, and the piezoelectric film 14 is attached to one side of the diaphragm 13. A pair of 4m films 31.31 are provided on the diaphragm 13 so as to form a conductive path from the piezoelectric film 14 to a pair of electrode plates 15.15 extending to one end of the diaphragm 13. A coating member 32.32 such as a Teflon sheet is provided to cover and seal the film 31.31.

而して、上記の如く構成した流体脈流センサ12は、前
述の如く振動板13に受けた流体の圧力振動を振動板1
3と共に振動する圧電フィルム14により曲げ歪を検出
し、この検出した電荷を導電フィルム31.31及び電
極板15.15を介してリード線16.16から図示し
ないデジタル計測器に通じる。而して、流体脈流センサ
12からの電位は、流体の流速に応じて互いに180度
の位相差をもって周期的に変化し、両者からの出力の差
は図示しない差動増幅器によって増幅され、図示しない
パルスカウンタによってデジタル計数が行われ、これに
より流体の圧力振動が電気的に検出されて微少流量領域
の流体の流量が計測されることとなる。
The fluid pulsating flow sensor 12 configured as described above transmits pressure vibrations of the fluid received by the diaphragm 13 as described above to the diaphragm 1.
The bending strain is detected by the piezoelectric film 14 that vibrates with the piezoelectric film 3, and the detected charge is passed through the conductive film 31.31 and the electrode plate 15.15 to the lead wire 16.16 to a digital measuring instrument (not shown). The potential from the fluid pulsating flow sensor 12 changes periodically with a phase difference of 180 degrees from each other depending on the flow velocity of the fluid, and the difference in output from both is amplified by a differential amplifier (not shown). Digital counting is performed by a pulse counter that does not operate, and as a result, the pressure vibration of the fluid is electrically detected, and the flow rate of the fluid in the minute flow rate region is measured.

第6図は流体脈流センサ12の取付状態を示す斜視図で
あり、第6図中、13は前記振動板、16.16は前記
リード線、17は前記取付ラバー、18は前記センサ取
付部材、32.32は被膜部材である。
FIG. 6 is a perspective view showing the mounting state of the fluid pulsating flow sensor 12. In FIG. 6, 13 is the diaphragm, 16, 16 is the lead wire, 17 is the mounting rubber, and 18 is the sensor mounting member. , 32.32 is a coating member.

センサ取付部材18は取付ラバー17が挿入固定される
スリット18aが設けられ、又、スリット18aに通じ
るリード線16.16を引き出すための孔とコーン型凹
部18bが穿設されている。
The sensor mounting member 18 is provided with a slit 18a into which the mounting rubber 17 is inserted and fixed, and is also provided with a hole and a cone-shaped recess 18b for drawing out a lead wire 16.16 communicating with the slit 18a.

流体脈流センサ12は、第6図に示す如く取付ラバー1
7がスリン) 18aに挿入固定されて自由端となるよ
うにセンサ取付部材18に設けられており、第1図に示
す如くセンサ取付部材18がセンサ蓋体19に取り付け
られて、更にセンサ蓋体19がセンサ筺体2に0リング
20によりシールされてボルト24.24によって取り
付けられる。リード線16.16を通すセンサ蓋体19
の孔にはシリコーンなどの液状ゴムが封入されて完全に
シールされる。
The fluid pulsating flow sensor 12 is mounted on a mounting rubber 1 as shown in FIG.
The sensor mounting member 18 is provided in such a way that it is inserted and fixed into the sensor mounting member 18a and becomes a free end.As shown in FIG. 19 is sealed to the sensor housing 2 by an O-ring 20 and attached by bolts 24 and 24. Sensor lid body 19 through which lead wires 16 and 16 are passed
The holes are filled with liquid rubber such as silicone to completely seal them.

〔発明の効果〕〔Effect of the invention〕

本発明は畝上の如く構成されるから、本発明によるとき
は、分流法による流体論理素子式流量計の計測精度を維
持したま\圧力損失を低減させることができ、又、流体
論理素子パターンとマニホールドを別々に構成している
からコストが安くでき、かつ−組の筐体に各種サイズの
パターンを組み合わせ得る利点があり、又、高感度圧電
フィルムを用いた流体脈流センサにより流体の圧力振動
を高精度に検出することができ、更に従来不可能とされ
た微少流量領域で流体の流9を計測することができる流
量検出器を提供し得るものである。
Since the present invention is structured like a ridge, the present invention can reduce pressure loss while maintaining the measurement accuracy of a fluid logic element type flow meter using the flow dividing method, and Since the and manifold are configured separately, the cost can be reduced, and there is an advantage that patterns of various sizes can be combined in a set of housings.Furthermore, a fluid pulsating flow sensor using a high-sensitivity piezoelectric film can measure the fluid pressure. It is possible to provide a flow rate detector that can detect vibrations with high precision and can also measure the fluid flow 9 in a microflow range that has been conventionally impossible.

尚、本発明の構成は畝上の実施例に限定されるものでは
なく、例えば、流体論理素子パターン4及びマニホール
ド5をセンサ筺体2に設けたが、主流路筐体1に設けて
もよ(、又、流体論理素子パターン4とマニホールド5
とはどちらが主流路側にあってもよく、その他の各要素
の構成も本発明の目的の範囲内で自由に設計変更できる
ものであり、本発明はそれらの総てを包摂するものであ
る。
Note that the configuration of the present invention is not limited to the embodiment on the ridge; for example, although the fluid logic element pattern 4 and the manifold 5 are provided in the sensor housing 2, they may also be provided in the main flow path housing 1. , and the fluid logic element pattern 4 and the manifold 5
Either of these elements may be located on the main flow path side, and the configuration of the other elements can be freely changed in design within the scope of the purpose of the present invention, and the present invention encompasses all of them.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にか\る流量検出器の一実施例を示す側
面断面図、第2図は第1図に示す流体論理素子パターン
の平面図、第3図は第1図に示すマニホールドの平面図
、第4図は第1図に示す流体論理素子パターンの流出ポ
ート部分の拡大平面図、第5図は第1図に示す流体脈流
センサの一部破断断面斜視図、第6図は第1図に示す流
体脈流センサの取付状態を示す斜視図である。
FIG. 1 is a side sectional view showing an embodiment of the flow rate detector according to the present invention, FIG. 2 is a plan view of the fluid logic element pattern shown in FIG. 1, and FIG. 3 is a manifold shown in FIG. 1. 4 is an enlarged plan view of the outflow port portion of the fluid logic element pattern shown in FIG. 1, FIG. 5 is a partially cutaway cross-sectional perspective view of the fluid pulsating flow sensor shown in FIG. 1, and FIG. FIG. 2 is a perspective view showing how the fluid pulsating flow sensor shown in FIG. 1 is installed.

Claims (1)

【特許請求の範囲】 下記1項乃至3項記載の構成要素から成る流量検出器。 (1)流入ポートと、流出ポートと、上記流入ポートと
流出ポートを結ぶ中心線に沿って設けられ、かつ流出ポ
ートに向かって拡幅されるV字状の主流路と、流入ポー
トに近接して上記中心線に対称に左右対をなして設けら
れ、かつそれぞれの制御ノズルで主流路に接続される一
対の制御ポートと上記流出ポートの左右に対をなして対
称に設けられ、V字状の主流路の両隅に通じる一対のベ
ントとを形成する一連の透孔を設けた流体論理素子パタ
ーン。 (2)上記流体論理素子パターンの流入ポートと流出ポ
ートに対応する透孔と、中心線に対称に左右対をなして
設けられ、上記一対のベントのそれぞれをそれぞれ対応
する制御ポートに連通する制御ノズルとを形成したマニ
ホールド。 (3)両端に流体の流入口と流出口を有し、内部には上
記流入口と流出口を連通させ、かつその中央部に絞り部
材を具備した主流路と、上記絞り部材の上流側及び下流
側で上記主流路から分岐し、それぞれ上記流体論理素子
パターンの流入ポート及び流出ポートに連通せしめられ
る分流路とから形成された主流路筺体。 (4)上記主流路筺体との間に上記流体論理素子パター
ン及びマニホールドを挟持して気密に流体をシールする
と共に、次項記載の流体脈流センサが取り付けられるセ
ンサ室を具備したセンサ筐体。 (5)上記センサ筺体のセンサ室内に設けられ、先端部
分が上記流体論理素子パターンの流出ポートに振動自在
に挿入される可撓性の細長い振動板と、上記振動板の一
面に設けられた圧電フィルムと、上記振動板に設けられ
、上記圧電フィルムに設けた一対の端子からそれぞれ上
記振動板の一端部に至る導電路を形成する一対の導電フ
ィルムと、上記圧電フィルム及び導電フィルムを被覆、
シールする被膜部材とから成る流体脈流センサ。
[Scope of Claims] A flow rate detector comprising the components described in items 1 to 3 below. (1) An inflow port, an outflow port, a V-shaped main channel that is provided along the center line connecting the inflow port and the outflow port and widens toward the outflow port, and a V-shaped main channel that is provided near the inflow port. A pair of control ports are provided in left and right pairs symmetrically about the center line, and are connected to the main flow path by their respective control nozzles, and a pair of control ports are provided symmetrically on the left and right sides of the outflow port, and the V-shaped A fluid logic element pattern with a series of through holes forming a pair of vents leading to opposite corners of the main flow path. (2) Control holes that correspond to the inflow port and outflow port of the fluid logic element pattern are provided in left and right pairs symmetrically about the center line, and communicate each of the pair of vents to the corresponding control port. A manifold formed with a nozzle. (3) It has a fluid inlet and an outlet at both ends, and has a main channel inside which communicates the inlet and the outlet and is provided with a throttle member in the center thereof, and a main channel on the upstream side of the throttle member and A main flow path housing formed of a branch flow path that branches from the main flow path on the downstream side and communicates with an inflow port and an outflow port of the fluid logic element pattern, respectively. (4) A sensor casing, which holds the fluid logic element pattern and the manifold between the main flow path casing and airtightly seals the fluid, and is provided with a sensor chamber to which the fluid pulsating flow sensor described in the next section is attached. (5) a flexible elongated diaphragm installed in the sensor chamber of the sensor housing, the tip of which is inserted into the outflow port of the fluid logic element pattern so as to vibrate freely; and a piezoelectric diaphragm provided on one surface of the diaphragm. a film, a pair of conductive films provided on the diaphragm and forming conductive paths each extending from a pair of terminals provided on the piezoelectric film to one end of the diaphragm, and covering the piezoelectric film and the conductive film;
A fluid pulsating flow sensor comprising a sealing membrane member.
JP18344686A 1986-08-06 1986-08-06 Flow rate detector Pending JPS6340820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18344686A JPS6340820A (en) 1986-08-06 1986-08-06 Flow rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18344686A JPS6340820A (en) 1986-08-06 1986-08-06 Flow rate detector

Publications (1)

Publication Number Publication Date
JPS6340820A true JPS6340820A (en) 1988-02-22

Family

ID=16135913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18344686A Pending JPS6340820A (en) 1986-08-06 1986-08-06 Flow rate detector

Country Status (1)

Country Link
JP (1) JPS6340820A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201322A (en) * 1988-08-17 1993-04-13 Elf Atochem North America, Inc. Device for detecting air flow through a passageway
JP2007147497A (en) * 2005-11-29 2007-06-14 Smc Corp Constant quantity discharge device and method of controlling same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497065A (en) * 1978-01-16 1979-07-31 Jiyuuru Kougiyou Kk Method of measuring flow rate
JPS5821820B2 (en) * 1976-10-21 1983-05-04 三菱電機株式会社 Selective growth method for semiconductor crystals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821820B2 (en) * 1976-10-21 1983-05-04 三菱電機株式会社 Selective growth method for semiconductor crystals
JPS5497065A (en) * 1978-01-16 1979-07-31 Jiyuuru Kougiyou Kk Method of measuring flow rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201322A (en) * 1988-08-17 1993-04-13 Elf Atochem North America, Inc. Device for detecting air flow through a passageway
JP2007147497A (en) * 2005-11-29 2007-06-14 Smc Corp Constant quantity discharge device and method of controlling same

Similar Documents

Publication Publication Date Title
US3690171A (en) Fluid flow measurement
US4167873A (en) Flow meter
US3640133A (en) Flowmeter
US4361050A (en) Device for measuring the flow rate of a fluid and air flow sensor system in an internal combustion engine utilizing such a device
US4523477A (en) Planar-measuring vortex-shedding mass flowmeter
EP0168496A1 (en) Vortex generating mass flowmeter
JPS6047973B2 (en) Flowmeter
JP2781063B2 (en) Fluidic flow meter
US4085615A (en) Linear flowmeter
JPS6340820A (en) Flow rate detector
JPH0512647B2 (en)
JP2530824B2 (en) Fluid logic element type flow meter
US20050211000A1 (en) Flowmeter
JP3344846B2 (en) Fluidic gas meter
JPH0353124A (en) Flow meter
US11709081B2 (en) Fluid flow rate measurement device
JP2655573B2 (en) Pressure sensor and gas flow meter using pressure sensor
JPH0862004A (en) Flowmeter
JPS62266416A (en) Flowmeter and method of measuring flow rate
JPS6216655Y2 (en)
JP3209303B2 (en) Vortex flow meter
JPH0547380Y2 (en)
TR2021004544A2 (en) A flow sensor device
JPH07225168A (en) Differential type pressure sensor
JPH01207634A (en) Differential pressure type flowmeter